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Solutions for solitons in nonlinear optically induced lattices
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We calculate stationary configurations of superposed states “soliton + cnoidal wave lattice” of the vector
nonlinear Schrodinger equation, using the Darboux transformation technique. The obtained expressions contain
the Jacobi elliptic and theta functions, and are easily manageable. There are five stationary configurations, in
which one of the defocusing media is stable, while those of the focusing medium are classified into two weakly
unstable and two unstable. The checking of the solutions as well as the construction of their typical shapes is
accomplished with the help of symbolic packagerHEMATICA .
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Recently there has been new interest on optically induceglicated form, which makes them difficult to apply to real
lattices and the localization of light in those gratirigs-3]. It physical situations.
was shown that the vector nonlinear SchrodingélLS) To get around these difficulties, various direct methods
equation using appropriate ansatz are employed to obtain a series of

special periodic solution§10,11]. For example, Ref[11]
o = iafl//j + 2ia([ a2+ [sf?) g 1=1,2 (1) employs the following ansatz:

1= \Fp?+Ap +B?®), g, =\Gp? + Dp + E&#*Y,
describes the interaction of light with those gratings in a ()
photorefractive crystal in the limit of weak saturation regime.
Strong incoherent interaction of such a grating with a probevhere p=¢(x-cz,9,,9;) is the Weierstrass function. It is
beam facilitates the formation of a noble type of a compositeeasy to see that the absolute values of these solutimth
optical soliton, where one of the componefdescribed by  |y|,|4,|) are periodic over the entine axis. Much more, to
Yn in Eq. (1)] creates periodic photonic structure, while the obtain soliton solutions from Eq2), it is required to take
other componenty,) experiences Bragg reflection from this special values om,, g;. But from this procedure, a pair of
structure and forms gap solitons. solitons emerge in;, i, simultaneously. Contrary to these

The dynamics of the band-gap lattice solitons can be apfacts, our solutions, for example in E.3), are constituted
proximately described by coupled nonlinear Schrddingeby a soliton(i,) plus a periodic latticéy,), the periodicity
equations4], which reduce to VNLS equatio(l) under a  of which is distorted around the soliton due to their nonlinear
proper limit [5]. Reference[3] discusses many important coupling. It is clear that the characters of special solutions
physical properties of the solutions @liton + latticg type  (2) from ansatz are different from those of ours, and they do
of these equations through numerical studies. Especially thot provide the required analytic solutions for solitons in a
stability and classifications of the solutions describing thesgattice. In this paper, we employ a simple, but powerful soli-
composite states are discussed in depth. Clearly, it will beon finding technique based on the Darboux transformation
helpful if we can find analytic expressions of solutions de-(DT) [12] to obtain(soliton +latticé solutions. The results
scribing these composite states. These general analytical sgre compact and easily manageable, at least when we use
lutions can be used to obtain some important characteristicsymbolic packages such agsTHEMATICA. See the related
of lattice solitons in a simple form. Of course the analyticproblem in the case of single-component nonlinear
expression is only possible for the integrable nonlinear equaschrodinger equation in Ref13].
tion, which in this case corresponds to the so-called desatu- We first bring the VNLS equation into a matrix form in

rable Iimit. - . . . terms of 3X 3 matriceskg, T andE:[T,E],
Quasiperiodic solutions in terms df-phased functions
for the VNLS equation are derived in R¢6]. The(soliton + 0 oy o i 0 0

lattice) solution can be obtained from these general solutions _ « B .
by taking degenerate limit of the two-phase solution, see Ref. E=|- dl} 0 0] T={0 -2 0 ] (3
[7] for application of this procedure to the case of single- -, 0 0 0 0 -ir
component nonlinear Schrodinger equat{di.SE). But so-
lutions obtained by above finite-band method have the s
called “effectivization” problem, which is related to = o=
extracting the physical solutions by taking proper initial con- JIE= aﬁE - 2E°E. (4)
ditions [8,9]. Much more, these solutions have rather com-q.4 can readily check that the components of @.are
indeed equivalent to the VNLS equation in Efy). The sig-
natureo is either 1 or —1 depending on whether the group
*Electronic address: hjshin@khu.ac.kr velocity dispersion is abnormédr=1) or normal(c=-1), or

