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Absorbing boundaries in time-dependent problems with discretized energy continua
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We develop a general method for removing artifacts associated with the numerical solution of time-
dependent Schrodinger equati@fDSE) involving a (multiple) energy continuum discretization. This method
is the equivalent to absorbing boundaries in the case where the space is discretized. By removing the reflected
part of the wave functioiion the artificial boundaries of the systgrone is able to reduce the computational
cost of the calculations, with a benefit scaling as the power of the continuum multiplicity. As a demonstration,
we apply our method to the TDSE of a hydrogen atom subjected to a laser pulse, the spontaneous emission of
a two-level atom in free space, and the interaction of two photons with a two-level atom and a defect mode at
the edge of a photonic band gap.
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I. INTRODUCTION by continuously multiplying the wave function with a func-
tion that goes smoothly to zero at the boundgByfor dis-
tances higher than a certain radius, but only for the case
where the wave function is computed at a sequence of grid
oints.
In this respect, methods based on energy discretization
have an inherent drawback. The only way to get rid of these
tifacts of the solution was to increase the density of the
iscretization, equivalent to employing a larger box, until the

The numerical solution of a problem that involves a con-
tinuous variable(be it energy, position, efc.inevitably is
associated with some sort of discretization. A well-studie
example of this is the solution of the time-dependent
Schrddinger equatiofifrDSE) for one (active) electron sub-
ject to an electromagnetic pulse. In this case, one can expal
the electron wave function on the basis of the eigenstates

the frtge at?m t?]nd So'},‘f _thet resfutlrt:ng ;ysteT of d'frffrﬁnt' ave packet has not sufficient time to reflect and reinteract
equations for the coetlicients of the eigens a{tle]s whic with the nucleus. This means that the appropriate size of the
inevitably involves a truncation of the bagimaximum E) basis becomegapproximately proportional to the time in-

and a discretization of the one-electron continuum. Altem_a'terval of the calculations. The latter is a severe limitation,

tively O?: V(\jﬁln hsolve t?ﬁ SV(\;h\rlod:cn?]e[i enqliJatlonmdwtecély t'nespecially for problems involving multiple continua, since
space, ch case he wave function 1S computed at &, g size increases as a power of the continuum multi-
sequence of grid pointR]. In that case we also have dis- plicity

cretization of position and truncation of the bag@aximum Another way around this problem is the addition of a

R)-N dl ¢ the limitati h 0 . small imaginary part in the eigenenergies of the continuum
eediess 1o say, the imitations we have {0 Impose in Or'through complex rotation, in order to cause attenuation of the
der to desgnbe the s'y.stem can lead to artﬁgcts on the CaICLéfmplitudes in time. During the time they need to reflect and
lated phyS|IcaI guantll'gle_st,_ ontrt]op of _resolutlo(r;_ pro?lfhmsd.mreinteract they are practically eliminated. This approach has
our example above, fimiting theé maximum radius ot the IS, f5)10wed in a number of cases over the last two decades
cretization is equivalent to confining the atom to a sphere o among others[4—13). In the following, we present our

radiusR, Wlt.h a potential that is infinite at the surface of the contribution in constructing absorbing boundarias’s) for
sphere. This means that the wave packet of the eleCtrOQpectraI methods, following a different path

ejectgg from thg atom by the radiation, after some t(mg We first apply our technique to the TDSE of a hydrogen
~R/VE), will arrive at the boundary of the sphere and will 545 exposed to an electromagnetic field. This is a test

be reflected by the infinite potential barrier. On_ce this ré-ground well studied by standard techniques, where we com-
flected wave packet approaches the atom, artifacts of th§are our results on ionization yield, harmonic generation,
calculation will emergge.g., distorted harmonics and photo- 4 photoelectron spectra. Then we present a generalization,
electron spectya _ , appropriate to handling the general class of problems involv-
This difficulty can be circumvented by removing the wave g time-dependent calculations with a discretizedergy

packet that is escaping the atairetter: the nucleyssince  cqntinuum(a) where the actual form of the wave function
this part of the wave function is far enough to be equivalent , o¢ gher physical quantitities discretized, like the electro-
in its .evolutlon, to a freg electron which dogs not 'nter,aCtmagnetic field, for exampjeneed not be known. In this case,
with light and does not influence the atom-light dynamics. ;e show that the sole knowledge of the discretization spec-

This technique has been employed with success either by, js enough to create the necessary AB linear transforma-
employing an imaginary potential to imitate absorpihor  tjon 5o the requirements for the method applicability are

minimized. This generalized version is applied in the spon-
taneous emission of a two-level atoffiLA) in free space
*Electronic address: makris@physics.uoc.gr and in the interaction of two photons with a two-level atom

1539-3755/2004/68)/06670212)/$22.50 69 066702-1 ©2004 The American Physical Society



M. G. MAKRIS PHYSICAL REVIEW E 69, 066702(2004)

and a defect mode at the edge of a photonic bandBBf). N

We show also that one can modify the set of differential M| = > Bad ) (3)
equations describing the system in a way that the AB is an m=1

inherent feature. In all cases we present, there is a substantial

computational benefit since the size of the basis we have to

[ R
use is smaller. Bom= fo DD M (1) p(r)dr, (4)

II. AB’s IN THE TDSE FOR AN ATOMIC SYSTEM

where 5, are the elements of thB matrix that represents

the necessary linear transformation on the basis of the eigen-
The TDSE, in the single active electron approximation, isstates. In the present case, due to the simple boundary con-

solved by expanding the electron wave function on a finiteditions thata priori define an energy-independent box width,

A. Theory

basis as the B, can be evaluated since the limits of the integral of
N Eq. (4) are well defined. However, in the general case,

