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We theoretically investigate the photonic band structure of one-dimensional superlattices composed of
alternating layers of right-handed and left-handed materials(RHM and LHM). The dispersion curves are
mainly studied by assuming that the dielectric permittivity and magnetic permeability are constant in each
layer. It is shown that such structures can exhibit new types of electromagnetic modes and dispersion curves
that do not exist in usual superlattices composed only of RHM. In particular, we emphasize the possibility of
bands that originate from the interface modes localized at the boundary between a LHM and RHM or from
confined modes in one type of layers. These waves are evanescent in both or in one constituent of the
superlattice. One of the pass bands may lie below the light lines of the constituting material and go down to the
static limit of a vanishing frequencyv, even at a value of the wave vectorki (parallel to the layers) that is
different from zero. For a given value of the wave vectorki, the dispersion curvesv versuskz (wherekz is the
Bloch wave vector of the periodic system along the axis of the superlattice) may exist only in a limited part of
the superlattice Brillouin zone and exhibit a zigzag behavior instead of a monotonic behavior as in usual
superlattices. With an appropriate choice of the parameters, we show that it is possible to realize an absolute(or
omnidirectional) band gap for either transverse electric(TE) or transverse magnetic(TM) polarization of the
electromagnetic waves. A combination of two multilayer structures composed of RHM and LHM is proposed
to realize, in a certain range of frequency, an omnidirectional reflector of light for both polarizations.
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I. INTRODUCTION

Left handed materials(LHM’s ), in which the dielectric
permittivity « and magnetic permeabilitym are simulta-
neously negative, have received a great deal of attention dur-
ing the last few years[1]. This is due to the unusual physical
properties of these materials that have raised strong theoret-
ical interest and may lead to potential applications in optical
devices. Some peculiar properties of LHM have already been
discussed some thirty years ago by Veselago[2], for in-
stance, a Poynting vector directed opposite to the propaga-
tion wave vectork, the reversal of Doppler and Cerenkov
effects. Because of the absence of naturally existing LHM,
the experimental realization of an artificial heterogeneous
medium exhibiting both negative«svd and msvd was per-
formed only recently[3]. The realization of such media[3,4]
are based on the propositions of Pendryet al. for specific
structures[5]. Recent interest in these metamaterials has
been directed towards the theoretical and experimental study
of Snell’s law of refraction at the boundary with a LHM
[6–10], the focusing and imaging properties of a metamate-
rial lens [11–13], the tunneling in the presence of a LHM
layer [14], the emission in a LHM metamaterial[15], etc.

Assuming the possibility of realizing such LHM under the
form of layered media, a few recent works have investigated
the photonic band structure of one dimensional layered struc-

tures constituted by a periodical repetition of RHM and
LHM [16–18]. Some peculiar properties related to the pres-
ence of LHM layers have been underlined, for instance, the
possibility of gap widening with respect to usual superlat-
tices constituted only by RHM[16], the theoretical and ex-
perimental investigation of a new type of gap when the av-
erage index of refraction in the superlattice vanishes[17],
and the possibilty of discrete and photon tunneling modes
[18]. These works have mainly concentrated on propagation
along the axis of the superlattice, i.e., normal incidence.

The object of this paper is to present theoretically a de-
tailed study of the dispersion relation and photonic band
structure in superlattices constituted by alternate layers of
LHM and RHM, with the aim of giving the different trends
that can occur and emphasizing the new behaviors that have
not been predicted before. We present and discuss the band
structure with various physical parameters and different ra-
tios of the LHM to RHM layer thicknesses. In these calcu-
lations, the dielectric permittivity« and magnetic permeabil-
ity m are, in general, assumed to take constant values.
Although these parameters in LHM are in general frequency
dependent, our results can be used to design specific
metamaterials that would lead to a typical behavior around a
given frequency. We also illustrate the photonic band struc-
ture in a case with frequency-dependent parameters. We dis-
cuss, in particular, the photonic bands of the superlattice
originating from the interface modes at the boundary be-
tween a RHM and a LHM, and those bands that are confined
in one type of layer in the superlattice. When the permittivity*Electronic address: abdellatif.akjouj@univ-lille1.fr
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« and permeabilitym are constant parameters, one of the
pass bands can decrease down to the static limit of the fre-
quencyv=0 at a value of the wave vectorki, parallel to the
layers, that is different from zero. For fixed values ofki, we
also investigate the dispersion curvesv versuskz, wherekz is
the Bloch wave vector along the axis of the superlattice
which is limited to the reduced Brillouin zone
−p /D,kz,p /D (D being the period of the superlattice). In
contrast to the case of usual superlattices wherev displays a
monotonic variation withkz, while kz goes from 0 top /D
and vice versa, in the LHM-RHM composite superlattices
some of the dispersion curves may exist only in a limited
part of the Brillouin zone and even display a zigzag behavior.

