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Synchronization-based estimation of all parameters of chaotic systems from time series
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By a simple combination of adaptive scheme and linear feedback with the updated feedback strength, for a
large class of chaotic systems it is proved rigorously by using the invariance principle of differential equations
that all unknown model parameters can be estimated dynamically. This approach supplies a systematic and
analytical procedure for estimating parameters from time series, and it is simple to implement in practice. In
addition, this method is quite robust against the effect of noise and able to respond rapidly to changes in
operating parameters of the experimental system. Lorenz and Réssler hyperchaos systems are used to illustrate
the validity of this technique.
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Synchronization of unidirectionally coupled chaotic sys-of parameters—i.e., the dynamical system governing the
tems and its potential applications in engineering are curevolution of all parameters—and the update law of linear
rently a field of great interegsee[1-7] and references cited feedback strength are given explicitly without determining
therein. An interesting application of chaotic synchroniza- any additive parameters. When time series for variables of
tion is to analyze the time series of chaotic systems whefhe experimental system are available, a system consisting of
partial information about the experimental systems is availonly 2n+nm equations needs to be solved in order to esti-
able[8-12. Assuming that the number of independent vari-mate nm unknown parameters of amdimensional chaotic
ables and the structure of underlying dynamical equations fogystem. Such estimation is quite robust against the effect of
a chaotic system are known, we address the problem of egoise and able to respond rapidly to changes in operating
timating all model parameters of the experimental system. parameters of the experimental system.

In Refs.[8-10, some schemes such as autosynchroniza- We begin by considering amdimensionalexperimentgl
tion, error minimization, and the Huberman-Lumer schemechaotic system in the form of
[13] were developed to solve the above problem. However, .
just as stated ifill], these techniques admit a certain limi- x=F(x,p), 1)
tation. A new online scheme based on the least-squares apy e X=(Xg, Xp, + o Xo) € R, F(x,p)
proach was recently used to develop a general and robug%F (%,p),Fo(X, p) F.(x,p)), and
method for deriving the dynamical system governing the - 17" 2 o inA B
evolution of all model parameters of a chaotic system; see m
[11]. Note that all methods referred above are almost numeri- F.(x,p) =Ci(X) + > P fij(x), 1=1,2,...n. (2
cal. For example, the negativity of all conditional Lyapunov =1
exponents of the error system is used to guarantee synchrpr, o ¢ (%)
nization between systems in these methods. However, it has :
recently been reported that the negativity of the conditiona[U
Lyapunov expor)gnts is ne|th§r a sufﬁugnt c_:on'dmon nor gy« following assumption.
necessary condition for chaotic synchronization; gek15 For an U and = —(x0 40 0
and references cited therein. Due to numerical consider- y pel an x—(xl,xz,...,>_(n),_x0 (Xg. X, - %)

. - R", there exists a constant10 satisfying
ations, some additive parametdrsg., feedback constants, <
etc.; seqd10,11) have to be numerically determined. IFi(x,p) = Fi(%o,p)| <1 max|x; -9, i=1,2,...n

In this paper, for a large class of chaotic systems we give b
an analytical and systematic procedure to estimate dynami- 3
cally all model parameters from time series. By a simple e call the above condition the uniform Lipschitz condi-
combination of adaptive control and linear feedback with thetion, andl refers to the uniform Lipschitz constant. Note this
updated feedback strength, it is proved rigorously by usingondition is very loose; for example, the conditi¢8) holds
the invariance principle of differential equations that all un-as long asdF;/ax;(i,j=1,2,... n) are bounded. One may
known parameters can be estimated dynamically from timgheck easily that the class of systems in the form of Egs.
SerieS Of the eXperimental System. It iS CrUCiaI for thIS teCh'(l)_(g) includes a|most a” We”_known Chaotic Systems Such

nique to adapt duly the feedback Strength of the linear feedas Lorenz System, Chua’s Circuit, ROssler hyperchaos Sys-
back, which is different from the traditional linear feedbacktem, etc.

where the feedback constant is fixed. The adaptive controller e assume that time series for all variables of &g, as
the experimental output of the system, are available. To es-

timate all unknown parametegsfrom these time series, we
*Electronic address: dbhuang@mail.shu.edu.cn introduce an auxiliary system of variablgs (y1,Ys, ... ,Yn),

and f;;(x) are some nonlinear functions, amd
p; € UCR" arenmunknown parameters to be estimated;
is a bounded set. For the vector functidfx, p), we give
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whose evolution equations have identical form to thak.of yariant set contained i=0 for the augment system. Then
But the corresponding parameters are not same, which Wiliccording to the well-known invariance principle of differ-
be set to arbitrary initial values—say=a;;,i=1,2,...n,]  ential equation§16], starting with arbitrary initial values of
=1,2,...m. In contrast to the experimental systéfy, the  the gqugment system, the orbit converges asymptotically to
auxiliary system can be controlled in practice, which is alsohe setE—i.e., e—0, g-p—0, ande— ¢, ast— =, where
called the receiver system. We consider the linear feedbadgle converged strengte, depends on the initial values.
Contrql, and the receiver SyStem is giVen by the fo”OWingName|y’ the parametem will approximate asymptotica”y
equation: the correct values of unknown parametgrsstarting with

