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We address the stability problem for vortex solitons in two-dimensional media combining quadratic and
self-defocusing cubicfxs2d :x−

s3dg nonlinearities. We consider the propagation of spatial beams with intrinsic
vorticity S in such bulk optical media. It was earlier found that theS=1 andS=2 solitons can be stable,
provided that their power(i.e., transverse size) is large enough, and it was conjectured that all the higher-order
vortices withSù3 are always unstable. On the other hand, it was recently shown that vortex solitons with
S.2 and very large transverse size may be stable in media combining cubic self-focusing and quintic self-
defocusing nonlinearities. Here, we demonstrate that the same is true in thexs2d :x−

s3d model, the vortices with
S=3 andS=4 being stable in regions occupying, respectively,.3% and 1.5% of their existence domain. The
vortex solitons withS.4 are also stable in tiny regions. The results are obtained through computation of
stability eigenvalues, and are then checked in direct simulations, with a conclusion that the stable vortices are
truly robust ones, easily self-trapping from initial beams with embedded vorticity. The dependence of the
stability region on thexs2d phase-mismatch parameter is specially investigated. We thus conclude that the
stability of higher-order two-dimensional vortex solitons in narrow regions is a generic feature of optical media
featuring the competition between self-focusing and self-defocusing nonlinearities. A qualitative analytical
explanation to this feature is proposed.
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I. INTRODUCTION

Optical vortex beams have attracted much attention in the
last decade because of possible applications to all-optical
processing of information(where they may play the role of
reconfigurable conduits guiding weak signal beams[1,2])
and, in a more general context, as delocalized(dark) or lo-
calized (bright) topological optical solitons in various two-
dimensional s2Dd [3–18] and three-dimensionals3Dd
[19–21] settings(for a recent review of theoretical and ex-
perimental results in this field, see the book[22]). Other
promising applications of optical vortices are trapping and
channeling of matter waves, as well as capture and controlled
transport of microparticles, which are trapped by the dark
(“empty”) core of the vortex beam[23], or absorption of
particles in spinning motion(by transfer of the angular mo-
mentum from the beam) [24]. Very recently, formation of
stable bright vortex solitons(spatially localized vortex
beams) was observed experimentally, for the first time, in
anisotropic photorefractive media through self-trapping of
partially incoherent light carrying a phase dislocation[25]
(experiments with unstable vorticity-carrying localized
beams were reported in bothxs2d crystals[26] and in media
with a saturable nonlinearity(a hot, dense sodium vapor)
[27]).

In fact, stability is a major concern for bright vortex soli-
tons, as, unlike their zero-spin counterparts, they are prone to
instability against azimuthal perturbations breaking the axial
symmetry. A general problem in the study of the azimuthal
instability is that it is an oscillatory one, i.e., the associated
eigenvalues are complex, and the instability cannot be pre-
dicted by dint of known general principles, such as the

Vakhitov-Kolokolov (VK ) criterion [28], which applies to
the case of real instability eigenvalues. In 2D and 3D models
with quadraticfxs2dg nonlinearities, this instability was dis-
covered in simulations[20,29], and observed in the above-
mentioned experiment in the 2D case[26]. As a result, a
vortex (“spinning”) soliton with vorticity (“spin”) S=1 splits
into three or two fragments in the form of separating zero-
spin solitons, so that the initial intrinsic spin momentum is
transformed into the orbital momentum. Nevertheless, the
xs2d nonlinearity acting in combination with the self-
defocusingKerr (aliasx−

s3d, where we use the subscript “mi-
nus” to stress the self-defocusing) nonlinearity gave rise to
the first examples ofstablespinning(ring-shaped) 2D soli-
tons with S=1 andS=2 [16]. Actually, xs2d :x−

s3d nonlinear-
optical models in the spatial domain had been known before
the investigation of the vortex solitons started[30,31] (pos-
sibilities for experimental implementation of thexs2d :x−

s3d op-
tical nonlinearities, chiefly based on the quasi-phase-
matching technique, were discussed in Refs.[16,32]).

