
Random growth of interfaces as a subordinated process

R. Failla,1 P. Grigolini,1,2,3,* M. Ignaccolo,1 and A. Schwettmann1
1Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427, USA
2Istituto dei Processi Chimico Fisici del CNR, Area della Ricerca di Pisa, Via G. Moruzzi, 56124, Pisa, Italy

3Dipartimento di Fisica dell’Universitá di Pisa and INFM, via Buonarroti 2, 56127 Pisa, Italy
(Received 19 April 2004; published 30 July 2004)

We study the random growth of surfaces from within the perspective of a single column, namely, the
fluctuation of the column height around the mean value,ystd;hstd−khstdl, which is depicted as being subor-
dinated to a standard fluctuation-dissipation process with frictiong. We argue that the main properties of
Kardar-Parisi-Zhang theory, in one dimension, are derived by identifying the distribution of return times to
ys0d=0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of
the theoretical prediction with the numerical treatment of thes1+1d-dimensional model of ballistic deposition
is remarkably good, in spite of the finite-size effects affecting this model.
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The random growth of surfaces is a subject of increasing
interest: The number of citations of the pioneer paper[1],
where the Kardar-Parisi-Zhang(KPZ) equation was origi-
nally proposed, at the moment of writing this paper is of 829
in the journals of American Physical Society alone. The sub-
ject is discussed in excellent review papers[2] and books
[3,4]. The interest for this field is not limited to the nanotech-
nology applications(see Refs.[5,6] for recent examples). A
simple model such as the ballistic deposition(BD) model[3]
is an example of self-organization: As pointed out by Family
[7], a growing surface spontaneously evolving into a steady
state with universal fractal properties is similar to the mecha-
nism of self-organized criticality[8]. The columns of the
material growing due to the deposition of particles can be
thought of as the individuals of a society. The joint action of
the randomness driving the particle deposition and the inter-
action among columns results in the emergence of anoma-
lous scaling coefficients, which can be interpreted as the sig-
nature of cooperation. However, only a little attention has
been devoted so far to studying the dynamics of the single
individuals of this society, namely, the single growing col-
umns of the sample under study. Usually the authors of this
field of research study the correlation among distinct col-
umns [9] without paying attention to the dynamics of an
individual. Yet, a single column is expected to carry infor-
mation about cooperation.

The single column perspective was recently adopted by
Merikoski et al. [10] to study combustion fronts in paper.
The individual property under observation is

ystd = hstd − khstdl, s1d

wherehstd denotes the height of a single column at timet
andkhstdl the average over the heights of the columns of the
whole sample. The authors of Ref.[10] record the times at
which the variableystd changes sign and builds up the cor-
responding time seriesti so as to create the new time series

ti = ti+1− ti, namely, the set of time distances between two
consecutive recrossings of the originy=0. The distribution
densitycDstd is shown[10] to be an inverse power law with
index mD, fulfilling the relation

b = 2 −mD. s2d

The coefficientb refers to the interface growth prior to satu-
ration, a physical condition where the standard deviation of
all L columns, the interface width

wsL,td ;Î1

L
o
i=1

L

fhistd − khstdlg2, s3d

grows aswsL ,td~ tb. Equation(2) establishes a connection
between a single column property,mD, and a collective prop-
erty, b, thereby playing an important role for the perspective
adopted in this paper. The theoretical foundation for this im-
portant relation is given in earlier papers[11–14] and has
been more recently discussed by Majumdar[15].

In this paper we prove that the KPZ condition emerges
from the identification ofcDstd with the distribution function
cSstd, the essential ingredient of the subordination theory
[16–18] stemming from the original work of Montroll and
Weiss[19]. In the subdiffusion case, anomalous diffusion is
derived from the ordinary diffusion process by assuming that
the time distance between one jump and the next is deter-
mined by the inverse power-law time distributioncSstd with
the indexm,2. According to this theory

b =
mS− 1

2
;

a

2
. s4d

From the identification ofmS, Eq. (4), with mD, Eq. (2), we
obtain the anomalous scaling parameterb=1/3,which is the
KPZ prediction.

However, to prove that the KPZ condition is a subordi-
nated process, we have to show that Eq.(2) can be derived
from the assumption that the timesti are not correlated, an
essential property ofcSstd. For this purpose, we assume that
y is a diffusion process with scaling,*Electronic address: grigo@unt.edu
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psy,td =
1

tbFS y

tbD . s5d

The number of particles located in a strip of sizedy around
y=0, Nstd, is proportional tops0,tddy. Thus, from Eq.(5) we
get

Nstd =
A

tb , s6d

where A is a constant proportional toFs0d. On the other
hand, in the scaling regime the particles that are found at the
origin at a given timet are only the particles that went back
as a consequence of one or more recurrences. For this reason
we write

Nstd ~ Rstd ; o
n=1

`

cnstd, s7d

wherecnstd is the probability that up to timet, n recurrences
occur, the last taking place exactly at timet. The assumption

that the timesti are uncorrelated yieldsĉnsud=fĉ1sudgn.
Note thatc1std is the waiting time distribution functioncDstd
of which we are trying to assess the asymptotic properties.
Note also that foru→0 the Laplace transform ofcDstd with

the form cDstd=smD−1dTmD−1/ st+TdmD is [20] ĉDsud=1
−c umD−1, with c=Gs2−mDdTmD−1. The parameterT,1 is in-
troduced to ensure the normalization condition. In the

asymptotic limit of small u’s, R̂sud, which is s1
−cumD−1d /cumD−1, becomes 1/cumD−1. As shown in Ref.[21],
this is the limit foru→0 of the Laplace transform of a func-
tion of time, which fort→` is proportional to 1/t2−mD. By
comparison with Eq.(6), we get the important relation of Eq.
(2).