We also show that for some particular choices of the
physical and geometrical parameters, the RHM-LHM super-
lattice can exhibit an absolute(or omnidirectional) band gap,
for either TE or TM polarization of the electromagnetic field.
This situation is without analog in the case of usual superlat-
tices. Thus, a combination in tandem of two LHM-RHM
superlattices enable us to propose an omnidirectional reflec-
tor structure for both polarizations of the light. Let us notice
that the search of omnidirectional reflection gaps has been
the object of several recent works[16,19–23]. In particular,
the possibility of an omnidirectional reflection gap in a
lamellar structure containing left handed media has been
mentioned in Ref.[16]

The paper is organized as follows. For the clarity of the
discussion, we briefly present in Sec. II the interface modes
localized at a LHM-RHM boundary as well as the confined
modes of a LHM layer embedded between two semi-infinite
RHM media. Section III is devoted to the presentation of our
main results as concerns the photonic band structure of
LHM-RHM superlattices. Finally, some conclusions are
drawn in Sec. IV.

Let us notice that the derivation of the single interface
mode and the modes in a slab of LHM have been considered
in two recent papers by Ruppin[24,25]. Therefore, the object
of Sec. II is mainly to emphasize the physical behaviors in
these two problems for a clear understanding of the results
presented in Sec. III.

II. INTERFACE MODES AND CONFINED MODES OF A
LAYER

In the following, we assume that thez axis is along the
normal to the interfaces and the wave vector component par-
allel to the layerski is along thex axis. From the Maxwell’s
equations in each medium, it is straightforward to write the
electromagnetic field of TE polarization under the form

Ey = sAeaz + Be−azdeiskix−vtd,

Bx =
ia

v
sAeaz − Be−azdeiskix−vtd, s1d

Bz =
ki

v
sAeaz + Be−azdeiskix−vtd,

wherea=Îki
2−«msv2/c2d, c is the speed of light in vacuum,

« andm are the relative dielectric permittivity and magnetic

permeability of the material, and the index of refraction is
defined byn=±Î«m with the plus or minus sign being used,
respectively, for RHM and LHM. Similar equations can be
written for electromagnetic waves of TM polarization for
which the nonzero components of the field areBy, Ex, Ez. In
lamellar structures, it is also necessary to satisfy the bound-
ary conditions at each interface, namely, the continuity of the

tangential components ofEW and HW and of the normal com-

ponents ofDW andBW .
First, we are interested by the interface modes localized at

the boundaryz=0 between a LHM and a RHM(see also Ref.
[24]). Such a wave should be exponentially decaying on both
sides of the interface and, therefore, its frequency lies below
the light lines of both media(i.e., botha1 and a2 are real,
where the indices 1 and 2 refer to the media on both sides of
the interface). Keeping in the above field[Eq. (1)] in each of
the media 1 and 2, only the exponential term which is de-
caying far from the interface and using the boundary condi-
tions atz=0, one easily obtains the equation giving the in-
terface modes, namely,

F1 + F2 = 0, s2d

where Fi =sai /midsi =1,2d for TE modes, andFi =−s«i /aid
3sv2/c2d for TM modes[26]. The parametersFi are propor-
tional to the electromagnetic admittance of the corresponding
materials for each polarization. By taking the squares in
these equations, it is possible to solve for the frequencyv
and obtain

c2ki
2

v2 =

«1

m1
−

«2

m2

1

m1
2 −

1

m2
2

for TE modes and

c2ki
2

v2 =

m1

«1
−

m2

«2

1

«1
2 −

1

«2
2

for TM modes. However, it should be pointed out that these
solutions are valid provided the slopev /ki of the corre-
sponding lines remain below the velocities of light in both
media 1 and 2. Thus, one can easily derive the condition for
the existence of interface modes as follows: For TE modes:
either«2m2,«1m1 andm2

2.m1
2 or «2m2.«1m1 andm2

2,m1
2;

for TM modes: either «2m2,«1m1 and «2
2.«1

2 or
«2m2.«1m1 and«2

2,«1
2.

Unlike the case of an interface between two RHM, the
RHM-LHM interface can support a localized mode of TE
polarization. However, one can notice that the TE and TM
interface localized modes can never exist simultaneously,
i.e., the interface supports at most one localized mode of
either TE or TM polarization.