O§uch that
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the waveguide is self-focusingr=1) or self-defocusingo s,=a exp(Bx/2-ipz2). (8)

=-1). One advantage of using matrices is that we can writeH . bit tant and th i related

down the associated linear equatidax pain: ere,als an arbitrary constant and the paramgés relate
to a real parametar as

(o,-E-igT)¥=0, (4,-EE-4E+iBE-B°T)¥=0, dnu
5 A="Po o’ ©

where g is an arbitrary number an®(z,x,\) is a three-  and4, §in Eq. (8) are
component vector.

We now apply the DT to obtain a superposed solution of _ _p’ldrfu 1
(soliton + cnoidal wave lattioge When a DT is applied on a Y=7 2| crfu srfu |’
given starting solutioricnoidal wave, in this ca3git gives a
new solution of typ&soliton + starting solution[14,15. Let O'(w i dnu sru dnu
us denote a starting solution d@s= 3, ¥,=y5. At this point, S=-i -= i . (10)
we need a solution of the linear equatioi® where i, i O 2smu cru chd
=1,2 in E are substituted by the starting solutions,, i Here the Jacobi theta functid is defined by the complete

=1,2. Wedenote this solution as a three-component vectorelliptic integral of the firsisecond kind K(E),

% o ™)< g @)
w=|s, ®(U)—04<2K>—1+22( )" c05< ) @D
S2 with gq=exp(-7K'/K), K’ =K,/(1-k?). To check thaty, s,
The DT now gives the wanted superposed solutign i s, in Eq. (8) indeed satisfy the linear equati¢s), we use the
=1,2 by following identity [16,17;
Y Y 0®'(u E
S — 0 SoSi L 2 - 7 =
(zX) =i (zx) - 2Bc— =, i=1,2. (6) J drfudu= +—u. (12)
i 1 |SO|2+ 0_2 |S]|2 0 @(U) K
j=1,2

Using Eq.(12) and the addition theorem of Jacobi’s elliptic
In fact, it can be explicitly checked thaf, i=1,2 in Eq.(6)  functions, thej, part of the linear equatiofb) can be proved.
are new solutions of the VNLS equati¢h) by using the fact  d,-part equation is similarly proved using identities of elliptic
thats satisfy the associated linear equatigBs functions. This type of solution was first introduced by Sym

We need stable configurations of superposed states, whigh a different contextdescription of vortex motion in hydro-
avoid modulational instabilities. Numerical studies in Ref.dynamic$ [18]. It was then applied to an NLSE-related
[3] show there exist two weaklgoscillatory) unstable con- problem in Ref[13].
figurations in a focusing mediuidenoted by cases | and) |l Then, the DT in Eq(6) gives the superposed configura-
and one(linearly and dynamically stable configuration in tion of “soliton + cnoidal wave”:
the defocusing casease ll). There are two more stationary
configurations, though they are unstable. We explain the cor- 45 = exdip(2 - kz)z]p{dnpx— zw
responding analytic solutions of these three cdkel$, and créu
[l in sequence, in addition to one unstable configuration. rfu dré(px— -1

U uns (sud(p u)zz)

The remaining unstable one can be similarly constructed, but 1+ T oty M ,
is not presented in this paper. We first describe the DT cmu
method with the starting solution of dn-tyje4; in the nota-
tion of Ref.[3]), even though the resulting configuration is 0= exp{ipz( dﬁu)z} dnu

unstable. For the starting solution 1+ srfu psru cnu
020912 _ -1
PAzx)=p dn(px kP ¥z yd=0, (7 X{(M_W)/M +a2M} . (13)