W(t)) = t , 1 where, for example, more complicated boundary conditions

v Z’la”( I @ are employed or where the discretized continuum spectrum

] ) ) _is chosen by hand, this does not hold. It is not even clear if
whereN is the number of basis states. The choice of basighis approach has meaning, since the eigenstates can have an
states depends on the problem at hand and our capabilitiegnergy-dependent extent. This general case is handled in the
We took the|¢,) to be the eigenstates of the atomic Hamil- pext section, where we calcula®,, based only on the dis-
tonian inside a box of radiuR, subject to the boundary con- retization spectrum.
ditions ¢,(0)=¢y(R)=0. What is important about the basis  The symmation is truncated to tiéth eigenstate, since
functions we employ is their completenegsnergy trun- e kept only the firsN for our state vector of the system.
cated. It is more transparent though if the basis stdt#$  One expects that this truncation would effect thenatrix,
are eigenstates of the atomic Hamiltonian. The TDSE is theQyhich is true only for the few last eigenstates, which should
Written as a set Of Coupled Ordinary diﬁerential equations: not p|ay any important role in the dynamics of the System_ If

- - the latter argument is not true, the energy range has to be
ia(t) = Ha(t), ) expanded in order to be an adequate representation of the

where naturalya(t)=(a;,a,, ... ,ay) is the state vector of the dynamics of the system anyway.

¢ & is the Hamiltoni i d We are able to remove the wave packet only when it
zﬁ?tf@a;g IS the Ramiltonian matrix €xpressed on our approaches the boundaries since the result of the transforma-

A di d bef the inevitable di tizati ion on the state vector of the system depends heavily on the
S We discussed belore, he nevitable diScretizalion 0kqiq yector, If the later represents a wave function localized
the continuum is associated with the reflection of the wav

€lose to the origin, it remains unaltered, while in the case that
packet at the boundaries of the box. Although in the ap- gn, '

h follow th tial extent of the box | Il defi dlt represents a wave function localized close to the bound-
Eroac \;ve ? owthe spa I?he;( entortne IOXI '? V‘f{ﬁ %'n?. aries the latter is strongly attenuated. Since the transforma-
y construction, we argue that one can calculate the ellectiV, , ¢ jinear a wave function which has important values

energy-dependent box width where the system is limited du‘éverywhere inside the box remains unaltered up to a chosen

to the energy discretization in an exact and simple WayradiusRm and attenuated smoothly thereafter. So a frequent

w]'%h deper.‘ds only dotn }htﬁ spectrum tﬂf tth‘I d|_scret|zatt_|on6nough application of this transformation on the state vector
el |scu_ss_||n more '(tehatlh I’[S |shsqe In fello ovc\jnr_\g tshec Ion'during the solution of the TDSE removes the part of the
n a similar way wi e techniques followed in the so-, "\ tion close to the box edge.

lution of th? TDS.E in a lattice, we intend to multiply the We calculated thé8 matrix analytically for the case of a
wave function with a mask functio\(r) that smoothly free particle inside a box by employing a simple analytic

goes to zero when it approaches the boundaries of the by, tor the mask functior(inverted Gaussian centered at

ed i A I ¢ ¢ ; | Ne realistic three-dimensiongdD) solution of the TDSE for
ized in space. Actually we can form a wave function well ; i 4iom subject to an intense laser pulse.

localized in a region of our choice by using a correct super-

position of the eigenstates, with a localization extent in ac-

cordance with the uncertainty principle. In this spirit, we can B. Application to the H atom

remove the part of the state vect@(t) that corresponds to

the part of the wave function of the system that approaches

the boundaries. This is accomplished by a simple linear non- Our group has already used B-splines as a tool to repre-

unitary tranform ofa(t), which is constructed as follows. sent atomic eigenstates for a number of years and our first
Since the set of#,) constitutes a complete basis, we canexample continues along these lines. As explained in more

express the action of(r) on an eigenstate as detail elsewherd15-17, the radial part of the eigenfunc-

1. Case particulars
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tions of the electron can be expressed on a B-spline basis of 400 150
kth order inside a spher@box”) of radiusR, the nth radial 125
eigenfunction being .
200 0qOO 125 150
Po(r) = 2 cinBi(r), (5 “
i 20
subject to the typical fixed boundary conditioR,(0) 8.5 200 2000 o
=P,(R)=0. We followed a slightly different approach for the _ .
calculation of the matrix elements,, in order to take full FIG. 1. The absolute value of the absorbing boundary matrix

advantage of the nature of B-splines. This way, the calculacalculated for a hydrogen atom in a box of 400 a.u. using 400
tions are done in a faster and simpler way, leading to similaP-SPlines on a uniform knot sequence, resulting in approximately
result. 400 eigenstatedor |=0). The smaller plots on the right are mgg-
We represent the\! operator on the B-spline basis as a nified parts of the same matrix. The brighter the color, the higher
diagonal matrix, the elements of which are equal to 1 up td"e value of the matrix element,
the (m,m) element and smoothly go to zero onward, WRh . _
being the grid point where the attenuation of the wave func- ©On€ advantage of the AB's in a spectral method, in the
tion starts. Since B-splines partially overlap in space, thidvy we formulate them, over their lattice analog, is that
leads effectively to a moving average of the mask functiorsince the coefficients of all eigenstates |anlJ_ded in the solu-
on the grid, with window size analogous to the order oftion of the TDSE are known in every step, it is a easy task to
B-splines we use. Since the mask function has to be %jeep track.of the population 9“3”9?5 after the appill'catlor.l of
smooth function, this averaging causes minimal and insigI € ab§orb|ng boundar)_/ malrix. This pr_owdes additional in-
nificant changes. Nevertheless, if one wishes to have absflrmation that energetically characterizes the part of the
lute control of the form of\ operator in space, this approxi- Wave function that is absorbed or removed. Following this
mation can be lifted by constructing thiet matrix with the |dea, we sum for every eigenstate the pop_ulat|on change oc-
last part(the block M;; with i,j=m) being a banded with a curring in every mask application. If one Wlshes to calculate
width equal to the order of the B-splines we use—i.e., thd'€ Photoelectron spectrutPES, the population of every
number of B-splines that overlap in any internal grid point. ei9enstate that has remainge., not absorbectan be added
Then the matrix elements,, have to be calculated by to the total population removed from this eigenstate by ab-

m sorption. In general, a similar method can be followed to
eans of "
reconstruct energy resolved quantities for the problem at
R /N N hand.
Bum= f ( cijj(r>) > MncinBi(m)dr, (6) > Results
0 \j=1 i=1
For our calculations we have used the hydrogen atom in-
limited due to the localized nature of B-splines fie-j|  side a box oR=400 a.u. using 400 B-splines. Since we used
=<k/2. fixed boundary conditions, this results in about 400 discrete

