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Random growth of interfaces as a subordinated process

R. Failla® P. Grigolini**** M. Ignaccolo® and A. Schwettmarin
ICenter for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
?Istituto dei Processi Chimico Fisici del CNR, Area della Ricerca di Pisa, Via G. Moruzzi, 56124, Pisa, Italy
3Dipartimento di Fisica dell'Universita di Pisa and INFM, via Buonarroti 2, 56127 Pisa, Italy
(Received 19 April 2004; published 30 July 2004

We study the random growth of surfaces from within the perspective of a single column, namely, the
fluctuation of the column height around the mean vali®,= h(t) —(h(t)), which is depicted as being subor-
dinated to a standard fluctuation-dissipation process with friciolle argue that the main properties of
Kardar-Parisi-Zhang theory, in one dimension, are derived by identifying the distribution of return times to
y(0)=0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of
the theoretical prediction with the numerical treatment of(the 1)-dimensional model of ballistic deposition
is remarkably good, in spite of the finite-size effects affecting this model.
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The random growth of surfaces is a subject of increasing;=t;,;—t;, namely, the set of time distances between two
interest: The number of citations of the pioneer pafgdr  consecutive recrossings of the origie0. The distribution
where the Kardar-Parisi-Zhan@KPZ) equation was origi- densityyp(7) is shown[10] to be an inverse power law with
nally proposed, at the moment of writing this paper is of 829index up, fulfilling the relation
in the journals of American Physical Society alone. The sub-
ject is discussed in excellent review pap?$ and books B=2~pp. ()

[3,4]. The interest for this field is not limited to the nanotech-Tpe coefficientd refers to the interface growth prior to satu-

nology applicationgsee Refs[S,6] for recent examploSA  ration, a physical condition where the standard deviation of
simple model such as the ballistic depositi@D) model[3] )| L columns, the interface width

is an example of self-organization: As pointed out by Family
[7], a growing surface spontaneously evolving into a steady 1t

state with universal fractal properties is similar to the mecha- w(L,t) = [E [hi(t) = (h(t) T, 3
nism of self-organized criticality8]. The columns of the =1

material growing due to the deposition of particles can begrows asw(L,t)ctA. Equation(2) establishes a connection
thought of as the individuals of a society. The joint action of patween a single column properpy, and a collective prop-
the_ randomness driving the part.icle deposition and the interérty, B, thereby playing an important role for the perspective
action among columns results in the emergence of anoMagjopted in this paper. The theoretical foundation for this im-
lous scaling coefficients, which can be interpreted as the sigsoriant relation is given in earlier papefl-14 and has
nature of cooperation. However, only a little attention haspeen more recently discussed by Majumpies).

been devoted so far to studying the dynamics of the single | this paper we prove that the KPZ condition emerges
individuals of this society, namely, the single growing col- rom the identification offp(7) with the distribution function
umns of the sample under study. Usually the authors of thig, () ' the essential ingredient of the subordination theory
field of resgarch study the CO(reIatlon among d'.Stht COI'[16—18 stemming from the original work of Montroll and
umns [9] without paying attention to the dynamics of an \yeissr1g). In the subdiffusion case, anomalous diffusion is
individual. Yet, a single column is expected to carry infor- yeriveq from the ordinary diffusion process by assuming that

mation about cooperation. the time distance between one jump and the next is deter-

T_he si_ngle column perspective was recently "?‘dopted b¥nined by the inverse power-law time distributigi(7) with
Merikoski et al. [10] to study combustion fronts in paper. the indexu < 2. According to this theory