Now, we are interested by the confined modes of a LHM
layer of medium 2, extending in the region 0,z,d, embed-
ded between two semi-infinite RHM made of material 1(see
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also Ref.[25]). The confined modes of the layer are obtained
by writing the solution of Maxwell’s equations as propagat-
ing waves inside the layer and decaying waves outside the
layer and using the usual boundary conditions at both inter-
facesz=0 andz=d. The dispersion relations derive straight-
forwardly as

sF1
2 + F2

2dsinhsa2dd + 2F1F2coshsa2dd = 0. s3d

In Fig. 1, we show all possible behaviors of the TE modes
dispersion curves by choosing different parameters for the
LHM layer, the RHM medium being vacuum. Let us empha-
size that we obtain similar results for TM modes since the
results for one polarization can be transposed to the other by
interchanging the parameters«i and mi. Also, exactly the
same behaviors are observed if a finite RHM layer is embed-
ded between two semi-infinite LHM’s, so for the sake of
briefness we escape these results. In Fig. 1, we have pre-
sented the confined modes of the embedded LHM layer, so

all the dispersion curves lie below the light line of the exter-
nal medium, i.e., vacuum in our case. The panels(a), (b), (c)
in the left column[(d), (e), (f) in the right column] refer to a
LHM material with an index of refractionun2u greater
(smaller) than n1=1. The panels in the upper, middle, and
lower rows, respectively, correspond to a LHM material with
um2u greater than, equal to, or smaller thanm1=1.

In the example of panel(a) where um2u .1, most of the
confined modes resemble those of the usual RHM. In par-
ticular, for increasing wave vectorki, the slopes of the dis-
persion curves go to the velocity of light in medium 2. Still,
one can observe a nonmonotonic behavior of the dispersion
curves around their crossing points with vacuum light line.
However, the main novelty in this figure is the existence of
the lower branch that starts atv=0 for a wave vectorki

different from zero. In the limit ofv=0, the solution for the
electromagnetic field reduces to a static magnetic field while
the electric field should be equal to zero to prevent the di-
vergence of the magnetic field[see Eq.(1)]. In panel(c), the
parameters are chosen in such a way that the RHM-LHM
interface can support a localized modesum2u,1d. Thus, in
addition to the confined modes of the layer, one can observe
two degenerate interface modes in the limit of largekid (see
the two lowest dispersion curves); this degeneracy is lifted at
lower values ofkid where the corresponding modes can in-
teract together due to the proximity of the interfaces. Thus,
for small values ofkid, these modes become more spread
over the entire layer and less localized around the interfaces
z=0 andz=d. Panel(b) corresponds to an intermediate case
between the examples of panels(a) and (c), namely,m2=
−1. In this case, the interface mode ceases to exist, but there
is a dispersion curve which goes asymptotically tov=0.

The examples sketched in panels(d), (e), and (f) (right
column of Fig. 1) correspond to an index of refractionun2u in
the LHM lower than 1, so the light line of medium 2 is above
the vacuum light line. Consequently, the dispersion curves of
the confined modes can be searched for only below the latter
line. In case(d) whereum2u.1, the dispersion curves display
two branches that become the localized interface modes at
the LHM-RHM boundaries in the limit of largekid; for de-
creasingkid, the two interface modes interact more strongly
and their degeneracy is lifted. In case(f) whereum2u,1, the
RHM-LHM interface does not support any localized mode,
so a dispersion curve appears only in a limited range of the
wave vectorki. Finally, case(e) wherem2=−1 is intermedi-
ate between cases(d) and (f), i.e., there is one dispersion
curve going asymptotically tov=0.

In the next section, we shall study the photonic band
structure of a periodic stack of LHM-RHM layers. The bands
that will appear below the light lines of either media 1 or 2
are those resulting from the interaction of the confined
modes discussed above. Therefore, some new behaviors are
expected with respect to usual RHM-RHM superlattices in
relation with the dispersion curves sketched in Fig. 1.