Still, there is an even simpler approach in this particulareigenstates of the system. The calculation of the absorbing
case. IfC is the matrix of the coefficients;;, thenCagives  boundary matrix is straightforward and the result is pre-
the weight of the B-splines for the full wave function. Then, sented in Fig. S symmetry. It is evident that the elements
we can smoothly remove the last ones and perform the inef the matrix take important values close to its diagonal. The
verse transformatio€™* to obtain the new state vector. In typical width of the distribution of the weights is related to
this languageB=C *MC is a linear transformation that re- the width of the mask function. Steeper mask functions result
sults in a new state vector which stands for a new waveén a broader distribution to provide the required bandwidth.
function unaltered in the region<Or <R, and smoothly at-  Actually, the matrix elements oscillate, which is better shown
tenuated to O in the regioR,,<r <R. in Fig. 2 where the coefficients and not their absolute value

Once theB matrix is calculated, one way or another, the are given. This is natural, since the result of the absorbing
application of AB’s to the TDSE is simply a matter of vector- boundary matrix on the state vector should be sensitive on
matrix multiplication. In practice, the electron wave function the relative phasgsign) of its coefficients, as explained in
is the sum of the partial wave functions for edclsince for  more detail in the following sectioSec. IlI).
everyl we have a different set of eigenstates, a diffef8nt The first eigenstates of the system are of course the bound
matrix has to be calculated for evdrgnd applied only to the ones. A part of the matrix in the region of the bound states is
eigenstate coefficient of this specificOne should also note shown at the right bottom part of Fig. 1. For the first bound
that the frequency of the application of the AB’s on the co-states the matrix is practically identical to a unitary matrix,
efficients depends on the mask width and on the fastest waveaving them unaffected, a consequence of their limited ex-
packet we want to absorb. A wave packet with average vetent in space. A smooth transition to the typical form of the
locity v would stay inside the absorbing boundary for a timematrix in the continuum area occurs at the higher bound
interval AR-Ry,)/v, in which time it should attenuate, so the states, which reach the absorbing boundary. For the param-
absorbing boundary should be applied enough times in theters used, the system has 16 bound states, compatible with
meantime. what is shown in Fig. 1.
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FIG. 2. Part of the state vector of the atom after applying once 0 10 20 30 0 10 20 30
the AB’s linear transformatioB on an eigenstate with amplitude 1, Electron Energy (V)

with energy approximately 1.1 eV. Dots point to the discrete eigen-

states of the atom; the dashed line is used only to help visualization. FIG. 3. Common parameters for all plots: A laser pulse of sin

. . . shape, photon energy 1.5 eV, total duration of ten cycles, and maxi-

A final remark concerning the general form of the matrix: ;,ym intensity 4< 1013 W/cm? (A). Photoelectron spectra calcu-
Parallel to the diagonal there appear “satellite” lines, whosgated in a box 0R=400 a.u. using AB’¢solid line). The remaining
magnitude increases for the last eigenstates of the systemEgs together with the spectrum of the absorbed electrons is given
We attribute this to the deficiency of the last eigenstates indashed ling (B). Corrected PES, calculated by adding the retained
representing faithfully continuum eigenstates of the systenphotoelectron spectra with the absorbé@). Comparison of the
(the density of B-splines is not high enough to describecorrected PE$dashed lingwith the PES calculated in a same box
them). The same is visible, to a smaller extent though, for thei.e., same eigenstate bagstsut without use of AB’s(solid line).
first continuum states but of a different origin. Due to the(D). Comparison of the corrected PE&ashed ling with the PES
large wavelength, the boundaries affect the eigenstates. Tlealculated in a larger box d®=800 a.u(solid line).
other way around, an inspection of the matrix can reveal the
problematic areas. The latter is of course due to the reflection of the faster

To test the efficiency of the method, we compared theslectrons by the boundaries and their artificial reinteraction
ionization yield and harmonic generation using a pulseyith the nucleus.
strong and long enough, so that the reflected part of the wave To compare the extended part of the corrected PES, we
function influences the dynamidse., 1.5 eV sif pulse of  calculated the PES for a larger box—nameRz800 a.u..
20 cycles(total duration at an intensity of X 10 W/cn¥],  The results are shown in pafD) of the figure. The PES
in a box ofR=400 a.u. with and without the AB’s and in a spectra are in good agreement for photoelectron energies up
larger box (R=800 a.u} where the reflection(if presenj  to 20 eV, above which they start to have an important differ-
does not influence the results. We found that the use of AB’&nce. Since we used fixed boundary conditions in the con-
provided practically identical results with the larger box, for struction of the eigenstates, the density of eigenstates in the
both physical quantities. continuum drops fast with energpctually energy goes ap-