The stability of the spinning solitons in this model may be
realized as a result of competition between the self-focusing
and self-defocusing nonlinearities. This understanding is fur-
ther supported by the fact that similar stable spinning soli-
tons have also been found in another optical model featuring
the competition between focusing and defocusing nonlineari-
ties, viz., the one based on the cubic-quintic(CQ) nonlinear
Schrödinger equation[6–12]. In fact, stable spinning solitons
were first identified in this model[6].

A principally important issue is to identify values of the
spin S at which the 2D vortex solitons may be stable. In the
CQ model, only stable solitons withS=1 were originally
identified [6]. Then, it was found thatS=2 vortices have
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their stability region, too[7,8]. Finally, it was demonstrated
that the vortex solitons in the CQ model may be stable with
the values of spin up toS=5 [11]; quite plausibly, very nar-
row stability regions exist for any value ofS in the CQ
model. On the other hand, in thexs2d :x−

s3d model stable spin-
ning solitons were thus far found only forS=1 andS=2 [16],
which suggests to seek for stable solitons withS.2 in this
model, too. The most important aspect of the problem is to
understand whether the existence of stable spinning solitons
with higher values ofS is a peculiarity of the CQ model or a
generic feature. Another challenge, which is also an aim of
the present work, is to develop a qualitative explanation for
the stability of vortex solitons. Finally, a noteworthy corol-
lary to the stability results forS.1 is that, in the models
with competing nonlinearities, dark solitons with multiple
values of the topological charge, which may be considered as
a limiting case of the bright ones with an infinitely large size,
arestable, too (while in the well-known model with the self-
defocusingx−

s3d nonlinearity, all dark vortices withS.1 are
unstable[33]).

The paper is organized as follows. In Sec. II, the model is
formulated, and general results concerning the existence of
2D bright vortex solitons in it with different values ofS are
presented. The fundamental results for the stability of the
spinning solitons, based on calculation of eigenvalues found
from equations linearized around the soliton solutions, are
reported in Sec. III. Direct simulations of the solitons’ stabil-
ity within the framework of the full nonlinear evolution
equations, which confirm the results based on the eigenval-
ues, are displayed in Sec. IV. In Sec. V, we propose a quali-
tative explanation of the stability of the vortex solitons, in-
cluding the fact that the stability region drastically shrinks
with the increase ofS. Section V concludes the work.

II. THE MODEL AND SPINNING SOLITONS

Equations describing thexs2d coupling between the
fundamental-frequency(FF) and second-harmonicsSHd
fields u and v in the presence of the self-defocusingxs3d

nonlinearity in the s2+1d-dimensional geometry are well
known [16,30,31,34–36]:

i
] u

] Z
+

1

2
¹2u + u * v − suuu2 + 2uvu2du = 0,

s1d

i
] v
] Z

+
1

2
¹2v + bv * u2 − 2s2uuu2 + uvu2du = 0.

Here * stands for the complex conjugation,Z is the propa-
gation distance,¹2 is the diffraction operator acting on the
normalized transverse spatial coordinatesX andY, andb is a
phase-mismatch parameter. Equations(1) assume that the
Poynting-vector walk-off between the harmonics is compen-
sated[36,37].

We look for stationary solutions to Eqs.(1) in the form of

u = UsrdexpsikZ + iSud, v = Vsrdexpf2sikZ + iSudg,

wheresr ,ud are the polar coordinates in the planesX,Yd, k is
the wave number, and the integerS is the above-mentioned

spin. The amplitudesU andV may be assumed real, obeying
the equations

sU9 + r−1U8 − S2r−2Ud − 2fkU − UV + sU2 + 2V2dUg = 0,
s2d

sV9 + r−1V8 − 4S2r−2Vd − 4fs2k + bdV − U2 + 2s2U2 + V2dVg

= 0,

where the prime stands ford/dr.
The dynamical equations(1) conserve the total power

(norm),

E =E suuu2 + uvu2ddXdY; Eu + Ev, s3d

Hamiltonian

H =
1

2
E E Fu¹uu2 +

1

4
u¹vu2 + buvu2 − su*2v + u2v*d + uuu4

+ 4uuu2uvu2 + uvu4GdXdY, s4d

momentum(equal to zero for the solutions considered), and
angular momentum in the transverse plane[38,39],