III. PHOTONIC BAND STRUCTURE OF A LHM-RHM
SUPERLATTICE

We shall calld1 andd2 the thicknesses of layers 1 and 2,
respectively, withD=d1+d2 being the period of the superlat-

FIG. 1. Dispersion curves of confined TE optical modes in LHM
layer of thicknessd sandwiched between vacuum. The parameters
f« ;mg of LHM are taken to be(a) f−1.4;−2g, (b) f−2;−1g, (c)
−2;−0.9, (d) −0.6;−1.2,(e) −0.6;−1, and(f) −0.6;−0.9. The re-
duced frequencyV=vd/2pc is presented as a function of the re-
duced wave vectorki=kid/2p. The straight lines show the light
lines of vacuum(full line) and of the LHM layer(dashed line).
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tice. In the examples presented in this section, medium 1 is
vacuum whereas medium 2 is a LHM with different dielec-
tric permittivity and magnetic permeability. The derivation of
the dispersion relation of the superlattice is quite simple and
well known. First, one can write the solutions of the Max-
well equations in each medium under the form of Eq.(1).
Then, we use the periodicity of the system to introduce a
Bloch wave vectorkz along the axis of the superlattice that
relates the field in two consecutive unit cells by the factor
eikzD (remember thatkz is limited to the first Brillouin zone
−p /D,kz,p /D). In this way, there are four unknown co-
efficients A1, B1 and A2, B2 (two in each type of layer).
Finally, one has to write the four boundary conditions at two
consecutive interfaces that give rise to a system of four linear
homogeneous equations for the unknown coefficients. By
setting the determinant of this system equal to zero, one ob-
tains the following dispersion relation:

cosskzDd = coshsa1d1dcoshsa2d2d

+
1

2
SF1

F2
+

F2

F1
Dsinhsa1d1dsinhsa2d2d. s4d

The expressions ofFi for both TE and TM polarizations
were given in Sec. II. The dispersion relation(4) can be
solved in the following way. The right-hand side of Eq.(4) is
evaluated for any values ofv andki. If the result is smaller
than 1 in absolute value, one can obtain a real solution forkz,
i.e., the corresponding wave propagates along the axis of the
superlattice andv belongs to a pass band for the chosen
value of ki. Otherwise,kz becomes a complex number, the
wave cannot propagate andv belongs to a gap of the super-
lattice. The dispersion curves can be sketched in two differ-
ent ways. One way is to fix the wave vector componentki

and give the frequencyv as a function of the Bloch wave
vector kz. In the other way, the so-called projected band
structure is presented in which all the pass bands and mini-
gaps are displayed as a function ofki. In Figs. 2 and 3, we
give these two types of illustrations in a few cases that cover
most of the possible behaviors for the RHM-LHM superlat-
tice photonic band structure. In these figures, the parameters
of material 2 are taken to be«2=−0.6 andm2=−1, whereas a
few values are given to the volume fractiond2/D of this
medium. The results are presented as a function of dimen-
sionless frequencyV=vD /2pc and dimensionless wave
vectorski=kiD /2p and kz=kzD /2p. The results presented
in Figs. 2 and 3 are complementary; nevertheless, we have
given the band structures of Fig. 3 for both TE(right side of
Fig. 3) and TM(left side of Fig. 3) polarizations whereas, for
the sake of briefness, the dispersion curves of Fig. 2 are
presented only for TM modes.

Figure 2 shows the dispersion curvesV versuskz for
three different values ofki [namely,ki=0.5 (left column),
ki=0.7 (middle column), andki=2.5 (right column)] and for
three values of the filling fractiond1/D [namely,d1/D=0.3
(upper row), 0.43649(middle row), and 0.5(lower row)].
The value 0.43649 of the filling fraction is the one for which
the average index of refraction in the superlatticeknl
=sd1n1+d2n2d /D becomes equal to zero; it leads to peculiar
behaviors of the dispersion curves(see below) that have also

been discussed in Refs.[16–18], mainly atki=0.
In panel(a) of Fig. 2, the dispersion curves behave simi-

larly to the usual case of superlattices made only of RHM.
By changing slightlyki, a new dispersion curve starts to
emerge aroundV=0 and kz=0 [see the lowest branch in
panel(b)], that extends only over a limited range of the re-
duced Brillouin zone. Increasing furtherki, the latter branch
covers the whole range of the Brillouin zone and even(see
panel(c)] a cutoff frequency appears. Let us notice that this
branch is situated below the light lines of the media consti-
tuting the superlattice in panel(b) but moves above these
lines in panel(c). A global view of these results can be seen
in the projected band structure displayed in Fig. 3(a) (left
side) where the shaded area correspond to the pass bands and
the white area to the gaps. The novel behavior resulting from
the presence of the LHM is the existence of a pass band that
falls below the light lines of both media in the superlattice
and reaches the frequencyv=0 for nonvanishing values of
the wave vectorki. This band results from the interaction
between the confined modes[see the lowest branch in Fig.
1(e)] in different layers of the superlattice. This behavior is
without analog in the case of usual superlattices made of
RHM.

