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We address the stability problem for vortex solitons in two-dimensional media combining quadratic and
self-defocusing cubitﬁx(z):x(_s)] nonlinearities. We consider the propagation of spatial beams with intrinsic
vorticity S in such bulk optical media. It was earlier found that tBel and S=2 solitons can be stable,
provided that their powsi.e., transverse sizés large enough, and it was conjectured that all the higher-order
vortices withS=3 are always unstable. On the other hand, it was recently shown that vortex solitons with
S>2 and very large transverse size may be stable in media combining cubic self-focusing and quintic self-
defocusing nonlinearities. Here, we demonstrate that the same is true)}ﬁ)ﬂ)@ model, the vortices with
S=3 andS=4 being stable in regions occupying, respectiveig% and 1.5% of their existence domain. The
vortex solitons withS>4 are also stable in tiny regions. The results are obtained through computation of
stability eigenvalues, and are then checked in direct simulations, with a conclusion that the stable vortices are
truly robust ones, easily self-trapping from initial beams with embedded vorticity. The dependence of the
stability region on they® phase-mismatch parameter is specially investigated. We thus conclude that the
stability of higher-order two-dimensional vortex solitons in narrow regions is a generic feature of optical media
featuring the competition between self-focusing and self-defocusing nonlinearities. A qualitative analytical
explanation to this feature is proposed.
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[. INTRODUCTION Vakhitov-Kolokolov (VK) criterion [28], which applies to
the case of real instability eigenvalues. In 2D and 3D models
Optical vortex beams have attracted much attention in thavith quadratic[x®] nonlinearities, this instability was dis-
last decade because of possible applications to all-opticaiovered in simulation$20,29, and observed in the above-
processing of informatioiwhere they may play the role of mentioned experiment in the 2D caf26]. As a result, a
reconfigurable conduits guiding weak signal beaphg])  Vvortex(“spinning”) soliton with vorticity (“spin”) S=1 splits
and, in a more general context, as delocaliggark) or lo-  into three or two fragments in the form of separating zero-
calized (bright) topological optical solitons in various two- Spin solitons, so that the initial intrinsic spin momentum is
dimensional (2D) [3-18 and three-dimensional(3D) transformed into the orbital momentum. Nevertheless, the
[19-27 settings(for a recent review of theoretical and ex- X nonlinearity acting in combination with the self-
perimental results in this field, see the bof#e]). Other  defocusing<err (alias x'*, where we use the subscript “mi-
promising applications of optical vortices are trapping andnus” to stress the self-defocusingonlinearity gave rise to
channeling of matter waves, as well as capture and controlledne first examples o$table spinning(ring-shapeyl 2D soli-
transport of microparticles, which are trapped by the darkons with S=1 andS=2 [16]. Actually, x'?": ¥ nonlinear-
(“empty”) core of the vortex beanfi23], or absorption of optical models in the spatial domain had been known before
particles in spinning motioiiby transfer of the angular mo- the investigation of the vortex solitons startg0,31 (pos-
mentum from the bean[24]. Very recently, formation of sibilities for experimental implementation of tb}éz):x(_e') op-
stable bright vortex solitongspatially localized vortex tical nonlinearities, chiefly based on the quasi-phase-
beam$ was observed experimentally, for the first time, in matching technique, were discussed in REf§,32).
anisotropic photorefractive media through self-trapping of The stability of the spinning solitons in this model may be
partially incoherent light carrying a phase dislocati@b] realized as a result of competition between the self-focusing
(experiments with unstable vorticity-carrying localized and self-defocusing nonlinearities. This understanding is fur-
beams were reported in boj? crystals[26] and in media ther supported by the fact that similar stable spinning soli-
with a saturable nonlinearitya hot, dense sodium vapor tons have also been found in another optical model featuring
[27). the competition between focusing and defocusing nonlineari-
In fact, stability is a major concern for bright vortex soli- ties, viz., the one based on the cubic-quirXQ) nonlinear
tons, as, unlike their zero-spin counterparts, they are prone t8chrédinger equatiof6—12. In fact, stable spinning solitons
instability against azimuthal perturbations breaking the axialvere first identified in this moddb].
symmetry. A general problem in the study of the azimuthal A principally important issue is to identify values of the
instability is that it is an oscillatory one, i.e., the associatedspin S at which the 2D vortex solitons may be stable. In the
eigenvalues are complex, and the instability cannot be preQ model, only stable solitons witB=1 were originally
dicted by dint of known general principles, such as theidentified [6]. Then, it was found thaB=2 vortices have

