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Symmetric and asymmetric solitons in linearly coupled Bragg gratings
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We demonstrate that a symmetric system of two linearly coupled waveguides, with Kerr nonlinearity and
resonant grating in both of them, gives rise to a family of symmetric and antisymmetric solitons in an exact
analytical form, a part of which exists outside of the bandgap in the system’s spectrum, i.e., they may be
regarded as embedded solitdi&S’s, i.e., the ones partly overlapping with the continuous spegtraram-
eters of the family are the soliton’s amplitude and velocity. Asymmetric ES’s, unlike the rggolaembed-
ded gap solitongGS’s), do not exist in the system. Moreover, ES’s exist even in the case when the system’s
spectrum contains no bandgap. The main issue is the stability of the solitons. We demonstrate that some
symmetric ES’s are stable, while all the antisymmetric solitons are unstable; an explanation is given to the
latter property, based on the consideration of the system’s Hamiltonian. We produce a full stability diagram,
which comprises both embedded and regular solitons, quiescent and moving. A stability region for ES’s is
found around the point where the constant of the linear coupling between the two cores is equal to the
Bragg-reflectivity coefficient accounting for the linear conversion between the right- and left-traveling waves
in each core, i.e., the ES’s are the “most endemic” solitary solitons in this system. The stability region quickly
shrinks with the increase of the soliton’s velocity and completely disappears whenexceeds half the
maximum velocity. Collisions between stable moving solitons of various types are also considered, with a
conclusion that the collisions are always quasielastic.
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I. INTRODUCTION the results demonstrated below for collisions between soli-
Light propagation in optical media with a periodic modu- tons may flnﬁ a pote|r1t|§1I application in switching of optical
lation of the refractive index has been a subject of intensivc;beaws(see t Ie g:onc lIJ.S'Qn I | . hich
theoretical and experimental studies. Waveguides of this type | "€ model of two linearly coupled gratings, which sup-

are used in various applications, which include optical filters POrtS GS's, were studied in Rgfl9]. In that work, the exis-

dispersion compensators, switches, pulse compressors, efgNc€ of asymmetric GS solutions in the bandgap, alongside
They are also media of fundamental interest in their owrPPvious symmetric solutions, was demonstrated for the case

right. Applied and fundamental aspects of optics of the peri-When the linear coupling between the two cores was rela-

odically modulated waveguides, which are most essential fogg(é%s\fi'ﬁaks' mge?ﬁznc]gquer:{gr C:jlrstss V\\’/V:rr: usrgzgi'lewrll\lllgv;?ter::a-
the present work, were investigated, in particular, in Refs gsy P '

[1-12 (see also Ref{13)). less, the symmetric solitons were stable when asymmetric

) . - S ones did not exist. Recently, a more general model of three
Bragg gratingBG) is a periodic structure which induces jineary coupled fiber gratings forming a triangular configu-

linear resonant coupling between counterpropagating waveg,iion was introduced, and various types of symmetric, anti-
The mt_erplay of the countgrpropagatpn an(_:i linear CO}Jp"”%ymmetric, and asymmetric solitons were studi2d.
gives rise to strong effective dispersion with a gap in the ~ concerning the realization of these configurations in pho-
linear spectrum. The balance between the effective dispetonic devices, fabrication of a dual-core fiber grating was
sion and nonlinearity of the waveguide which carries BG'sreported recently21]. In fact, the most promising setting for
gives rise to solitary waves, known as gap solit¢GS's)  the development of multicore gratings is not a system of
[13-15. For the first time, they were observed in a parallel-coupled fibers, but rather a photonic-crystal fiber,
6-cm-long piece of a nonlinear optical fiber equipped withi.e., a large-area waveguide with many small holes running
BG’s [16]. parallel to its axig22]. In this host medium, one can easily
An optical medium which offers a potential for enhance-drill a relatively wide (with the diameter~2 um) hollow
ment of functionality of the nonlinear pulse dynamics isconduit(creation of two such conduits in a photonic-crystal
composed of two identical linearly coupled waveguides withfiber was recently reportefP3]) and, as was proposed in
the Kerr nonlinearity and resonant gratings in both of themRef. [20], one can write an inverted grating on the inner
i.e., a hybrid of the well-known nonlinear optical coupler surface of the condu#).
[17,18 and BG's. As we demonstrate in this work, there is  The objective of the present work is to extend the study of
also a physically different realization of the same model,solitons in the model of the dual-core BG to the case when
viz., a system of two parallel nonlinear planar waveguideghe linear coupling is stronger, and especially to a region
equipped with spatial gratings in the form of a set of parallelwhere the intrinsic soliton’s frequency may reside inside the
scratches. In the latter case, the model describes the dynamentinuous spectrum of the radiation modes. Localized solu-
ics in the spatial, rather than temporal, domain. In particulartions whose frequencies are embedded into the continuous
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radiation band are usually called embedded solit@fs's) iUge + iUgy + (Jug) 2 + vy + vy + AU, =0, (1)
[24]. ES’s have been found in models of various nonlinear-

