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We characterized the diffraction and crystal structure of a crystalline colloidal array(CCA) photonic crystal
composed of 270 nm diameter polystyrene spheres which have a nearest neighbor spacing of,540 nm. This
CCA diffracts light in first order at<1200 nm and shows strong diffraction in the visible spectral region from
higher order planes. We quantitatively examined the relative diffraction intensities of the putative fcc(111),
(200), (220), and (311) planes. Comparing these intensities to those calculated theoretically we find that the
crystal structure is fcc with significant stacking faults. Essentially, no light transmits at the Bragg angle for the
fcc (111) planes even through thin,40 mm thick CCA. However, much of this light is diffusely scattered
about the Bragg angle due to crystal imperfections. Significant transmission occurs from thin samples oriented
at the Bragg condition for the fcc(200), (220), and (311) planes. We also observe moderately intense two-
dimensional diffraction from the first few layers at the crystal surfaces. We also examined the sample thickness
dependence of diffraction from CCA photonic crystals prepared from,120 nm polystyrene spheres whose fcc
(111) planes diffract in the visible spectral region. These experimental observations, aided by calculations
based upon a simple but flexible model of light scattering from an arbitrary collection of colloidal spheres,
make clear that fabrication of three-dimensional photonic band gap crystals will be challenged by crystal
imperfections.
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I. INTRODUCTION

The recent intense interest in the design and fabrication of
photonic band gap crystals(PBGC) stems from the unusual
phenomena that these materials potentially display[1–13]. A
full three-dimensional PBGC would not possess eigenmodes
for the propagation of electromagnetic radiation within a de-
fined spectral interval. Thus, light within this interval could
not propagate in the material. These materials would not sup-
port spontaneous emission events such as fluorescence.
PBGC materials could significantly impact areas of optoelec-
tronics, laser design, and telecommunications.

PBGC consist of periodic dielectric structures, which are
designed to create an optical band gap. The earliest PBGC
demonstrated were in the microwave region where periodic
structures were machined[8]. The structures required to
achieve full three-dimensional band gaps have been theoreti-
cally well described[1–6]. For example, in the visible spec-
tral region a PBGC could be fabricated by creating a periodic
structure of interpenetrating face centered cubic lattices simi-
lar to that of diamond[1,4,5]. The basis of the lattice would
be spheres of high refractive index and the region between
spheres would be filled with a medium of sufficiently lower
refractive index, that the refractive index ratio[4] would ex-
ceed,2.8. In addition, theoretical calculations suggest that
PBGC could be fabricated by utilizing more complex peri-
odic structures[3].

Although the theoretical understanding of PBGC materi-
als has become relatively mature, as yet there is no material

fabricated, as far as we know, that has been shown to possess
a complete band gap in the visible or near-IR spectral re-
gions. Some previous attempts to fabricate systems that
slightly approximate PBGC in the visible spectral region
have utilized inverse opal structures, where close packed
polymer sphere arrays were formed. High refractive index
materials were then incorporated in the interstices[14–16].
The close packed polymer spheres were then vaporized to
form an air sphere lattice with a high refractive index con-
trast. These structures were not expected to show three-
dimensional band gaps; they showed one-dimensional band
gaps similar to those previously observed for crystalline col-
loidal array(CCA) photonic crystals[17–30].

There is an extensive literature which has explored the
diffraction properties of photonic crystals prepared through
the use of crystalline colloidal self-assembly[11,17–37].
CCAs form when highly charged, monodisperse colloidal
particles dispersed in very low ionic strength aqueous media
crystallize into cubic array structures. The strong electro-
static interactions between the particles force the colloid to
minimize the total system energy by arranging into either a
face-centered cubic(fcc) or body-centered cubic(bcc) crys-
talline array, depending on the particle number density and
the strength of the repulsive interactions[19,20,37]. CCA
lattice constants are typically on the order of hundreds of
nanometers, so the arrays diffract near-UV, visible, and
near-IR light. CCA appear brightly colored and opalescent
because of the diffraction of visible light. Our group was the
first to demonstrate the formation of photonic crystals from
CCA [20,22–24] and we have used these materials to fabri-
cate optical notch filters[20–24], optical switches[25,26]
and photonic crystal chemical sensors[27,28].

CCA photonic crystals diffract light very efficiently; thin
films ,50 mm thick attenuate essentially all of the light
within the one-dimensional band gap[20]. Recently, we be-
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gan to study CCA with large periodicities, which diffract
light in the near-IR spectral region. These photonic crystals
not only diffract IR light in first order, but also diffract light
in the visible wavelength region in higher order[29]. Visible
and UV wavelength light is also diffracted by higher Miller
index CCA crystal planes[29]. Experimentally, we find that
these CCA crystals do not appear to transmit visible light at
any propagation angle. This is certainly not because this
CCA is a three-dimensional(3D) PBGC, since the refractive
index ratio between the polystyrenesn=1.6d and the water
medium(1.336) is small and a noninverted fcc structure can-
not form a 3D PBGC[4–6].

In the work here we have thoroughly characterized the
crystal structure of this near-IR diffracting CCA, and exam-
ined its transmission and diffraction. We also examined the
dependence of diffraction on the particle number density and
sample thickness. As we found earlier[20], a significant
amount of the incident light is diffusely scattered at angles
close to the diffraction angles. This diffuse scattering results
from crystal imperfections. Aided by computations based on
a simple yet effective model of light scattering from an arbi-
trary collection of colloidal spheres, we discuss the role of
defects on the optical performance of CCA photonic crystals
and challenge the theoretical community to develop further
refined models that incorporate less than perfect crystal
structures[30–33]. These models will certainly be necessary
to understand the optical properties of the inevitably less
than perfect, highly defective PBGC which will be fabricated
in the nearest future.