(cn, dn, sn are the standard Jacobi elliptic functions land
€(0,1) is the modulus of the Jacobi function. As far aswhere

elliptic functions are involved we employ terminology and ,
notation of Ref.16]) the solution of the linear equation be- M = exp{ p<® (u) L o dnu)x} O(px) . (14)
comes O(u) sru O(px—u)
_ . O(px-u) Here, ¢; describes a distorted periodic lattice arpgl de-
so=exdip?(2 - k¥ z2]lexdi(yz+ dpx)] R scribes a soliton. Figure 1 shows the superposed configura-
tion of Eg. (13). The solid line shows/; componentat z
=0) while the dashed line is fog, component with param-
s, = - exd - ip2(2 _kz)z]wso, etersp=1, k=0.9,u=2.9, 3=1.87,a=1. Here parametens
cnu and B are related by Eq9).
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FIG. 1. A bright soliton on a dn background. Solid ling;;
dashed linex,, with parameterp=1, k=0.9,u=2.9, 3=1.87,a
=1.

The starting solutiorjperiodic latticg for the cases | and

[I'is (A, in the notation of Ref[3])

Az, x)=kp cn(px, K)gP? (212 9=0. (15
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FIG. 2. A bright soliton on a cn background, case |. Solid line:
n; dashed linews,, with parameterp=1, k=0.9,u=2.9, 8=0.58,
a=1.

srnu dnu dn(px—u)
k2crfu sn(px— u)

5 = exfip?(2k® - 1)z]kp{ cnpx+ 2

><<1+

dr’(px - u) 5 2)'1
k2crfu srf(px— u) +a|M| '

This lattice can be obtained from the dn lattice by using an

identity dr(ku, 1/k)=cn(u,k). Similarly, a simple way to ob-

tain the superposed configuration of the case | is by substi-

tuting k— 1/k, p—kpin Eq. (13). Explicit expressions from
this procedure are

cnu cn(px—u)
dréu

k’srfu cr(px—u) 2)‘1
drfu +a|M| '

;= exdip?(2k? - 1)z]kp{ cnpx-—2

><<1+
cnu

s _ 2 12 c_nzu)}
V2 exp[|p <k * stu)? P s dnu

2 _ -1
X{<1+ksnzu d;ﬂi(px u))/M*+a2M} :

(16)
where
B ~ OL(u) cnu dnu) 0.(px)
M= ex'{ p< 0w s X} Oc(px-u)’
0. =1+ 2% (- )”exp(— n? K )cos nmx
c ] "K-iK')TTK=-IK
(17)

Figure 2 shows the superposed configuration in(E6). The

solid line showsy, component(at z=0) while the dashed
line is for exg—2.3%)yn(at z=0) with parameterpp=1, k

=0.9,u=2.9,B8=0.58,a=1.

tained from the case | by substituting— u+iK’. Explicit
expression from this substitution is

dnu sru
cnu

drf(px~-u) ) ., ]‘1
k2crfu srt(px— u) /M ram|

5 = exdip?(k? - drfu)z]2ap

o

(18)
where
e p[_ (@;(u+n<')
P TP g u+ik)
_cnu dnu O.(px)
snu )X]C(px—u—iK’)' (19

Figure 3 shows the superposed configuration in (&8§).
The solid line shows); component az=0 while the dashed
line is for exg—2.84)y, at z=0 with parameterp=1, k
=0.9,u=2.9,8=1.73,a=1.

Finally, the superposed configuration of the case(sh
lattice, defocusing mediunfy in the notation of Ref[3]) is
obtained from the dn-lattice result in Ed.3) by substituting

-40 -30 -20 -10 O 10 20 30
The superposed configuration of the case Il can be ob- FIG. 3. A bright soliton on a cn background, case II. Solid line:

n; dashed liney,, with parameterp=1, k=0.9,u=2.9, 3=1.73,
a=1.
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k—ik, p—ip, u—iu. Explicit expressions from this proce- 0
dure are -7
, 0.5 \
. (1-k%sru
S — _ 2 k2 1 k K _2 0.25 / \
¢1=exi-ipik™+ 1)z] |0{srl(|ox+ ) 2 eru snpx—u) v 0 \ !
dréu -1 ~0.25 |/
x|1- - 2M2> , '
( k2crPu srf(px— u) M| -0.5 \ |
-0.75
smu
S — in2k2 + (1 — k3)/dr2 2ap(1 - k? -40 -30 -20 -10 O 10 20 30
¥z = exp{ip[k’+ (1 - K)/drulz2ap(l - k) — = —