L =E E S ] f

] u
uuu2 +

] c

] u
uvu2DdXdY,

wheref andc are phases of the complex fieldsu andv. The
following relations betweenL, H, and E for a stationary
spinning soliton follow from Eqs.(2): L=SE, and

H = −
1

2
kE +

1

4
bEv −

1

4
E E suuu4 + 4uuu2uvu2 + uvu4ddXdY.

s5d

We have numerically found one-parameter families of sta-
tionary 2D spinning solitons having a ring-like shape with a
hole in its center, which is supported by the phase disloca-
tion. To this aim, we solved Eqs.(2) using the standard band-
matrix algorithm[40] to deal with the corresponding two-
point boundary-value problem.

Obviously, the wave numberk must exceed the cutoff
value, kùkcutoff;maxh0,−b /2j, for the fields to be expo-
nentially localized. For a fixed mismatchb, the stationary
zero-spin and spinning solitons exist in a limited region, with
k ranging from kcutoff up to a certain upper limit(offset
value) koffset, at which the soliton’s power diverges due to the
divergence of its outer radiusR, while the field amplitudesU
andV remain finite. As it follows from Eqs.(2), the limiting
values of the amplitudesU0 and V0 corresponding tok
=koffset are related to as follows:

koffset=
V0

2V0 − 1
sb − 1 + 6V0 − 6V0

2d, s6d

U0
2 = − koffset+ V0 − 2V0

2 s7d

[it follows from Eq. (7) that koffset must take values smaller
than 1/8, otherwiseU0

2 cannot be positive]. Further straight-
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forward analysis of Eqs.(2) shows thatR diverges logarith-
mically at koffset−k→0,

R, lnf1/skoffset− kdg. s8d

These results are summarized in Fig. 1, where the con-
tinuous lines border the existence domain of the localized
ring-shaped solitons, and the dashed lines are boundaries be-
tween stable and unstable regions in the parameter plane

sb ,kd. The way the stability boundaries were identified will
be explained in the following section. In regions A and D in
Fig. 1, no localized solutions exists: in region A—because
the wave numberk is below the cutoff, and in region
D—because the defocusingxs3d nonlinearity becomes domi-
nant, preventing the formation of solitons. Forb,0, there is
a narrow strip(region B in Fig. 1) where the zero-spin soli-
tons exist but are unstable. Stable zero-spinning and unstable
spinning solitons coexist in region C. Stable spinning soli-
tons withS=1, S=2, and Sù3 exist in small domains near
the offset line(the continuous line separating regions C and
D), the dashed lines located near the offset line being bound-
aries of the stability regions for the spinning solitons. We
have found that, regardless of the value of the phase mis-
match, the spinning solitons withS=3 andS=4 are stable in
regions occupying.3%, respectively.1.5% of their exis-
tence domain.

In Figs. 2 and 3 we plot dependencesk=ksEd and H
=HsEd for both nonspinning and spinning solitons for two
representative values of the mismatchb. The full and dashed
lines in Figs. 2 and 3 correspond to stable and unstable
branches according to results presented below. In particular,
the zero-spin solitons are stable according to the above-
mentioned Vakhitov-Kolokolov(VK ) criterion, which states
that anecessarystability condition for solitons of any type is
dE/dk.0 [28]. Actually, the VK criterion may play the role

FIG. 1. Existence and stability domains for bright fundamental
and vortex solitons withS=0, 1, 2, and 3. The upper continuous
curve separating the domains C and D is their common existence
border, corresponding to infinitely broad solitons. The stability re-
gion of the vortices withS=4, which is very narrow, is explained in
the text.

FIG. 2. The wave numberk
(a) and HamiltonianH (b) of the
vortex solitons, with different val-
ues of spin, versus their powerE,
with the phase mismatchb=0.2.
Panels(c) and (d) are blowups of
small-power regions from panels
(a) and (b).
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of a sufficient one for zero-spin solitons; however, it ignores
a possibility of azimuthal instabilities, which are often fatal
for bright vortex solitons.