More interesting probably are our results on the PES. Irproximately asj?, with j the discrete eigenstate indeXhe
Fig. 3, we present the PES spectra calculated for the hydratistance between two successive peaks in the PES is the
gen atom exposed in a laser pulse of?séhape, photon photon energy. If in this energy region there are not enough
energy 1.5 eV, total duration of 10 cycles, and maximumdiscrete eigenstates, the spectrum is not described well. AB’s
intensity 4x 10" W/cn®. In (A), we used AB’s in a box of  work in this case as well, but the reconstruction of the PES is
R=400 a.u. and the PES obtained shows a decrease for phget satisfactory. In our example, the level spacing at 20 eV is
toelectron energies higher than 5 eV due to the absorption @.26 eV, which means that we have about six levels per pho-
fast electrons at the boundaries. All structure in this spectrunfon energy, a rather low density.
is lost for energies higher than 10 eV. In the same figure, we
show the spectrum of the absorbed photoelectrons, which is
very small for low energy electron®ot enough velocity to
reach the boundary and be absorbdtbr a region of ener- We presented the construction of a linear transformation
gies it is comparable to the population of the electrons noon the state vector of an atomic system, equivalent to the
absorbed, and for higher energies it dominates completelyAB's employed in the direct solution of the Schrodinger
Adding together the populations of the remained and abequation on a lattice. The algorithm to construct this trans-
sorbed photoelectrons, we obtain the PES of pBjt We  formation is simple, involving standard matrix manipulation.
compare this corrected PES with PES obtained in calculaThe results enable one to perform time-dependent calcula-
tions without the use of AB’s. IiC) we used the same box tions on a smaller basis, using thus smaller computational
size, and we see that the spectra are in perfect agreement gsources both in time and space. We illustrated the use of
to about 10 eV. In this energy, the ratio of the retained tothis technique in the case of the hydrogen atom. The har-
absorbed population is about 1/10. For higher energies theyonic spectrum of the atom calculated is free of artifacts due
differ, and the PES calculated without AB’s loses the typicalto reflection and the ionization yields were practically iden-
structure of successive peaks differing by a photon energyical with those obtained by enlarging the basis size until the

3. Summary of Sec. Il
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results converge. In the case of the PES, one can use the 3n
additional information of the populations absorbed during Aw %
the time propagation to obtain results that compare well with 2
the converged PES. v r————
Ml
=
Ill. GENERALIZATION Ao %
A. Introduction L
In the previous sections, AB’s were imposed on an atomic 0 10 20
system by using information of the form of the eigenstates in Mode
space. Stepping back, we can see that the TDSE is solved on 3
the eigenstate basis of the system, so the only quantities, Aw
except for the external field, that enter in the solution are the 2n
energy levels(which represent both the bound and con- 0 Aw
tinuum parts of the spectrynand the dipole matrix elements E .
between the eigenstates. o
It is therefore reasonable to assume that the linear trans- @
formation that is equivalent to AB’s can be calculated based
only on the above input. Physically, the dipole matrix ele- 0 10 20
ments are irrelevant to the artificial reflection from the Mode

boundaries, since they affect only the amplitude transfer be- . ) )
tween the eigenstates via the external field and not with th(gieE:S;)f‘;gri‘r?itir;a;t?;vo;ctt?g_r?? Eme e;":(‘)‘:'(t)r:'eo]firt;ezgosfsf"
r ion of the fr rt of the wav ket in X ; TR 2 i
propagation of the free part of the wave packet Spacecrete states with constanhw (top) and with w(n)=w(n-1)

Concerning the energy levels, the critical parameter is natu;Aw[hZa(n_l)], ©(0)=0 (bottom. The shading varies from

rally th? energy level spacing, which is dlrec_tl_y connected toblack to white with the state vector element value varying from -1
the radius of the spher@xed boundary conditionsOn the to +1 and the colored lines show the estimated reflection times for
other ha}nd, the energy range depends on where W? truncaégery modef, (i) (see Sec. lll B 1 for detaijs The time interval is
our basis and one could hardly expect the reflection of %ng enough to observe the first few reflections at the bound@ies
wave pack_et energy cente_red around 2 eV to depend UPQfultiples of r/ Aw for constantAw). Note the reflection symmetry
the discretization in the neighborhood of 10 eV. of the top figure with respect to the times of reflection and how the

Based on the previous intuitive arguments, we can CONestimated time of reflectiofcolored curvesmatches with the time
clude that the only physical quantity that affects the reflecevolution.
tions is the spectrum we use to represent the continuum.
Indeed, discrete modes with constant energy differeXoe
have a free evolution dynamics with period off/Aw, the . . e .
time interval needed to be reflected from both boundaries of Consider now an initial form of the glectng field Iogallged
the box(Fig. 4). This is true irrespective of the form of the close to zero, the Igft wall of the' cavity. This electric field
boundary conditions and the space extent of the eigenstatd&XPressed on the eigenstate basis, truncated so that we deal
The reflection is completely determined Byw. If Aw is with the firstN modes, would give a state vec((as_ l_JsuaIIy
variable, the dynamics are not so simple, but as we show, &€ nth element of the vector stands for thg coefficient of the
simple time rescaling suffices to proceed in the same way. IAth eigenstatethat would resemble;=(1/VN)(1,1,1, ..).
the following, we illustrated through a simple example that Keeping in mind the symmetry of the eigenstates with
the energy levels suffice to calculate the AB linear transforfespect to the center of the cavity/2) (in the case of even
mation. j they are antisymmetric and in the case of ddthey are
symmetrig it is straightforward to calculate the coefficients
of a wave function being the image of the initial with respect
to the center of the well. It would just ba =(1/VN)(1,

1. Single continuum -1,1,..). This represents practicalletting possible dis-

We Chose a phys|ca”y transparent System to present Olﬂersion aSide fOf the t|me be|hg1e fOI’m Of the e|eCtriC f|e|d

method. We consider a photon trapped inside a perfect cavity/hen it is close to the right wall. In Fig. 5 we plot the
in one dimension. This system has the advantage that i@lectric field for thea coefficients and the reflectesi coef-

eigenfunctions of the electric field amplitude take the simpléicients.

B. Method

analytical form Due to the simple form of the time evolution of the eigen-
states(c=h=1) (top of Fig. 4,
E,= \/2 sin(nix> (7
" VL L)
satisfying immediately the Maxwell equations and the appro- 2 nax\ .
priate boundary condition<€,(0) =E,(L)=0]. E.(x,t) = L sin(—)e"“’n‘, (8)
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It is important to perform this operation without using
information about the spatial form of the eigenmodes. This
has the following advantages. First, it makes the method
flexible and simple, since one needs to know only the energy
levels that represent the continuum. Second and more impor-
tant probably, it circumvents the problem that we mentioned
in the previous section—i.e., of evaluatiiy, through Eq.