wave systems—chiefly, opticgR5-29 and hydrodynamic S 2 2 -

[30-36. In contrast with regular solitons, ES’s usually do 3= gt (0af*72 +ugf)os + Uy + o2 =0, (2)
not exist in continuous families, but as isolated solutions, ) ] ) )

although exceptions to this are knowW&7], including the g + iU, + (|Ug| /2 +[vg Uz + v+ AU =0, (3)
physically important case of the nonlinear Schrédinger equa-

tion with the third-order dispersiof38], and the complex v — ivgg+ (|oH2 +|Up|?)vp + Uy + Avy = 0, (4)

modified Korteweg—de Vries equati¢B9]. . . . .
In this work, we show that continuous families of sym- wheret andx are the normalized time and propagation dis-

metric and antisymmetric solitons that may be regarded atnce, the subscripts 1 and 2 are numbers of the two cores,
ES'’s exist in the model of two linearly coupled BG’s with the and the fields denoted hyandv are amplitudes of the right-
Kerr nonlinearity. These solutions can be easily found in arnd left-traveling waves in each core. Alternatively, the same
exact analytical form, which contains two free parametersmodel may be realized as describing stationary field distri-
viz., the amplitude of the soliton and its velocity. Moreover, butions in two parallel-coupled planar waveguides with the
this family exists even in the case when the system’s lineagratings in the form of a system of parallel scratches, in
spectrum contains no gap at all, hence the model cannathich cases and x are, respectively, the propagation dis-
support ordinary GS's. Systematic numerical analysis demtance and transverse coordinate. In either case, the cross-
onstrates that embedded asymmetric solitons, unlike thphase-modulation coefficient and Bragg reflectivity are nor-
abovementioned regulgnonembeddedasymmetric GS’s, malized to be 1, and\ is the coefficient of the linear

do not exist in the present model. In other words, this meangoupling between the cores. In what follows, wes&t0, as

that only ES's that can be found in the exact analytical formine opposite case reduces to it by taking and v, instead

are possible in the model. f u, andv,.

_ o
Although the fact that the dual-core BG model gives rise  Tha axistence of nontrivial soliton states in this model

to the two-parametric families of symmetric and antisymmet-;oq mes that the Bragg-reflection length in each core should

ric solitons was not _me_nt|o_ned In-any earlier Workz t_he_eX|s-be of the same order of magnitude as the coupling length due
tence of these families is, in fact, obvious. A nontrivial issue

is the stability of these solitons, which is the main subject of' the interaction between the cores. In the fiber gratings

the present paper. We identify stability regions for both qui_available in the experiment, both Ie_ngths have typicql values
escent(zero-velocity and moving symmetric ES's. In fact, 2€fween 1 mmand 1 ci3]; essentially the same estimates