II. EXPERIMENT

A. Materials

Highly charged polystyrene colloidal particles with diam-
eters of 118, 119, and 270 nm and,2% polydispersity were
prepared by emulsion polymerization as described elsewhere
[34]. The colloids were cleaned by repeated dialysis against
ultrapure water and then shaken with mixed bed ion ex-
change resin. Particle sizes were measured by quasielastic
light scattering and by transmission electron microscopy.
Particle surface charge was measured by titration against
NaOH to have values of 6600, 7200, and 79 000 charges per
particle for the 118, 119, and 270 nm diameter colloids, re-
spectively. The relative standard deviations in measured
charge were estimated to be less than 5%.

CCA that diffracted visible wavelength light in first order
at normal incidence(visible CCA) were prepared from the
118 and 119 nm diameter polystyrene colloids, diluted to
,5–10 % volume fractions in ultrapure water. The CCA that
diffracted near-IR light(IR CCA) were made by diluting the
270 nm diameter colloids to give an,8% volume fraction.
All of the CCA crystals were prepared within cells which
consisted of two quartz disks separated by thin spacers. One
disk had two injection ports drilled into it, through which the
CCA solution was injected. We utilized 25mm Teflon spac-
ers, 40mm polyethylene spacers, and 125mm and 250mm
parafilm spacers. The surfaces of the quartz plates were
coated with a hydrophobic polysiloxane(Sigmacote, Sigma),
which allowed for even flow of the CCA into the thin cells.

B. Transmission measurements

Transmission measurements were performed by using a
Perkin-Elmer l-9 UV/visible/near-IR spectrophotometer.
The CCA crystals in their cells were mounted on a rotation
stage, in order to measure transmission as a function of
angle. For some measurements the incident light was polar-
ized with a calcite polarizer mounted in the sample beam
path.

C. Diffraction measurements of visible CCA

Optical diffraction measurements for the visible CCA
were made by using the 457 and 488 nm beams from an
argon-ion laser(Spectra Physics). The experimental setup is
shown in Fig. 1. The CCA samples were mounted on a rota-
tion stage. Transmitted and diffracted intensities were mea-
sured with an energy probe detector(laser probe). An adjust-
able aperture was mounted on the detector arm between the
sample and detector. The aperture diameter was switched
between,1.0 mm, to collect only the specularly diffracted
laser beam, and,9.0 mm to collect a scattering angle of
,5.0°.

Transmission and diffraction measurements were made
according to the following procedure. The CCA sample was
mounted on a rotation stage with the cell plane normal to the
laser beam. The CCA sample was then rotated both about the
vertical axis and the sample plane normal until it met the

FIG. 1. The visible wavelength CCA diffraction measurements
utilized a sample mounted on a rotation stage with an adjustable
aperture detector mounted on a rotating arm.
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diffraction condition, which was identified by the transmitted
intensity minimum. Transmitted intensities were then mea-
sured for both aperture diameters. The diffracted intensities
were measured by moving the detector arm to the appropri-
ate diffracted beam angles.

Diffraction bandwidth measurements of the visible CCA
were performed using au−2u scan. The sample was rotated
in 1.0° increments around the maximum diffraction angle,
and the detector arm was correspondingly rotated in 2.0°
increments, while recording the intensity of the sum of the
diffracted and reflected light.

D. Diffraction measurements of IR CCA

The cell containing the CCA was suspended from a rota-
tion stage in the center of a rectangular tank filled with water
(Fig. 2). The CCA cell could also be independently rotated
about the cell normal. Diffracted light from the CCA was
imaged onto paper screens attached to the exterior of the tank
walls. The diffraction angles were determined geometrically.

Diffraction intensities were usually measured with the IR
CCA cell in the water tank. The diffracted beam was allowed
to transmit through the walls of the tank and the diffracted
beam(angular width,1.5310−4 steradians) exiting the tank
was collected and focused onto an energy probe to record its
intensity. The intensity was corrected for reflection at the
air/glass interface.

The angular diffraction bandwidths for the IR CCA were
measured using a different procedure than for the visible
CCA. We measured relative intensities by placing an energy
probe detector flush against the paper screen on the exterior
of the water tank at a position corresponding to the maxi-
mum diffracted intensity. With the detector location fixed,
the CCA was rotated about the Bragg angle while the dif-
fracted intensity was recorded.

E. Kossel ring measurements

The CCA samples were placed in a water tank as de-
scribed above. The Kossel ring patterns[19,20,35] observed
on the paper screens were photographed by a charge-coupled
device(CCD) camera. The Kossel ring patterns were calcu-
lated with a program written usingMATHCAD.

III. RESULTS AND DISCUSSION

A. Determination of crystal structure and orientation

We carefully examined the diffraction patterns to deter-
mine the crystal structure and orientation. The crystal struc-
ture was determined from the measured diffraction angles
and from the IR CCA Kossel ring patterns[19,20,35]; the
large lattice constant of the IR CCA allows studies of diffrac-
tion in the visible spectral region from higher Miller index
lattice planes.

We determined the longest plane spacings by measuring
extinction of the CCA sample at normal incidence(Fig. 3). A
strong symmetric extinction peak occurs at,1200 nm. The
CCA is transmittive down to,700 nm, below which numer-
ous strong extinction features occur. The,1200 nm extinc-
tion peak blue-shifts approximately follow Bragg’s law as
the CCA sample is rotated off of normal incidence.

CCA are reported to form fcc or bcc crystal structures
[19,20,37]. We examined this CCA sample to determine
whether it was fcc or bcc by testing it for Bragg diffraction
from higher order fcc and bcc planes. If the crystal were fcc,
then the,1200 nm diffraction must derive from the(111)
planes. The spacing of any set of fcc planesshkld is related
[19] to the crystal lattice constanta by

dhkl =
a

Îh2 + k2 + l2
,

whereh, k, and l are the crystal plane Miller indices. From
the,1200 nm diffraction peak, we obtain an fcc lattice con-
stanta=766 nm using Bragg’s Law

l0 = 2ncdhklsinsubd,

wherel0 is the wavelength in vacuum of the diffracted light,
nc is the refractive index of the crystalsnc=1.359d [19,20], d
is the spacing of the lattice planes of interest, andub is the
Bragg glancing angle(90° here). The angle between any two
fcc crystal planes is

FIG. 2. Experimental setup for diffraction measurements from
IR CCA. The sample was suspended in a tank of water to minimize
reflections and to avoid correcting the scattered light angles for
refraction.
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cosa =
h1h2 + k1k2 + l1l2

Îsh1
2 + k1

2 + l1
2d · sh2

2 + k2
2 + l2

2d
.