An essential feature, which is evident in Figs. 2 and 3, is
that both the zero-spin and spinning solitons cannot exist
unless the powerE exceeds the corresponding threshold
valueEthr

sSd, at both positive and negative values of the phase
mismatch. For example, in the case ofb=0.02, Ethr

s0d=1.48,
Ethr

s1d=6.05, Ethr
s2d=11.30, andEthr

s3d=16.70 (see Fig. 2). For
b.0, the soliton’s wave number increases monotonically
with the power towards the maximum valuekoffset. Forb,0,
we observe two branches in the wave number–power dia-
gram, one with the power decreasing monotonically withk
in narrow regions above the cutoff, hence all the correspond-
ing solitons(zero-spin and spinning ones) are unstable ac-
cording to the VK criterion(dashed lines in Fig. 3), and
another branch with the power increasing monotonically
with k (see Fig. 3). For the typical examples shown in Figs.
2 and 3, the offset values arekoffset=0.0283 forb=0.2, and
koffset=0.0592 forb=−0.05.

Typical shapes ofstable bright vortex solitons are dis-
played in Figs. 4 and 5. These figures include cases close to
the instability border[Figs. 4(a) and 5(a)], and ones near the
offset limits [Figs. 4(b) and 5(b)]. The stable bright vortex

soliton resembles a dark vortex, bounded at a large value of
the radius by a circular kink-like layer, so that stable vortex
solitons exhibit a flat-top shape with the hole in the center.
Notice that stable vortex solitons with a flat-top shape are
also known in models of dissipative media described by the
two-dimensional Ginzburg-Landau equations with the CQ
nonlinearity[14].

FIG. 3. The same as in Fig. 2,
but for phase mismatchb=−0.05.

FIG. 4. Typical shapes(shown by means of their radial cross
sections) of stable vortex solitons forb=0.2: (a) k=0.025 for S
=1, k=0.0265 forS=2, andk=0.0273 forS=3; (b) k=0.0279 for
S=1, S=2, andS=3. Full lines: the fundamental-frequency fieldU;
dashed lines: the second-harmonic fieldV.
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III. LINEAR STABILITY ANALYSIS OF SPINNING
SOLITONS

The revealing information on the stability of solitons is
provided by calculation of eigenvalues within the framework
of the underlying equations(1) linearized about the station-
ary spinning-soliton solutions. To this end, we seek for in-
finitesimal perturbation eigenmodes in the general form,

usZ,r,ud − UsrdexpfisSu + kZdg s9d

= fsrdexphlnZ + ifsS+ ndu + kZgj

+ g*srdexphln
*Z + ifsS− ndu + kZgj, s10d

vsZ,r,ud − Vsrdexpf2isSu + kZdg s11d

=psrdexphlnZ + ifs2S+ ndu + 2kZgj

+ q*srdexphln
*Z + ifs2S− ndu + 2kZgj, s12d

where n.0 is an arbitrary integer azimuthal index of the
perturbation,ln is the (complex) eigenvalue sought for, and
the functionsf, g andp, q obey linear equations

ilnf + 1
2ff9 + r−1f8 − sS+ nd2r−2fg − kf − 2sU2 + V2df

− sU2 − Vdg − s2UV − Udp − 2UVq= 0,

− ilng + 1
2fg9 + r−1g8 − sS− nd2r−2gg − kg − 2sU2 + V2dg

− sU2 − Vdf − s2UV − Udq − 2UVp= 0,

ilnp + 1
4fp9 + r−1p8 − s2S+ nd2r−2pg − s2k + bdp

− 4sU2 + V2dp − 2V2q − 2s2UV − Udf − 4UVg= 0,

− ilnq + 1
4fq9 + r−1q8 − s2S− nd2r−2qg − s2k + bdq

− 4sU2 + V2dq − 2V2p − 2s2UV − Udg − 4UVf = 0.

The solutions forf, g, p, andq must decay exponentially at
r →`, and atr →0 their asymptotic form must be, respec-
tively, ,r uS+nu, r uS−nu, r u2S+nu, and r u2S−nu. To solve the linear
equations and find the eigenvalues, we used a known nu-
merical procedure[29,41], which produces results presented
in Figs. 6–8.