Another type of behavior for the dispersion curves is pre-
sented in the second row of Fig. 2[see also Fig. 3(c)], cor-
responding to a filling fractiond1/D=0.43649 such that the
average index of refraction in the superlattice vanishes,
d1n1+d2n2=0. It has been argued[17] that for this choice of
the filling fraction, the propagation along the axis of the su-
perlattice, i.e., forki=0, becomes prohibited except at some
discrete values of the frequency(see also Refs.[16,18]). This
can be clearly seen in the projected band structure of Fig.
3(c), where the consecutive gaps join together to constitute a
very large gap. Now, whenki departs from zero, the gaps
become separated by very narrow bands, i.e., the discrete
modes transform into narrow bands[see panels(d) and(e) in
Fig. 2] in which the wave vectorkz describes a small region
aroundkz=0, whereas the lowest dispersion curve extends
over a more or less spread domain of the Brillouin zone. For
higher values ofki [see panel(f) of Fig. 2 and also Fig. 3(c)],
the pass bands widen and some of them join together to
constitute a continuous band. Therefore the occurrence of
narrow bands and discrete modes is related to the fact that
some of the band gaps join together and the pass bands that
separate them close.

A third example of the dispersion curves is presented for
the filling fractiond1/D=0.5 [third row of Figs. 2 and 3(d)].
At ki=0, these curves are again similar to those of usual
superlattices. However, by increasingki [see panels(g) and
(h) of Fig. 2], the lowest curve covers only a limited part of
the Brillouin zone; more especially, for increasingV, this
curve starts fromkz=0.5 and returns back to the same wave
vector, displaying a zigzag behavior. The width of the corre-
sponding pass band, that extends over the frequency range
0.4,V,4.2 at ki=0.7 [panel (h)], can be reduced very
much whenki increases up to 1.8 where the band approaches
the limit of a discrete mode. Panel(i), corresponding toki

=2.5 also shows a zigzag type of behavior, but now for a
dispersion curve starting from, and ending at,kz=0. A global
view of these results are presented in the projected band
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structure of Fig. 3(d) (left side). Here again, one can recog-
nize a pass-band situated below the light lines of the consti-
tuting materials in the superlattice. The occurrence of very
narrow bands and discrete modes mentioned above can be
more clearly seen in the TE band structure of Fig. 3(d) (right
side). For instance, one can notice that atki <1.84 two band
gaps, delimited by loop shaped curves, join together around
the frequencyV<3.52. Therefore around these values ofki

and V, there is a very narrow band that separates the two
gaps; this pass band goes to the limit of a discrete mode at
the particular value ofki where the gaps join together and
the width of the pass band vanishes. However, looking to the
dispersion curvesV versuskz, the narrow band extends only
over a very limited range of the Brillouin zone, namely,kz
starts and ends atkz=0.5 while remaining always in the near
vicinity of the Brillouin zone edge.

Now, let us make a few complementary comments about
the projected photonic band structures which is displayed in
Fig. 3 for several values of the filling fraction, namely,
d1/D=0.3 (a), 0.4 (b), 0.43649(c), 0.5 (d), 0.65(e), and 0.8
(f). First, one can notice a number of narrow bands situated
between the light lines of vacuum and the LHM. These
bands result from the interaction of confined modes of
vacuum layer embedded between two LHM’s(we remember
that in our example the vacuum light line is below the LHM
light line). Thus, the number of these bands increases with
the filling fractiond1/D of vacuum layers[from panel(a) to
panel (f)]. The other point to notice is about the different
trends that can be observed around the frequency zero. Re-
ferring to TM polarization(left side of the figure), in panel
(a) there is a band reachingV=0 over a range of the wave
vector ki outside zero. A triangular gap separates this band

FIG. 2. Dispersion curves of a
vacuum-LHM superlattice for dif-
ferent values of the wave vector
componentki, parallel to the lay-
ers, and different volume fraction
of vacuumd1/D. The parameters
of LHM are e2=−0.6, m2=−1.
The reduced frequency V
=vd/2pc is presented as function
of the reduced wave vectorkz

=kzD /2p. The panels in the up-
per, middle and lower rows, re-
spectively, correspond tod1/D
=0.3, 0.43649 and 0.5. The panels
in the left, middle, and right col-
umns refer, respectively, to the di-
mensionless wave vector parallel
to the layerski=kid/2p=0.5, 0.7,
and 2.5.
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from the next band that starts atki=0. Increasing the filling
fraction [panel(b)], the former band reacheski=0 while the
latter have moved to a nonvanishing value of the frequency
V. Increasing further the filling fraction, both bands merge
together[panels(d) and(e)]. For even higher filling fraction,
we find the situation of panel(f) where the lowest band
bends downwards to reachV=0 over a range of the wave
vectorki outside zero.