Thus, if the incident beam is normal to the(111) plane of an
fcc CCA, diffraction from theshkld will be observed if the
crystal is rotated by angleb,

b = a ± s90° −ubd,

and then the CCA is rotated about the normal to the(111)
plane to search for diffraction of theshkld planes.

Table I lists the diffracting fcc crystal planes, their inter-
planar spacings, and the calculated and measured Bragg scat-
tering angles for 488 nm incident beam for 40mm and
125 mm thick CCA samples. The observed values ofub
agree well with those calculated from Bragg’s law. The rota-
tion angles for the(200), (220), and (311) planes are 7.0°,
12.7°, and 8.8°, respectively. Because of the similar diffrac-
tion angles of the(222) [i.e., 2nd (111)] and (311) planes
(54.4° and 51.3°, respectively) and their angular bandwidths,
we observed overlapping diffraction from both planes at
angles intermediate between the two Bragg angles.

To ensure that the CCA did not contain bcc or hexago-
nally close-packed(hcp) crystals, we looked for diffraction
from the higher order bcc and hcp diffracting planes where
we assumed that the,1200 nm diffraction peak occurred

from the (110) bcc planes or the(100) or (002) hcp planes.
We found no diffraction for the bcc or hcp planes. Thus, we
conclude that the IR CCA are, on average, fcc crystals, with
no evidence of bcc or hcp crystallites.

In addition to confirming diffraction from these higher
Miller index fcc planes, we also measured the angular rela-
tionships between these planes by first rotating the sample to
the appropriate angle for Bragg diffraction from one set of
planes and then performing a second rotation around the axis
normal to the putative(111) planes which are parallel to the
quartz plates. We expectC3 symmetry for diffraction from
the (200), (220), and (311) planes upon rotation about the
[111] direction. In contrast, we observeC6 symmetry, where
diffraction occurs every 60°. The angular orientation of this
diffraction is identical to the hexagonal set of the 2D diffrac-
tion beams, as discussed below. This indicates the presence
of stacking faults which rotate the diffraction angle by 60°
about the(111) plane normal.

We also observed two-dimensional diffraction from the
first few crystal planes of the IR CCA, in addition to the 3D
diffraction. The hexagonally ordered(111) planes, which
align parallel to the cell walls give rise to a hexagonal set of
diffraction spots(Fig. 4). In contrast to 3D diffraction for a
set of planes, which occurs for a single wavelength only for
an incident angle that fulfills the Bragg condition, diffraction
from a 2D hexagonal array occurs at all incident angles. The
2D diffraction condition is[17]

sin u1 + sin u2 =
2l0

Î3ncD
,

whereu1 is the angle of incidence,u2 is the diffraction angle
nc is the system refractive index, andD is the nearest neigh-
bor particle spacing within the plane. For the case where the
2D diffraction comes from the(111) plane of an fcc lattice,
D=a/Î2.

We measured the 2D diffraction pattern in the water tank.
The CCA cell was oriented with the line between filling
holes along the axis of rotation. We translated the sample
through the beam and observed that the 2D hexagonal pat-
tern was identically oriented over the entire sample. Thus,
the orientation of the hexagonal sphere packing within the
planes is constant over the entire sample except for stacking

TABLE I. Comparison of predicted and measured Bragg diffrac-
tion and scattering angles for each set of fcc lattice planes of the IR
CCA. The measured values are estimated to be accurate to ±1°.

Plane d snmd ub sCalculatedd
ub sMeasuredd

40 mm
ub sMeasuredd

125 mm

(111) 442.2 24.0 22.7 23.8

2nd (111) 221.1 54.4 53.0 55.0

(200) 383 28.0 27.4 27.8

(220) 270.8 41.7 42.0 43.1

(311) 230.9 51.3 52.0 53.0

s1̄11d 442.2 24.0 24.3 24.1

s1̄1̄1d 442.2 24.0 23.8 24.7

FIG. 3. Extinction spectra of CCA measured by using a UV-
visible-near-IR spectrophotometer as a function of incident angles.
The ,1200 nm peak is from the fcc(111) planes. The diffraction
blue shifts as the sample is rotated. The large peak at,600 nm at
normal incidence derives from a superposition of(200), (220),
(311), and(222) diffraction peaks[29]. The peaks no longer overlap
when the sample is rotated off of normal incidence.
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faults. The apices of the 2D diffraction spot hexagon did not
occur along the line connecting the filling holes(Fig. 4). This
indicates that the shear forces associated with sample flow
orient the fcc(111) planes.

Kossel rings occur when defects within a crystal scatter
some of the incident light, to create a diffuse background
illumination [19,20,35]. Light scattered at angles meeting the
Bragg diffraction condition cannot propagate. The locus of
angles where light may not propagate form the surfaces of
cones, which when projected onto a flat screen appear as
dark circles or ellipses against the diffuse light background
[19,20,35]. Each set of diffracting planes gives rise to a set of
Kossel rings oriented about an axis normal to the set of
planes. The interior angle of the cone is the complement of
the Bragg angleub. Different crystal structures and lattice
spacings gives rise to different Kossel ring patterns and spac-

ings. These Kossel ring patterns give definitive information
on the crystal structure, lattice parameter, and crystal orien-
tation.