The output of numerical calculations for a typical zero-
spin soliton is presented in Fig. 6. The relevant eigenvalues
are either real or pure imaginary(in fact, in this case they can
be found by means of asymptotic expansions around zero
modes induced by the translational, rotational, and phase-
shift symmetries). The arrows in Fig. 6 point to the stability-
change bifurcation atk=kst=0.026 69(for b=−0.05), which
(up to the accuracy of the numerical data) exactly coincides
with the critical point predicted by the VK criterion in this
case. The bifurcation scenario accounting for the destabiliza-
tion of the zero-spin solitons is the standard one: two imagi-
nary eigenvalues collide at the origin, giving rise to a pair of
real eigenvalues with opposite signs.

In Fig. 7 we plot the output of comprehensive numerical
calculations of complex eigenvalues responsible for the bi-
furcation(of theHamiltonian-Hopf type) which accounts for
the stability change of spinning solitons withS=3, for a typi-
cal value of the positive mismatch,b=0.2. The correspond-
ing eigenvalues appear in quartets,sl ,l* ,−l ,−l*d, as the
system is conservative, cf. earlier known results for scalar
[11,42] and vectorial vortex solitons[43,44]. For a given
azimuthal mode, the unstable complex quartet is generated
by a collision between pairs of stable imaginary eigenvalues,
which is typical to the Hamiltonian-Hopf bifurcation.

We stress that the case ofS=3, the results for which are
displayed above, is a new one, as compared to those with
S=1 andS=2, which were studied earlier in this model[16].
We also studied in detail higher values ofS, arriving at re-
sults quite similar to those presented in Fig. 7. In particular,
for S=4 we have found that the stability changes at the criti-
cal pointkst=0.058 71 forb=−0.05, and atkst=0.027 86 for
b=0.02, resulting in a narrow stability domain.

The mechanism for the stability change, as the wave num-
ber k passes the critical valuekcr, is again the collision be-
tween pairs of imaginary eigenvalues as outlined above, and
it is always accounted for by the perturbation eigenmodes
pertaining to the azimuthal indexn=2 (cf. a discussion in
Ref. [11] of the stability-instability transition for spinning
solitons withSù3 in the CQ model).

FIG. 5. The same as in Fig. 4 but forb=−0.05:(a) k=0.027 for
S=0, k=0.0556 forS=1, k=0.0573 forS=2, andk=0.0581 forS
=3; (b) k=0.0592 forS=0, S=1, S=2, andS=3. FIG. 6. The bifurcation diagram accounting for the stability

change of the fundamentalsS=0d soliton at negative phase mis-
matchsb=−0.05d. Full and dashed lines show the real and imagi-
nary parts of the eigenvalues. The arrows indicate the stability-
change point,kst<0.026 69. This figure and the two following ones
show the full region,kcutoff,k,koffset, in which the corresponding
vortex solitons exist.
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These results suggest that the vortex solitons withany
value of S may be stable, provided they are sufficiently
broad, ask→koffset implies the divergence of the soliton’s
outer radiusR, as per Eq.(8). When the instability disappears
with the increase ofk, i.e., the real part of the corresponding

eigenvalue vanishes, its imaginary part remains finite, as ex-
plained above(see Fig. 7). This fact explains why the azi-
muthal instability, crucial for the vortex solitons, cannot be
captured by asymptotic expansions around zero modes gen-
erated by the above-mentioned symmetries of the system
(such asymptotic expansions are, as a matter of fact, the basis
of the VK criterion, which detects only instabilities ac-
counted for by purely real eigenvalue pairs).

Figure 7 demonstrates that, for the solitons withS=3, the
stability region occupies 3.6% of their existence domain[the
arrows in Fig. 7(b) mark the edge of the stability region for
the S=3 solitons; we define its relative width ase;skoffset
−kstd / skoffset−kcutoffd]. For comparison, previously known
results imply thate.11.8% for S=1, ande. 6.4% for S
=2 (see Fig. 2). In the case of the negative mismatch(b,0),
the stability region is slightly smaller: ifb=−0.05, it ise.
10.6% forS=1, e.5.7% for S=2, ande. 2.9% for S=3.
For S=4, the relative stability interval size is.1.6% for b
=0.2, and.1.3% for b=−0.05. We thus infer that the rela-
tive width of the stability region strongly shrinks with the
increase ofS. Below, a qualitative explanation will be given
to this feature.

