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We demonstrate that a symmetric system of two linearly coupled waveguides, with Kerr nonlinearity and
resonant grating in both of them, gives rise to a family of symmetric and antisymmetric solitons in an exact
analytical form, a part of which exists outside of the bandgap in the system’s spectrum, i.e., they may be
regarded as embedded solitons(ES’s, i.e., the ones partly overlapping with the continuous spectrum). Param-
eters of the family are the soliton’s amplitude and velocity. Asymmetric ES’s, unlike the regular(nonembed-
ded) gap solitons(GS’s), do not exist in the system. Moreover, ES’s exist even in the case when the system’s
spectrum contains no bandgap. The main issue is the stability of the solitons. We demonstrate that some
symmetric ES’s are stable, while all the antisymmetric solitons are unstable; an explanation is given to the
latter property, based on the consideration of the system’s Hamiltonian. We produce a full stability diagram,
which comprises both embedded and regular solitons, quiescent and moving. A stability region for ES’s is
found around the point where the constant of the linear coupling between the two cores is equal to the
Bragg-reflectivity coefficient accounting for the linear conversion between the right- and left-traveling waves
in each core, i.e., the ES’s are the “most endemic” solitary solitons in this system. The stability region quickly
shrinks with the increase of the soliton’s velocityc, and completely disappears whenc exceeds half the
maximum velocity. Collisions between stable moving solitons of various types are also considered, with a
conclusion that the collisions are always quasielastic.
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I. INTRODUCTION

Light propagation in optical media with a periodic modu-
lation of the refractive index has been a subject of intensive
theoretical and experimental studies. Waveguides of this type
are used in various applications, which include optical filters,
dispersion compensators, switches, pulse compressors, etc.
They are also media of fundamental interest in their own
right. Applied and fundamental aspects of optics of the peri-
odically modulated waveguides, which are most essential for
the present work, were investigated, in particular, in Refs.
[1–12] (see also Ref.[13]).

Bragg grating(BG) is a periodic structure which induces
linear resonant coupling between counterpropagating waves.
The interplay of the counterpropagation and linear coupling
gives rise to strong effective dispersion with a gap in the
linear spectrum. The balance between the effective disper-
sion and nonlinearity of the waveguide which carries BG’s
gives rise to solitary waves, known as gap solitons(GS’s)
[13–15]. For the first time, they were observed in a
6-cm-long piece of a nonlinear optical fiber equipped with
BG’s [16].

An optical medium which offers a potential for enhance-
ment of functionality of the nonlinear pulse dynamics is
composed of two identical linearly coupled waveguides with
the Kerr nonlinearity and resonant gratings in both of them,
i.e., a hybrid of the well-known nonlinear optical coupler
[17,18] and BG’s. As we demonstrate in this work, there is
also a physically different realization of the same model,
viz., a system of two parallel nonlinear planar waveguides
equipped with spatial gratings in the form of a set of parallel
scratches. In the latter case, the model describes the dynam-
ics in the spatial, rather than temporal, domain. In particular,

the results demonstrated below for collisions between soli-
tons may find a potential application in switching of optical
beams(see the Conclusion).

The model of two linearly coupled gratings, which sup-
ports GS’s, were studied in Ref.[19]. In that work, the exis-
tence of asymmetric GS solutions in the bandgap, alongside
obvious symmetric solutions, was demonstrated for the case
when the linear coupling between the two cores was rela-
tively weak. The asymmetric GS’s were stable, while their
coexisting symmetric counterparts were unstable. Neverthe-
less, the symmetric solitons were stable when asymmetric
ones did not exist. Recently, a more general model of three
linearly coupled fiber gratings forming a triangular configu-
ration was introduced, and various types of symmetric, anti-
symmetric, and asymmetric solitons were studied[20].

Concerning the realization of these configurations in pho-
tonic devices, fabrication of a dual-core fiber grating was
reported recently[21]. In fact, the most promising setting for
the development of multicore gratings is not a system of
parallel-coupled fibers, but rather a photonic-crystal fiber,
i.e., a large-area waveguide with many small holes running
parallel to its axis[22]. In this host medium, one can easily
drill a relatively wide (with the diameter,2 mm) hollow
conduit (creation of two such conduits in a photonic-crystal
fiber was recently reported[23]) and, as was proposed in
Ref. [20], one can write an inverted grating on the inner
surface of the conduit(s).

