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Ising model in scale-free networks: A Monte Carlo simulation
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The Ising model in uncorrelated scale-free networks has been studied by means of Monte Carlo simulations.
These networks are characterized by a degogeconnectivity distribution P(k) ~k™”. The ferromagnetic-
paramagnetic transition temperature has been studied as a function of the paranfetey> 3 our results
agree with earlier analytical calculations, which found a phase transition at a tempd&iétyra the thermo-
dynamic limit. Fory=< 3, a ferromagnetic-paramagnetic crossover occurs at a size-dependent temfggature
and the system is in the ordered ferromagnetic state at any temperature for a systsm:sizé&or y=3 and
large enoughN, the crossover temperature is found toTog=AIn N, with a prefactorA proportional to the
mean degree. For2y<3, we obtainT.,~ (k)N? with an exponent that decreases ag increases. This
exponent is found to be lower than predicted by earlier calculations.
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Complex networks describe several kinds of natural and Our networks are defined, apart fromby the maximum
artificial systems (social, biological, technological, eco- and minimum degrees, denotdd, and k,, respectively.
nomic) and are currently employed as models to study vari-Thus, the number of sites with degréeis given by N,

ous processes taking place in real-life syst¢s3]. In re-  =(k,/k)? for ky<k=<k,,, andN,=0 otherwise. This gives
cent years, additional models of complex networks hav<§\|k =1, and a system SizN:EtcutNk, which for largekg,

been introduced, motivated by empirical data in different_ %] LY - ) ;
fields. Thus, the so-called small-woifld] and scale-freéSFH scales adl~ kg, Once{N,j is definedfor the corresponding

) ; probability densityP(k)=N,/N], one has a total number of
networks [5] incorporate various aspects of real systems.ends of links(total de re¢K—EkculkN Then we ascribe a
These complex networks provide us with the underlying to- 9 kg ke

pological structure to study processes such as spread of if€dree to each node accordingiby, and finally connect at
fections[6], signal propagatioril,7], and cooperative phe- rqndom ends'o.f Ilnksglvmg a total ofL=K/2 connectionkg
nomena8—11]. with the condl_t|ons(|) no two nodes can have more than one

In a SF network the degree distributi®ik), wherek is bopd coqnect|ng them, and) no node can be connected by_
the number of links connected to a node, has a power-laf ]lnk to itself. We have ch.ecked that networks.g.enerated in
decay P(k)~ k™. This kind of network has been found in _th|s way are uncorrelated, in the sense that the Jq|nt probabil-
particular in social systemfdl?2], in protein interaction net- |ty-P(k,k’) f,0r de/grees of,nearzest neighbors satisfies the re-
works [13], in the interne[14], and in the worldwide web ation P(k,k")=kk P(kP(k")/{k) [3]. _ _
[15]. In both natural and artificial networks, the expongnt ~ On these scale-free networks, we consider the Hamil-
controlling the degree distribution is usually in the rangetonian
2<y<3[3,16].

Cooperative phenomena in complex networks are ex- H:_g‘]iisﬁ' 1)
pected to display unusual characteristics, associated with the !
peculiar topology of these systems. In this context, the IsingvhereJ;=J (>0) if nodesi andj are connected, angj;=0
model on SF networks has been studied with several theorettherwise §S=+1 (i=1, ... N) are Ising spin variables. Sam-
ical technique¢9,17,1§, and its critical behavior was found pling of the configuration space has been carried out by the
to be dependent on the exponentn particular, wherk?) is  METROPOLIS local update algorithnj19]. This allows us to
finite, there appears a ferromagnetiM) to paramagnetic study the temperature dependence of the magnetization, and
(PM) transition at a finite temperatufg.. On the contrary, in particular the transition from a FM to a PM regime&ais
when (k%) diverges(as happens fory<3), the system re- increased. Depending on the value of the exponerthis
mains in its ordered FM phase at any temperature, and nansition(i) can occur at a well-defined temperature in the
phase transition occurs in the thermodynamic limit. thermodynamic limiN— o), or (ii) may display a FM-PM

Here we investigate the FM-PM transition for the Ising crossover temperature shifting with system size and diverg-
model in scale-free networks with various values of the exding to infinity asN—oe. For the sake of clarity we will em-
ponenty. We employ Monte CarlgMC) simulations to ob- ploy a different notation for the temperature of the phase
tain the transition temperature and compare it with that preehange in the two cases. In the first case, we will call.ias
dicted in earlier calculations. Our results confirm those offor thermodynamic phase transitiofif.<«). In the second
analytical calculations fory>3 and are used to check the case, it will be called crossover temperatiig, to empha-
precision of those obtained earlier with approximate methodsize its size dependence.
for y<3. When a FM-PM transition occurs in the thermodynamic
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limit, the transition temperatur; has been determined by 03— y y T
using Binder’s fourth-order cumulaift] NN