we produce a full stability diagram, that shows stability areaPP!Y t0 the abovementioned alternative realization of the
for both regulainonembeddexand embedded solitons, as a present_model,_ in terms of §pat|al f|elds in two pargllel planar
full stability area for regular GS's was not obtained in Ref.waveguides with the quasi-one-dimensional gratings. Thus,
[19]. A noteworthy feature is that the stability region of the experimental observation of the solitons studied in RE9]
symmetric ES’s extends to the abovementioned case whe#d in the present work is quite feasilgées for the necessary
the system’s spectrum has no gap. Concerning the antisyntength of the dual-core fiber grating, several centimeters is
metric ES’s, they all turn out to be unstable, for which asufficient[16], and, actually, essentially longer uniform BG’s
simple explanation, based on consideration of the model'sire availablg13]). It may also be relevant to mention that,
Hamiltonian, is proposed. thus far, solitons in the usual nonlinear fiber couplers have
In addition to the stability, we also study collisions be- not been observed, despite a large amount of theoretical
tween solitons of both embedded and ordinary types, whiclvork done for themsee a review in Chap. 6 of Rg#Q]).
is another natural issue, once stable moving solitons havghe addition of the BG offers a realistic possibility to ob-
been found. Simulations of collisions were carried out SYSserve solitons in Coup|er$specia||y, using the abovemen-
tematically in the entire region in the parametric space whergoned configuration with two hollow conduits in a photonic-
the stable ES’s exist. A general conclusion is that the solitongrystal fiber with inverted BG's written on the inner
are stable against collisions, and in all the cases the collisionsyrfaces
are quasielastic, glvmg rise to very small radiation loss. The linear version of Eqs(_‘]_)_(4) gi\/es rise to a disper-
Thus, the colliding solitons either pass through each other, osion relation w(k) for the plane-wave solutionsly 5,01
bounce. ~exp (ikx—iwt). The dispersion relation contains two
The rest of the paper is organized as follows. In Sec. Il anches
we formulate the model, give its two different physical real-

izations(in the temporal and spatial domajpand produce @? = N2+ 1 +KP £ 201 +K?, (5)
analytical solutions for the ES’s. Results of the stability h having it Th ding to th
analysis are collected in Sec. lll, and collisions betweerf a° ;“l”ng IS own .galp:—). 5 € ones corrssplon Ing 1o the up-
moving solitons are considered in Sec. IV. Section V conPEr and lower signs in 45) are, respectively,
cludes the paper. lw| <1+X, (6)
Il. THE MODEL AND EXACT SOLUTIONS FOR
SYMMETRIC SOLITONS o] < max{0,(1-M)}. (7

A dual-core nonlinear fiber grating is described by a set ofAs is seen, the inner gai) exists provided thak <1. It is

four equationg19] located completely inside the outer o(®), thus the true
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bandgap of the full four-wave system is given by the expres-X
sion (7), provided thath <1, and it does not exist ik=1 08
[19]. However, the partial bandgasemi gap (6) exists at
any A, which opens the way to the possibility of the exis-
tence of ES'q24,27-29. 07

Steady-state solutions to Eq4)—(4) for solitons moving 0.6
at a velocityc are sought for as

0.8

0.5

up A&t = e_iwtul,z(g),vl,z(&t) = e_iwtvl,z(g),f =X-ct. 04
(8 03
Substitution of Eqs(8) into Eqgs.(1)—(4) leads to a set of 92
four ODE’s, 0.1
wUp+i(1—c)Ui+ (JUg72 +|Vi|)U; + V1 +NU, = 0, °
(9 01005 o1 015 02 025 03 035 04 045 05
A
V1 —i(1+0)Vy+ (V)72 +|U >V, + U +AV, =0, FIG. 1. The bifurcation diagram for stationary gap solitons with
(10) 0=0.47r. The curved branch corresponds to the asymmetric soliton

solutions, while the horizontal line represents the symmetric solu-
tions. Stable and unstable branches are shown by solid and dashed
oUy+i(L-c)Uy+ (|U2|2/2 + |V2|2)U2 +V,+\U; =0, lines, respectively. Note that the asymmetric solutions exist only
(11) inside the true bandgap: a condition for this, following from Egs.
(7) and (18), is 2\ <1+cos(0.4qr) = 1.309, and it is obvious that
this condition is met.
@V =i(L+C)Vy+ (Vo712 +[U)V, + U + AV, =0,
(12) 6= cos'y, 17