The above discussion can be illustrated both analytically
or numerically by looking to the trends of the dispersion

relation (4) either along the axisV or along the axiski. To
have an analytical insight about these behaviors, let us first
assume that bothki andV are much smaller than 1. Then, we
can make a Taylor expansion of Eq.(4) that yields

cosskzDd > 1 − 4p2kmlk«lV2

+ 4p2K1

«
Lk«lki

2 for TM modes s5ad

and

cosskzDd > 1 − 4p2kmlk«lV2

+ 4p2K 1

m
Lkmlki

2 for TE modes. s5bd

In these equations the symbolkAl means the average of
the quantityA, i.e. kAl=sd1A1+d2A2d /D. From the above
Taylor expansions, it is easy to analyze the existence of gaps
or pass bands aroundV and ki ,0. Referring to TM polar-
ization, for instance, and choosingV;0, one can see from
the right-hand side of Eq.(5a) that a pass band(a gap) exists
along theki axis if k«l k 1

«
l is negative(positive). Similarly,

by choosingki ;0, one finds that a pass band(gap) occurs
along theV axis if k«lkml is positive (negative). We also
illustrate these behaviors numerically in Fig. 4 by choosing
eitherki ;0 or V;0. In Fig. 4(a), we present the photonic
bands of the superlattice atki ;0 as a function of the filling

FIG. 3. Projected photonic band structure of a vacuum-LHM
superlattice for different values of the volume fraction of vacuum
d1/D. The reduced frequencyV=vd/2pc is presented as a function
of the reduced wave vectorki=kid/2p. The shaded and white areas
respectively correspond to the pass bands and to the gaps of the
superlattice. The left and right sides of the figures, respectively, give
the band structures of the TM and TE modes. The parameters of
LHM are e2=−0.6,m2=−1. The filling fractiond1/D takes the fol-
lowing values in the different panels:(a) 0.3, (b) 0.4, (c) 0.43649
(corresponding toknl=0), (d) 0.5, (e) 0.65, and(f) 0.8. The straight
lines show the light lines of vacuum(full line) and of LHM (dashed
line).

FIG. 4. (a) Frequencies of photonic bands atki ;0 as a function
of the filling fraction d1/D in a vacuum-LHM superlattice. The
parameters of LHM aree2=−0.6, m2=−1. The shaded and white
areas, respectively, correspond to the pass bands and to the gaps of
the superlattice.(b) Values ofki for which a photonic band exists at
V=0 versusd1/D.
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fraction d1/D. Notice that atki ;0 there is no distinction
between TE and TM modes. In this figure, one can see that a
frequency cutoff exists for a range of the filling fraction ex-
tending from 0.375(where k«l=0) to 0.5 (where kml=0).
More particularly, at the filling fraction 0.43649, whereknl
vanishes, the propagation becomes prohibited except at some
discrete frequencies. In Fig. 4(b), we chooseV;0 and rep-
resent the TM photonic bands as a function ofki. One can
see that the pass band which reachesV=0 extends over a
limited range of ki that either includes ki=0 (for
0.375,d1/D,0.625) or excludes it.

Although the above discussions of Figs. 2–4 were mainly
concentrated on modes of TM polarization, it should be em-
phasized that the TE photonic band structure display quali-
tatively similar results to those of TM modes. The fact that in
Fig. 3 the lowest TE band asymptotically goes to zero, in-
stead of cutting theki axis, is due to the choice ofm2=−1 in
our example. This is related to the behavior of the confined
modes of a layer[see Fig. 1(e)] whenm2=−m1.

An interesting and unexpected result which is due to the
presence of LHM layers is the existence in Fig. 3(e) of an
absolute(or omnidirectional) band gap of TE polarization in
the frequency range 1.22,V,1.4. Indeed, this frequency
interval is free of TE modes for any value of the wave vector
ki. Consequently, a wave launched from any substrate with
an arbitrary angle of incidence is prohibited from propaga-
tion and will be reflected back. The superlattice becomes a
perfect mirror for the TE modes, or a filter for TM modes, in
this frequency range. This situation is without analogue in

usual RHM superlattices where the photonic band structure
never contains an absolute band gap and the property of om-
nidirectional reflection requires that the incident light is
launched from a substrate in which the index of refraction is
relatively lower than those of the materials composing the
superlattice[22].