The objective of the present work is to extend the study of
solitons in the model of the dual-core BG to the case when
the linear coupling is stronger, and especially to a region
where the intrinsic soliton’s frequency may reside inside the
continuous spectrum of the radiation modes. Localized solu-
tions whose frequencies are embedded into the continuous
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radiation band are usually called embedded solitons(ES’s)
[24]. ES’s have been found in models of various nonlinear-
wave systems—chiefly, optical[25–29] and hydrodynamic
[30–36]. In contrast with regular solitons, ES’s usually do
not exist in continuous families, but as isolated solutions,
although exceptions to this are known[37], including the
physically important case of the nonlinear Schrödinger equa-
tion with the third-order dispersion[38], and the complex
modified Korteweg–de Vries equation[39].

In this work, we show that continuous families of sym-
metric and antisymmetric solitons that may be regarded as
ES’s exist in the model of two linearly coupled BG’s with the
Kerr nonlinearity. These solutions can be easily found in an
exact analytical form, which contains two free parameters,
viz., the amplitude of the soliton and its velocity. Moreover,
this family exists even in the case when the system’s linear
spectrum contains no gap at all, hence the model cannot
support ordinary GS’s. Systematic numerical analysis dem-
onstrates that embedded asymmetric solitons, unlike the
abovementioned regular(nonembedded) asymmetric GS’s,
do not exist in the present model. In other words, this means
that only ES’s that can be found in the exact analytical form
are possible in the model.

Although the fact that the dual-core BG model gives rise
to the two-parametric families of symmetric and antisymmet-
ric solitons was not mentioned in any earlier work, the exis-
tence of these families is, in fact, obvious. A nontrivial issue
is the stability of these solitons, which is the main subject of
the present paper. We identify stability regions for both qui-
escent(zero-velocity) and moving symmetric ES’s. In fact,
we produce a full stability diagram, that shows stability areas
for both regular(nonembedded) and embedded solitons, as a
full stability area for regular GS’s was not obtained in Ref.
[19]. A noteworthy feature is that the stability region of the
symmetric ES’s extends to the abovementioned case when
the system’s spectrum has no gap. Concerning the antisym-
metric ES’s, they all turn out to be unstable, for which a
simple explanation, based on consideration of the model’s
Hamiltonian, is proposed.

In addition to the stability, we also study collisions be-
tween solitons of both embedded and ordinary types, which
is another natural issue, once stable moving solitons have
been found. Simulations of collisions were carried out sys-
tematically in the entire region in the parametric space where
the stable ES’s exist. A general conclusion is that the solitons
are stable against collisions, and in all the cases the collisions
are quasielastic, giving rise to very small radiation loss.
Thus, the colliding solitons either pass through each other, or
bounce.

The rest of the paper is organized as follows. In Sec. II,
we formulate the model, give its two different physical real-
izations(in the temporal and spatial domains), and produce
analytical solutions for the ES’s. Results of the stability
analysis are collected in Sec. III, and collisions between
moving solitons are considered in Sec. IV. Section V con-
cludes the paper.

II. THE MODEL AND EXACT SOLUTIONS FOR
SYMMETRIC SOLITONS

A dual-core nonlinear fiber grating is described by a set of
four equations[19]

iu1t + iu1x + suu1u2/2 + uv1u2du1 + v1 + lu2 = 0, s1d

iv1t − iv1x + suv1u2/2 + uu1u2dv1 + u1 + lv2 = 0, s2d

iu2t + iu2x + suu2u2/2 + uv2u2du2 + v2 + lu1 = 0, s3d

iv2t − iv2x + suv2u2/2 + uu2u2dv2 + u2 + lv1 = 0, s4d

wheret andx are the normalized time and propagation dis-
tance, the subscripts 1 and 2 are numbers of the two cores,
and the fields denoted byu andv are amplitudes of the right-
and left-traveling waves in each core. Alternatively, the same
model may be realized as describing stationary field distri-
butions in two parallel-coupled planar waveguides with the
gratings in the form of a system of parallel scratches, in
which casest and x are, respectively, the propagation dis-
tance and transverse coordinate. In either case, the cross-
phase-modulation coefficient and Bragg reflectivity are nor-
malized to be 1, andl is the coefficient of the linear
coupling between the cores. In what follows, we setl.0, as
the opposite case reduces to it by taking −u2 and −v2 instead
of u2 andv2.