where the prime stands fardé. To find symmetric or asym- yvherea is an intrinsic parameter of the soliton family, which
metric soliton solutions, numerical and approximate analytiJS Proportional to the soliton energy and takes values
cal (based on the variational technigqueethods can be used, 0<6<. ) .
as was done in Ref19], where both movingc#0) and A simple but important remark is that, as the exact solu-
quiescentc=0) asymmetric and symmetric stable solitons ofions (16) and (17) to Eg. (15 exist in the interval
the usuaknonembeddedtype were found. However, an ac- -1<x< +1,_ the frequen_cy of th_e solitons corresponding to
tual stability border for asymmetric solitons was not found inthe expressiongl4) falls into an interval
Ref. [19], as the analysis was limited to the case of a small
coupling constank. This result is presented in Fig. 1 below.
Parametric regions which were not investigated before arwhich is, obviouslybroaderthan the bandgafy), although
explored below to search for new stable soliton solutionsit is always located inside the semigéf). This means that,
especially ES ones. in the case of <1, the exact symmetric solitons belonging
Solutions for symmetric solitons, with to the subinterval

“1-AN<wgmm=x—-A<1-X, (18

Uy = Uy, 1 = 0o, (13) —l—)\<wsymm<—|l—)\| (19)

can be easily obtained in an exact form, using well-knownmay be classified as embedded solitgBS’s). Moreover, in
solutions for the single-core modgt1,42. In the case ot the case ok >1, when the true bandgap) of the four-wave

=0, the result is system does not exist at all, the exact symmetric solutions
are still available in the intervgll8).
g A& =€ 0MNY(g),0y A£1) = - XV () (14) On the other hand, the substitutigh3), as well as the

similar substitution(25) for the antisymmetric case, con-
(the asterisk stands for the complex conjugatiavhere the  denses the underlying system of four equatidns(4) into a

function U(¢) obeys the equation system of two equations equivalent to the uqu#l single-
core fiber-grating model. In terms of the reduced model, the
XU +iU’ +(3/2)|U[PU-U"=0. (15  symmetric and antisymmetric solitons are regular GS's,
. _ i rather than ES’sthis may be compared to the situation for
A family of exact solutions to Eq(15) is well known, solitons in the usual two-core fiber, without the H@3]).

Nevertheless, small perturbations added to the soliton may

U(x) = \/g(sin e)sech<x sin 69— '_6,> v=-U", (16) violate the reductiorf13) and(25), and they thus “feel” the
3 2 ) ' actual band structure of the full four-wave system. Therefore,
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stability of the symmetric and antisymmetric solitons in the y,(x,t) = u(x,t) = e ™u(x,t);v1(x,t) = v(x,t) = e Mo(x1).
four-wave system may be completely different from that of (29)
the regular two-wave GS’'swhich is the case indeed, as
shown below, revealing the “hidden embeddedness” of theAgain, the functionsi andv obey Eqs(21) and(22), and are
symmetric and antisymmetric solitons. given by the expression&3).

Symmetric moving solitonéwith ¢ # 0) are looked for in

the form
I1l. STATIONARY SOLITONS AND THEIR STABILITY

Up 2%, 1) = u(x,t) = €Mu(x,t);vg o(X,t) = v(x,t) = €Molx,t).

(20) Symmetric and asymmetric soliton solutions for the
The substitution of these expressions into Eds-(4) results ~ Present model, found in Refl19] for the case of small cou-
in a system pling constant, are presented by dint of a bifurcation diagram
in Fig. 1, which is a plot of the asymmetry parameter

A. Regular (nonembedded) asymmetric solitons

iU +it+ (U2 +[u)u+v =0, (21 -2
N = im 2m (30)