The earlier remarks refer to the free diffusion part of the
process. To derive the full picture afforded by the KPZ
theory, free diffusion and saturation alike, we subordinate the
growth process to the ordinary Langevin equation

dy

dn
= − gysnd + hsnd, s8d

with the dissipationg fitting the conditiong!1 and hsnd
being an ordinary Gaussian white noise, defined by

khsndhsn8dl = 2Qdsun − n8ud, s9d

with Q denoting the noise intensity. The dimensionless time
1/g@1 is essentially the saturation time of this ordinary
fluctuation-dissipation process. Note that a theoretical model
for the random growth of surfaces, called the “self-similar”
model by the authors of Ref.[22], and proven by them to
yield b=1/2, isaccurately described by the Langevin equa-
tion of Eq. (8), as seen in Fig. 1. This means that the inter-
action of the column under study with its two nearest neigh-
bors is properly taken into account by the dissipation term,
i.e., the first term on the right-hand side of Eq.(8).

At this stage we have to determine numerically the form
of cDstd in the case of the BD model, which is known to fall
in the basin of attraction of the KPZ equation. The results are

illustrated in Fig. 2. We see thatcDstd is an inverse power
law, with the expected indexmD=5/3, truncated at times of
the order of saturation times by a faster decay. It is important
to notice that the result of the numerical calculation illus-
trated in the insert of Fig. 2, shows that the recurrence times
ti are not correlated. These numerical results justify the iden-
tification of cSstd with cDstd, and show that the subordina-
tion process must be realized with an inverse power law
truncated at times of the order of saturation times by a faster
decay.

The process of subordination, yielding both anomalous
free diffusion and saturation, is realized through the follow-
ing equation[16–18]:

]psy,td
]t

=E
0

t

Fst − t8dgF d

dy
y + ky2leq

d2

dy2Gpsy,t8ddt8,

s10d

whereFstd is defined by means of its Laplace transform as

FIG. 1. Theoretical standard deviation of the diffusion process
described by Eq.(8) (solid line), compared to collapsed numerical
results for the interface width from the “self-similar” model of Ref.
[22] (dots). Q andg were chosen to fit the data points.

FIG. 2. The waiting time distributioncstd as a function of time
t. The circles denote the waiting time distributioncDstd of the BD
model. The dashed line illustrates the theoretical waiting time dis-
tribution cSstd used in Fig. 3 to reproduce the KPZ theory, through
a proper use of the BD model, as illustrated in the text. The insert
shows the correlationCstd of the waiting timesti as a function of
time t (from the BD model).
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F̂sud = uĉSsud/f1 − ĉSsudg s11d

andky2leq;Q/g. Note that the subordination process has the
effect of turning, in a statistical sense, timen into the real
time t=n1/a. Thus, we have to turn the saturation time 1/g of
the ordinary fluctuation-dissipation process into the much
larger value 1/g1/a@1/g@1. At times much shorter than the
saturation time 1/g1/a, cSstd is an inverse power law with
index mS=mD=5/3. This means that the Laplace transform
of the memory kernelFstd for u→0, for small values ofu
fitting though the conditionu@g1/a, regime (i), gets the
same form as the free memory kernelF0std used by the
authors of Refs.[16–18],

F̂sud < F̂0sud ;
1

c
us1−ad. s12d

For simplicity we setc=1, namely,T;f1/Gs1−adg1/a.
Furthermore, we derivecSstd from Eq. (11) with the modi-
fied memory kernel

Fstd = F0stdexps− g1/atd, s13d

thereby settingF̂sud of Eq. (11) equal toF̂0su+g1/ad. This

yields ĉSsud=F̂0su+g1/ad / fu+F̂0su+g1/adg, whose Laplace
transform determinescSstd. The comparison with the nu-
merical cDstd requires some caution. In fact, the BD short-
time behavior is model dependent and the subordination
method is asymptotic in time. This requires that the compari-
son is done with a proper shift ofcSstd. Nevertheless, after
the shift, the decay ofcSstd turns out to be slightly slower
than that ofcDstd, an expected finite-size effect[3].