My @ 1
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where the magnetizatiod of a given spin configuratiof§} z
is M==[L,S/N. The average values in E@) are taken over \&\‘Q\
different network realizations and different spin configura- \
tions for a given network at temperatufe In this case, the 01f 3
transition temperature is obtained from the unique crossing NN
point for several sizebl. - A |
In the second case, the size-dependent crossover tempera-
ture T¢o(N) has been determined from the maximum of the 0 . L L L .
magnetization fluctuationAM)Z=(M?)—(M)? as a func- 2.7 2.74 278 2.82
tion of temperature. We have checked that the crossover tem- T/J
peratures obtained by using this criterion agree within error _ )
bars with those derived from the maximum derivative of the FICG- 1. Fourth-order Binder's cumulatdy as a function of
heat capacity. In particular, both procedures give the samigmperature for scale-free networks wig5 andko=3. Symbols
size dependence dt,, in the cases presented below. represent different system sizes: squakggs 15; circles ky,=17;

The largest networks considered here included about g'angles’kﬂ*‘:lg; an(.’ d'amon.dskc‘“:zz‘ These values dg, cor-
X 10P sites. Such network sizes are required in particular toresloond to system sizésranging from 4300 to 29 300.
determine the power law characterizing the size dependence . ) 3
of the crossover temperatufg, for scale-free networks with  Ed. (3). This approach give3.= Jk, for large k,. We note
2< y<3. On the contrary, for the cases in which a phaséhat fork,=2 and 3 the actual values 8t deviate slightly
transition exists in the thermodynamic linfiy>3), smaller ~ from such a linear fit. Foky=1, Eq.(3) is not defined, since
sizes are necessafyee below The results presented below (k*y=2(k)< 0. In this case, the simulated networks consist of
were obtained by averaging in each case over 1000 networkg)any different(not connecter components, and Binder’s
except for the largest system sizes, for which 400 networl€umulant does not give a crossing for different system sizes.
realizations were considered. Case y=3. The transition temperature given by E®)
Casey> 3. For scale-free networks with>3, the aver- increases for increasing and eventually diverges foy
age valugk?) converges to a finite value &s,— . In this — 3, as a consequence of the divergencekdf. For y=3,
case, analytical calculationf9,17] predict a well-defined analytical calculation§17,18 predict a FM-PM crossover at

FM-PM transition temperatur&, given by a size—dependent. tqmperatuT@o, Wh_ich scales as Iojy.
Such a logarithmic increase df,, with N has been also

J 1 ( (k?) ) 3 obtained by Aleksiejuket al. [20,21] from Monte Carlo
T 2\ -2/

15

We have calculated Binder’s cumulddy, for several values
of y and different network sizes. As an example, in Fig. 1 we
presentUy as a function of temperature for=>5, k,=3, and
various values ok;,. The transition temperature is obtained 10k
from the crossing point for different system sizes cutoffs

Keud-

The same procedure has been repeated for other values of
ko. The resulting values of . are presented in Fig. @pen
symbolg, along with the transition temperature predicted by
Eqg. (3) (solid line). In fact, this line was obtained by joining
values ofT, derived from Eq(3) for integer values ok, in
the limit k. ,— . The MC results agree within error bars
with the transition temperature given by E@®). For com- 0
parison, we also present the critical temperature obtained in a Kk
simple mean-field approad®], T¥"=(k?)/(k), which is dis- 0
played as a dashed line. _ FIG. 2. Transition temperaturg, for scale-free networks with

The critical temperaturd; obtained from Eq(3) for ¥ =5 as a function of the minimum degrég. Symbols represent
=5 andky,>3 can be fitted linearly with good precision as resuits of MC simulations, as obtained from Binder’s cumulant.
Tc.=aky+b, with the parametera=1.50 andb=-1.72. The  Error bars are less than the symbol size. The solid line was plotted
value of a can in fact be estimated by approximating by by connecting points obtained from E@) for integer values ok,
integrals the sums giving the average val@igsand(k?) in  andky,— . The dashed line shows the mean-field resultTor

T./J
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FIG. 3. Crossover temperatullg, for scale-free networks with FIG. 4. Crossover temperatulg, for scale-free networks with

v=3 andky=3, as a function of the system sikk presented in a 2= y=<3, as a function of the system sikein a log-log plot. From
logarithmic plot. Symbols indicate results derived from MC simu- top to bottom:y=2, 2.2, 2.4, 2.7, and 3. Error bars are less than the
lations, with error bars less than the symbol size. The dashed line isymbol size. Dashed lines are guides to the eye.

a least-squares fit to the data points fbr- 500.

simulations of the Ising model in Barabasi-Albert growing
networks. We note that these networks hawe3, but display
correlations between degrees of adjacent nglgs