— — u? + U2
iv —ivg+ (o2 +[uP)v +u=0. (22 Im * ¥2m
. : . versus the coupling constant u,,, andu,,, being the ampli-
Movmg-sol|tor.1 solutions to Eqs(21) and (22) are well tudes of the figldsiz in the Itwlcr)n coresz.mThe (?iagram gem-
known[4142: onstrates the appearance of stable asymmetric solutions and
—_ ; i ; simultaneous destabilization of the symmetric one at a criti-
U= aWX)exply/2 +1¢(X) ~IT cos 0+ idol, cal value of\. Due to symmetries of Eq$9)—(12), the bi-
_ ] ) ) furcation diagram fol <O is the mirror image of that with
v="-aW (X)exp[-y/2 +i$(X) =iT cos 6 +id], A>0. In fact, this diagram was already obtained in R&€],
(23) and is included here for completeness of the description.
However, existence and stability limits for the solitons
where ¢, is an arbitrary real constant and were found in Ref[19] only in a partial form, therefore the
global picture of stable and unstable soliton solutions re-

a 2= §+C2,tanryz c,X= x—ct T= t/—cx , mained unexploredit was displayed in a more complete
2 v1-¢? V1-¢? form for the abovementioned system diiree linearly
coupled fiber gratings, forming a triangular configuration, in
#(X) = & sinh(2y)tar [tanh (X sind)tan(4/2)], the recent work20]). The first result of the present work is
a full stability diagram for the quiesce(rero-velocity soli-
o . . tons, both GS’s and ES'’s, in the model based on Egs(4),
WI(X) = (sin 6) sech[X sin §-i(6/2)]. (24 \yhich is displayed in Fig. 2 in terms of thé\,6) plane
Solutions for antisymmetric solitons with [recall 6 is the intrinsic parameter of the soliton solution
defined by Eq(17)]. The stability and instability was iden-
Up=—Uv1="02 (25) tified in direct simulations, which is not as rigorous as the

definition based on computation of stability eigenvalues for
Ysmall perturbation$44], but it is closer to the stability as it
may be observed in the experiment. In particular, a notewor-
uy (&) = 0N (g) vy (£1) = — eV (), (26) thy peculiarity, obvious in F_ig. 2_, is that stable symmetric ES
never(at no value of\) coexist with stable asymmetric GS’s,
where U(€) again obeys Eq(15) and is thus given by the while their coexistence with stable symmetric regular GS’s
expression$16) and(17). So, Eqs(26) imply that the anti- occurs.

can also be easily found in an exact form. For zero-velocit
antisymmetric solitons, Eq14) is replaced by

symmetric soliton solutions exist in the interval The area abové=0.5x is not included, as all solitons are
unstable if6 exceeds a critical value=1.01(7/2) [44,45.
“1+N<wa=x+N<1+A\, (27)  we note in passing that the instability of solitons in that area

can be effectively controlled in a model including a local
attractive defec{46,47: the unstable solitons quickly relax
to a stable one witl#= 0.5z by shedding off excess energy
in the form of radiation.

which is again broader than the true bandg&pbut smaller
than the semigaf®), see Eq(18). In particular, they occupy
a subintervalsee Eq(19)]

|1 -\ < wgnii < L+, (28)

where they are ES’s, as it does not overlap with the true B. Quiescent (zero-velocity) embedded solitons

bandgap(7), and they exist also in the case ©0f>1, when Any soliton which exists below the bandgap edge in Fig.

the four-wave system has no true bandgap. 2 is classified as an ES, in the sense that was explained
Solutions for antisymmetric moving solitons are lookedabove. Such solitons were not considered in the present

for, instead of Eq(20), in the form model before. Here, we started by seeking for ES’s, different
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FIG. 2. Regions in thé\, ) plane, where different types of farb. units)
standing(c=0) gap solitons are founftecall thaté is the intrinsic

parameter of the soliton family, see Ed.6)]. In region A, stable max |L.1f'9
asymmetric regulainonembeddedsolitons exist in the bandgap  max Iuglss_
(note that it ends at=1, in accordance with Eq7). In region B, (normalizeg
symmetric regular solitons are stable. The bandgap edge is identi units) ok
fied as a curve where the frequency of the exact soliton, given by
Eqgs.(14) and(16), is equal to 1, which is the edge of the gap in 078
the linear spectrum of the four-wave systé?(4), see Eq(7) (in
particular, forn=1, the bandgap edge is @t=w/2). Below the 07r
bandgap edge, only solitons of the embedded t#peerms of the