1539-3755/2004/68)/06661411)/$22.50 69 066614-1 ©2004 The American Physical Society



MIHALACHE et al. PHYSICAL REVIEW E 69, 066614(2004)

their stability region, tod7,8]. Finally, it was demonstrated spin. The amplituded andV may be assumed real, obeying
that the vortex solitons in the CQ model may be stable withthe equations

the values of spin up t8&=5 [11]; quite plausibly, very nar- R T ’ o

row stability regions exist for any value @& in the CQ (U +r7U" = S717°U) - 2[«U - UV + (U= + 2V)U] = 0,

model. On the other hand, in thé?: ¥ model stable spin- o s ) o 2
ning solitons were thus far found only f8=1 andS=2[16], (V' +r V' —4S172V) = 4[(2k + B)V - U?+ 2(2U%+ VA)V]
which suggests to seek for stable solitons vtk 2 in this =0,

model, too. The most important aspect of the problem is to
understand whether the existence of stable spinning solitorighere the prime stands fal/dr.
with higher values oB is a peculiarity of the CQ model ora ~ The dynamical equationél) conserve the total power
generic feature. Another challenge, which is also an aim ofnorm,
the present work, is to develop a qualitative explanation for
the stability of vortex solitons. Finally, a noteworthy corol- E= f (Jul2+|v|»dXdY=E,+E,, (3)
lary to the stability results foS>1 is that, in the models
with competing nonlinearities, dark solitons with multiple - iitonian
values of the topological charge, which may be considered as
a limiting case of the bright ones with an infinitely large size, 1 , 1 2 2 x2 5 "
arestable too (while in the well-known model with the self- ~ H=75 [Vul?+ Z|VU| +Blo* = (U % +u?’) +[ul
defocusingX(_3) nonlinearity, all dark vortices witls>1 are
unstable[33)). 2112 4

The paper is organized as follows. In Sec. I, the model is + AU+ ol }dXdY’ @
formulated, and general results concerning the existence of . .
2D bright vortex solitons in it with different values &are momentum(equal to Z€ro for the solutions consideyeand
presented. The fundamental results for the stability of théangular momentum in the transverse pl¢8&,39,
spinning solitons, based on calculation of eigenvalues found FP) o
from equations linearized around the soliton solutions, are L=f f <—|u|2+—|v|2>dXdY,
reported in Sec. lll. Direct simulations of the solitons’ stabil- 96 90
ity within the framework of the full nonlinear evolution where andy are phases of the complex fieldandv. The
equations, which confirm the results based on the eigenvafoliowing relations betweer., H, and E for a stationary

ues, are displayed in Sec. IV. In Sec. V, we propose a qualispinning soliton follow from Eqs(2): L=SE, and
tative explanation of the stability of the vortex solitons, in-

cluding the fact that the stability region drastically shrinks

1 1 1
e = — 4 2|..12 4
with the increase 08. Section V concludes the work. H=-SKE+ 7 BE, 4f f (Ju[*+ 4Ju[To* + o[ dXd.

(5

) . ) We have numerically found one-parameter families of sta-

Equations describing they'® coupling between the tionary 2D spinning solitons having a ring-like shape with a

fundamental-frequency(FF) and second-harmonidSH)  nole in its center, which is supported by the phase disloca-
fields u and v in the presence of the self-defocusing’  tion. To this aim, we solved Eq&) using the standard band-
nonlinearity in the(2+1)-dimensional geometry are well matrix algorithm[40] to deal with the corresponding two-