Figure 5(a) shows the typical Kossel ring pattern observed
with 488 nm light incident normal to the surface of the CCA
cell. The central circular ring derives from second-order scat-
tering from the(111) fcc planes. The(111) ring is not visible
because it falls outside the imaged area. The other Kossel
rings result from the{220} and{311} families of fcc planes.
Each of these sets of Kossel rings show sixfold symmetry,
rather than the threefold symmetry expected from an fcc
structure. The observed sixfold symmetry correlates with the
hexagonal symmetry observed for the diffraction of the
higher Miller index planes, as discussed above.

The observed Kossel ring pattern is very similar to the
calculated Kossel ring pattern shown in Fig. 5(b). This pat-
tern was calculated for a twinned-fcc crystal with the lattice
parameter determined from the extinction spectra of Fig. 3.
The crystal orientation was specified by assigning the[111]
direction to be normal to the cell walls, and thef011̄g direc-
tion to lie along the IR CCA flow direction between filling

FIG. 4. (a) Photograph showing 2D diffraction spots from an IR
CCA. A 457.9 nm laser beam is incident though a hole in the center
of a paper screen outside a water tank containing the CCA oriented
with its (111) planes normal to the beam. The hexagonal pattern of
spots are created by 2D diffraction from the particles within the first
few layers of the CCA. The star shaped pattern of lines are from
Kossel rings(see below). (b) Diagram of cell used to contain CCA
samples. The colloid solution was injected and flowed from one
injection port out the other. Shear forces along the flow direction
align the CCA.

FIG. 5. (a) CCD image of backward scattered Kossel lines from
CCA, where 488 nm light illuminated the sample at normal inci-
dence.(b) Kossel ring pattern calculated using measured crystal
parameters. The Kossel lines are indexed with the[111] direction

normal to the page and thef011̄g direction vertical. The modeled
sixfold symmetry results from fcc crystal twinning.
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ports. The same patterns were observed for all samples.
Shear forces have been reported to orient the hexagonally
packed surface layers of colloidal crystals[36]. In these CCA
the observed pattern is consistent with alignment of the fcc

f011̄g direction along the shear flow.
The observed hexagonal symmetry probably derives from

fcc crystal twinning. In an fcc crystal the closest-packed
(111) layers stack in the orderABCABC. . . (Fig. 6). This
contrasts with the hcp structure in which the close-packed
layers stackABAB. . . and form the(0001) planes. These lay-
ers can stack in other configurations to form a variety
of other structures including randomly close-packed struc-
tures. One common stacking defect is the twinned fcc crys-
tal, which may be constructed by stacking layers
ABCAB CBACBA.. ., whereC indicates the location of the
twin plane boundary. Crystals containing multiple twin
planes are known as lamellar twins and have been observed
in colloidal crystals using polarized microscopy[37].

We conclude from the 2D and 3D diffraction and the Ko-
ssel ring data that the CCA samples are twinned fcc crystals.
Stacking faults along the[111] direction create the crystal
twins. The alignment of the crystal appears to be determined
by the CCA injection shear forces. It is likely that the fluid
flows as columns of spheres, which when the flow stops
relaxes into hexagonally packed layers. Since crystal growth
nucleates at the surface, the fcc crystal probably grows from
the walls. Previous studies[37–40] indicated that the forma-
tion of twinned crystals is an intermediate step in the growth
of colloidal crystals. However, even after sitting undisturbed
for as long as one week, we still observe sixfold symmetry of
3D diffraction spots and the sixfold symmetric Kossel ring
patterns in these CCA.

B. Diffraction efficiencies

We determined the diffraction efficiencies and bandwidths
of these CCA photonic crystals by measurements of the
transmission of the incident beam and by measuring the in-
tensity of the diffracted beam. Transmission measurements

monitor the removal of intensity from the forward scattered
beam, while diffraction measurements monitor the intensity
diffracted by a particular set of planes into a defined solid
angle. Most previous reports have focused on transmission
measurements. However, as we demonstrated earlier[20],
significant light is also diffusely scattered from CCA crystal
defects. In addition, the CCA surface layers give rise to sig-
nificant 2D diffraction.

Figure 7 shows the dependence of transmission as a func-
tion of incidence angle for light polarized perpendicular to
the plane containing the incident light propagation vector
and the diffracting plane normal for a 125mm thick IR CCA.
The sample was oriented with the injection flow direction

f011̄g along the crystal rotation axis. Rotation of the sample
by 54.7° from where the incident beam lies parallel to the
[111] direction, to where the incident beam lies parallel to
the [200] direction, is equivalent to rotation fromL to X in
the fcc Brillouin zone, whereL corresponds to the[111]
direction andX corresponds to the[200] direction (Fig. 7).
The normal incidence transmission spectra in Fig. 7 shows a
sharp narrow peak at,1200 nm from the(111) planes and a
much larger broader peak at,600 nm, which results from
overlapping diffraction from the{200}, {220}, and {311}
planes [29], as well as second-order diffraction from the

FIG. 6. Stacking of close-pecked layers to form hcp, fcc, or
twined-fcc crystals.

FIG. 7. Transmission spectra of 125mm thick CCA recorded at
different rotation angles within theL-U-X plane. The incident light
is polarized perpendicular to the incidence plane. TheL direction
corresponds to normal incidence,U is rotated by 35.3°, andX is
rotated 54.7° from normal. As the CCA is tilted, the(111) diffrac-
tion shifts from ,1200 nm to,1000 nm, where it is coincident
with the (200) peak. The broad band at,600 nm at normal inci-
dence is a superposition of several diffraction peaks from the(200),
(220), and(311) families of planes.
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(111) planes. Diffraction from the higher index planes only
overlap when the beam is incident along the[111] direction.
Rotating the crystal away from normal incidence removes
the overlap[29]. The resulting peaks shift towards longer
and shorter wavelengths, which effectively broadens the dif-
fraction to cover the entire visible spectral region.