Figure 8 shows a summary of the calculation of the real
part of the relevant eigenvalues for theS=3 solitons, pertain-
ing to the azimuthal indices up ton=8. Similar results for the
solitons withS=1 andS=2 were reported in Ref.[16].

FIG. 7. Bifurcation diagrams accounting for the stability of the newly found vortex solitons withS=3 andb=0.2 (recall that previous
works reported only stable solitons withS=1 andS=2 in the present model). The panels show the real and imaginary(full and dashed lines)
parts of the eigenvalues, which correspond to perturbation eigenmodes with the azimuthal indicesn=1,2,3,4,5, and 6,versus the wave
numberk. As is seen, the most dangerous eigenmode is the one withn=2 (panel b). The arrows in this panel mark the position of the
stability-change point for the solitons withS=3.

FIG. 8. The instability growth rate, Rel, corresponding to dif-
ferent values of the perturbation azimuthal indexn (indicated by
labels near the curves) versus the soliton’s wave numberk for b
=0.2 andS=3. The largest instability growth rate corresponds to
n=6, while the most persistent instability pertains ton=2. The lat-
ter vanishes atk=kst=0.0273. The border of the existence region
for the bright solitons,k=koffset, is marked by the vertical arrow.

MIHALACHE et al. PHYSICAL REVIEW E 69, 066614(2004)

066614-6



Lastly, the transition to the stability for all values ofS for
k→koffset clearly implies that dark vortices, which may be
regarded as the limiting case of the bright ones with the
infinite radius, are stable for anyS. This is a drastic differ-
ence from the well-known dark vortices in the model with
the self-defocusing Kerrfx−

s3dg nonlinearity, where only the
fundamental vortices withS=1 are stable[33].

IV. DIRECT SIMULATIONS

The stability predictions based on the eigenvalues found
from the linearized equations were checked against direct
simulations of the full equations(1). The simulations were
carried out by means of the Crank-Nicholson scheme. The
system of nonlinear finite-difference equations was first
solved by means of the Picard iteration method[45], and the
resulting linear system was then handled with the Gauss–
Seidel iterative scheme. For good convergence we needed,
typically, five Picard iterations and six Gauss-Seidel itera-
tions. We employed a transverse grid with 100131001
points, and the typical longitudinal step size wasDZ=0.08.
To avoid distortion of the instability development under the
action of the periodicity imposed by the Cartesian computa-
tional mesh, we added initial perturbations that were mim-
icking random fluctuations in a real system(cf. Ref. [46]).

The development of the instability of the spinning solitons
with S=3 (in the case when it is unstable) is illustrated by
Fig. 9 for four values of the wave numberk. Here we super-
impose a succession of images of the transverse intensity

distribution at different values of the propagation distanceZ.
As is seen, the azimuthal instability breaks up the unstable
spinning soliton into a set of zero-spin ones, which fly out
tangentially relative to the circular crest of the original ring-
shaped soliton. Thus, the initial intrinsic angular momentum
(spin) of the vortex soliton is converted into the orbital mo-
mentum of the emerging nonspinning fragments. We have
found that the number of the emerging fragments depends on
the wave numberk: it ranges between eight, in Figs. 9(a) and
9(b), and four in Figs. 9(c) and 9(d). Moreover, for givenk,
the number of the emerging fragments isnot necessarily
equal to the azimuthal index of the perturbation having the
largest growth rate at the same value ofk (see Fig. 8).

In order to test the robustness of the stable vortex soliton
with S=3 in a more general context, corresponding to the
situation in the physical experiment, random noise was
added at input. For two representative values of the phase
mismatchb, in Fig. 10 we show the evolution of the soliton’s
powerE and HamiltonianH during the process of noise self-
cleaning by the stable soliton withS=3 which was perturbed
at input(the decrease ofE andH implies not violation of the
conservation laws, but separation between the soliton and
noise ejected by it, as the power and Hamiltonian, shown in
this figure, are computed only for the area occupied by the
soliton). Figure 11 shows that the stable vortex soliton was
able to completely heal the damage incurred by the initial
perturbation, proving itself a truly stable object.