Il. THE MODEL AND SPINNING SOLITONS

known [16,30,31,34-3p point boundary-value problem.
Ju 1 Obviously, the wave numbex must exceed the cutoff
i— + EVZU +u*v-(Ju?+2vPu=0, value, k= ko= Max0,-B/2}, for the fields to be expo-

nentially localized. For a fixed mismatgB, the stationary
(1) zero-spin and spinning solitons exist in a limited region, with
dv 1, .2 2 o Kk ranging from kg UP to a certain upper limitoffset
I tVutpAutu 2(2Ju*+ [o[*)u=0. value k,eep at Which the soliton’s power diverges due to the
. i . divergence of its outer radiu® while the field amplitudet)
Here * stands for the complex conjugatiahis the propa-  andv remain finite. As it follows from Eqs(2), the limiting

gation distanceV? is the diffraction operator acting on the \4jues of the amplitudes), and V, corresponding tox
normalized transverse spatial coordinaXesndY, andg is a = Kyriser Ar€ related to as follows:

phase-mismatch parameter. Equatigh$ assume that the

Poynting-vector walk-off between the harmonics is compen- Vo 2
sated[36,37). Koffset= N — 1(3 -1+6Vy- GVO)! (6)
We look for stationary solutions to Egd) in the form of 0
u=U(nexplikZ+iSh), v=V(r)exd2(ixZ+iSo)], U3 = — Kofiset+ Vo~ 2V3 (7)

where(r, 6) are the polar coordinates in the plapeY), kis  [it follows from Eq. (7) that ks Must take values smaller
the wave number, and the integ®iis the above-mentioned than 1/8, otherwis&)2 cannot be positivie Further straight-
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0.08

(B, ). The way the stability boundaries were identified will

be explained in the following section. In regions A and D in

Fig. 1, no localized solutions exists: in region A—because

the wave numberx is below the cutoff, and in region

D—because the defocusing® nonlinearity becomes domi-

nant, preventing the formation of solitons. F® 0, there is

a narrow strip(region B in Fig. 3 where the zero-spin soli-

. . tons exist but are unstable. Stable zero-spinning and unstable

-0.15 : : . spinning solitons coexist in region C. Stable spinning soli-
mismatch tons withS=1, S=2, and S=3 exist in small domains near

. . . . the offset line(the continuous line separating regions C and

FIG. 1. Existence and stability domains for bright fundamentalpy) ypo jashed lines located near the offset line being bound-
and vortex solitons witt5=0, 1, 2, and 3. The upper continuous _ . . . o .

) ! . . . aries of the stability regions for the spinning solitons. We
curve separating the domains C and D is their common emstencg f d that al f th I f th h i
border, corresponding to infinitely broad solitons. The stability re- ave foun .a " regar. ess O. € vajue ot the p asg mis
gion of the vortices witts=4, which is very narrow, is explained in maFCh, the spinning solitons W'$:3 andS=4 are SFabIe. n
the text. regions occgpy|ng:3%, respectively=1.5% of their exis-
tence domain.

In Figs. 2 and 3 we plot dependences «(E) and H
=H(E) for both nonspinning and spinning solitons for two
representative values of the mismajghrhe full and dashed

_ _ lines in Figs. 2 and 3 correspond to stable and unstable
R~ In[/(Kofser 1)]- ® branches according to results presented below. In particular,

These results are summarized in Fig. 1, where the corthe zero-spin solitons are stable according to the above-
tinuous lines border the existence domain of the localizeanentioned Vakhitov-KolokoloyVK) criterion, which states
ring-shaped solitons, and the dashed lines are boundaries hiat anecessangtability condition for solitons of any type is
tween stable and unstable regions in the parameter plamdE/d«> 0 [28]. Actually, the VK criterion may play the role

0.04+

wave number

forward analysis of Eq92) shows thaR diverges logarith-
mically at kyrser— k— 0,
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of a sufficient one for zero-spin solitons; however, it ignoressoliton resembles a dark vortex, bounded at a large value of
a possibility of azimuthal instabilities, which are often fatal the radius by a circular kink-like layer, so that stable vortex
for bright vortex solitons. solitons exhibit a flat-top shape with the hole in the center.
An essential feature, which is evident in Figs. 2 and 3, isNotice that stable vortex solitons with a flat-top shape are
that both the zero-spin and spinning solitons cannot exisalso known in models of dissipative media described by the
unless the powelE exceeds the corresponding thresholdtwo-dimensional Ginzburg-Landau equations with the CQ
value Emr, at both positive and negative values of the phaseionlinearity[14].
mismatch. For example, in the case 0.02, Ethr 1.48,