Let us mention that the authors of Ref.[16] have also
reported the possibility of an omnidirectional reflection gap
in a lamellar structure containing left handed media. The
case studied in this paper should be similar to the one re-
ported in our Fig. 3(c): in this figure, a given frequency
situated in the lowest gap is omnidirectional reflective for TE
polarization, provided the incident light is launched from a
substrate in which the index of refraction does not exceed a
certain limit. However, in contrast to the case of Fig. 3(e)
[see also Fig. 6(b)], Fig. 3(c) does not display any absolute
gap, this means that the band structure does not contain any
frequency range which remains free of a mode for any value
of the wave vectorki.

Another illustration of the projected photonic band struc-
tures is given in Fig. 5 for a superlattice in which the param-
eters of LHM are«2=−1.4 andm2=−2 and the RHM is still
vacuum. Although the velocity of light in the LHM is here
lower thanc, the results are overall qualitatively similar to
those of Fig. 3. The narrow bands between the light lines of
the constituting materials are now originating from the con-
fined modes of the LHM layers embedded between vacuum.
One can also notice the existence of a band that reachesV
=0 for ki different from zero, as well as the peculiar behavior
of the band structure at a filling fraction such thatknl=0

FIG. 5. Same as in Fig. 3 for the following parameters of LHM:
e2=−1.4, m2=−2. In the different panels, the layer thicknesses are
defined asd1=0.3Dsad, d1=0.5Dsbd, and d1=0.62593D (corre-
sponding toknl=0).

FIG. 6. (a) Magnification of the projected band structure of Fig.
5(b) at the frequency of the TM absolute band gap(V<0.55). (b)
Magnification of the projected band structure of Fig. 3(e) in the
vicinity of the TE absolute band gap. All the thicknesses are scaled
by a factor of 2.3 with respect to those of Fig. 3(e) in order to bring
the TE and TM absolute gaps in coincidence.(c) Overlap of the
band gaps displayed in panels(a) and (b) to show the frequency
range in which the propagation will be prohibited through a struc-
ture resulting from a combination in tandem of two multilayers.
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[panel(c)]. An interesting result of Fig. 5(a) is the existence
of an absolute band gap of TM polarization that extends in
the frequency interval 0.54,V,0.61 while such an omni-
directional gap cannot exist in usual RHM superlattices.

In the previous examples of Figs. 3 and 5, we have shown
that for an appropriate choice of the material parameters and
their volume fraction, the LHM-RHM can display an omni-
directional gap for either TE or TM polarization. Now, by
making a combination in tandem of two such multilayer
structures[22,23], it should be possible to realize in a certain
frequency range an omnidirectional reflector of light for both
polarizations. This operation is sketched in Fig. 6. The upper
panel is just a magnification of the TM absolute gap of Fig.
5(a). The middle panel is a magnification of the TE absolute
gap of Fig. 3(e); however, the layer thicknessesd1 andd2 and
the periodD of the superlattice are multiplied here by a
factor of 2.3 in order to obtain the coincidence of the TE and
TM gaps. The lower panel in Fig. 6 shows the frequency
domain in which the propagation is prohibited for both po-
larizations when the band gaps of panels(a) and (b) are
superimposed. Of course, in a real structure the number of
periods in each superlattice is finite and a small part of an
incident signal will be transmitted. It would be necessary to
investigate the decaying of the transmitted wave as a func-
tion of the total thicknesses of the multilayer structures, as
we did in our previous works dealing with RHM materials
[22] or with acoustic waves[23].

A third example of the projected photonic band structure
is given in Fig. 7 with the following parameters of the RHM:
(a) «2=−1.2,m2=−0.6 and(b) «2=−2, m2=−0.9. The filling
fraction is taken to be 0.5. The novelty in this case with
respect to the previous illustrations is the existence of a nar-
row band that originates from the interface mode at the
RHM-LHM boundary. This band, which is either of TM

[panel(a)] or TE [panel(b)] polarization, is situated below
the light lines of both materials and becomes similar to a
straight line in the limit of highki. For smallki, it widens
and can divide into two different bands. From the discussion
of Sec. II, let us remember that it is not possible to obtain the
interface band simultaneously for TE and TM polarizations.