(4) when the box extent is energy dependent. The latter
would be a severe limitation, since it limits the class of prob-
lems that we can handle to those where the eigenstates are
confined in the same box.

To accomplish this, it is sufficient to construct a new basis
consisting ofN states that correspond to differgiardered
evolution times and gradually remove the last states from the
wave function, in accordance with the form of the absorbing

FIG. 5. The electric field for the state vect@gheavy ling and  boundary we want to use. For illustration reason we show in
a, coefficients(dashed ling for a perfect cavity of lengti_ in Fig. 6 few representative states of this type, which we calcu-
arbitrary units. We took into account only the first 150 eigenstateslated using the eigenstates of Ef). The limited size of the
enough to show the localization of the electric field in space. bases causes these states not to be completely localized, hav-

ing long tails. Nevertheless, this did not cause any problems,

nar since it should affect only the states close to the energy
=k,=—, (9) boundaries of the discretized spectrum. Also this is canceled

L in a large extent because we always have a superposition of
modes with a smooth variation of amplitude. Observe, for

example, the almost opposite phase of the delocalized oscil-

it is easy to estimate the tintg needed for the electric field lation of the new basis states in Fig. 6.

to cross the cavity by calculating the necessary time for this The new basis is constructed as follows. We start by form-
sign change. It turns out that=7/Aw, whereAw=(E,,;  ing a set of vectors describing different evolution times of
-E,) is the discrete energy level spacing. In this case  the system, starting from a initial state close to the origin
:’Tl'/l_, SO tr:L as expected_ In the genera' case that is t:O), like a;, and end|ng with a state close to the box bound-

not constantdue to dispersion and/or discretization chgice a7 (t-=7/Aw), like &. Since we want to form a complete

the reflection time for every depends on the local density basis forN independent modes, we split the time interval into

of states in a way that we discuss in more detail in the folN Parts. Using a standard Gram-Schmidt procedure, we take
this set ofN vectors and generate an orthonormal set of basis

Amplitude (arb.units)

0
X

lowing.

We wish to avoid the reflection at the boundary, which isVECtors. _ o
natural for a cavity but not for the open electromagnetic field N Drief, the new basis comes from the orthonormalization
modeled by the eigenmodes of a cavity. The key idea is tha®f @ N>X N matrix with elements
we can project the state vector at any time on a state like the _ t,
one that is about to be reflected and subtract this part from Ty = COS((Ui(J - 1)(N ~ 1)), (10

the initial state vector. This would remove the part of the
wave function that is reflected. Of course, AB’s should bewhere w;=(i-1)Aw is the frequency of theth level with

smooth and have a controllable extent. w1=0 (reference frequengyand (j—21)t,/(N-1) gives the
£

E

fa) FIG. 6. Few basis states of the
5; new “time evolution” basis used.
0 A basis state at timé=0 (solid
o line) and two consecutive basis
g states in the middle of the time in-
[« ¥ terval (dot-dashed and dashed
E 0! lines).
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time ranging from O td,. We used only the real part of the Li
time evolution, so that we deal with a matrix with real ele-
ments. This is sufficient, since the transformation is the same
for the real and imaginary parts of the state vector.
The matrix must havél independent eigenvectors so that,
after orthonormalization, it provides a complete basis for the
state vector. This is the case due to the fact that the columns

; . = e —~
of the matrix are almost orthogonal. The inner product of Cavity et eiium
two rows would be

FIG. 7. The equivalent cavity that imitates a given spectrum.
The left wall reflects all frequencies at the same point while the
_ . t right wall reflects every frequency at a different depth. So every
; TmiTnj = ; Co<(m DAw 1)(N - 1)) mode sees a cavity with different dimensioits) enabling us to
shape the spectrum.

xcos((n—l)Aw(j—l) i )

N-1
IAQ ( : We set the frequency of the photon of the first magle
:f cod(m- 1)Awt] =0 as the reference for all frequencies. This mode is not
0 supported by the cavity and we deal with it separately. Then
xcod(n—DAwt] = 8y w, is the frequency of the photon of the first mode of the

cavity andws of the second mode and so on. Since new
The inner product is not exactly zero because it is a finite=k,_, we havein/L;=wi,;, SOLi=im/wi,,. Thus the reflec-
representation of the integral. This provides confidence thajon time for each mode is(i)=L;_;=(i— 1)/ w(i) with the
there are indeedll independent eigenvectors and verified by only parameters being the frequency and index of the mode.
the observation that the changes from the orthonormalizatiofthe reflection time for the first mode is not important since

to the vectorgcolumng were very small. Then the absorbing jis time evolution is trivial. Nevertheless, if necessary, one
boundary matrix is constructed as explained in more detail in., extrapolate the reflection time for this mode.

t_he previous section. Since the eigenvectors of this basis is The result we obtained from this simple physical analogy
time ordered, the mask now removes gradually the last. |t§vas tested for a number of dispersion relatians;k, k2, kC,

extent is effectively measured in the number of modes of the 4 reproduced the correct reflection time we expect. How-

hew basis it removes. ever, we found that this approach fails in the case of a dis-

R dThSe cr)??hne Zﬁgg?é't%nefer'ne\gteg{m;nfj%inigr?ﬁe ?;CLhif:ontinuous derivative oflw/dk, a case that needs special
ges) gy sp handling, for example: isolation of the discontinuity by split-

neighboring levels, so one has to ascertain that these statﬁﬁg the discrete spectrum in two parts
do not play a S|gn|f|cant' role n the phenomenon examlned. In Fig. 4 we show the local reflection time as we calculate
In that case, an attenuation in time of these states by a SlmpIthich matches with the free time evolution of the modes.

exponential decqy cou!d remove the problem. . For example, for the first reflection it intersects the time evo-
The case of dispersion or of free boundary conditions re;

quires a slightly different approach. The reflection time is no lution of each mode has an alternating value of +1 and for
the same for all the levels, sindaw \./aries On the contrary the sepond reflection all modes have Valu? 1. ;
. ' ; e So in the case of free boundary conditions or of disper-
it depends for each level on the density of modes in theSiorl We can use
vicinity of the corresponding level. This is circumvented by '
creating aT;; matrix, in which the propagation timgorevi-
ously just(j—1)t,/(N-1)] is not common for all modes. In- ,
stead we use for each level the same fraction of the local T = COS(wi(j - 1)ﬂ)’ (12)
reflection time. . (N-1)