Our results fofT, in the casey=3 andk,=3 are shown in

Fig. 3 as a function of the system sikein a logarithmic :
plot. We indeed find a logarithmic dependenceTgs on N, unless one employs much larger system sizes. However, for

as in earlier works. In Fig. 3, symbols represent simulation? < 2-8,Z can be found with enough precision for the system
results and the dashed line is a least-squares fit to the datiz€S considered here. _ _
points withN>500 (smaller sizes givd,, values that devi- Thus, we have derived the exponeritom our simulation
ate from the asymptotic trempdThus, our results indicate the "€Sults fory<:2.8 by obtaining the slope of 1§8c./ (Xk))]
dependencd,/J=AIn N+B, with constantsA=0.83 andB VS logN for large N. Our results are §hqwn in Fig. ®pen
=-1.28. We repeated the MC simulations kg5 and 9 and symbqls) as a functlon ofy. The solid line represents the
obtained the same logarithmic dependence akfeB. The analytical predictior{17,18:

prefactorA increases linearly witlk,, and in fact we found

Alky=0.28+0.01. For Barabasi-Albert networks wikh=5,

Aleksiejuk et al. [20] found from a fit similar to oursA 1 T r T T
=2.6, which meang\/ky,=0.52.

For uncorrelated scale-free networks with=3, Dor-
ogovtsevet al. [17] found Tco/Jzi<k>ln N. For ky=3 and
Keui— 0, one hagk)=5.125, and thus their calculations pre-
dict T,,/J=1.28 InN, with a prefactorA on the order of 061 1
unity, like that obtained here. Mean-field calculations for N
=3 give T,=3Jk In N [9,21], which translates into a ratio 04l ]
Al/ky=0.5, somewhat larger than that found from our MC ) \§\
simulations. Y

Case2< y<3. For scale-free networks with<3, ana- 02} ~~ .
lytical calculations[17,18 predict a size-dependent cross- &
over temperaturé,, scaling as~J(k)N?, with an exponent ~
dependent on the parameterIn Fig. 4 we show the tem- 2 22 24 26 28 3
peratureT,, as a function of the system si2¢ for several Y
values ofy in a log-log plot, as derived from our MC simu-
lations (for ko=3). The exponenty increases from top to FIG. 5. The exponent giving the power-law dependence of the
bottom: y=2, 2.2, 2.4, 2.7, and 3. For a given system size ;ossover temperatuf,, plotted vs the parameter for scale-free
Te, decreases agincreases, as a consequence of the reduchetworks. Open symbols are results derived from Monte Carlo
tion in (k%). For a giveny<3 and large enough networks, simulations. The solid line corresponds to the analytical prediction
log T, displays a linear dependence on Mgas expected given by Eq.(4). The dashed line represents the depender¢8
for a crossover temperatuiig, diverging as a power of the -1v)/y.

system sizeN. This linear dependence is obtained for system
sizesN= Ny, Ny increasing withy and eventually diverging
for y— 3. This means that the present MC procedure cannot
be applied to obtain the exponenaccurately close tg=3,
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- the ratio(k?/(k) should be very slow, in spite of the appar-
z= y-1 (4) ent convergence shown in Fig. 4. This point may require
further theoretical consideration.

Our results agree with the analytical calculations in that the [N summary, we have studied the FM-PM transition for
ratio T,/ (J(K)) diverges withN as a power law, with the the Ising model in uncorrelated scale-free networks, by

exponentz increasing for decreasing. However, our MC ~ Means of Monte Carlo simulations. Fgi>3 our results for
simulations give values aflower than Eq(4). In particular, the temperature transition fully agree with earlier analytical

for y—2 Eq.(4) givesz=1, and our numerical procedure calculations, confirming the appearance of a well-defined
yields z=0.43+0.02. ’ transition in the thermodynamic limit. Foy<3 we find a

The exponent in Eq. (4) is related to the divergence of Crossover temperature which increases with system size. In
(k3 in networks Wlthfk P(k)dk~1/N which means that Particular, for y=3 such an increase i§ found to B’QZO
keut~ NV [17,18. However, for the networks considered ~0.28¢In N, whereas fory<3 we obtainedTe,~ JIN,

here, for practical computational reasons we have defined \ﬂith an 'exponenz'lower than predicted by earlier analytical
shar|'o cutofiky, which gives a dependende?) ~ N7/, or calculations. We finally note that some care should be taken
ut ’

Ny . X , when comparing analytical results for scale-free netwoks
gjrtneNebenheer:tef;){sr!%) avsvzuhm:\lgzt:hgcfS'/Virgrehsiswétpg:f with those derived from simulations, since the cutoff defini-

. - . tion for the actually simulated networks may appreciabl
dence ofz on y is plotted in Fig. 5 as a dashed line. Our MC ! uaty simu W y appreciably

L : change the results in some cases.
results follow this line, but separate from it a=2. The
reason for this discrepancy is not clear. One can argue, how- The author benefited from useful discussions with E.
ever, that in the limity— 2 the average valuék) diverges  Chacén and E. Velasco. This work was supported by CICYT
logarithmically, and thus the convergence of the exponent fo¢Spair) under Contract No. BFM2000-1318.
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