V=605, E2=11.30, andE\>=16.70 (see Fig. 2 For 03 . 03 arwe
/3>O the soliton’s wave number increases monotonically Vi S=2S=3
with the power towards the maximum valkg;s.. For 83<0,
we observe two branches in the wave number—power dia-.,
gram, one with the power decreasing monotonically with =
in narrow regions above the cutoff, hence all the correspond- 0.1}
ing solitons(zero-spin and spinning oneare unstable ac- 1
cording to the VK criterion(dashed lines in Fig. )3 and
another branch with the power increasing monotonically
with « (see Fig. 3. For the typical examples shown in Figs. (@)
2 and 3, the offset values arg=0.0283 for3=0.2, and
Kofiset= 0.0592 for=-0.05. FIG. 4. Typical shapegsshown by means of their radial cross

Typical shapes oftable bright vortex solitons are dis- sections of stable vortex solitons fo3=0.2: (a) k=0.025 forS
played in Figs. 4 and 5. These figures include cases close to1, x=0.0265 forS=2, and«=0.0273 forS=3; (b) k=0.0279 for
the instability bordefFigs. 4a) and %a)], and ones near the S=1, S=2, andS=3. Full lines: the fundamental-frequency field
offset limits [Figs. 4b) and ¥b)]. The stable bright vortex dashed lines: the second-harmonic figld
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0.0 LA\ 0.0E£ e
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FIG. 5. The same as in Fig. 4 but f8=-0.05:(a) x=0.027 for wave number
S=0, k=0.0556 forS=1, k=0.0573 forS=2, and«x=0.0581 forS
=3; (b) k=0.0592 forS=0, S=1, S=2, andS=3. FIG. 6. The bifurcation diagram accounting for the stability
change of the fundament&b=0) soliton at negative phase mis-
I1l. LINEAR STABILITY ANALYSIS OF SPINNING match(ﬁ=—0.03. Full and dashed lines show the real and imagi-
SOLITONS nary parts of the eigenvalues. The arrows indicate the stability-

change pointxg=0.026 69. This figure and the two following ones
The revealing information on the stability of solitons is show the full regionxgur< k < koftses IN Which the corresponding
provided by calculation of eigenvalues within the frameworkvortex solitons exist.
of the underlying equationgl) linearized about the station-
ary spinning-soliton solutions. To this end, we seek for in-
finitesimal perturbation eigenmodes in the general form,

The output of numerical calculations for a typical zero-
spin soliton is presented in Fig. 6. The relevant eigenvalues
are either real or pure imaginafiy fact, in this case they can
u(zr, 6 — U(r)exdi(So+ «2)] (9) be found by means of asymptotic expansions around zero
modes induced by the translational, rotational, and phase-
shift symmetries The arrows in Fig. 6 point to the stability-

=fexpiZ +il(S+m o+ kZ]} change bifurcation at=k=0.026 69(for 3=-0.05, which

+ g*(r)exp{)\;Z+ i[(S—n)6+ kZ]}, (10 (up to the accuracy of the numerical dagxactly coincides
with the critical point predicted by the VK criterion in this
v(Z,r,60) = V(r)exf 2i(S6+ kZ)] (11  case. The bifurcation scenario accounting for the destabiliza-
tion of the zero-spin solitons is the standard one: two imagi-
=p(r)exp\,Z +i[(2S+ n) 6+ 2«Z]} nary e_igenvalues cpllide at the origin, giving rise to a pair of
real eigenvalues with opposite signs.
+ q*(r)exp[)\;Z+ i[(2S-n)o+ 2«Z]}, (12 In Fig. 7 we plot the output of comprehensive numerical

calculations of complex eigenvalues responsible for the bi-
furcation(of the HamiltonianHopf type) which accounts for
the stability change of spinning solitons wisix 3, for a typi-

cal value of the positive mismatc|g=0.2. The correspond-

wheren>0 is an arbitrary integer azimuthal index of the
perturbation\, is the (comple® eigenvalue sought for, and
the functionsf, g andp, q obey linear equations