Rotation of the sample blue shifts the(111) diffraction
peak as expected from Bragg’s law. We measured transmis-
sion as the sample was rotated betweenL-W-U in the Bril-
louin zone(Fig. 8). This was accomplished by rotating the
sample 30° about the[111] direction, followed by rotating
the sample in theL-W-U plane. There is less extinction in the
visible region when the CCA is oriented in this plane be-
cause fewer of the high index planes are poised to diffract
the incident light. This is in contrast to the rotation within the
L-X plane, which brings all the higher Miller index diffrac-
tion planes into position to diffract. The visible wavelength
transmission is decreased compared to that in Fig. 7.

We measured the thickness dependence of the CCA dif-
fraction efficiencies by rotating the crystal such that particu-
lar planes met the diffraction condition. We then measured
for 488 nm light both the transmitted and diffracted intensity
as well as the intensity of the 2D diffraction within the scat-
tering plane. Tables II and III indicate that when the CCA
crystal is oriented such that the(111) Bragg diffraction con-
dition is met, the transmission is essentially zero even for the
25 mm thick samples[,56 s111d layers]. Although the

TABLE II. Diffraction and transmittance measurements for fcc
(111) plane visible CCA at various particle densities and sample
thicknesses.

l111 Thickness Specular only Large aperture

Effective
thickness

smmd
s90°d t smmd T D T D (Calculated)

475 40 0.001 0.748 0.002 0.835

495 40 0.003 0.680 0.006 0.776

495 125 0.000 0.725 0.000 0.839

495 250 0.000 0.640 0.000 0.728

510 40 0.010 0.506 0.052 0.631 5.4

525 40 0.004 0.501 0.041 0.622 5.7

525 125 0.000 0.556 0.001 0.704

525 250 0.000 0.547 0.000 0.688

585 40 0.004 0.350 0.054 0.519 5.1

585 125 0.001 0.372 0.003 0.529 5.4

585 250 0.000 0.265 0.001 0.431 4.1

605 40 0.014 0.262 0.079 0.552 4.5

605 125 0.004 0.270 0.010 0.597 4.6

605 250 0.000 0.535 0.001 0.792 10.3

TABLE III. Diffraction intensity measurements for IR CCA
samples of various thicknesses for 488 nm incident light.

Sample
thickness
smmd

FCC
lattice
plane Transmittance

Bragg
diffraction
efficiency

Total
in-plane 2D
diffraction
efficiency

25 (111) 0.000 0.497 0.020

2nd(1111) 0.308 0.178 0.034

(200) 0.135 0.076 0.030

(220) 0.193 0.38 0.012

(311) 0.200 0.26 0.017

40 (111) 0.010 0.515 0.022

2nd(111) 0.000 0.053 0.027

(200) 0.077 0.045 0.036

(220) 0.120 0.014 0.026

(311) 0.099 0.013 0.050

125 (111) 0.000 0.454 0.019

2nd(111) 0.019 0.034 0.012

(200) 0.001 0.006 0.013

(220) 0.000 0.009 0.005

(311) 0.0000 0.012 0.006

250 (111) 0.000 0.490 0.007

2nd(111) 0.000 0.088 0.008

(220) 0.000 0.030 0.000

(311) 0.000 0.030 0.004

FIG. 8. Transmission spectra from the same 125 nm CCA
sample, as in Fig. 7, also with perpendicularly polarized light, but
the CCA is rotated in theL-W-U plane. The(111) diffraction peak
rotates similarly, but diffraction from the higher order planes is
weaker, allowing some individual peaks to be resolved.
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transmission is essentially zero, the total detected intensity of
the 2D and 3D diffracted light for the apparently specularly
diffracted beam(1.5310−4 sr) is only about half the incident
intensity. The diffracted efficiency of the(111) planes is
,50% and is essentially independent of CCA thickness
(Table III). Since absorption does not occur, the remainder of
the light must be scattered to other angles; significant diffuse
diffraction is evident at angles close to the Bragg angle.

The higher index(222), (200), (220), and (311) planes
show essentially zero transmission of 488 nm light for the
250 and 125mm thick CCA. However, the transmission in-
creases to 10–30 % for the 40mm and 25mm thickness
CCA. We see less than 10% diffraction from these higher
order planes. Thus, the higher order planes show even more
diffusely scattered intensities. This is visually evident from
the diffuse halo around the Bragg diffracted beams.

The different CCA have different particle number densi-
ties, which result in different Bragg diffracted wavelengths
for normally incident light.l111 is the wavelength of light
diffracted by the (111) planes. The sample withl111
=475 nm has a sufficient bandwidth that it also diffracts nor-
mally incident 488 nm light.T is the fraction of incident
light transmitted at the Bragg condition.D is the fraction of
incident light diffracted by the CCA at the Bragg condition.

We examined the diffractions from CCA which have
smaller nearest neighbor spacings(Table II). Since we expect
that much of the diffuse scattering will derive from phonon
modes, a decrease in the nearest neighbor spacings should
result in a deeper potential energy well for each lattice site
and smaller rms displacements of particles in the fcc lattice.
This should result in an increased diffraction efficiency. This
expectation is consistent with the results seen in Table II,
which shows the dependence of transmission and diffraction
of 488 nm light for CCA samples of different particle densi-
ties and sample thicknesses. Negligible transmission occurs
for the (111) plane diffraction condition even for 40mm
CCA thicknesses. As observed for the IR CCA, the diffrac-
tion efficiencies are significantly below 100%. Although
there is some variation with sample thickness, which may be
related to changes in defect densities, the efficiency increases
monotonically as the nearest neighbor spacing decreases.
75% of the incident intensity is diffracted for the CCA which
diffracts 475 nm light at normal incidence. An increase in the
detector aperture increases the measured diffraction intensity,
indicating that much of the diffusely scattered light is scat-
tered about the Bragg angle.

