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The Ising model in uncorrelated scale-free networks has been studied by means of Monte Carlo simulations.
These networks are characterized by a degree(or connectivity) distribution Pskd,k−g. The ferromagnetic-
paramagnetic transition temperature has been studied as a function of the parameterg. For g.3 our results
agree with earlier analytical calculations, which found a phase transition at a temperatureTcsgd in the thermo-
dynamic limit. Forgø3, a ferromagnetic-paramagnetic crossover occurs at a size-dependent temperatureTco,
and the system is in the ordered ferromagnetic state at any temperature for a system sizeN→`. For g=3 and
large enoughN, the crossover temperature is found to beTco<A ln N, with a prefactorA proportional to the
mean degree. For 2,g,3, we obtainTco,kklNz, with an exponentz that decreases asg increases. This
exponent is found to be lower than predicted by earlier calculations.
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Complex networks describe several kinds of natural and
artificial systems (social, biological, technological, eco-
nomic) and are currently employed as models to study vari-
ous processes taking place in real-life systems[1–3]. In re-
cent years, additional models of complex networks have
been introduced, motivated by empirical data in different
fields. Thus, the so-called small-world[4] and scale-free(SF)
networks [5] incorporate various aspects of real systems.
These complex networks provide us with the underlying to-
pological structure to study processes such as spread of in-
fections [6], signal propagation[1,7], and cooperative phe-
nomena[8–11].

In a SF network the degree distributionPskd, wherek is
the number of links connected to a node, has a power-law
decayPskd,k−g. This kind of network has been found in
particular in social systems[12], in protein interaction net-
works [13], in the internet[14], and in the worldwide web
[15]. In both natural and artificial networks, the exponentg
controlling the degree distribution is usually in the range
2,g,3 [3,16].

Cooperative phenomena in complex networks are ex-
pected to display unusual characteristics, associated with the
peculiar topology of these systems. In this context, the Ising
model on SF networks has been studied with several theoret-
ical techniques[9,17,18], and its critical behavior was found
to be dependent on the exponentg. In particular, whenkk2l is
finite, there appears a ferromagnetic(FM) to paramagnetic
(PM) transition at a finite temperatureTc. On the contrary,
when kk2l diverges(as happens forgø3), the system re-
mains in its ordered FM phase at any temperature, and no
phase transition occurs in the thermodynamic limit.

Here we investigate the FM-PM transition for the Ising
model in scale-free networks with various values of the ex-
ponentg. We employ Monte Carlo(MC) simulations to ob-
tain the transition temperature and compare it with that pre-
dicted in earlier calculations. Our results confirm those of
analytical calculations forg.3 and are used to check the
precision of those obtained earlier with approximate methods
for gø3.

Our networks are defined, apart fromg, by the maximum
and minimum degrees, denotedkcut and k0, respectively.
Thus, the number of sites with degreek is given by Nk
=skcut/kdg for k0økøkcut, andNk=0 otherwise. This gives
Nkcut

=1, and a system sizeN=ok0

kcutNk, which for largekcut

scales asN,kcut
g . OncehNkj is defined[or the corresponding

probability densityPskd=Nk/N], one has a total number of
ends of links(total degree) K=ok0

kcutkNk. Then we ascribe a
degree to each node according tohNkj, and finally connect at
random ends of links(giving a total ofL=K /2 connections),
with the conditions(i) no two nodes can have more than one
bond connecting them, and(ii ) no node can be connected by
a link to itself. We have checked that networks generated in
this way are uncorrelated, in the sense that the joint probabil-
ity Psk,k8d for degrees of nearest neighbors satisfies the re-
lation Psk,k8d=kk8PskdPsk8d / kkl2 [3].

On these scale-free networks, we consider the Hamil-
tonian

H = − o
i, j

JijSiSj , s1d

whereJij =J s.0d if nodesi and j are connected, andJij =0
otherwise.Si =±1 si =1, . . . ,Nd are Ising spin variables. Sam-
pling of the configuration space has been carried out by the
METROPOLIS local update algorithm[19]. This allows us to
study the temperature dependence of the magnetization, and
in particular the transition from a FM to a PM regime asT is
increased. Depending on the value of the exponentg, this
transition(i) can occur at a well-defined temperature in the
thermodynamic limitsN→`d, or (ii ) may display a FM-PM
crossover temperature shifting with system size and diverg-
ing to infinity asN→`. For the sake of clarity we will em-
ploy a different notation for the temperature of the phase
change in the two cases. In the first case, we will call itTc as
for thermodynamic phase transitionssTc,`d. In the second
case, it will be called crossover temperatureTco, to empha-
size its size dependence.