The individual property under observation is
y(t) = h(t) = (h(1)), (1) B

whereh(t) denotes the height of a single column at titne From the identification ofus, Eq. (4), with up, EQ. (2), we

and(h(t)) the average over the heights of the columns of theobtain the anomalous scaling parameterl /3, which is the

whole sample. The authors of R¢L0] record the times at yp> prediction.
which the variabley(t) changes sign and builds up the cor- jqvever, to prove that the KPZ condition is a subordi-
responding time seriefs so as to create the new time series 5¢gq process, we have to show that E).can be derived
from the assumption that the timesare not correlated, an
essential property ofig(7). For this purpose, we assume that
*Electronic address: grigo@unt.edu y is a diffusion process with scaling,

_us—1l_«a
2 2

(4)
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_1 [y
p(y,t)—t—BF(t—ﬁ>- (5) )
04
The number of particles located in a strip of sthgaround
y=0, N(t), is proportional tq(0,t)dy. Thus, from Eq(5) we
get

w/L

0.2
N(t) = t% (6)

where A is a constant proportional t6(0). On the other

hand, in the scaling regime the particles that are found at the 0.1 : :
origin at a given time are only the particles that went back 0.01 0.1 1 10 100
as a consequence of one or more recurrences. For this reason nL?

we write

FIG. 1. Theoretical standard deviation of the diffusion process
» described by Eq(8) (solid line), compared to collapsed numerical
N(t) = R(t) = E (1), ) results for the interface width from the “self-similar” model of Ref.
n=1 [22] (doty. Q andy were chosen to fit the data points.

wherei(t) is the probability that up to timg nrecurrences jllustrated in Fig. 2. We see thaly(t) is an inverse power
occur, the last taking place exactly at titnérhe assumption  Jaw, with the expected indexy=5/3, truncated at times of
that the timesr are uncorrelated yieldss,(u)=[¢,(u)]".  the order of saturation times by a faster decay. It is important
Note thaty(t) is the waiting time distribution functiogy(t) to noti_ce tha_t the resu_lt of the numerical calculation iII_us-
of which we are trying to assess the asymptotic propertiedrated in the insert of Fig. 2, shows that the recurrence times
Note also that fou— 0 the Laplace transform afp(t) with 7 are not correlated. These numerical results justify the iden-
the form yp(t)=(up-D)THO L/ (t+T)#0 is [20] Pp(u)=1 :!ﬂcatlon of 1e(7) V\t”tg '/’D(T)I.’ ar;d s_?r?w thf”u the SUborme'
—c w0, with c=I"(2—up) T#oL. The parameteF <1 is in.  1ON Process must be realized with an inverse power law
e » truncated at times of the order of saturation times by a faster
troduced to ensure the normalization condition. In thedecay
asymptotic limit of small u's, R(u), which is (1 The process of subordination, yielding both anomalous

—cwo™)/cuo™t, becomes 1dup. As shown in Ref[21],  free diffusion and saturation, is realized through the follow-
this is the limit foru— 0 of the Laplace transform of a func- ing equation[16—19:

tion of time, which fort— is proportional to 1#?™#0. By Dy ; q &

comparison with Eq6), we get the important relation of Eq. IR, _in| 2 2 9 )

. P fo O(t-t )v[dyy+<y >eqdy2]p(y,t )dt’,
The earlier remarks refer to the free diffusion part of the (10)

process. To derive the full picture afforded by the KPZ

theory, free diffusion and saturation alike, we subordinate thevhere®(t) is defined by means of its Laplace transform as

growth process to the ordinary Langevin equation

1F

dy 01 [ e
— == n) + nj, 8
=~ W)+ () ® o2l
with the dissipationy fitting the conditiony<1 and »(n) 10°
being an ordinary Gaussian white noise, defined by = 104+
= 5|
(m(n)n(n")) =2Qa(n-n’)), (9) °
. . L . . . . 107 rz
with Q denoting the noise intensity. The dimensionless time 5
1/y>1 is essentially the saturation time of this ordinary T »
fluctuation-dissipation process. Note that a theoretical model 10 | 7Y S S OS Uf ®
for the random growth of surfaces, called the “self-similar” 107 : \
model by the authors of Ref22], and proven by them to 1 10 100 1000
yield B=1/2, isaccurately described by the Langevin equa- T