. arbitrary initial values.

y=Fy,q) +ely=x), () In o?/der to estimatenm model parameters using this
where the feedback couplingy—x)=(e;e;, &6, ... €€, method, we need to solve the experimental systBniwhen
e=(y;—%),i=1,2,... n, denoting the synchronization error real experimental data are not availgbkbe receiver system
of Egs.(1) and(4). Instead of the usual linear feedback, the (3), the update law of feedback streng#), and the adaptive
feedback strengthe=(e;, ey, ...,e,) here will be adapted €quation of parameter®). So when time series of the ex-

duly according to the following update law: perimental system are available, an extended system consist-
ing of 2n+nm equations needs to be solved to estimate
€§=- yielz, i=1,2,...n, (5) parameters of an-dimensional system. Obviously, the syn-

chronization of system#4), (6), and(7) is global from the
above proof, so this estimation approach is quite robust
against the effect of noise and able to respond to rapid

wherey,>0,i=1,2, ... n, are arbitrary constants. The equa-
tions governing the evolution of the parametgrare chosen

similar to the adaptive controller used [ih0] and quite sim- changes of the operating parametprsf the experimental
ply have the form system (1). In comparison with previous methods for
i =—sefi(y), i=1.2,..n j=1,2,..m (6 §ynchron|zat|0n-basgd.parameter estlma_tt&nll], Fhe dis-
G iefii(y) n m. (6 tinguished characteristic of our method(i$ analytical and
where §;>0,i=1,2,...n,j=1,2,... m, are arbitrary con- rigorous because it does not require one to numerically de-
stants. Next we will prove rigorously the main results. Wetermine any additive parametgs.g., the feedback constant

first rewrite systen(l) as and stiffness constant introduced [it0,11)); (ii) systematic
_ _ because the control technique in the form of E4$+(6) can
x=F(x,p), p=0. (7)  be applied to all chaotic systems satisfying the uniform Lip-

For the system consisting of the error equation betweeﬁChitz co_ndition(3); .(iii) more simple, e.gz., the mgthod de-
Eqs.(4), (6), and(7), and Eq.(5), which is formally called veloped in[11] requires to solven+nm+n“m equations for

the augment system, we introduce the non-negative functiogUch Problem. Therefore the technique developed here is
very convenient to implement in practice.

10 12" 121 Next we will give two illustrative examples. Our first ex-
V=X e+ =2 > — (g —py)* + =D =(e+L)? ample is the Lorenz system
2ia 2iz1 =1 G 2iz1 Y - . '
(8) Xi=PiXa=Xp),  Xo=PoXp—XiXg = Xp, X3 =XpXp ~ PaXs,
(10

wherelL is a constant bigger tham—i.e., L>nl. By differ-

entiating the functiorV along the trajectories of the augment wherex=(x;,x,,X3) form the state space am=(p;,p2,Ps)
system, we obtain are three parameters to be estimated. Assuming time series of
X1, X9, andxs, as experimental output of Eq4.0), are avail-
able. Then according to the method developed above one
may easily construct the receiver systgaq. (4)], the update

o UL o1
V=X eyi-%)+ 2 X (0~ Pyt + 2 Slarbe
i=1 =t law [Eq. (5)] of the feedback strength,i=1,2,3, and the

i-1 j=1 Gij

" noo adaptive controllefEq. (6)] of the estimated parametey, i
= 21 elFi(y,a) - Fi(x,p) + €] - 21 21 (a; = piefij(y) =1,2,3. Due topage limits, we do not rewrite these equa-
= == tions.
n To estimate the parametepsg, p,, andps, a system of 12
- (&+ L)e,2 equations, governing the evolution of tlig experimental
i=1

system (ii) receiver system(iii ) feedback strength, anav)
n n n parameters, will be solved. We spi= 10,p2=28,p3=§, Vi

=> a[Fly.pl-Fi(x,p)]-L> €< (nl-L)> =<0, =15,5=2,i=1,2,3.Starting with arbitrary initial values of
i=1 i=1 i=1 parameters—sayg;(0),0,(0),g5(0))=(6,30,10—we track