0.65

full four-wave systemmay exist. They are unstable in region C, but
stablein region D, wherex is close to 1, and is small. Note that
the latter stability region extends to values- 1, where the system
has no true bandgap gap in its spectrum. 051

06

from the exact solutions given above, in a numerical form.
The systematic search in the system’s parameter space he
turned upno new (asymmetri¢ ES solutions, which is a ()

drastic difference from the situation inside the bandgap,

where the obvious exact symmetric and antisymmetric soli- FIG. 3. Typical examples of the evolution of unstable symmetric
tons coexist with nontrivial asymmetric ongk9]. Note that embedded solitons. The time dependence of the amplitudes of the
the region occupied by asymmetric solitons in Fig. 2 is iso-Soliton, i.e., maxima ofu,| (solid) and |up| (dotted, is displayed.
lated from the bandgap’s edge. The decgy o_f the fields, an_d vy is 5|m|Iar._ (@) ¢c=0,A=0.7, and

Nevertheless, the exact symmetric solitons, given by theﬁzo.lqr (in this case, the solid apd d_otted lines completely overlap
expressiong13), (14), (16), and(17), and their antisymmet- (? ¢=0,A=0.7, and§=0.3m, which is larger than in pane#).
ric counterparts, given by Eq$29), (26), (16), and (17),  scanned for their stability. The numerical method was based
exist as a continuous family of the ES’s in the inter¢®),  on the split-step code combined with the Fourier transform.
if A<1, and in the whole interva(l8) if A>1, or in the We stress that not all the symmetric ES’s, available in the
intervals (28) and (27), respectively. A nontrivial issue is exact analytical form, are stable. Their stability region has a
their stability. Indeed, as was shown in a general form in Refnontrivial shape, and it is included in the general stability
[24], ES’s are linearly but nonlinearly semi statil@hich  diagram displayed in Fig. 2. It can be seen that the stable
means that, beyond the linear approximation, a weak instssymmetric solitons cluster around the region with snll
bility may be initiated by a small perturbation, depending onand A =1, where the bandgaf/) closes up. Outside this
its sign), in the case when they exist as isolated solutions. Irregion, the symmetric ES’s are unstable; however, the insta-
actual simulations, the semistable ES’s may behave, in sontlity is weak, and develops slowly near borders of the sta-
parameter regions, as truly stable solit28,29. In the case bility region.
when ES’s can be found in continuous families, they are, The simulations demonstrate that unstable symmetric
generally speaking, semistable t{28]. ES’s with a small amplitud&=0.17, decay into radiation.

In this work, we focus on investigation of the stability of See an example in Fig(8; in this case, the solitons decay
the continuous-family ES’s, running direct simulations in aand remain symmetric, i.e., without violating the reduction
systematic way, with random perturbations added to the soli¢13) which lead to the exact symmetric solutions. Unstable
ton wave form. As was mentioned above, this approach isolitons with a larger amplitudé= 0.3 first develop oscil-
adequate to predict a possibility of observation of ES’s in arations [see Fig. 8)], but eventually they also decay. It is
experiment. This way, the existence interval of the ES’s waseen from Fig. @) that, in the latter case, the perturbations

0.5
0 50 80
t (arb. units)
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Similar to what was found for quiescent symmetric soli-
tons, the instability of the moving ones develops slowly
close to the border of the stability region. The unstable mov-
ing solitons with small decay into radiation in a way simi-
lar to what is depicted in Fig.(8). “Heavier” moving soli-
tons (the ones with large#) develop oscillations similar to
those in Fig. 8), although the oscillations start to develop at
smaller 6 (close to#=0.27) than in the quiescent solitons.
The latter feature seems quite natural, in view of the shrink-
age of the stability region with the increase of the velocity, as
per Fig. 4.

