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Control of on-off intermittency by slow parametric modulation
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We study on-off intermittent behavior in two coupled double-well Duffing oscillators with stochastic driving
and demonstrate that, by using slow harmonic modulation applied to an accessible system parameter, the
intermittent attractors can be completely eliminated. The influence of noise is also investigated. Power-law
scaling of the average laminar time with a critical exponent of —1 as a function of both the amplitude and
frequency of the control modulation is found near the onset of intermittency, which is a signature of on-off
intermittency.
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Coexisting attractors and intermittency are common com-3/2 [7]. The on-off intermittency has also been detected
plex phenomena observed in many nonlinear dynamical sysexperimentally in electronic circuifdll], in a gas discharge
tems. The intermittency route to chaos may be observed in plasma[12], in a spin wave systerfiL3], in nematic liquid
dynamical system when a control parameter passes throughcaystals[14], and in a lasef15]. In the case of periodically
critical value. The intermittent behavior is characterized bydriven systems, the same critical exponent of -1 for the
irregular bursts(turbulent phasesinterrupting the nearly mean laminar phase has been found in laser experiments as a
regular (laminapn phases. Different types of intermittency function of both the amplitude and frequency of the paramet-
have been observed and classified into type I, type Il, andic modulation near the onset of intermitteni@p].
type Il of Pomeau-Manneville intermittendyl], on-off in-  The possibility for controlling on-off intermittent dynam-
termittency [2], and crisis-induced intermittenc8]. The ICS was investigated first by Nagai, Hua, and [E0]. Their
type of intermittency depends on the type of bifurcation atcontrol method is based on the ideas of Ott, Grebogi, and
the critical point. The type | and on-off intermittency are Yorke (OGY) for controlling chaog16]. Specifically, they
associated with saddle-node bifurcations, the type Il and typd€Vvised an algorithm for stabilizing a trajectory in the vicin-
[l with Hopf and inverse period-doubling bifurcations, re- Il:));c(:)lz ?)gr?uslgﬁilgngﬁto):tsa;?;tz)r/nusggr?\reagrra[Irlr):esi‘rlggsfgg(-jl;)op
e e s, /conval alorm requires the knowledge of Sysem equa.

. . o ; tions. However, in many practical situations the detailed sys-
multaneoqsly CO."'de W'th a periodic orbfor orbity [_4]' .. tem equations are not available. For such a case, an open-
On-off intermittency differs from other types of intermit- 545 control algorithm might be more realistic. Before the

tency because it requires a dynamical time-dependent forcing gy method, Lima and PettifiL7] proposed a nonfeedback
of a bifurcation parameter through a bifurcation pail,  perturbative technique of stabilizing a chaotic system toward
whereas for other types of intermittency the parameters arg periodic state. This technique was applied experimentally
fixed. Therefore, this type of intermittency is often called for eliminating chaotic oscillations in a bistable magnetoelas-
modulational intermittency6]. In on-off intermittency one  tjc system[18] and for stabilizing periodic orbits in a laser
or more dynamical variables of the system exhibit two dis-[19).
tinct states as the system evolves in time. In the “off’ state | this Brief Report we study the possibility of controlling
the variables remain approximately constant in various timgyn-off intermittency by harmonic modulation applied to an
intervals. These periods are called laminar phases. The “orccessible system parameter. Our method to confine a trajec-
states are characterized by irregular bursts of the variablagry in the “off” state is based on Lima and Pettini's idea of
away from their constant values. the open-loop control of chaos. Similarly to Nagai, Hua, and
The effect of on-off intermittency has been investigated in|_j [10], we assume that the desirable operational state of the
one-dimensional maps coupled to either random or chaotigystem is the “off” state and the “on” state is undesirable.
signals[5,7], in a forced logistic map whose control param- That is, we wish to avoid temporal burston” stateg of
eter fluctuates either chaotically or stochasticgly and in dynamical variables. As distinct from the closed-loop con-
periodically forced coupled Duffing oscillatof§,10. Like  trol, the open-loop control is not restricted to small perturba-
the other types, on-off intermittency is characterized by funtjons. The modulation amplitude may be arbitrarily large to
damental statistical properties with typical power-law scal-achieve the control goal. However, the main advantage of
ings near the onset of intermittenay) for the mean laminar  this type of the control is that it does not require a prior
phase as a function of the coupling parameter with a criticaknowledge of system equations. We also show in this work
exponent of —17], and(ii) for the probability distribution of  how the control works in the presence of external noise of
the laminar phase versus the laminar length with exponemdifferent levels.
The analysis is carried out on an example of two coupled
double-well Duffing oscillators with random driving. Along
*Electronic address: apisarch@cio.mx with many other complex systems, the coupled Duffing os-
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cillators exhibit coexistence of several attractors; some of