tion of Eq.(8), as seen in Fig. 1. This means that the inter-

h A ! FIG. 2. The waiting time distributio/{7) as a function of time
action of the column under study with its two nearest neigh-, the ircles denote the waiting time distributigg() of the BD

bors is properly taken into account by the dissipation termmogel. The dashed line illustrates the theoretical waiting time dis-

i.e., the first term on the right-hand side of K§). tribution ¢s(7) used in Fig. 3 to reproduce the KPZ theory, through
At this stage we have to determine numerically the forma proper use of the BD model, as illustrated in the text. The insert

of ip(t) in the case of the BD model, which is known to fall shows the correlatio€(7) of the waiting timesr; as a function of

in the basin of attraction of the KPZ equation. The results arg@ime 7 (from the BD mode).
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D) = uggU/[1 - g(u)] (11) 1

and(yz)eqE Q/y. Note that the subordination process has the
effect of turning, in a statistical sense, timeinto the real
time t=n'*. Thus, we have to turn the saturation timeyf

the ordinary fluctuation-dissipation process into the much
larger value 14Y*>1/y>1. At times much shorter than the
saturation time 19%¢, y(t) is an inverse power law with
index us=up=5/3. This means that the Laplace transform
of the memory kerneib(t) for u— 0, for small values ofi 0.01 b
fitting though the conditioru> y*®, regime (i), gets the
same form as the free memory kernk}(t) used by the
authors of Refs[16-19,

01

<y>/<y(0)>

2 - 1 : - .
O(u) = Dy(u) = =ut™®, (12 FIG. 3. Regression of the out-of-equilibrium fluctuatigf. The
¢ result of a 1+1-dimensional BD simulation for a system of dize
For simplicity we setc=1, namely,TE[llr(l—a)]l/“. =200(pointgy is compared to the regression form described by Eq.

Furthermore, we deriveiq(7) from Eq. (11) with the modi- (14) (solid line), with y as the only fitting parameter, ard=2/3.

fied memory kernel 5
B e quently,K(a)(t) =exp(-2yt¥). Making u larger and shorter,
D(t) = P(t)exp(- ¥ 1), (13)  the standard deviatiow can be derived from Eq15) by the

thereby settingih(u) of Eq. (11) equal to(i)o(u+,y1/a). This  short-time Taylor series (_axpansi_on of the functil_&fj)(t).
ieldsfp(u):i) (u+y1’“)/[u+<i> (u+94%)], whose Laplace Thus we havew(t)«<t?, with 8 given by Eq.(4), in full
%/ransforrsn dete(r)mine () Theo compari,son with thrz)e nu accordance with the literature on the random growth of sur-
S\ -

; : . faces. Note that the choice of E(.3) annihilates the slow
merical yip(7) requires some caution. In fact, the BD short- 5| of the Mittag-Leffler function, thereby locating the onset
time behavior is model dependent and the subordinatioRs s5tyration in the time region @f/y)Y«. This can be eas-

method is asymptotic in time..This requires that the compari—"y shown by considering regiméi), u< "¢, which makes

son is done with a proper shift afe(7). Nevertheless, after g (10) equivalent to the Fokker-Planck equation associated

the shift, the decay ofig(7) turns out to be slightly slower iih Eq. (8), with y replaced byy'.

than that ofyp(7), an expected finite-size effef3]. We have to point out that in real systems, a regime of
We now prove that the memory kerndk(t), making transition to the steady state exists, this being of a virtually

¥(7)=¢pp(7), compatibly with the limitation posed by the vanishing time duration in the ordinary case of Fig. 1. In the

BD model as a substitute of the KPZ theory, satisfactorilyanomalous case this regime of transition becomes much

reproduces the main KPZ properties. By using the Laplaceénore extended in time, thereby making it difficult to check,

transform approach we derive from EJ0), with the form  in this case, the theoretical predictions of EGst) and(15).