When a FM-PM transition occurs in the thermodynamic
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limit, the transition temperatureTc has been determined by
using Binder’s fourth-order cumulant[19]

UNsTd ; 1 −
kM4lN

3kM2lN
2 , s2d

where the magnetizationM of a given spin configurationhSij
is M =oi=1

N Si /N. The average values in Eq.(2) are taken over
different network realizations and different spin configura-
tions for a given network at temperatureT. In this case, the
transition temperature is obtained from the unique crossing
point for several sizesN.

In the second case, the size-dependent crossover tempera-
ture TcosNd has been determined from the maximum of the
magnetization fluctuationssDMdN

2 =kM2lN−kMlN
2 as a func-

tion of temperature. We have checked that the crossover tem-
peratures obtained by using this criterion agree within error
bars with those derived from the maximum derivative of the
heat capacity. In particular, both procedures give the same
size dependence ofTco in the cases presented below.

The largest networks considered here included about 5
3105 sites. Such network sizes are required in particular to
determine the power law characterizing the size dependence
of the crossover temperatureTco for scale-free networks with
2,g,3. On the contrary, for the cases in which a phase
transition exists in the thermodynamic limitsg.3d, smaller
sizes are necessary(see below). The results presented below
were obtained by averaging in each case over 1000 networks,
except for the largest system sizes, for which 400 network
realizations were considered.

Caseg.3. For scale-free networks withg.3, the aver-
age valuekk2l converges to a finite value askcut→`. In this
case, analytical calculations[9,17] predict a well-defined
FM-PM transition temperatureTc given by

J

Tc
=

1

2
lnS kk2l

kk2l − 2kklD . s3d

We have calculated Binder’s cumulantUN for several values
of g and different network sizes. As an example, in Fig. 1 we
presentUN as a function of temperature forg=5, k0=3, and
various values ofkcut. The transition temperature is obtained
from the crossing point for different system sizes(or cutoffs
kcut).

The same procedure has been repeated for other values of
k0. The resulting values ofTc are presented in Fig. 2(open
symbols), along with the transition temperature predicted by
Eq. (3) (solid line). In fact, this line was obtained by joining
values ofTc derived from Eq.(3) for integer values ofk0 in
the limit kcut→`. The MC results agree within error bars
with the transition temperature given by Eq.(3). For com-
parison, we also present the critical temperature obtained in a
simple mean-field approach[9], Tc

MF=kk2l / kkl, which is dis-
played as a dashed line.

The critical temperatureTc obtained from Eq.(3) for g
=5 andk0.3 can be fitted linearly with good precision as
Tc=ak0+b, with the parametersa=1.50 andb=−1.72. The
value of a can in fact be estimated by approximating by
integrals the sums giving the average valueskkl and kk2l in

Eq. (3). This approach givesTc< 3
2k0 for large k0. We note

that for k0=2 and 3 the actual values ofTc deviate slightly
from such a linear fit. Fork0=1, Eq.(3) is not defined, since
kk2l−2kkl,0. In this case, the simulated networks consist of
many different (not connected) components, and Binder’s
cumulant does not give a crossing for different system sizes.

Caseg=3. The transition temperature given by Eq.(3)
increases for increasingg and eventually diverges forg
→3, as a consequence of the divergence ofkk2l. For g=3,
analytical calculations[17,18] predict a FM-PM crossover at
a size-dependent temperatureTco, which scales as logN.
Such a logarithmic increase ofTco with N has been also
obtained by Aleksiejuket al. [20,21] from Monte Carlo

FIG. 1. Fourth-order Binder’s cumulantUN as a function of
temperature for scale-free networks withg=5 andk0=3. Symbols
represent different system sizes: squares,kcut=15; circles,kcut=17;
triangles,kcut=19; and diamonds,kcut=22. These values ofkcut cor-
respond to system sizesN ranging from 4300 to 29 300.

FIG. 2. Transition temperatureTc for scale-free networks with
g=5 as a function of the minimum degreek0. Symbols represent
results of MC simulations, as obtained from Binder’s cumulant.
Error bars are less than the symbol size. The solid line was plotted
by connecting points obtained from Eq.(3) for integer values ofk0

andkcut→`. The dashed line shows the mean-field result forTc.
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simulations of the Ising model in Barabási-Albert growing
networks. We note that these networks haveg=3, but display
correlations between degrees of adjacent nodes[5].

Our results forTco in the caseg=3 andk0=3 are shown in
Fig. 3 as a function of the system sizeN in a logarithmic
plot. We indeed find a logarithmic dependence ofTco on N,
as in earlier works. In Fig. 3, symbols represent simulation
results and the dashed line is a least-squares fit to the data
points withN.500 (smaller sizes giveTco values that devi-
ate from the asymptotic trend). Thus, our results indicate the
dependenceTc/J=A ln N+B, with constantsA=0.83 andB
=−1.28. We repeated the MC simulations fork0=5 and 9 and
obtained the same logarithmic dependence as fork0=3. The
prefactorA increases linearly withk0, and in fact we found
A/k0=0.28±0.01. For Barabási-Albert networks withk0=5,
Aleksiejuk et al. [20] found from a fit similar to oursA
=2.6, which meansA/k0=0.52.

