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While shorter characteristic path length has in general been believed to enhance synchronizability of a
coupled oscillator system on a complex network, the suppressing tendency of the heterogeneity of the degree
distribution, even for shorter characteristic path length, has also been reported. To see this, we investigate the
effects of various factors such as the degree, characteristic path length, heterogeneity, and betweenness cen-
trality on synchronization, and find a consistent trend between the synchronization and the betweenness cen-
trality. The betweenness centrality is thus proposed as a good indicator for synchronizability.
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In recent years, diverse systems in nature have been ob-
served to exhibit the characteristics of complex networks,
drawing much attention to complex network systems[1–3].
Previous studies have mostly been focused on structural
properties of the networks rather than dynamical ones, even
though dynamical properties are also very important for un-
derstanding the systems on complex networks. In a few stud-
ies [3–5], on the other hand, the dynamical system of
coupled oscillators has been considered on complex net-
works and collective synchronization displayed by the sys-
tem has been investigated. There it has been found that
shorter characteristic path length tends to enhance synchro-
nization. In contrast to this, a recent paper[6], investigating
the effects of heterogeneity of the degree distribution on col-
lective synchronization, reported that synchronizability is
suppressed as the degree distribution becomes more hetero-
geneous, even for shorter characteristic path length. These
different results then raise a question as to synchronization
on complex networks: What is the most important ingredient
for better synchronizability?

As an attempt to give an answer to this, we in this paper
consider a system of coupled limit-cycle oscillators on the
Watts-Strogatz(WS) small-world network[3], and investi-
gate collective synchronization of the system. We pay par-
ticular attention to how the synchronization is affected by
various factors such as the maximum degree, characteristic
path length, heterogeneity of the degree distribution, and be-
tweenness centrality. Here the collective synchronization is
explored via the eigenvalues of the coupling matrix, which
describes the stability of the fully synchronized state[5,7].

The WS small-world network is constructed in the follow-
ing way [3]: We first consider a one-dimensional regular net-
work of N nodes under periodic boundary conditions, with
only local connections of ranger between the nodes. Next,
each local link is visited once, and with the rewiring prob-
ability p it is removed and reconnected to a randomly chosen
node. At each node of the small-world network built as
above, an oscillator is placed; a link connecting two nodes
represents coupling between the two oscillators at those two
nodes. We now investigate the synchronization of the
coupled oscillators on the small-world network with givenr
andp. Describing the state of theith oscillator(i.e., the one

at nodei) by xi, we begin with the set of equations of motion
governing the dynamics of theN coupled oscillators:

ẋi = Fsxid + Ko
j=1

N

MijGsxjd, s1d

where ẋi =Fsxid governs the dynamics of individual oscilla-
tors (i.e., with coupling strengthK=0) andGsxjd makes the
output function. TheN3N coupling matrixMij is given by

Mij = 5 ki fori = j

− 1 forj P Li

0 otherwise,

s2d

which lacks the translational symmetry due to the presence
of shortcuts on the WS small-world network. In the case of a
locally coupled(hypercubic) network with the coordination
numberzs=2Dd, the coupling matrixMij has the valuez on
the diagonal and −1 on thez off-diagonals adjacent to the
diagonal.

The eigenvalues of the coupling matrix have been widely
used to determine the linear stability of the fully synchro-
nized statesx1=x2=¯ =xNd [5,7]. Whereas the smallest ei-
genvalue, denoted byl0, is always zero, the ratio of the
maximum eigenvaluelmax to the smallestnonvanishingone
lmin may be used as a measure for the stability of the syn-
chronized state, with larger values of the ratiolmax/lmin cor-
responding to poor synchronizability[5,7]. For a general
D-dimensional hypercubic network of linear sizeL, the ei-
genvalues are given by

lhmaj = 4o
a=1

D

sin2pma

L
, s3d

wherema=0,1, . . . ,L−1 andLD;N. It is then obvious that
the eigenvalue ratio behaves aslmax/lmin,N2/D and grows
large in the thermodynamic limitsN→`d. It is thus con-
cluded that the fully synchronized state is not stable in any
D-dimensional regular network.
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The eigenvalue ratio for the WS network of nodesN
=2000 and ranger =3 is obtained numerically and its behav-
ior with the rewiring probability is exhibited in Fig. 1, where
the average has been taken over 100 different network real-
izations. The network sizeN has been varied from 100 to
2000, only to give no qualitative difference. As the rewiring
probability p is increased, the ratiolmax/lmin is observed to
decrease, which implies enhancement of synchronizability.