We now prove that the memory kernelFstd, making
cSstd=cDstd, compatibly with the limitation posed by the
BD model as a substitute of the KPZ theory, satisfactorily
reproduces the main KPZ properties. By using the Laplace
transform approach we derive from Eq.(10), with the form
for Fstd given by Eq.(13), the following analytical expres-
sions forkystdl and ky2stdl:

kystdl = kys0dlKa
s1dstd s14d

and

ky2stdl = ky2s0dlKa
s2dstd + ky2leqf1 − Ka

s2dstdg. s15d

The relaxation functionsKa
s1dstd and Ka

s2dstd are defined
through their Laplace transforms

K̂a
s1dsud =

1

u + g su + g1/ad1−a s16d

and

K̂a
s2dsud =

1

u + 2g su + g1/ad1−a . s17d

In regime (i) the functionsKa
sidstd are indistinguishable

from the Mittag-Leffler functions that would result from set-
ting Fstd=F0std [17]. Furthermore, for even shorter times
corresponding tou.g, these Mittag-Leffler functions turn
out [17] to be identical to stretched exponentials. Conse-

quently,Ka
s2dstd.exps−2g tad. Making u larger andt shorter,

the standard deviationw can be derived from Eq.(15) by the
short-time Taylor series expansion of the functionKa

s2dstd.
Thus we havewstd~ tb, with b given by Eq. (4), in full
accordance with the literature on the random growth of sur-
faces. Note that the choice of Eq.(13) annihilates the slow
tail of the Mittag-Leffler function, thereby locating the onset
of saturation in the time region ofs1/gd1/a. This can be eas-
ily shown by considering regime(ii ), u!g1/a, which makes
Eq. (10) equivalent to the Fokker-Planck equation associated
with Eq. (8), with g replaced byg1/a.

We have to point out that in real systems, a regime of
transition to the steady state exists, this being of a virtually
vanishing time duration in the ordinary case of Fig. 1. In the
anomalous case this regime of transition becomes much
more extended in time, thereby making it difficult to check,
in this case, the theoretical predictions of Eqs.(14) and(15).
It is possible, however, to check the prediction of Eq.(14) by
making an experiment at equilibrium, so as to avoid the out-
of-equilibrium induced aging effects. We let the system
evolve till it reaches the steady state. Then, we label all the
columns whose height is larger than the average height. We
observe the time evolution of only the labeled columns and
we make an average of many identically prepared samples.
The result is shown in Fig. 3, and the accordance between
theory and experiment is remarkable.

Note that according to the current literature, the standard
deviation wsL ,td, with L being the sample size, obeys the
following form of scaling:

wsL,td = L1/2fS t 2b

L
D . s18d

This is valid for both the KPZ and the Edwards-Wilkinson
[3] theory. fsxd is an unknown function fitting the conditions
fsxd~xb if x!1 and fsxd=const if x@1. The theory of this
paper determinesfsxd as follows. We identifyL with 1/g,
thereby settingx= t 2bg. Then, we note that the KPZ condi-
tion b=1/3 isobtained from the constraint thatmD of Eq. (2)

FIG. 3. Regression of the out-of-equilibrium fluctuationkyl. The
result of a 1+1-dimensional BD simulation for a system of sizeL
=200 (points) is compared to the regression form described by Eq.
(14) (solid line), with g as the only fitting parameter, anda=2/3.
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is identical tomS of Eq. (4). In this condition the theory of
this paper assigns, to the unknown functionfsxd, the follow-
ing expression:

fsxd = f1 − K2/3
s2d sxdg1/2. s19d

The subordination perspective is adopted here to account for
the behavior of a single individual of the KPZ system. This is
realized, on the other hand, with a proper choice ofcSstd,
which is compatible with the transition to the Markov con-
dition in the long-time limit.

Due to the random choice of the columns[3], the time
distance between two consecutive arrivals of particles in the
same column must be Poisson. How to convert this Poisson-
like phenomenon into an anomalous subdiffusion, so as to
involve the subordination method? The numerical results
suggest that most of the arrival events are pseudoevents,
which do not afford significant contributions to the spreading
of the diffusion distribution[23]. Only some of these arrival
events do, and the subordination functioncSstd is the distri-
bution of time distances between two consecutive ones of
them.

Finally, we want to express some conjectures about the
role of correlated noise[24]. These authors[24] proved that
spatial and time correlation can make the scaling exponentb
of the Edwards-Wilkinson(EW) model get values larger than
b=1/4. Whatabout the subordination approach of this paper
and the models with correlated noise, either EW or KPZ, in
thed+1 as well as 1+1-dimensional case? It is expected that
the time distances between two consecutive random events,
and with it the indexmS, are affected by both dimension and
correlation. The anomalous coefficientb is determined by
b=smS−1d /2 [Eq. (4)]. Thus, in principle, it is possible to
recover the value ofb predicted by Ref.[24], provided this is
smaller than 1/2. Thus, the 1+1 EW, with itsb=1/4, can
certainly be reproduced by means of our subordination ap-
proach. Of course, the conditionmS=mD would be lost. This
seems to be an interesting conclusion, since it suggests fur-
ther research work to do to assess whymS=mD corresponds
to the 1+1 BD, which falls in the basin of attraction of the
1+1 KPZ theory with uncorrelated noise.
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