C. Dynamical diffraction theory (DDT)

Previous attempts to theoretically model diffraction of
CCA have mainly utilized dynamical diffraction theory
(DDT) [20,41–43]. Assuming a perfect lattice, all of the
CCAs discussed here should be in the thick crystal limit of
DDT. In this limit all incident light meeting the Bragg con-
dition should be diffracted. Tables II and III clearly show that
this is not the case. Since no absorption of light occurs, any
light that is not diffracted must be diffusely scattered. Evi-
dence for diffuse scattering includes the increased intensity
observed as the detector aperture is increased(Table III).

This diffuse scattering must arise from phonons or imperfec-
tions in the crystal ordering.

The thick crystal limit of DDT is defined by Zachariasen
as the regime whereA@1, whereA is defined as

A =
pKuchunct

l sinsubd
,

where K is a polarization factor equal to unity when the
incident beam is polarized perpendicular to the scattering
plane,nc is the refractive index of the crystal,t is the crystal
thickness,l is the incident wavelength in air,ub is the Bragg
glancing angle, andch is the Fourier coefficient for the set of
diffracting planes.ch can be described as

ch =
16paG

a3 ,

wherea is the CCA lattice constant,G is a scattering factor,
anda is the polarizability of a colloidal sphere[20]:

a =
sm2 − 1d

3
r3.

m is the ratio of the particle refractive index to medium
(water) refractive index, andnp/nw, andr is the particle ra-
dius. For particles in the Rayleigh-Gans scattering regime
[42], G is

G =
3

u3ssin u − u cosud,

whereu is a scattering size parameter:

u =
2pncD0sinub

l
,

whereD0 is the particle diameter.nc is the crystal refractive
index

FIG. 9. Spherical surface map shows the efficiency of scattering
from crystalline colloidal arrays(CCA). Direction of incident light
is indicated by the arrow, while the direction of light scattered by
several planes is shown via lines ending withx’s. The crystal was
rotated about thez axis to achieve diffraction by different planes.
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nc = npf + nws1 − fd,

wherenp andnw are the refractive indices of polystyrene and
water, respectively, andf is the particle volume fraction.

We calculated the effective crystal thicknesses(Table II)
by determining the values forA from the DDT expression for
Bragg case for diffracted power from a crystal:

PD =
sin2bAÎy2 − 1c

y2 − 1 + sin2fAÎy2 − 1g
,

wherey at Bragg condition is related to the angle and crystal
parameters by

y =
S1 − b

2
Dc0

ÎubuKuchu
,

b is the ratio of direction cosines for the incident and dif-
fracted beams(−1 in this case) and c0 describes the ampli-
tude of the refractive index modulation:

c0 = S nc

nw
D2

− 1.

As indicated in Table II these equations predict much
higher (111) diffraction efficiencies than are observed. For
example, for the 525 nm diffracting CCA in Table II we
calculate that the diffraction intensity experimentally ob-
served should result from only 30(111) polystyrene layers in
water, a sample thickness of only,5.7 mm. This clearly
indicates that the CCA diffraction efficiency is degraded by
CCA disorder. Table III indicates that the diffraction efficien-

cies from the higher Miller index planes are even smaller
than that of the(111) planes, even though the structure fac-
tors are identical[19].

The validity of using dynamical diffraction theory to ex-
plain the diffraction properties of colloidal crystals was dis-
cussed recently by Mittlemanet al. [43]. These researchers
found parallels between dynamical diffraction theory and the
scalar wave approximation used to calculate the diffraction
properties of photonic crystal materials. They found rela-
tively good agreement between the calculated and measured
diffraction bandwidths, but also found that the measured dif-
fraction efficiencies are much lower than predicted.

D. Single particle coherent Mie scattering calculation
of diffraction efficiency

Recently, we directly calculated the diffraction efficien-
cies of CCA in the kinematic limit, where we include the
Mie scattering amplitudes of the colloidal particles directly
[44]. We calculated the diffraction efficiencies by summing
the scattering of each of the individual colloidal spheres to-
gether with their corresponding phase factors. Our method,
which has some similarity to that of Amoset al. [45], will be
presented in detail elsewhere.

The difference between our approach and that of Amoset
al. [45] is that we calculated the integrated diffraction effi-
ciencies for finite crystals. Our calculations indicate(as we
will report in a forthcoming paper) that for finite crystals the
shape and angular width of the Bragg diffraction peaks dif-
fers for diffraction from different crystal planes.

The scattering amplitudes for the individual spheres were
calculated exactly from Mie theory[42]. These calculations
neglect both the extinction of the incident light propagating
through the crystal and multiple scattering. Although these
approximations are likely to cause significant errors in the
calculation of the absolute diffraction intensities, they are

FIG. 10. Dependence of the diffraction intensity from the(200),
(220), and (311) planes on the percentage of stacking faults for a
CCA containing 60 layers stacked alongz with 2503240 particles
in each layer. The value plotted is the average intensity ratio relative
to the intensity diffracted by the(111) planes. The average values
were calculated by averaging the effect of 400 possible configura-
tions of the indicated number of stacking faults. The triangles indi-
cate the diffraction from a random stacked CCA.

FIG. 11. Diffraction intensity from(200), (220), and (311)
planes relative to that from the(111) plane as a function of number
of layers between two stacking fault locations. Calculations were
performed for two stacking faults which were randomly placed in-
side 60 (111) layers, and then repeated for 400 different
configurations.
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likely to predict well the relative diffraction efficiencies of
different Miller index planes. The diffraction of these poly-
styrene colloids in water actually occurs in the dynamical
diffraction limit, which means that extinction is significant.

The diffraction efficiencies of the different Miller index
planes for perfect crystals are expected to differ mainly be-
cause of the differences in the single sphere scattering factors
at the different diffraction angles. We also expect significant
alterations in the diffraction of different Miller index planes
due to the presence of stacking faults along the normal to the
(111) planes.

Figure 9 shows a 3D plot of the calculated CCA scattering
intensity for the geometry corresponding to the experimental
measurements of Table III. Incident light propagates upward
along thez direction and is shown by the line ending with an
arrow. The diffraction directions from the(111), (200), (220),
(311), and(222) planes are shown by lines ending withx’s.
[the diffraction direction from(222) plane is the same as the
second-order diffraction direction from the(111) plane].
Only the azimuthal angle of the diffraction direction is
shown in Fig. 9 for simplicity. The crystal requires rotation
about thez axis to orient each of the planes for diffraction.