To further illustrate the physical purport of the stable vor-
tex solitons withS=3, in Fig. 12 we display its self-trapping
from an input Gaussian beam with a nested vortex, whose

FIG. 9. Fragmentation of an unstableS=3 soliton into a set of zero-spin ones, as a result of the azimuthal instability. In this case,b
=0.2 and(a) k=0.005,(b) k=0.010,(c) k=0.016, and(d) k=0.020. Here and in Figs. 11 and 12, only the FF component of the wave field
is shown; the SH component displays a similar behavior.

FIG. 10. Evolution of the total powerE (a)
and HamiltonianH (b) of the stable soliton with
spinS=3, perturbed at input. Here,k=0.0586 for
b=−0.05, andk=0.0276 forb=0.2.
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shape is far from the soliton’s exact form. Figure 12 demon-
strates strong reshaping of the input pulse in the course of its
self-trapping into the solitons, which leads to redistribution
of the energy between the FF and SH components; some
energy loss occurs, caused by emission of radiation in the
course of the formation of the stable vortex soliton withS
=3.

V. QUALITATIVE ANALYSIS OF STABILITY OF THE
VORTEX SOLITONS

All the above results were obtained in a numerical form.
While the predictions based on the stability eigenvalues
match to direct simulations quite well, it is desirable to de-
velop a qualitative understanding of the stability of the spin-
ning solitons, based on sufficiently simple arguments. One
approach to this problem was proposed in Ref.[8], where it
was shown that the ring-shaped vortex may develop an in-
stability against spontaneous shift of the inner hole from its
central position, as the hole is attracted by the outer rim.
However, this is only one of possible instability modes, and
comparison with numerical simulations showed that it plays
a dominant role rather seldom[8].

A simpler but more general analysis may be based on
considering the vortex soliton as a two-dimensional “liquid
drop” of the annular shape, with inner and outer borders.
Then, an obvious stability criterion is minimization of the “
surface tension,” i.e., of the total length(perimeter) of the
borders(the total area of the drop, or of a set of secondary
drops into which the original unstable one may split, as
shown above, is approximately conserved due to the power
conservation). The outer and inner radii of the annulus being

R [see Eq.(8)] andr, its area and perimeter are

S= psR2 − r2d, L = 2psR+ rd. s13d

If the annular drop is unstable against splitting inton round-

shaped ones with a radiusR̃ (like, for instance, in the case

shown in Fig. 9), the area conservation yieldsR̃=ÎS/ spnd
=ÎsR2−r2d /n. Accordingly, the total perimeter of the set of
the secondary drops is

l ; 2pR̃n = 2pÎnsR2 − r2d. s14d

As it follows from Eqs.(13) and(14), the ratio of the perim-
eters of the split and unsplit configurations is

l

L
=În

R− r

R+ r
. s15d

An obvious consequence of Eq.(15) is that the condition
l /L.1, which implies absolute stability of the annulus
against the splitting inton drops, is

R.
n + 1

n − 1
r. s16d

The strongest condition following from Eq.(16) corresponds
to n=2 (recall that the exact numerical results demonstrate
that the instability mode with the azimuthal indexn=2,
which implies the beginning of the splitting into two frag-
ments, is indeed the most persistent one),

FIG. 11. Grey-scale plots illustrating the re-
covery of the perturbed stableS=3 soliton in the
case ofb=0.2 andk=0.0276.(a) and (b) Inten-
sity and phase distributions in the initial soliton
with random noise added.(c) and(d) The same in
the self-cleaned soliton atZ=4500.
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R. 3r. s17d

For k sufficiently close tokoffset, r depends only on the vor-
ticity S of the annular soliton, whileR may be indefinitely
large, depending on the soliton’s power. Thus, the condition
(17) predicts that the vortex solitons of a sufficiently large
size may indeed be stable against the splitting.