The local reflection time is calculated by a simple physi-
cal analogy with an equivalent problem. We want to imitate a
given discrete spectrum with the spectrum of a, more or lessyith a rescaled time coordinate different for every mode.
easily understood system. Consider again the electric field i&ffectively, this means that the extent of absorbing bound-
a one-dimensional cavity with perfectly reflecting bound-aries is now mode dependent and covers the same fraction of
aries, but now théright) boundary position depends on fre- the mode reflection time.
quency, using, for example, a multilayer mirror. This depen- Besides these intuitive arguments, there exists a simple
dence shapes the spectruifig. 7) in a controlled way. mathematical approach which should by now be clear. Given
Working the other way around, a given spectrum determinea set ofN modes we construct a new basis, on which we are
the boundary positiongi.e., reflection positions for every able to represent the coefficient vector of the system through-
frequency, so the effective cavity length; for every mode out its time evolution. This basis has to be complete and time
is known and subsequently the reflection time, which is jusbrdered and is constructed as we showed. The reflection time
L; sincec=1. is used to make the bases complete @ichosy orthogonal.
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2. Multiple continua

W\,
N\,
W\

\\\\\\\\\\SS§S
\\\\\§

AN
N\
R

In the case of multiple discretized continua, the same
method is applicable with minor extensions. For example,
assume a double continuum, the eigenstates of which are a
product of single continuum eigenstates. For simplicity, con-
sider we useN eigenstates of the first ard eigenstates of
the second single continuum. There &g M combinations,
so the state vector hablXM elements that form the
finite basis of the double continuum. By suitable permuta-
tions, the state vector can be ordered like
(€11,€12,C13 - - - ,C1m»C21,Co2, - . .). The firstM states are com-
posed of the first state of continuum “1” and all the states of
continuum “2”, the nexM are composed by the second state
of continuum “1” and all the states of continuum “2” and S0 F|G. 8. Double continuum AB matrix. The shading varies from
on. We construct the absorbing boundary matrix for the firsblack to white with increasing absolute value of the matrix ele-
block of M states using their energy levels; then for the fol-ments. The structure of the matrix shows how the eigenstates are
lowing blocks ofM states it is the same since it depends onlymixed to imitate AB’s and at the same time the limitations due to
on the spacing of the energy levels and not on their valuethe finite basegsee text for details
Then the complete absorbing boundary matrix for continuum

“2" is a block diagonal consisting of the previous matrix. transformation we perform is sensitive to the relative phase
Then we employ another set of permutations to order thes the coefficients, we have to be careful to apply the trans-
state vector like(Cy1,Cz1,Ca1, - -+ Cn1,C21:C22, ---) @NA CON-  formed ordered, e.g., for the first continuum and afterwards
struct in the same way the block diagonal absorbing boundfor the second. So in this way we haik applications of a
ary matrix for the continuum “1”. The complete transforma- N2 matrix followed byN applications of aV? matrix.

tion can thus be included in a matrix being the product of the
above transformations, with a general form

WNONANANRNNNRNNN N
N
NRni
NN
\

Mode
NNARNARNNNNNNN

/

SNNANNMNRNNNNNN N
\.

RN
RN

3. Constructing differential equations with inherent AB’s
—_p-1 -1
Ba= Py B1P1P; BoPs, (12) So far, the application of AB’s has been accomplished by
a linear transformation on the state vector of the system in
the state vector as describdsl, , is the block-diagonal ab- speuﬁc times during the propagation of t.he differential equa-
i X e PR tions. We have found that it is also possible to add a term in
sorbing boundary matrix for continuum “1” or “2. . . . : .
. . , the differential equation for every mode belonging to a dis-
Consider now the simple case of a double continuum, ~ . ; . )
tretized continuum, so that the system of differential equa-

which is composed of a small nhumber of smgle-contmuumu.On inherently contains AB's.

e|gen_states_. For example, the elgenstat.es of a free electron in The differential equation for the amplitude of a discrete
two dimensions are the product of the eigenstates of the elec-

tron in thex andy directions. Limiting the system to a rect- fode belonging to a single continuum looks like

angle and taking 30 eigenstates in both single continua

would result in 30K 30=900 double-continuum eigenstates. ibi = wb +CT, (13)
For simplicity we choose the eigenstates to have constant

energy difference; thus, the spectrum consists of equally . )
spaced energy levels. where the termw;b; is the free evolution of the mode a@ir

Ordering the state vector in a way that the first permutastands for all the coupling terms that represent the interaction
tion is useless, we proceed with the construction of theof this mode with the rest of the system. We add a term
Sing|e_continuum absorbing boundary matB)Lz and then which causes attenuation to the “part” of the amplitude that
of the double-continuum matri&, which is shown in Fig. 8. a@pproaches the boundaries.

Because of the simple ordering of the state vector we chose, In brief, consider the matriX3=Z-85. This matrix per-
there is a similarity of the structure of th# matrix with its ~ forms the opposite transformation comparedtdt removes
single-continuum analog. In addition, it becomes clear howthe part of the wave functiotor electric field close to the
this transformation actually works, by combining eigenstatesrigin and keeps the part that is close to the boundaries, with
within a block(i.e., with one continuum eigenstate common the same width as the mask. The latter is the part we want to
and at the same time combining neighboring blocks in amemove, so we add to the differential equation a term which
analog way(satellites of the diagonal of the matyix leads to an exponential decay of the amplitude of the mode,