N + (674 12 = (S+ )2 2f] - kf — 2(U% + V2)f ing eigenvalues appear in quartets,\”,-\,-\"), as the
system is conservative, cf. earlier known results for scalar

- (U*-V)g- (2UV-U)p-2UVg=0, [11,42 and vectorial vortex soliton§43,44. For a given
azimuthal mode, the unstable complex quartet is generated
—iNg+3[g"+r7Yg - (S-n)xr%g] - kg - 2(U%+VA)g by a collision between pairs of stable imaginary eigenvalues,

which is typical to the Hamiltonian-Hopf bifurcation.

We stress that the case 8£3, the results for which are
displayed above, is a new one, as compared to those with
iNgp+ 3[p" + 17’ = (2S+n)?r2p] - 2k + B)p S=1 andS=2, which were studied earlier in this moda.

—A(U2+ V2 — 220 — Y _ We also studied in detail higher values §farriving at re-
AUT+VIp-2V7q - 22UV - U)f - 4UVg=0, sults quite similar to those presented in Fig. 7. In particular,
_ 1 - for S=4 we have found that the stability changes at the criti-
—iNG+3[" 1770 = (2S-n)T 7] - (2« + B)q cal pointky=0.058 71 forB3=-0.05, and ak=0.027 86 for
_ 2 02\ — N2 _ _ - B=0.02, resulting in a narrow stability domain.
AUT+ Vg = 2VTp - 22UV - U)g - 4UVi=0. The mechanism for the stability change, as the wave num-
The solutions forf, g, p, andg must decay exponentially at ber x passes the critical value,,, is again the collision be-
r—oo, and atr —0 their asymptotic form must be, respec- tween pairs of imaginary eigenvalues as outlined above, and
tively, ~rlS™l ¢Sl ¢l2Stland 251 To solve the linear it is always accounted for by the perturbation eigenmodes
equations and find the eigenvalues, we used a known nyertaining to the azimuthal index=2 (cf. a discussion in
merical procedur¢29,41], which produces results presented Ref. [11] of the stability-instability transition for spinning
in Figs. 6-8. solitons withS=3 in the CQ modsl

- (U2-V)f - (2UV-U)q-2UVp=0,
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FIG. 7. Bifurcation diagrams accounting for the stability of the newly found vortex solitonsSwith and8=0.2 (recall that previous
works reported only stable solitons wii¥ 1 andS=2 in the present modelThe panels show the real and imaginéwl and dashed lines
parts of the eigenvalues, which correspond to perturbation eigenmodes with the azimuthalnadic@s3,4,5, and 6yersus the wave
numberx. As is seen, the most dangerous eigenmode is the onenwith(panel B. The arrows in this panel mark the position of the
stability-change point for the solitons wit=3.

These results suggest that the vortex solitons witly  eigenvalue vanishes, its imaginary part remains finite, as ex-
value of S may be stable, provided they are sufficiently plained abovgsee Fig. J. This fact explains why the azi-
broad, ask— ke implies the divergence of the soliton’s muthal instability, crucial for the vortex solitons, cannot be
outer radiusR, as per Eq(8). When the instability disappears captured by asymptotic expansions around zero modes gen-
with the increase ok, i.e., the real part of the corresponding erated by the above-mentioned symmetries of the system

(such asymptotic expansions are, as a matter of fact, the basis
0.012 : of the VK criterion, which detects only instabilities ac-
counted for by purely real eigenvalue pairs

Figure 7 demonstrates that, for the solitons v8th3, the
stability region occupies 3.6% of their existence donj#ie
arrows in Fig. Tb) mark the edge of the stability region for
the S=3 solitons; we define its relative width as= (xygset
— k)| (Koffset— Keutof)]- FOr comparison, previously known
results imply thate=11.8% forS=1, ande= 6.4% for S
=2 (see Fig. 2 In the case of the negative mismatgh< 0),
the stability region is slightly smaller: iB=-0.05, it ise=
10.6% forS=1, e=5.7% for S=2, ande= 2.9% for S=3.