Further, to estimate the dependence of the stability region
on S, we may use a crude estimate forr, following from the
matching of the asymptotic form of the solution valid for
r →0,

Usrd = arS, Vsrd = br2S, s18d

with some constantsa and b [see Eqs.(2)], to the nearly
“flat-top” solution in the inner region of the broad annular
soliton. The latter solution may be approximated, for larger,
by Usrd=U0+U1S

2r−2, Vsrd=V0+V1S
2r−2, whereU0 andV0

are the same as in Eqs.(6) and(7), while expressions for the
constantsU1 and V1 are available but cumbersome. For a
crude estimate, we demand the continuity of the logarithmic
derivatives,U8srd /Usrd andV8srd /Vsrd, at r =r, as following
from the latter expressions, which are valid inside the flat-top
region, and from the expressions(18), which describe the
fields inside the hole. This procedure predicts the following
dependence of the hole’s radius on large values ofS,

r = r0
ÎS, s19d

with a constantr0. The fact that the model must be based on
competing self-focusing and self-defocusing nonlinearities

implicitly comes into the play at this stage of the consider-
ation, as otherwise the quasi-flat field in the inner region of
the annulus would be subject to the modulational instability.

Finally, the relations(8), (17), and (19) that the relative
size of thestability region for the vortex solitons shrinks,
with the increase ofS, as

Dk/koffset, exps− CÎSd, s20d

with a certain constantC. In fact, the prediction(20) is uni-
versal(model-independent), while C may depend on param-
eters of the particular model, such the mismatch constantb
in the presentxs2d :x−

s3d system. The numerical results quoted
above for 1øSø4 are not quite sufficient to check Eq.(20),
as these values ofS may not be large enough. Nevertheless,
even these data are not incompatible with the prediction: in
the case ofb= +0.2, the results forS ranging between 2 and
4 (obviously, the case ofS=1 should be excluded) imply C
taking values between 1.94 and 2.07, and similar results for
b=−0.05 imply thatC varies between 2.03 and 2.17.

VI. CONCLUSION

In this work, we have revisited the earlier considered
problem of stability of vortex solitons in two-dimensional
media combining the quadratic and self-defocusing cubic
fxs2d :x−

s3dg nonlinearities. The model describes propagation
of localized beams with intrinsic vorticityS in the bulk op-
tical medium. An earlier established result was that the vor-
tex solitons withS=1 andS=2 could be stable, provided that
their external size and power are large enough, but it was
assumed that all the higher-order solitons withSù3 would
be unstable. In contrast with this, it has recently been found
that in another model, with the cubic-quintic nonlinearity,
solitons withS.2 had their(narrow) stability regions, too.
In this work, we have demonstrated that the same is true in
thexs2d :x−

s3d model, too. In particular, theS=3 andS=4 soli-
tons are stable in regions which occupy, respectively,.3%
and 1.5% of their existence domain. Solitons with still larger
S also have very narrow stability regions. These results were
obtained by means of calculation of the stability eigenvalues,
and checked in direct simulations. It has also been demon-
strated that the stable solitons are truly robust, readily self-
trapping from a rather arbitrary initial beam with the embed-
ded vorticity, and easily cleaning themselves from large
random perturbations. The dependence of the stability on the
xs2d phase-mismatch coefficient, which is the most important
control parameter of the model, was investigated.

Besides the numerical results, we have also proposed a
simple qualitative explanation for the stability of the broad
vortices against splitting into a set of zero-spin solitons. In
particular, this analysis predicts that, for largeS, the width of
stability region shrinks according to Eq.(20).

Thus, we conclude that the stability of higher-order two-
dimensional spinning solitons is ageneric featureof media
with competing self-focusing and self-defocusing nonlineari-
ties, as it takes place in both the cubic-quintic andxs2d :x−

s3d

FIG. 12. Formation of the stable soliton withS=3 from a Gauss-
ian input pulse with the trapped phase dislocation and initial power
E=885. The mismatch isb=0.2.(a) and(b) The intensity and phase
distributions in the initial Gaussian with a nested vortex.(c) and(d)
The intensity and phase distributions in the spinning soliton atZ
=4000.
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ones. A remaining challenge is possible stability ofthree-
dimensionalspinning solitons withS.1 in media with com-
peting nonlinearities; recall that three-dimensional spinning
solitons(vortex tori) with topological chargeS=1 have their
stability region in such models[21].
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