them may be chaotigintermitten), while the others are

steady states. In such a situation, the control of intermittency

may be manifested as annihilation of the intermittent attrac-

tors so that all trajectories are driven to the steady states. In <

our recent worlf20] we showed that coexisting fixed points

and limit cycles in multistable systems can be annihilated by

harmonic parametric modulation. In this work we demon-

strate how the annihilation effect is achieved with intermit- control on

tent states in randomly driven Duffing oscillators. (®) o
The dynamics of two identical nonlinear oscillators with

random driving can be governed by the equation, 1

X+ vk —qéx=— V V(x), (1) ] W
o

wherex=(x,y), v is a damping factor¢ is uniformly dis- <

tributed noise of leved] in the unit interval[0,1], andV(x) is ] off on

a two-dimensional anharmonic potential function of coupled control on
oscillators that for symmetric Duffing oscillators can be ex- 15
pressed as followglLQ]:

V(xy) = (1=x0)%+ (y? - a®)*(x—d) +b(y’ - a)*, (2)

wherea, d, andb(>0) are parameters. We assume that one 1 control on
of the coupled subsystenis the x direction) is randomly \

driven, i.e., noisy. The system Edq4) and(2) can be written
as four first-order differential equations in terms of the dy- < 0
namical variables; =X, X,=X, X3=y, andx,=Yy,

X1 = X, (3 -1

. )
Xo= = YXo+ 4% (1 X9 — (x5 — @2)2 + qéxy, (4) 0 0.2 0.4 0.6 08 xio*

)'(3 = Xg, (5) . . .
FIG. 1. A slow parametric modulation leads to the disappear-

. ance of intermittent attractors. The initial system statega@rewo-
Xg = = %y = Ax3(0G — %) (xy — d) — 8bxs (G - @)%, (6) state on-off intermittency without modulatiémzo), andszl;? one-
The system Eqg3)—(6) exhibits different dynamical regimes state andc) two-state. oq-off intermittency with small modulation
from regular states to on-off intermittency in a wide range of(M=0.1. The arrows indicate the moments when the control with
parameter valuef9]. For simplicity we consider the cage = M=0-4 andf=0.01 s applied. The trajectory is attracted to the limit
=0.04,a=0.73,b=0.008, ancd=-1.8. Due to the presence cycle |n'tr_1_e vicinity of one of the potentlal wells. ThIS demonstrates
of two invariant subspaces &{= +a andx,=0, there are two the flexibility of the control to select different desirable “off” states.
“off” states, i.e., the phenomenon referred to tam-state
on-off intermittencyf10]. The two “off” states arise from two
wells in the potentiaM(x,y) in they direction. At relatively
low noise(g<3), the one-state and two-state intermittency
regimes appear only as transients. The two-state on-off inte

of the results is presented in Fig. 1 where we demonstrate the
control effect on some of the coexisting attractors. The sys-
tem, prior to the control, is in the chaotic state. When the
control is switched orjatt=5000, the intermittent attractors

h . : ; Hisappear, and the trajectory is attracted to one of the remain-
mltte_nt attr_actor is created at relatively hlgh_noﬂqe 3) and _ing steady states. Note that the external harmonic modulation
coexists with two steady states corresponding to the potentigheates a limit cycle around each fixed point so that the final

wells. Our goal is to eliminate the intermittent attractors Sog;ate is a periodic orbit. When the modulation amplitude is
that a trajectory initiated from a random initial condition gnhjieq hut is not sufficiently large to eliminate an intermit-
stays in the vicinity of one of the potential wellsypassum- ot attractor, the system exhibits the coexistence of five at-
ing that this potential well is the desirable state of the SySyactors. In addition to two limit cycles in the vicinity of each
tem. ) potential well, two one-state and one two-state intermittency
We choosea to be the parameter to which the control roqimes coexist. In Figs.(i) and ic) we demonstrate how a
modulation is applied in the following form: sudden increase im annihilates the intermittent states re-
a=ag[1-m sin2xft)], ) sulting in thg periodic bis_tability. .