FIG. 4. A bright soliton on a sn background, case lll. Solid line:
iJn; dashed linews,, with parameterp=1, k=0.9,u=2.9, 8=1.29,
a=1.

dréu

-1
- * _ Q2
X[<1 kzcnzusr?(px—u))/M M} '

e p{_ (@g(u—K—iK’)
R TP o u-Kk-iK)

__cu )x} O,(px)
sru  dnu
inax

O (px-u+K+iK")’
— . n(n+1) 2 K
O =1+ 22 (=) expl —n°w; |cos——.
n=1 K K

In this paper, we give explicit expressions for four station-
ary configurations of “soliton + cnoidal wave lattice,” each
having background lattices of dn, ¢oases | and )| and sn
(case lI). In the case of cn background, we obtain a new
solution(case 1) from a given ondcase ) by taking a sub-
stitution ofu— u+iK’. Similarly, we can obtain another sta-
tionary solution from the solutiofil3) having dn-type cnoi-
dal background. Thus we conclude that there are five
stationary configurations of superposed states, where two of
them(dn lattice are unstable, other tw@ases | and Il of cn
lattice) are weakly stable, and final oiease Il of sn latticg
is stable. The relation of our solutions with the band-gap
structure of the linear spectrum of the periodic structure can
be found in Ref[3].

(20)
where

(21)
Figure 4 shows the superposed configuration in(2g). The
solid line shows t+y;, while the dashed line is fog, with
parameterp=1, k=0.9,u=2.9, 8=1.29,a=1.

This work was supported by Korea Research Foundation
Grant(Grant No. KRF-2003-070-C0001.1

[1] N. K. Efremidiset al, Phys. Rev. E66, 046602(2002.

[2] 3. W. Fleischer, M. Segev, N. K. Efremidis, and D. N.
Christodoulides, Phys. Rev. Let@0, 023902(2003; Nature
(London 422, 147 (2003; D. Neshevet al, Opt. Lett. 28,
710(2003.

[3] A. S. Desyatnikowt al, Phys. Rev. Lett91, 153902(2003.

[4] F. Lederer, S. Darmanyan, and A. Kobyakov,Spatial Soli-
tons edited by S. Trillo and W. Torruella&Springer, Berlin,
2001, p. 269.

[5] S. V. Manakov, Zh. Eksp. Teor. Fiz65, 505 (1973 [Sov.
Phys. JETP38, 248(1974)].

[6] M. R. Adamset al, Commun. Math. Phys155 385 (1993.

[7] F. Abdullaev, S. Darmanyan, and P. Khabibulla@ptical
Solitons Springer Series in Nonlinear Dynami¢Springer-
Verlag, Heidelberg, 1993

[8] See, for example, A. Kamchatnov, Phys. Rep86, 199
(1997).

[9] H. J. Shin, J. Phys. A36, 4113(2003.

[10] F. T. Hioe, J. Phys. A32, 2415(1999; K. W. Chow and D. W.
C. Lai, Phys. Rev. E68, 017601(2003.

[11] A. V. Porubov and D. F. Parker, Wave MotidzB, 97 (1999.

[12] G. Darboux, Compt. Ren®4, 1456 (1882; V. Matveev and
M. Salle, Darboux Transformations and SoltqriSpringer Se-
ries in Nonlinear Dynamics(Springer-Verlag, Heiderberg,
1990.

[13] H. J. Shin, Phys. Rev. B3, 026606(2001).

[14] Q-H. Park and H. J. Shin, Physica 67, 1 (2001).

[15] Q-H. Park and H. J. Shin, IEEE J. Sel. Top. Quantum Electron.
8, 432(2002.

[16] Encyclopedic Dictionary of Mathematicedited by K. It6
(MIT press, Cambridge, MA, 1993

[17] Table of Integrals, Series, and Produceslited by I. S. Grad-
shteyn and |. M. RyzhikAcademic Press, New York, 1980

[18] A. Sym, Fluid Dyn. Res.3, 151(1988.

067602-4