The shading of the scattering sphere surface indicates the
intensity scattered at each scattering angle. The white at the
top pole indicates a strong bias towards forward scattering.
Thus, CCA photonic crystals are expected to show a large
angular dependence of the diffraction efficiency. This strong

angular dependence would not occur for scattering from
spheres much smaller than the wavelength of light.

From Mie theory we calculated single sphere diffraction
intensity ratios for the diffraction directions from the(111),
(222), (200), (220), and (311) planes of 1, 0.02, 0.75, 0.18,
and 0.04, respectively. We also calculated the scattering in-
tensities of a CCA consisting of 60(111) layers stacked
along thez axis, each of which consists of 2503240 colloi-
dal particles in theX,Y plane with a lattice spacing, sphere
size and refractive index difference identical to that or our
experimentally measured IR CCA. For 488 nm incident light
onto a perfect crystal we calculated diffraction efficiency ra-
tios for the(111), (222), (200), (220), and(311) planes of 1,
0.01, 0.60, 0.28, and 0.04, respectively. The differences in
diffraction efficiencies derive mainly from the differences in
the single sphere scattering factors.

We investigated the impact of stacking faults on the dif-
fraction efficiencies from different crystal planes by calculat-
ing the average diffraction intensity as a function of the per-
centage of stacking faults(Fig. 10). A percentage stacking
fault of zero corresponds to a perfect fcc crystal. Diffraction
intensities from the(111) and (222) planes are, as expected,
unaffected by stacking faults. In contrast, the diffraction ef-
ficiencies from the(200), (220), and (311) planes dramati-
cally decrease with the number of stacking faults. The impact
of a stacking fault depends strongly on its location. For ex-
ample, a single stacking fault located in the middle of the
crystal reduces the diffraction efficiencies by more than two-

FIG. 12. Diffraction bandwidths of visible CCA that diffracts
,500 nm light at normal incidence. The sample was rotated
through the Bragg angle. Intensities were measured by moving the
detector along with the rotating sample. Listed bandwidth angles
are within the crystal and have been corrected for refraction.

FIG. 13. Diffraction bandwidths from visible CCA that diffracts
,525 nm light at normal incidence. The sample was rotated
through the Bragg angle and intensities were measured by rotating
the detector along with the sample.
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fold. Figure 10 plots the average diffraction intensity calcu-
lated from 400 randomly selected stacking fault configura-
tions. In the case of a single stacking fault only 60
configurations are possible. For two faults, 60359 configu-
rations occur, etc.

These(111) plane stacking faults affect the diffraction of
different Miller index planes differently. For example, there
is a larger average impact on the diffraction of the(200)
plane than on the(220) plane; diffraction from the(200)
planes decreases faster as the number of stacking faults in-
creases. For a small number of stacking faults we expect
wide variations in the measured intensities of actual crystals
due to variations in the stacking fault locations. This is the
likely explanation for the significant variation in the relative
intensity values diffracted by the(200), (220), and (311)
planes as displayed in Table III.

We also calculated the diffraction intensities for a CCA
with complete random stacking of the(111) planes. The dif-
fraction ratios for the(111), (200), (220), and(311) planes in
a random stacked CCA were calculated to be 1, 0.0131,
0.0165, and 0.0009, respectively. These values are indicated
by triangles in Fig. 10. Again, this random stacking does not
impact the diffraction efficiencies of the(111) and (222)
planes.

The diffracted intensity from these planes crucially de-
pends on the exact location of the stacking faults within the

CCA. Figure 11 plots the ratios of diffraction intensities for
the (200), (220), and (311) planes relative to the diffracted
intensity from the(111) plane for each of 400 possible loca-
tions of two randomly placed stacking faults within the 60
(111) layers. As the absicca we use the number of layers
(which could be ofA, B, or C type) between the two stacking
faults. When we have just two stacking faults, our crystal
consists of three segments with the middle part between
stacking faults of typesACB. . .d, and the outer two parts are
of type sABC. . .d. We see that by using the number of layers
between stacking faults as a plotting parameter for theX
axis, we calculate multiple values for the diffracted intensity
ratio depending on the site of the stacking faults. This shows
that diffracted intensities depend strongly on both the num-
ber of layers between the faults and the exact locations of the
faults inside the crystal. Two stacking faults within 60 layers
correspond to 3.33% of stacking faults. We take the average
of all diffracted intensities from the(200), (220), and (311)
planes from Fig. 11 to obtain the average value of intensities
for 3.33% of stacking faults and plot this single value in Fig.
10.

Stacking fault disorder is probably responsible for most of
the losses in diffraction efficiency of the higher Miller index
planes. A stacking fault removes particles from the higher
order planes which decreases the dielectric constant modula-
tion.

Figure 11 shows that the(200) diffraction intensity ratio
maximizes for every three layers added between two stack-

FIG. 14. Diffraction bandwidth measurements of visible CCA
that diffracts,585 nm at normal incidence. The rising background
is caused by an increased reflectance from the cell surfaces as the
angle of incidence increases. This is most pronounced in the 40mm
sample because it attenuates less light, allowing more contributions
from the rear surface reflections.

FIG. 15. Diffraction bandwidth measurements for visible CCA
that diffracts,605 nm light at normal incidence. Significant con-
tributions from reflectance create a rising background.
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ing faults. For a perfect fcc crystal, the ratio is 0.6. The ratio
decreases to 0.25 when a single layer is introduced between
two stacking faults. It varies between 0.2 and 0.45 for two
layers and maximizes at 0.55 for three layers and then de-
creases to 0.26 for four layers. This behavior results from the
phase factor introduced by the planes added between two
stacking faults.