To explore how structural properties of the underlying
network affect synchronization of the system, we now exam-
ine such properties as the characteristic path length, the be-
tweenness centrality, and the variance of the degree distribu-
tion, which is a measure of the heterogeneity of the degree
distribution. Figure 2 displays the behavior of the variance
sk

2;kN−1oik1
2l−ksN−1oikid2l of the degree distribution for

the WS small-world network with the same sizeN=2000 and
ranger =3 as that in Fig. 1, depending on the rewiring prob-
ability p. As p is increased, the variancesk

2 grows, which

implies that the degree distribution becomes more broad and
heterogeneous and that nodes of larger degrees appear. In the
inset of Fig. 2 the behavior of the characteristic path length
[8]

, ;K 1

NsN − 1doi,j di,jL , s4d

wherek¯l denotes the average over different realizations of
the network anddi,j the length of the geodesic betweeni and
j , is shown as a function of the rewiring probabilityp. As
expected, the characteristic path length, is observed to de-
crease as the heterogeneity of the degree distribution(or the
rewiring probability) is increased. The results shown in Figs.
1 and 2 imply that the synchronizability on the WS network
is improved as the heterogeneity of the degree distribution is
increased or as the characteristic path length is decreased,
which differs from the behavior observed in scale-free net-
works [6].

The synchronizability has been shown to be related with
the load or betweenness centrality on nodes[6]. The be-
tweenness centrality of noden is defined to be[9–12]

Bn ; o
si,jd

ginj

gij
, s5d

wheregij is the number of geodesic paths between nodesi
and j andginj is the number of paths betweeni and j passing
through noden. The summation is to be performed over all
pairs of nodessi , jd such thati , j Þn and i Þ j .

To get an idea of the betweenness centrality, which mea-
sures how many geodesics pass through a given node, we
first consider locally coupled regular networks, for which the
average betweenness centrality is given by[11]

B̄ ;
1

N
o
n

Bn = sN − 1ds, − 1d. s6d

Among theN values ofBn’s, the maximum valueBmax has
been shown to be related with synchronizability[6], although
this close relation has not been stressed before. For a

D-dimensional local regular network, we haveB̄=Bmax and
the characteristic path length,,N1/D, which yields

Bmax, NsD+1d/D, s7d

i.e., Bmax,N2, N3/2, and N4/3 for the spatial dimensionD
=1,2, and 3,respectively. Thus the maximum valueBmax

increases algebraically with the sizeN of the regular net-
work, although the exponent reduces with the spatial dimen-
sion D.

Returning to the WS small-world network, we compute
the betweenness centralityBn via a modified version of the
breadth-first search algorithm[10]. We then obtain the maxi-
mum valueBmax at various values of the rewiring probability,
and display the result for a network of nodesN=2000 in Fig.
3, where the average has been taken over 100 different net-
work realizations. The number of nodesN has also been
varied fromN=100 to N=2000, which does not yield any
qualitative difference. Figure 3 shows that the maximum

FIG. 1. Behavior of the ratio of the maximum eigenvaluelmax

to the smallest nonvanishing eigenvaluelmin with the rewiring
probability p. As p is raised, the ratio is shown to reduce, yielding
better synchronization.

FIG. 2. Behavior of the variancesk
2 of the degree distribution

with the rewiring probabilityp. Inset: characteristic path length, vs
the rewiring probabilityp. Here and in subsequent figures lines are
merely guides to the eye.

BRIEF REPORTS PHYSICAL REVIEW E69, 067105(2004)

067105-2



load on a node reduces as more shortcuts are introduced. In
general, on a usual scale-free network, larger values ofBmax

correspond to larger values of the degree. For comparison,
we also investigate the maximum degreekmax on our small-
world network and display in Fig. 4 its behavior with the
rewiring probabilityp. The increase ofkmax with p indicates
the opposite trend betweenBmax andkmax, unlike the case of
a scale-free network. Note also that Fig. 4 together with Fig.
2 implies the increase of the maximum degree with the het-
erogeneity of the degree distribution.