For S=4, the relative stability interval size is1.6% for g8
=0.2, and=1.3% for 8=-0.05. We thus infer that the rela-

FIG. 8. The instability growth rate, Re, corresponding to dif-  tive width of the stability region strongly shrinks with the
ferent values of the perturbation azimuthal indexindicated by ~ increase ofS. Below, a qualitative explanation will be given
labels near the curvesersus the soliton’s wave numberfor 3 to this feature.
=0.2 andS=3. The largest instability growth rate corresponds to ~ Figure 8 shows a summary of the calculation of the real
n=6, while the most persistent instability pertainsnte2. The lat-  part of the relevant eigenvalues for t8e 3 solitons, pertain-
ter vanishes ak=k4=0.0273. The border of the existence region ing to the azimuthal indices up to=8. Similar results for the
for the bright solitons = kufsey iS marked by the vertical arrow.  solitons withS=1 andS=2 were reported in Ref.l16].

o 0.006F

0.000 L
0.000 0.015 0.030

wave number
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> >0
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(a) X (b) X (c) X (d) X

FIG. 9. Fragmentation of an unstalfie 3 soliton into a set of zero-spin ones, as a result of the azimuthal instability. In thisgase,
=0.2 and(a) k=0.005,(b) k=0.010,(c) k=0.016, andd) x=0.020. Here and in Figs. 11 and 12, only the FF component of the wave field
is shown; the SH component displays a similar behavior.

Lastly, the transition to the stability for all values 8for  distribution at different values of the propagation distaice
K— Kofiset Clearly implies that dark vortices, which may be As is seen, the azimuthal instability breaks up the unstable
regarded as the limiting case of the bright ones with thespinning soliton into a set of zero-spin ones, which fly out
infinite radius, are stable for arf§; This is a drastic differ- tangentially relative to the circular crest of the original ring-
ence from the well-known dark vortices in the model with shaped soliton. Thus, the initial intrinsic angular momentum
the self-defocusing Kerfy®] nonlinearity, where only the (SPin of the vortex soliton is converted into the orbital mo-

fundamental vortices witls=1 are stablg33]. mentum of the emerging nonspinning fragments. We have
found that the number of the emerging fragments depends on

the wave numbek: it ranges between eight, in Figga@and
9(b), and four in Figs. &) and 9d). Moreover, for giver,
the number of the emerging fragments rist necessarily
The stability predictions based on the eigenvalues founeéqual to the azimuthal index of the perturbation having the
from the linearized equations were checked against diredargest growth rate at the same valuexofsee Fig. §.
simulations of the full equationgl). The simulations were In order to test the robustness of the stable vortex soliton
carried out by means of the Crank-Nicholson scheme. Thevith S=3 in a more general context, corresponding to the
system of nonlinear finite-difference equations was firstsituation in the physical experiment, random noise was
solved by means of the Picard iteration metlid8], and the added at input. For two representative values of the phase
resulting linear system was then handled with the Gaussmismatchg, in Fig. 10 we show the evolution of the soliton’s
Seidel iterative scheme. For good convergence we needepowerE and HamiltoniarH during the process of noise self-
typically, five Picard iterations and six Gauss-Seidel iteracleaning by the stable soliton wits=3 which was perturbed
tions. We employed a transverse grid with 1601001  at input(the decrease & andH implies not violation of the
points, and the typical longitudinal step size wag=0.08.  conservation laws, but separation between the soliton and
To avoid distortion of the instability development under thenoise ejected by it, as the power and Hamiltonian, shown in
action of the periodicity imposed by the Cartesian computathis figure, are computed only for the area occupied by the
tional mesh, we added initial perturbations that were mim-soliton). Figure 11 shows that the stable vortex soliton was

IV. DIRECT SIMULATIONS

icking random fluctuations in a real syst&of. Ref. [46]). able to completely heal the damage incurred by the initial
The development of the instability of the spinning solitonsperturbation, proving itself a truly stable object.
with S=3 (in the case when it is unstables illustrated by To further illustrate the physical purport of the stable vor-