In practice, since the size of the matrix for the transfor-when the wave function is approaching the boundary. We
mation increases very fastNxM)?, we can avoid con- also introduce a damping constapso that we have control
structing such a big matrix by repeatedly applying the single-over the decay rate. The later is directly related to the width
continumm absorbing matrices on the appropriate part of thef the AB’s, so that there is enough time f@mosy com-
state vector every time and replacing immediately their valplete attenuation of the wave function. The modified differ-
ues. One point worth noting in this case is that since theential equation reads

whereP, , is a suitable permutation matrix used to reorder
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N
ib, = wib, + CT-iy> Byby, (14)
=1

where the last term is our addition. When the wave function
is close to the beginning, this term is practically zero and
does not influence the dynamics of the system. Once there is
a part of the wave function approaching the boundary, this
term takes significant values and causes an attenuation of the
amplitude, but in a controlled way, so that only the part of 0 2
the wave function approaching the boundaries is removed. In
the next section, we apply this idea to the physically trans- F|G. 9. Population of the excited state of the two-level atom as
parent problem of spontaneous emission. a function of time. For the dashed and dot-dashed cumMNes30
andN=120, respectively. The solid curve is calculated viNth 30,
but with the use of AB’s. The analytic solution coincides with the
C. Applications later with deviations of at most 0.5% for tinf&=12).

4 6 8
Time (units of I')

10 12

1. Spontaneous emission

We consider a TLA with ground|g)) and excited(|e)) ;/I‘?(lur?u?:l%\e:r%? ?nlggezo that the decay rate is independent of

states with energy differenag, (7=0). The atom is initially We calculated the population of the excited state as a
in the excited state and is coupled with the continuum of th§,nction of time usingN=30 andN=120 discrete modes
modes of the electromagnetic field in free space. This probyithout AB’s (Fig. 9). The artifacts of the calculatiofteviv-

lem can be handled analytically, because of the simple struggg) que to the reflection of the emitted photon by the bound-

ture of the coupling, leading to the well-known exponential gries are apparent for both cases. Together we show the result
decay of the excited state. We use this simple problem tQ,ith N=30 discrete modes, but this time with the use of

illustrate the usefulness of AB's. _ o AB’s. It is evident in this case that these artifacts are re-
The Hamiltonian of the system in the interaction picture oyed. For a more quantitative test, we used the analytic
and in the rotating-wave approximation is solution for the population of the excited state. The exponen-

tial decay we expect has to be corrected to account for two
things. First, the short-time behavior is not exponential, so
we have to perform a small time shift and, second, the ex-
where o*=|g)(e| and o~ =|e)(g| are the atomic raising and ponent is slightly modified~3x 1073 due to the limited
lowering operators, andree=c'c”. The field operators frequency range we considered. Taking those two effects into
oz;[,ax correspond to the modes of the free electromagnetiaccount, our result differs from the analytic one by at most
field which are coupled to the atom via the respective cou9.5% atl't=12.
pling constang,. In this Hamiltonian we have replaced the  Switching now to the different approach we discussed in
true continuum of the modes of the electromagnetic field bythe last part of the previous section, we modify the differen-
a collection of discrete modes. tial equations we solve in such a way that they include AB'’s.
In this approximation, the wave function for the full sys- For this case, the new system of equations reads
tem reads

H = wpoeet 2 w}\aia}\ + E g]'(CV)\O'+ + CVIU_), (15
X A

N

|[4) = agle,0) + X by g, 1), (16) ia9= wpap+ > giby., (19
)\ A=1
where the amplitudels, correspond to the discrete modes of
the electromagnetic field ang, is the amplitude of the ex- N
cited state of the two-level atom. o - %
) . . . = + - , 2
The time evolution of the amplitudes is governed by the 1b) = wyby + )3 ng Brubu (20)
Schrddinger equation, from which we obtain
N where the first equation remains the same since it represent a
iag= weag + 2 N (17 true discrete state.
A=1 In Fig. 10 we show again the population of the excited

state as a function of time calculated usiNg 30 discrete

o modes and a depth of AB’s of ten modgsll width at half
1Dy = @by + 03 (18) maximum), employing the modified differential equations.

One has to choose a range of frequenc¢iesw,) of the  For y as small as 1& there is not enough time to absorb the
electromagnetic field and discretize this frequency range. lelectric field that approaches the boundary, so we still have
our simple example we chosg=wy/2 andw,=3wy/2, with  artifacts due to the reflection, but less pronounced compared
wo=1, and usedN equidistant modes inside this frequency to the case of no AB’s. Increasingto 1072 leads to results
range and a constant couplimg. For the latter we used a apparently free from reflections.
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H = wooee* wdagad +> wxa;[ax +gg(ago™ + agff_)
\
+ O (ayo™ + aIO'_)- (21
N

The field operatorgay, o) and (e, ,a)) correspond to the
defect mode and the PBG reservoir, respectively, which are
coupled to the atom via the respective coupling constggts
andg,.
We consider the case where the defect mode is initialy
FIG. 10. Population of the excited state of the TLA as a functionPrepared in the one-photon Fock stéte-1) and the TLAin
of time for different values of the damping in the modified differ- the excited state. So we have a total of two excitations and,
ential equations. The damping constanis 0, 102, and 10* for  thus, the state vector of the system reads
the dashed, dot-dashed, and solid curves respectively. WeNised
=30 discrete modes in all cases.