02[

(AN

0.05

IV. COLLISIONS BETWEEN SOLITONS

0.6 Of7 0{8 0.9 ‘; 151 172 1?3 1.4
Stable moving ES’s being available, it is natural to con-

FIG. 4. Regions in thé\, ) plane, where the moving symmet- Sider their collisions, with regular solitoristable GS's inside
ric embedded solitons are stable. With the increase of the velocitjhe bandgap or between ES’s themselves. We display the
|c|, the stability region shrinks to nil at=~0.5. results here for a fixed value of the linear-coupling coeffi-
cientA=0.9. As it is smaller than 1, regular GS’s exist in this

which destroy the stable ES are antisymmetric, i.e., they viotase too. In fact, we carried out simulations at other values of
late the reductiori13) and arouse full dynamics of the four- A t00—In particular, in the range 07\ < 1. The results are
wave system. consistent with what is described below. However, wkés

The antisymmetric quiescent solitons ateaysunstable, close to 0.7 or to 1, either the symmetric ES'’s or the regular
both outside the true bandgap and inside of it. All of themGS’s are too close to the instability threshold, therefore the
decay, although the ones withclose to 1 and sma# do it ~ ©€aS€ withA =0.9 is more interesting, corresponding to colli-
slower than those with taken farther away from 1. Unstable Sions between sufficiently robust solitons. Only collisions
antisymmetric solitons withd=0.3= develop oscillations P€tween symmetric solitons were considered, since asym-
similar to those demonstrated by their unstable symmetrig€tric GS's do not coexist with any stable ES for the same
counterparts. value of\, according to Fig. 2.

In fact, the instability of the antisymmetric solitons has a _Figure 32 shows an example of a moving ES colliding
simple explanation: a part of the Hamiltoni&hof the un- with a quiescent ES, the two solitons being in phase at the

derlying model(1) and (2), which accounts for the linear initial moment. It is seen that the solitons repel each other
coupling between the cores, is and essentially bounce from each other as particles, so that

the initially moving soliton stops, while the initially quies-
H x cent one picks up all the momentum. Very little radiation loss
Heoupiing= _)\J_m (Ul +v07)dx+ C.C., is observed, so that the collision is almost entirely elastic.
The same collision with different values of the initial phases
where c.c. stands for the complex-conjugate expression. As jincluding thesw-out-of-phase cageseems virtually the same
immediately follows from here, the substitution$3) and  way: the former quiescent soliton starts to run, while the
(25) yield, respectivelyH oypiing<0 andHcqyping™>0 (recall  former moving one halts. In this connection, it should be said
we set\ >0), while making no difference in other parts of that, in the case when the colliding solitons have different
the full H. Obviously, a symmetric state which minimizes  amplitudes and/or absolute values of the velocities, i.e., if the
may give rise to a stable solution, but an antisymmetric onecollision is not a fully symmetric one, the initial phase dif-
which corresponds to the maximum kf cannot do it. ference between the solitons is not expected to play an es-
sential role.

Figure §b) shows the collision of a moving ES with a
quiescent regular GS, both being initially in phase. This time,
The stability of moving symmetric ES’s, which are avail- the moving solitonpassesthrough the quiescent one, with
able in the exact analytical form, given by E@4&3), (20), small radiation loss. The quiescent soliton gets shifted as a
(23), and(24), was also examined in direct simulations. Theresult of the collision. Essentially the same result takes place
evolution of the stability region in the plar(@, §) with the  for other values of the initial phase difference between the

increase of the velocitjc| is shown in Fig. 4. It is seen that solitons.

the stability region quickly shrinks with the increase of the Figure §c) shows the cases when both colliding solitons
velocity ¢, and no stable moving symmetric ES’s can beare of the embedded type, and both are movimgt with
found for cZ0.5. This is a drastic difference from what is different velocitie$. This case is not equivalent to that con-
known about stability of the moving regular GS’s in the stan-sidered above in Fig. (8), as the underlying equations
dard single-core model, where the critical valuedafeparat- (1)—(4) are not Galilean or Lorentz invariant, hence no ve-
ing stable and unstable solitons very little depends on théocity change can be generated by a simple transformation.
velocity, in the whole region &c<1 [44]. The outcome of the collision is also very different from that