For uncorrelated scale-free networks withg=3, Dor-
ogovtsevet al. [17] found Tco/J< 1

4kklln N. For k0=3 and
kcut→`, one haskkl=5.125, and thus their calculations pre-
dict Tco/J<1.28 lnN, with a prefactorA on the order of
unity, like that obtained here. Mean-field calculations forg
=3 give Tc= 1

2Jk0 ln N [9,21], which translates into a ratio
A/k0=0.5, somewhat larger than that found from our MC
simulations.

Case2,g,3. For scale-free networks withg,3, ana-
lytical calculations[17,18] predict a size-dependent cross-
over temperatureTco scaling as,JkklNz, with an exponentz
dependent on the parameterg. In Fig. 4 we show the tem-
peratureTco as a function of the system sizeN for several
values ofg in a log-log plot, as derived from our MC simu-
lations (for k0=3). The exponentg increases from top to
bottom: g=2, 2.2, 2.4, 2.7, and 3. For a given system size,
Tco decreases asg increases, as a consequence of the reduc-
tion in kk2l. For a giveng,3 and large enough networks,
log Tco displays a linear dependence on logN, as expected
for a crossover temperatureTco diverging as a power of the

system sizeN. This linear dependence is obtained for system
sizesN*N0, N0 increasing withg and eventually diverging
for g→3. This means that the present MC procedure cannot
be applied to obtain the exponentz accurately close tog=3,
unless one employs much larger system sizes. However, for
g,2.8,z can be found with enough precision for the system
sizes considered here.

Thus, we have derived the exponentz from our simulation
results forg,2.8 by obtaining the slope of logfTco/ sJkkldg
vs logN for largeN. Our results are shown in Fig. 5(open
symbols) as a function ofg. The solid line represents the
analytical prediction[17,18]:

FIG. 3. Crossover temperatureTco for scale-free networks with
g=3 andk0=3, as a function of the system sizeN, presented in a
logarithmic plot. Symbols indicate results derived from MC simu-
lations, with error bars less than the symbol size. The dashed line is
a least-squares fit to the data points forN.500.

FIG. 4. Crossover temperatureTco for scale-free networks with
2øgø3, as a function of the system sizeN, in a log-log plot. From
top to bottom:g=2, 2.2, 2.4, 2.7, and 3. Error bars are less than the
symbol size. Dashed lines are guides to the eye.

FIG. 5. The exponentz giving the power-law dependence of the
crossover temperatureTco plotted vs the parameterg for scale-free
networks. Open symbols are results derived from Monte Carlo
simulations. The solid line corresponds to the analytical prediction
given by Eq.(4). The dashed line represents the dependencez=s3
−gd /g.

BRIEF REPORTS PHYSICAL REVIEW E69, 067109(2004)

067109-3



z=
3 − g

g − 1
. s4d

Our results agree with the analytical calculations in that the
ratio Tco/ sJkkld diverges withN as a power law, with the
exponentz increasing for decreasingg. However, our MC
simulations give values ofz lower than Eq.(4). In particular,
for g→2 Eq. (4) gives z=1, and our numerical procedure
yields z=0.43±0.02.

The exponentz in Eq. (4) is related to the divergence of
kk2l in networks withekcut

` Pskddk,1/N, which means that
kcut,N1/sg−1d [17,18]. However, for the networks considered
here, for practical computational reasons we have defined a
sharp cutoffkcut, which gives a dependencekk2l,Ns3−gd/g, or
kcut,N1/g. Therefore, assuming thatTco diverges with the
same exponent askk2l, we havez=s3−gd /g. This depen-
dence ofz on g is plotted in Fig. 5 as a dashed line. Our MC
results follow this line, but separate from it atg=2. The
reason for this discrepancy is not clear. One can argue, how-
ever, that in the limitg→2 the average valuekkl diverges
logarithmically, and thus the convergence of the exponent for

the ratiokk2l / kkl should be very slow, in spite of the appar-
ent convergence shown in Fig. 4. This point may require
further theoretical consideration.

In summary, we have studied the FM-PM transition for
the Ising model in uncorrelated scale-free networks, by
means of Monte Carlo simulations. Forg.3 our results for
the temperature transition fully agree with earlier analytical
calculations, confirming the appearance of a well-defined
transition in the thermodynamic limit. Forgø3 we find a
crossover temperature which increases with system size. In
particular, for g=3 such an increase is found to beTco
<0.28k0 ln N, whereas forg,3 we obtainedTco,JkklNz,
with an exponentz lower than predicted by earlier analytical
calculations. We finally note that some care should be taken
when comparing analytical results for scale-free netwoks
with those derived from simulations, since the cutoff defini-
tion for the actually simulated networks may appreciably
change the results in some cases.
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