Fig. 9 for four values of the wave number Here we super- tex solitons withS=3, in Fig. 12 we display its self-trapping
impose a succession of images of the transverse intensifyom an input Gaussian beam with a nested vortex, whose

1400 T 0
h_ B=-0.05
1350} ]
c B=0.2
1300} | & _
5 S .40 FIG. 10. Evolution of the total poweE (a)
g 12501 E and HamiltoniarH (b) of the stable soliton with
o &z spinS=3, perturbed at input. Her&=0.0586 for
B=-0.05, andx=0.0276 for3=0.2.
1200} p=0.2
B=-0.05
! 1500 3500 7000 -800 3500 7000
(a) propagation distance (b) propagation distance
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200

100

-200 200 3 FIG. 11. Grey-scale plots illustrating the re-
(@ - covery of the perturbed stabf&=3 soliton in the
case of3=0.2 and«=0.0276.(a) and (b) Inten-
sity and phase distributions in the initial soliton
with random noise addec) and(d) The same in
the self-cleaned soliton a&=4500.

-200 200+ Al r“‘ af -
(c) X

shape is far from the soliton’s exact form. Figure 12 demonR [see Eq(8)] andp, its area and perimeter are

strates strong reshaping of the input pulse in the course of its

self-trapping into the solitons, which leads to redistribution S=m(R?-p?), L=2m(R+p). (13)
of the energy between the FF and SH components; some

energy loss occurs, caused by emission of radiation in th the annular drop is unstable against splitting intcound-
course of the formation of the stable vortex soliton w&h shaped ones with a radiG (like, for instance, in the case

=3. €, In the ca
shown in Fig. 9, the area conservation yield&=/S/(n)
=(R?-p? /n. Accordingly, the total perimeter of the set of

V. QUALITATIVE ANALYSIS OF STABILITY OF THE the secondary drops is

VORTEX SOLITONS

All the above results were obtained in a numerical form. | = 27Rn= 2mIn(RE - p?). (14)
While the predictions based on the stability eigenvalues

match to direct simulations quite well, it is desirable to de-ag it follows from Egs.(13) and(14), the ratio of the perim-
velop a qualitative understanding of the stability of the spin-gers of the split and unsplit configurations is
ning solitons, based on sufficiently simple arguments. One

approach to this problem was proposed in R8f, where it | R_
was shown that the ring-shaped vortex may develop an in- —=1/n p_
stability against spontaneous shift of the inner hole from its L R+p

central position, as the hole is attracted by the outer rim. obvious consequence of E@.5) is that the condition
Howevgr, this IS only one of _pOSS|b_Ie instability mode_s, and L>1, which implies absolute stability of the annulus
comparison with numerical simulations showed that it playsagainst the splitting inta drops, is

a dominant role rather seldof8].

A simpler but more general analysis may be based on
considering the vortex soliton as a two-dimensional “liquid R>——p. (16)
drop” of the annular shape, with inner and outer borders. n-1
Then, an obvious stability criterion is minimization of the “
surface tension,” i.e., of the total lengtherimetey of the  The strongest condition following from E¢L6) corresponds
borders(the total area of the drop, or of a set of secondaryto n=2 (recall that the exact numerical results demonstrate
drops into which the original unstable one may split, asthat the instability mode with the azimuthal index=2,
shown above, is approximately conserved due to the powewrhich implies the beginning of the splitting into two frag-
conservation The outer and inner radii of the annulus being ments, is indeed the most persistent one

(15
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150

implicitly comes into the play at this stage of the consider-
ation, as otherwise the quasi-flat field in the inner region of
the annulus would be subject to the modulational instability.