The required modulation amplitude for the control de-
wherem and f are the modulation depth and frequency andpends on both the noise level and the modulation frequency
ag is the initial value of the parametén,=0.73. A glimpse  as shown in Fig. 2. In the presence of the parametric modu-
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FIG. 3. Average laminar lengtta) versus relative difference of

FIG. 2. Codimensional-2 bifurcation diagrams in space@f  modulation depth from its critical value &t0.01 and(b) versus
noise level and modulation depth &0.01 and(b) modulation  modulation frequency an=0.14 on log-log scalesj=2.5. The fits
frequency and depth at=3. The boundaries between different dy- of the data to straight lines are good, the slopes of which are —1.
namical regimes, one-statél) and two-stat&2l) intermittency and
periodical orbit(PO), are shown. The bifurcation lines for the onset phase depends on the noise level. This suggests that the rea-
of intermittency are indicated by the arrows. Only periodical re-son for the control effect is a resonant interaction of the
gimes exist in the dashed region. modulation frequency with the frequency at which the trajec-

tory was repelled away from one of the invariant subspaces.

lation Eq.(7), the intermittent attractors appear at a certain  Taking into account the above speculations, the mean du-
level of the noisgq>1.9 for f=0.01) [Fig. 2a)]. To elimi-  ration of the laminar phase is one of the important character-
nate these attractors, the amplitude of the control modulatioistics both for achieving the control goal and for character-
should be above some critical valug, i.e., above the cor- ization of the observed intermittent behavior in general. In
responding bifurcation lines in Fig. 2. Note that, for rela- Fig. 3 we plot on a log-log scale the mean duration of the
tively low noise (1.9<q<3), there are two critical values laminar phase(7), as a function of both the relative differ-
for the modulation amplitude, which correspond to the onseence of the modulation depth from its critical val(e,
and offset of on-off intermittency. The two bifurcation lines —m)/m, [Fig. @] and the modulation frequendy We find
in Fig. 2a are good fits of the data to the exponential that in both cases these dependences obey the -1 scaling law
growth and decay with critical exponents of 1 and 0.25, rethat characterizes on-off intermittency. This result agrees
spectively. As seen from Fig(l3), the intermittent attractors well with other theoretical work where the control parameter
can be destroyed only by slow parametric modulationwas driven randomly7] and with laser experiments where
(f<0.09 when m>m.. In the regime of on-off intermit- the parameter was modulated periodicdlly].
tency, a typical trajectory spends a long time near one invari- In conclusion, the possibility of the open-loop control of a
ant subspacélaminar phasg and when the modulation is chaotic dynamical system that exhibits on-off intermittency
fast, the system has no time to respond to the control. Ilas been demonstrated. We have shown that a trajectory can
other words, the period of the modulation should be of thebe stabilized in the vicinity of a desired stdteff’ state) by
same order of magnitude as the characteristic time for whicklow harmonic modulation applied to an available system
the trajectory spends near one invariant subspace before bgarameter. We have derived the conditions for the modula-
ing repelled away. Of course, the duration of the laminartion amplitude and frequency to achieve the control goal in
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the presence of noise of different levels. A scaling law with adriving signal is well defined and hence the appropriate
critical exponent of —1 for the mean duration of the laminarmodulation parameters can be computed and applied to the
phase versus both the modulation amplitude and frequencgystem to eliminate intermittent attractors even without the
has been found. The coincidence of this scaling relation wittknowledge of an adequate theoretical model.

those of other work verifies the universal character of this  This work has been supported through a grant from the
scaling relation for different types of driving and different |nstitute Mexico-USA of the University of CalifornidJC-
types of on-off intermittencies. The control can be realizedMEXUS) and Consejo Nacional de Ciencia y Tecnologia
easily in practice, because in the experimental situation theCONACyT).
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