The results shown in Figs. 1–4 lead to the conclusion that
synchronization on the WS network is enhanced as the het-
erogeneity of the degree distribution is increased, as the char-
acteristic path length decreased, as the maximum between-
ness centrality decreased, or as the maximum degree
increased. Remarkably, the effects of the heterogeneity of the
degree distribution as well as those of the characteristic path
length(see Fig. 2) differ from the results for other classes of
networks [6]. Namely, in the case of the network studied

here, larger heterogeneity of the degree distribution or
shorter characteristic path length does not improve synchro-
nizability. On the other hand, the effects of the maximum
betweenness centralityBmax appear to be consistent with
those in Ref.[6]: Synchronizability is always improved as
Bmax is reduced. Accordingly, the betweenness centrality is
proposed as a suitable indicator for predicting synchroniz-
ability on complex networks. Regarding the maximum de-
greekmax, Fig. 4(together with Fig. 1) indicates that synchro-
nizability enhances withkmax. This behavior on the WS
small-world network is also in contrast with that on a usual
scale-free network, whereBmax and kmax behave similarly
[12], and accordingly, smaller values ofkmax are expected to
give better synchronizability.

Then why does the maximum valueBmax of the between-
ness centrality strongly affect synchronizability on networks?
An intuitive argument goes as follows: Suppose that two
groups of highly linked nodes are connected via a few nodes.
Among those a few connecting nodes, the information of the
synchronized state passes through the node which has the
maximum value of the betweenness centrality,Bmax. It tends
to get overloaded since most paths go through it, which in
turn leads to loss of information. Accordingly, synchroniz-
ability is expected to become reduced as the valueBmax is
increased. This argument is consistent with that of Ref.[6].
To check this argument, we have examined synchronizability
on the WS network before and after the removal of the node
havingBmax, by means of the eigenvalue ratiolmax/lmin. In
Fig. 5, the difference d;slmax/lmindafter removal

−slmax/lmindbefore removalis plotted against the rewiring prob-
ability p. Squares in Fig. 5 represent the differenced for the
removal of the node havingBmax, and indicate negative val-
ues regardless of the rewiring probabilityp. Those negative
values imply thatlmax/lmin is reduced after the removal of
the node, which in turn implies that synchronizability of the
system is enhanced after the removal of the node. In sharp
contrast, circles in Fig. 5, which represent the differenced

FIG. 3. Behavior of the maximum valueBmax of the between-
ness centrality with the rewiring probabilityp. Bmax is shown to
decrease asp is increased, corresponding to more heterogeneous
degree distributions.

FIG. 4. The maximum degreekmax versus the rewiring probabil-
ity p on a WS small-world network. It is shown thatkmax increases
as the degree distribution becomes more heterogeneous.

FIG. 5. Behavior of the differenced of the eigenvalue ratio is
displayed with the rewiring probabilityp. The data(open circles
and squares) have been obtained for the network with the number of
nodesN=2000 andr =3. Due to strong finite-size effects atp=0.1,
we use the data(filled circle and square) for large system size of
N=5000. See the text for the explanation of the data symbols.
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for the removal of a node other than the one withBmax,
indicate values near zero. This implies that the eigenvalue
ratio remains almost the same when an arbitrary node is re-
moved and accordingly that synchronizability of the system
is not much affected by the removal of an arbitrary node. The
result displayed in Fig. 5 thus manifests that the node with
Bmax is closely related with the synchronizability of the sys-
tem whereas any other node is not substantially related.

In conclusion, better synchronizability for the WS small-
world network is induced as the heterogeneity of the degree
distribution is increased, as the characteristic path length is
decreased, as the maximum betweenness centrality is re-
duced, or as the maximum degree is raised. We have found
that the effects of the characteristic path length and of the
heterogeneity on synchronization in the WS small-world net-
work are different from those in the networks considered in
Ref. [6]. These differences seem to be related with the pres-
ence of hub structures in the network, which is under further
investigation. Our result implies that shorter characteristic
path length or larger heterogeneity does not always enhance

the synchronizability of the coupled system on a network.
On the other hand, it has been observed that synchronization
is always enhanced as the betweenness centrality, measuring
the load on a node, is reduced, which is consistent with the
recent result for various networks[6]. We have also numeri-
cally investigated the effects of the node of the maximum
betweenness centralityBmax on synchronizability, and found
that the node ofBmax is highly related with the synchroniz-
ability of the system, which supports the main conclusion of
this paper. It is thus concluded that among the important
factors for better synchronization on complex networks is a
small value of the maximum betweenness centrality, rather
than short characteristic path length or large heterogeneity of
the degree distribution.
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