E. Diffraction bandwidths

We measured the angular diffraction bandwidths(full
width at half maximum) for the visible and IR CCA samples
by measuring the angular dependence of the intensities of the
diffracted beam, rather than by measuring white light trans-
mission spectra. This allows us to directly separate diffrac-
tion from attenuation of the incident beam by diffuse scatter-
ing. This also permits measurements of diffraction even
when different sets of planes diffract the incident light simul-
taneously.

Figures 12–15 show the results of the angular bandwidth
measurements for the visible CCA, while Fig. 16 shows
similar measurements for the IR CCA. The angles listed are
within the CCA and have been corrected for refraction. The
intensities include both the diffracted light and reflections
from the cell surfaces. The solid lines are Gaussian fits to the
data points. The rising backgrounds in the more dilute
samples(Figs. 14 and 15) are caused by increased reflection
intensities at the large incident angles. Table IV lists the mea-
sured bandwidths from the curve fits along with the band-
widths calculated using dynamical diffraction theory.

Dynamical diffraction theory predicts that the angular full
width at half maximum value in the thick crystal limit is
wu= uKchu /Îb sins2ubd. We find that the measured angular
bandwidths are very close to those predicted in the thick
crystal limit (as seen in Table IV), in contrast to the fact that
the measured diffraction intensities are much smaller than
those expected theoretically, as discussed above. The effec-
tive thicknesses determined from the diffraction intensity
measurements were used to calculate the angular bandwidths
by using the DDT equations for the intermediate crystal
thickness regime. The bandwidth in the intermediate thick-
ness limit is

wu =Î log102

3p

4l

t sins2ubd
.

As seen in Table IV, bandwidths calculated using this
method are larger than those experimentally measured.

Angular bandwidths for diffraction from the(111), (222),
and (311) fcc planes of the IR CCA were measured for
samples of various thicknesses(Fig. 16, Table V). As indi-
cated in Table V the bandwidths predicted by DDT for the
thick crystal case are generally larger than those observed.
The bandwidths of the(111) and (311) diffraction spots in-

TABLE IV. Measured and calculated angular diffraction band-
widths for the visible CCA.

l111 Angular bandwidth

s90°d
Thickness

smmd Measured Calculated

Thick
crystal limit

Intermediate
crystal limit

500 40 7.9

8.40 11.64125 7.4

250 8.6

525 40 4.0

4.81 8.00125 4.1

250 4.0

585 40 3.6

2.95 7.01125 2.6

250 2.3

605 40 1.9

2.68 7.10125 2.4

250 1.5

TABLE V. Calculated and measured diffraction angular band-
widths from IR CCA.

Plane (111) (deg) Second(111) (deg) (311) (deg)

Calculated 5.86 3.32 3.27

40 mm 1.24 1.59 1.62

125 mm 1.52 1.25 1.63

250 mm 1.67 1.22 1.78

FIG. 16. Angular bandwidth measurements of fcc diffraction for
IR CCA. The data shown are the relative intensity as a function of
rotation angle away from the maximum diffraction angle for the
(111), (222), and (311) sets of planes for different thickness CCA
samples.
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crease with sample thickness, but the width of the second-
order (111) diffraction decreased. It is surprising that the
bandwidth of the(111) and second(111) sets of planes would
have opposite trends.

The measured bandwidths were determined from Gauss-
ian curve fits to the angular intensity measurements(Figs.
12–15). Bandwidths from the visible CCA(Table IV) were
calculated using dynamical diffraction theory for both the
thick crystal limit and for the intermediate crystal limit using
the effective thickness values from Table II.

Bandwidths from IR CCA(Table V) were calculated us-
ing dynamical diffraction theory in the thick crystal limit,
and were measured by fitting Gaussian profiles to the plots of
relative intensity seen in Fig. 16.

The diffraction bandwidth should decrease as more planes
are sampled by the incoming light. The too large bandwidths
calculated for the intermediate thickness case(Table IV) in-
dicates that the actual thickness sampled is much larger than
that assumed in that calculation. Hence, this crystal diffracts
in the dynamical diffraction thick crystal limit. The Table V
IR crystal diffraction show bandwidths that are more than a
factor of two narrower than those theoretically calculated.
This may result from an increase in defects in the IR CCA
over the visible wavelength CCA.

IV. CONCLUSIONS

We have examined the optical diffraction from photonic
crystal CCA of 119 nm diameter polystyrene colloid diffract-
ing between 500 and 600 nm, as well as IR CCA of 270 nm
polystyrene colloid whose lattice constant is large enough
s,766 nmd to allow observation of diffraction from higher
order Miller index planes. The structure of these CCA, which
were determined using Kossel ring analysis and through
measurements of the diffraction spot angles, was found to be
twinned-fcc in all cases. Crystal twins, attributed to stacking

faults in the layering of the(111) crystal planes, were seen in
all IR CCA samples. The twinning stacking faults occur
along the normal to the(111) planes. These stacking faults
have little impact on the diffraction efficiency of the(111)
planes but dramatically decrease the diffraction efficiency of
the higher order Miller indices planes. We measured the op-
tical transmission and diffraction properties of these CCA
and found that, although little light is transmitted at a variety
of angles, only a fraction of that light is diffracted into a
narrow beam.

The direction in which the CCA flowed into the sample

chamber was found to orient the crystal along thef011̄g di-
rection. These structural findings may have use in PBGC
fabrication since oriented single crystals can be manufac-
tured by flowing the CCA sample.

We attempted to model the diffraction of these CCA using
dynamical diffraction theory and using single-particle coher-
ent Mie scattering theory. The diffraction bandwidths pre-
dicted by DDT match the experimental results reasonably
well, but the measured diffraction intensities are much lower.
We also investigated the stacking fault dependence of the
relative diffracted intensities from different crystal planes.
The lack of better agreement results mainly from a lack of
crystal perfection, evidenced by stacking faults that create
the crystal twins. We also observe significant intensities of
diffuse scattering which derives from other defects.
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