Finally, the relationg8), (17), and (19) that the relative
size of thestability regionfor the vortex solitons shrinks,
with the increase o8, as

Axl Kgiser~ EXP(— CV'S), (20)

with a certain constart. In fact, the predictior{20) is uni-
versal(model-independentwhile C may depend on param-
eters of the particular model, such the mismatch conggant
in the preseni@: x'® system. The numerical results quoted
above for 1= S<4 are not quite sufficient to check E&O),

as these values @& may not be large enough. Nevertheless,
even these data are not incompatible with the prediction: in
the case of3=+0.2, the results fos ranging between 2 and

4 (obviously, the case df=1 should be excludedmply C
taking values between 1.94 and 2.07, and similar results for

© )‘: o % 7 B=-0.05 imply thatC varies between 2.03 and 2.17.

-150
(@)
150

-150

FIG. 12. Formation of the stable soliton wii¥ 3 from a Gauss-
ian input pulse with the trapped phase dislocation and initial power VI. CONCLUSION
E=885. The mismatch i8=0.2.(a) and(b) The intensity and phase
distributions in the initial Gaussian with a nested vori@y.and(d) In this work, we have revisited the earlier considered
The intensity and phase distributions in the spinning solitoZ at problem of stability of vortex solitons in two-dimensional
=4000. media combining the quadratic and self-defocusing cubic
[x@:¥®] nonlinearities. The model describes propagation
R> 3p. (17)  of localized beams with intrinsic vorticit$ in the bulk op-
tical medium. An earlier established result was that the vor-
For « sufficiently close tok,gser p depends only on the vor-  tex solitons withS=1 andS=2 could be stable, provided that
ticity S of the annular soliton, whildk may be indefinitely  their external size and power are large enough, but it was
large, depending on the soliton’s power. Thus, the conditiorassumed that all the higher-order solitons w3 would
(17) predicts that the vortex solitons of a sufficiently large be unstable. In contrast with this, it has recently been found
size may indeed be stable against the splitting. that in another model, with the cubic-quintic nonlinearity,
Further, to estimate the dependence of the stability regiogolitons withS>2 had their(narrow) stability regions, too.
on S, we may use a crude estimate fgrfollowing from the  |n this work, we have demonstrated that the same is true in
matching of the asymptotic form of the solution valid for theX(Z);X<_3> model, too. In particular, th8=3 andS=4 soli-
r—o0, tons are stable in regions which occupy, respectivel§%
and 1.5% of their existence domain. Solitons with still larger
Um=ars, V() =br*, (18)  5also have very narrow stability regions. These results v%ere
with some constanta and b [see Egs(2)], to the nearly obtained by means of ca}lculati'on of the stability eigenvalues,
“flat-top” solution in the inner region of the broad annular @1d checked in direct simulations. It has also been demon-
soliton. The latter solution may be approximated, for large strate_d that the stable sol_ltons are truly robu_st, readily self-
by U(r)=Ug+U,r 2, V(r) =V +V, 2, whereU, and V, trapping fr(_)m a rather a_rbltrary mltlal beam with the embed-
are the same as in Eq$) and(7), while expressions for the ded vorticity, and easily cleaning themselves from large
constantsU; and V; are available but cumbersome. For are(mzr;dom pertgrbatlons. The: erendgncg of the stab_|I|ty on the
crude estimate, we demand the continuity of the logarithmict  Phase-mismaich coefficient, which is the most important
derivatives,U’(r)/U(r) andV'(r)/V(r), atr =p, as following control parameter of the model, was investigated.

from the latter expressions, which are valid inside the flat-top . Be|3|des I'tthet}' numer;cal tr_esu;ts, t\éve hta\g.’l.talsa eropbose(é a
region, and from the expressioli$8), which describe the SImpi€ quaiitative explanation for the stabifity of the broa
vortices against splitting into a set of zero-spin solitons. In

fields inside the hole. This procedure predicts the following” ™ . . ) ) .
; - particular, this analysis predicts that, for laigethe width of
dependence of the hole’s radius on large values, of stability region shrinks according to E€20).
p:pO\«’rS, (19) Thus, we conclude that the stability of higher-order two-
dimensional spinning solitons is generic featureof media
with a constanp,. The fact that the model must be based onwith competing self-focusing and self-defocusing nonlineari-
competing self-focusing and self-defocusing nonlinearitiegies, as it takes place in both the cubic-quintic af#l: x>
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