Finally, in Fig. 8 we illustrate the photonic band structure
for a superlattice in which the parameters«2 and m2 of the
LHM are frequency dependent and take the following forms
[17,24,25]:

«2svd = 1 −
vp

2

v2, m2svd = 1 −
Fv2

v2 − v0
2 . s6d

In this figure, we have chosenvpD /c=10, v0D /c=4, F
=0.56, andd1=d2=D /2. The heavy solid lines are obtained
by puttinga2=0 in LHM, i.e., these curves separate the re-
gions of propagating and evanescent waves in LHM. The
evanescent waves appear in the region between the two
curves. The dashed straight line is the vacuum light line. The
band structure is magnified in the frequency range 4
øvD /cø6 [Fig. 8(b)] where both«2 and m2 are negative.

FIG. 7. Same as in Fig. 3, for the following parameters of LHM:
(a) f«2=−1.2;m2=−0.6g and (b) f«2=−2;m2=−0.9g (b). In both
cases, the thicknessd2 of the LHM layers is equal to 0.5D.

FIG. 8. (a) Same as in Fig. 2 when«2 andm2 are defined by Eq.
(6). (b) Magnification of Fig. 8(a) in the frequency rangevD /c
,4 to 6 where both«2 and m2 are negative. The straight dashed
line is the vacuum light line. The heavy solid lines, defined by the
equationa2=0, separate the regions of propagative and evanescent
waves in LHM.
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The following points should be emphasized. ForkiD going
to infinity, there are two bands of TE polarization around
vD /c.4.75 [see Fig. 8(b)] which are separated from each
other by a very small gap(not visible at the scale of the
figure). These bands originate from the interface mode at the
LHM-vacuum boundary; they broaden whenkiD decreases
due to the interaction between the different interface modes,
before penetrating in the regions where the waves become
propagative in vacuum and/or in LHM. One can also notice
the existence of several branches of both TE and TM polar-
izations in the frequency rangevD /c,4 to 4.2 which are
essentially slab modes of the LHM layers, because they fall
in the regions where the modes are propagating in LHM but
evanescent in vacuum. Similarly, the narrow bands that be-
come asymptotic to the light line of vacuum whenkiD in-
creases are essentially slab modes of the vacuum layers. Fi-
nally, one can recognize aroundvD /c.4.5 [see Fig. 8(b)]
the existence of an omnidirectional band gap for TE polar-
ization of the electromagnetic field. These general trends par-
allel those mentioned in the previous discussions. It is also
interesting to mention that an omnidirectional band gap oc-
curs in the TM band structure aroundvD /c.7 [see Fig.
8(a)]; however, in this frequency range only the dielectric
permittivity «2 is negative while the magnetic permittivitym2
is positive.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented a detailed study of the
photonic band structure of one-dimensional superlattices
composed of alternate layers of right-handed and left-handed
materials. The different possible behaviors have been illus-
trated by varying the physical parameters and the volume
fraction of LHM materials. In particular, the formation of the
bands below or between the light lines of the constituting
materials can be understood on the basis of the localized
interface modes at a LHM-RHM boundary and the confined
modes of a LHM (RHM) layer sandwiched between two
semi-infinite RHM(LHM ). While the RHM-LHM layer can,
in principle, support both TE and TM interface modes, only
one of these modes can exist at most. Thus, in the superlat-

tice band structure, there can be at most one band originating
from the localized interface mode. Between the light lines of
the constituting materials, there are also narrow bands origi-
nating from the confined modes of a layer, their number in-
creasing with the volume fraction of the corresponding ma-
terial in the superlattice. Among other peculiar behaviors
associated with the presence of the LHM with fixed param-
eters«2 and m2, one can notice the behavior of the band
structure in the vicinity ofv=0 and, in particular, the exis-
tence of a band that lies below the light lines of the consti-
tuting materials and can reach a vanishing frequency at non-
vanishing values of the wave vectorki. Also, the dispersion
curvesv versuskz, calculated for a given value ofki, do not
behave always monotonically as in usual superlattices, but
may describe only a limited range of the Brillouin zone and
display a zigzag behavior. For specific values of the param-
eters, such bands may become even very narrow and appear
as a discrete modev at kz=0 or p /D. This happens, in par-
ticular, atki >0 when the average index of refraction in the
superlattice is equal to zero, but such a behavior is not lim-
ited only to the caseknl=0.

Finally, a new phenomenon associated with the presence
of the LHM is the possibility of an absolute band gap, of
either TE or TM polarization, when the material parameters
are chosen appropriately. This enables us to propose an ap-
plication of our structure for realizing an omnidirectional
optical mirror that prevents propagation of optical waves of
TE or TM polarization for a given frequency range. Combi-
nation in tandem of two such multilayers can yield an omni-
directional reflector of light for both polarizations.
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