9 quickly the correct values of all model parameters of the
experimental systenil0). Numerical results are shown in
where we have used the uniform Lipschitz conditi8n Itis  Fig. 1. To consider the robustness against noise, the additive

obvious thatv=0 if and only if=0,i=1,2,... n. There- uniformly distributed random noise in the rapg2,2] (i.e.,
fore the setE={e=0,g-p=0,e=¢, R"} is the largest in- strength 2 is added to time series,, X,, andxs, Figure 2
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FIG. 1. Temporal evolutions of three parametghow that the FIG. 3. The temporal evolutions of three estimation values when

model parameters of the Lorenz syste€lf) are estimated precisely. the operating parameters of syst€h®) are changed tp;=11, p,
=35, p;=3 from p, =10, p,=28, p3=3 att=5.

shows that although estimation values of all parameters fluc- . . : .

tuate around the corresponding correct values, the fluctufOdel pgrgmeters can be quickly estimated starting with ar-

tions are very small so that we may estimate all paramete _|trary initial .values_ of the parameters—sayq(0)

by a simple averaging over these fluctuations. Similar to the (0-1,2.8,0.4,1 see Fig. 4. Figure 5 shows that when an

consideration if11], we investigate the above method as to2dditive uniformly distributed random noise in the rarige

how to respond to rapid changes of the operating parameters0-01,0.01 is present in the time series, the estimation

We rapidly change the values of the model parameters frorMalued, fluctuates slightly round the correct valuemf and

p1=10,p2=28,p3=§ to p;=11,p,=35,p;=3 att=5. Figure the values of the other three parameters are estimated more

3 shows that the estimation values of parameters converge fiCKly. Figure 6 shows that the estimations are able to track

the new operating parameters through a rapid, stable trandf?@ new parameters through a transition when a perturbation

tions. is added to the operating parametgysi=1,2,3,4, of the
Our final example is the four-parameter Réssler hyper&€xperimental systergil) such that each of them is increased
chaos system by 10% att=10. -
These numerical examples show sufficiently that the de-
X1 == Xo—Xg, Xo=XptPXotXs Xg=PatXiXs, veloped method is very effective, quite robust against the
, effect of noise, and able to respond quickly to changes of the
X4 =~ PaX3 * PaXy, (11)  operating parameters in the experimental system.

We stress again that systems in the form of EG$(3)
are so general that they include all well-known chaotic
systems—e.g., all examples used[8+11. To summarize,
for this class of systems we have given a rigorous, systematic

wherepq,p,,ps, andp, are four parameters to be estimated
from time seriesxy, Xy, X3, and x,. Similarly, let p;
=0.25, p,=3, p3=0.5, p,=0.05; the correct values of all

12 T T 2 :
@
10 IS S 1 @ |
=
& 8f ] °
6 1 o 5 0 15
4! L L T T
0 5 10 15 a} 5]
32 T T Ca 2
30 © J

& 28 GD é 1‘0 15
2 T T
26| E ] {c)
24 L L &
5 10 15 omw ]
10 © 2 . .
@
| .
d I ] 0 v =
of ]
& L L L .

time t time t
FIG. 2. The estimation valueg fluctuate slightly around the FIG. 4. The correct values of four model parameters of the
correct values ofp, respectively, when noise with strength 2 is Roéssler hyperchaos systéil) are estimated starting with arbitrary
added to time serieg, i=1,2,3, of theexperimental syster(iL0). initial values of the parameters—say(0)=(0.1,2.8,0.4, 1
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FIG. 5. Only the estimation valug, is slightly affected when FIG. 6. The estimations are able to respond quickly when each
noise with strength 0.01 is present in the time sexiesf system  Of the operating parameters of the experimental systebnis in-
(11). creased by 10% fronf0.25,3,0.5,0.0% at t=10.

procedure to estimate all model parameters from time serig€/stic of our method is systematic, analytical, and even

by the synchronization based on a simple combination o imple to implement in practice. A possible application of

adaptive control and linear feedback with the updated feed-hIS method is to secure message transmission using param-

back strength. This approach is able to estimate all unknowﬁt.er modulation. We also believe this method can be gener-
: : : ; . alized to the case of discrete dynamical systems by using the

parameters of a chaotlc system in an_onlme setting, but alsﬁ’wariance principle of difference equations.

is quite robust against the effect of noise and able to respond

rapidly to changes of the experimental operating parameters. This work is supported by the Mathematics Tianyuan

In comparison with previous methods for synchronization-Foundation(Grant No. TY101260Rand the National Natu-

based parameter estimatif+11], the distinguished charac- ral Science FoundatiofGrant No. 10201020
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