10 12

0 2 4 6 8
Time (units of T')

[9(1,0) = agle; 14,0) + bolg; 24,00 + X by[g;14,1,)
N

A more detailed comparison is shown in Fig. 11 where we
show the ratio of our numerical calculations over the analytic
result. In the case is small, the deviations are larger, but for
reasonable values of the results are practically identical to whereb, ,=b,, and initially |(1,0)=|e;14,0).
the analytic solution for values of time up f=12. In the context of an isotropic model, the spectral response
D,(w) for the PBG continuum is given by

CO(w— we)
Di(w) = ——F——, (23

T Vo= we

+> ayle;0q4,1,) + > b>\,u|g;0d,1>\>, (22
A N
=)

2. TLA and two photons

In this part we compare our results with previously pub-
lished oneq18], on a more complicated problem, involving ) ) ) . N
the interaction of two photons with a TLA and a defect WhereC is the effective coupling of the atomic transition to
mode. The computational difficulties of problems involving the structured continuunt) the step function, and, the
multiple continua—i.e., in this case the number of differen-Pand-edge frequency. We follow the discretization technique
tial equations scaling roughly a2 with the number of the &S €xplained in more detail ifii8]. The density of states
discrete modes necessary to describe the single continuum{209) in the frequency range important for the system
are a fertile playground for illustrating the capabilities of our (@1, @y) is replaced by a number of discrete modes inside this
method. frequency range. In our problena, =w,, due to the step

ATLA s coupled to a PBG, which is modeled by a set of function limitation, andv,=10C** as chosen ili18]. We can
discrete modes. The atom is also coupled to a defect modése for the frequencies of the discrete moflEs19
inside the gap which acts as a photon source that can pump = ot 25 (24)
the atom. We follow the lines of18] in the description of W] = Wet ] 0w,
this system.

In brief, we consider a TLA as in the previous part, only
this time the Hamiltonian due to the coupling with the defect
mode reads

with a common atom-field coupling constant for all modes:

2C —
o = \| =\, (25
o

The time dependence of the amplitudes is governed by the

o 104 Schrddinger equation, and after the elimination of the off-
g resonant part of the continuufw > w,) we find [20]
= 102
5 B N
E 1.00 «r—-@::%w iag=(Ag+Aq—Sag+ \fzgdb0+jglgjbj, (26)
g 098 T e
Z 096 \ T ibo = 2A4bo + V20, (27)
0 2 4 6 8 10 12
Time (units of I') _ N _
ia;=(Ag+Aj-Sa+a4bj+ X gy +\20,by,
FIG. 11. The ratio of the numerical over the analytic solution for k=1k+#]
the decay of the excited state of the TLA as a function of time for (28)
different values of the damping in the modified differential equa-
tions. The damping constang is 0.1, 0.15, 1, and 10 for the .
dashed, dot-dashed, solid black, and solid gray curves, respectively. ibj=(A; +Ag)b; + gjap + 9gdy, (29
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atomic system on the basis of its field-free eigenstates by
using a simple linear transformation. This means that the
artificial reflection of the wave packet at the boundaries is
remedied, so the calculations can be performed on a smaller
basis(in space exteptand thus faster. Also, since informa-
tion about which part of the wave functiganergy resolved
is removed or modified during the time propagation is easily
available, one can use this additional information to recon-
10 20 30 40 struct the final state of the ato(megarding populations, not
Time (units of C*?) amplitudes, since phase information is jo#t the case that
othing was absorbed or reflected. One should note, though,

FIG. 12. The mean photon number in the defect mode calculatea1 . . . .
P at in the case of a low density of states in the continuum,

usingN=30, 150 modesdashed and solid curveand N=30 with : ; .
AB's (gray solid curvé We also show the absorbed part of the the continuum is not represented accurately from the begin-
wave function corresponding to the mean photon number in thdling- In this case AB's do remove artifacts due to reflections,
defect modelower dashed curyewhich we added to the remain- but the reconstruction of sensitive quantitigke the PES is
ing part of the wave function to obtain the gray solid curve. Param-not more succesfull than the basis allows.
eters are as if18—i.e., w,=10C%3,A4=A4=-0.1C?"3, and gq More important probably, a generalization of this method
=1.0c%", has been proposed to handle the general problem of a dis-
cretized energy continuum, based only on the energy spec-
(30) trum used to approximate the continua. The calculation of
the linear transformation can be accomplished numerically or
. — even analytically in simple cases and is performed through
ibj; = 2Ajb;; +V2g;a;, (31)  standard linear algebra operations. We have also shown how
where jk are the indices of thé\ discrete modes ang to generalize this method to multiple continua, examining in
=0¢=0;, While Ag=wp—we, Ag=wy—we, and Aj=w;-we. detail the case of a double continuum. We have further pro-

—=
n

Excitations
—
ol

4
W

14
=}

ibji = (A + Awbjc + Gid; + gjax,

The shift term is given by posed an alternative approach, in which the AB’s are incor-
5 porated into thgmodified system of differential equations
s=3 9. (32) one has to solve.
PR we' We thus applied our method to two systems, the sponta-
u>N neous emission of a TLA in free space and the interaction of
whereN is the number of discrete modes we use. a TLA, a defect mode, and two photons at the adge of a

In Fig. 12 we show our results for the time evolution of PBG. In the first case, our result practically coincides with
the mean photon number in the defect mgsteme as Fig. 2 the analytic one, illustrating our method in this simple physi-
in [19]). We performed the same calculations fok, cal system. The second case we examined is more compli-
=30,150 and withN,,=30 using AB's. The revivals of the cated, since we chose to deal with two photons, meaning that
population for the casl,=30 are evident and they appear asthe number of the necessary modes is much larger. We com-
early asl't=13. UsingN,=150 we are free from revivals up pared our results with previously published orj&é8] and
to I't=40 and this represents the converged result in this timeemonstrated a computational improvement of more than an
range[18]. Employing now AB’s and usingN,,=30 modes order of magnitude.
we obtain results that compare well with the latter. In anal- The application range of this method covers all time-
ogy with our first example, the reconstruction of the PES Ofdependent prob|ems solved by energy discretiz&]ﬁonex_
an atom, we kept track during the propagation of the popuample two-electron atomgl7], atom laser§21-25, quan-
lation changes due to the absorption and we added it to th@m electrodynamics with few photorid8-2Q), without
remaining population to obtain our final result as presentedygifications. The computational benefit turns out to be sig-

Regargling computational cost, we had to solve aibut ificant and scales as the power of the continuum multiplic-
=N,/Ng,)*=25 times fewer equations, although we have toity.

perform in the meantime the neccesarry transformations.
This is an important improvement, and already for the
double continuum it shows the potential of our method. Con-
sider that the improvemeigin the number of equations nec-
essary scales ag™ wherem is the multiplicity of the con-
tinuum andf ratio of the necessary modes with AB’s over
the necessary modes without.
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