C. Moving embedded solitons
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FIG. 5. Typical examples of collisions between symmetric solitons. The intercore linear coupling coeficsefited to be 0.9. The
upper panels show the contour plots of the evolutiofugf and the lower ones display the wave formgwaf and|v4| (solid and dashed
lines) at the end of the simulatiorfa) A moving embedded soliton with=0.1 and#=0.17 collides with a quiescenfc=0) embedded
soliton, which also ha®=0.17r. Both solitons are initially in phas€b) A moving embedded soliton witb=0.1 and#=0.1m collides with
a quiescentc=0) regular one with6=0.57, both solitons being initially in phase. The moving embedded soliton passes through the
quiescent regular gap soliton, which undergoes a position shift. Small radiation loss occurs in this) @éas@ving embedded soliton with
¢=0.3 andf=0.2x collides with another moving embedded soliton that &a8.1 andf=0.1m, both solitons being initially in phase. The
heavier fast soliton passes through the slow lighter one, which undergoes a position shift. The collision results in small radigtipA loss.
moving regular soliton witlt=0.1 andd=0.57 collides with a quiescer(t=0) embedded one witl#=0.1s. Initially, both solitons are in
phase(e) The same as in the caéd), but with the initial phase difference between the solitons. Note that, in contrast with the ¢dge
both solitons move after the collision.
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in Fig. 5@): this time, the fast soliton passes through thethe system’s bandgap and extend into the “semigapiich
slow one with a very small radiation loss. The slow solitonis a gap only in terms of one out of two branches of the
demonstrates a position shift after the collision. This out-dispersion relation Therefore, parts of these solution fami-
come is actually similar to that observed in Fighp despite  lies may be regarded as embedded solitons. The model itself
the fact that the quiescent soliton was a regular one in thétas two different physical realizations, for fibers and planar
case. waveguides—in the temporal and spatial domains, respec-

Figures %d) and %e) show the situation when moving tively. The embedded-soliton family is found even in the
regular solitons collide with initially quiescent ES's. In these case when the system’s spectrum has no true bandgap at all,
cases, the heavy moving solitons pass through the lightdrence no regular gap solitons may exist. Numerical search
quiescent ones. In the ca@®, the quiescent soliton demon- has revealed that the system never supports asymmetric em-
strates a position shift. However, the cdsg[which differs  bedded solitons.
from (d) only by the initial phase difference between the Simulations of the evolution of perturbed solitons have
solitons, which ism, rather than Q) is remarkably different:  produced a full stability diagram, which comprises both em-
in this case, the former quiescent solitons also acquires bhedded and reguldgap solitons and quiescent and moving
finite velocityafter the collision. In all these cases, very smallones. The stability region of the embedded solitons is located
radiation loss results from the collisions. around the point where the two linear couplingse inter-

The case when both colliding solitons are regular onegore and Bragg-reflectivity ongare equal. The latter finding
was studied too. The collisions then seem essentially thanplies that the embedded solitons are most “endemic” to
same way as in the case when the ES’s collide, see Fay. 5 this system. Their stability region shrinks with the increase

If the model is realized in terms of the spatial solitons inof the soliton velocityc, so that there are no stable embedded
planar waveguidegsee the Introduction the shift of the solitons for the velocity exceeding half of the maximum ve-
soliton and(in some casedts velocity change, which result locity. All the antisymmetric embedded solitons, quiescent
from the collision, can find application to switching of the and moving ones, are unstable, to which a simple explana-
beams. In that case, the soliton which features the positiotion is given, based on the consideration of the system’s
shift or velocity changéin the spatial-domain case, the latter Hamiltonian. Collisions between solitons of different types
actually is a change of the beam’s slantay be a signal have been studied too, with the conclusion that the collisions
beam, while the other one is a control one. always result in the mutual passage or bounce of the solitons,

with very small radiation energy losses.
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