for ®(t) given by Eq.(13), the following analytical expres- |t is possible, however, to check the prediction of Eig) by

sions for(y(t)) and{y(t)): making an experiment at equilibrium, so as to avoid the out-
B o of-equilibrium induced aging effects. We let the system

V() = YO)K (1) (14 evolve till it reaches the steady state. Then, we label all the

and columns whose height is larger than the average height. We

o @ 5 @ observe the time evolution of o_nly the labeled columns and
YO =YK, () +(y)ed L -K (D] (15  we make an average of many identically prepared samples.
The relaxation functionstj)(t) and Kff)(t) are defined The result is sho_wn in _Fig. 3, and the accordance between
through their Laplace transforms theory and experiment is remarkable._
Note that according to the current literature, the standard
1 deviationw(L,t), with L being the sample size, obeys the

(1) —
Ky (u) = U+ y (Ut yayie (1) following form of scaling:

L,t)= Ll/zf(—t i ) 18
N .

T U2y (U

KP () (17

_ This is valid for both the KPZ and the Edwards-Wilkinson
In regime (i) the functionsk'(t) are indistinguishable ~[3] theory.f(x) is an unknown function fitting the conditions

from the Mittag-Leffler functions that would result from set- f(x) > x? if x<1 andf(x)=const ifx>1. The theory of this

ting ®(t)=dy(t) [17]. Furthermore, for even shorter times paper determine$(x) as follows. We identifyL with 1/y,

corresponding tai> y, these Mittag-Leffler functions turn thereby settingc=t 28y. Then, we note that the KPZ condi-

out [17] to be identical to stretched exponentials. Consetion 8=1/3 isobtained from the constraint that, of Eq.(2)
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is identical toug of Eg. (4). In this condition the theory of Finally, we want to express some conjectures about the
this paper assigns, to the unknown functigr), the follow-  role of correlated noisg24]. These authorf24] proved that
ing expression: spatial and time correlation can make the scaling expo@ent
of the Edwards-WilkinsotEW) model get values larger than
f(x) =[1 -KZY 2. (19)  B=1/4. Whatabout the subordination approach of this paper

o o and the models with correlated noise, either EW or KPZ, in
The subordination perspective is adopted here to account.fq’r1ed+1 as well as 1+1-dimensional case? It is expected that

the behavior of a single individu_al of the KPZ system. This 'Sthe time distances between two consecutive random events,
reqlme_d, on the -other_hand, with a proper choiceygfr), and with it the indexug, are affected by both dimension and
which is compatible with the transition to the Markov con- ¢ relation. The anomalous coefficiefitis determined by
dition in the long-time I|m|t.' ) B=(us—1)/2 [Eq. (4)]. Thus, in principle, it is possible to

. Due to the random choice O.f the (_:olum[ﬁa], th_e time " recover the value 0B predicted by Ref[24], provided this is
distance between two consecutive arrivals of particles in the  aiier than 1/2. Thus. the 1+1 EW. with iB=1/4, can

same column must he Poisson. How 1o con_vert.thls PO"'SS‘OQ:'ertainly be reproduced by means of our subordination ap-
like phenomenon into an anomalous subdiffusion, so as t

. . . roach. Of course, the conditiqus=up would be lost. This
involve the subordination method? The numerical result M=o

. eems to be an interesting conclusion, since it suggests fur-
suggest that most of the arrival events are pseudoevent&1er research work to do to assess Why= up corresponds

which do not afford significant contributions to the spreadingto the 1+1 BD. which falls in the basin of attraction of the
of the diffusion distributio{23]. Only some of these arrival 1+1 KPZ theor'y with uncorrelated noise

events do, and the subordination functigg 7) is the distri-
bution of time distances between two consecutive ones of We acknowledge financial support from ARO through
them. Grant No. DAAD19-02-1-0037.
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