The existence of nontrivial soliton states in this model
assumes that the Bragg-reflection length in each core should
be of the same order of magnitude as the coupling length due
to the interaction between the cores. In the fiber gratings
available in the experiment, both lengths have typical values
between 1 mm and 1 cm[13]; essentially the same estimates
apply to the abovementioned alternative realization of the
present model, in terms of spatial fields in two parallel planar
waveguides with the quasi-one-dimensional gratings. Thus,
experimental observation of the solitons studied in Ref.[19]
and in the present work is quite feasible(as for the necessary
length of the dual-core fiber grating, several centimeters is
sufficient[16], and, actually, essentially longer uniform BG’s
are available[13]). It may also be relevant to mention that,
thus far, solitons in the usual nonlinear fiber couplers have
not been observed, despite a large amount of theoretical
work done for them(see a review in Chap. 6 of Ref.[40]).
The addition of the BG offers a realistic possibility to ob-
serve solitons in couplers(especially, using the abovemen-
tioned configuration with two hollow conduits in a photonic-
crystal fiber with inverted BG’s written on the inner
surfaces).

The linear version of Eqs.(1)–(4) gives rise to a disper-
sion relation vskd for the plane-wave solutionsu1,2,v1,2

,exp sikx− ivtd. The dispersion relation contains two
branches

v2 = l2 + 1 +k2 ± 2lÎ1 + k2, s5d

each having its own gap. The ones corresponding to the up-
per and lower signs in Eq.(5) are, respectively,

uvu ø 1 + l, s6d

uvu ø max h0,s1 − ldj. s7d

As is seen, the inner gap(7) exists provided thatl,1. It is
located completely inside the outer one(6), thus the true
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bandgap of the full four-wave system is given by the expres-
sion (7), provided thatl,1, and it does not exist iflù1
[19]. However, the partial bandgap(semi gap) (6) exists at
any l, which opens the way to the possibility of the exis-
tence of ES’s[24,27–29].

Steady-state solutions to Eqs.(1)–(4) for solitons moving
at a velocityc are sought for as

u1,2sj,td = e−ivtU1,2sjd,v1,2sj,td = e−ivtV1,2sjd,j ; x − ct.

s8d

Substitution of Eqs.(8) into Eqs. (1)–(4) leads to a set of
four ODE’s,

vU1 + is1 − cdU18 + suU1u2/2 + uV1u2dU1 + V1 + lU2 = 0,

s9d

vV1 − is1 + cdV18 + suV1u2/2 + uU1u2dV1 + U1 + lV2 = 0,

s10d

vU2 + is1 − cdU28 + suU2u2/2 + uV2u2dU2 + V2 + lU1 = 0,

s11d

vV2 − is1 + cdV28 + suV2u2/2 + uU2u2dV2 + U2 + lV1 = 0,

s12d

where the prime stands ford/dj. To find symmetric or asym-
metric soliton solutions, numerical and approximate analyti-
cal (based on the variational technique) methods can be used,
as was done in Ref.[19], where both movingscÞ0d and
quiescentsc=0d asymmetric and symmetric stable solitons of
the usual(nonembedded) type were found. However, an ac-
tual stability border for asymmetric solitons was not found in
Ref. [19], as the analysis was limited to the case of a small
coupling constantl. This result is presented in Fig. 1 below.
Parametric regions which were not investigated before are
explored below to search for new stable soliton solutions,
especially ES ones.

Solutions for symmetric solitons, with

u1 = u2,v1 = v2, s13d

can be easily obtained in an exact form, using well-known
solutions for the single-core model[41,42]. In the case ofc
=0, the result is

u1,2sj,td = e−isx−ldtUsjd,v1,2sj,td = − e−isx−ldtU*sjd s14d

(the asterisk stands for the complex conjugation), where the
function Usjd obeys the equation

xU + iU8 + s3/2duUu2U − U* = 0. s15d

A family of exact solutions to Eq.(15) is well known,

Usxd =Î2

3
ssin udsechSx sin u −

i

2
uD,V = − U* , s16d

u ; cos−1x, s17d

whereu is an intrinsic parameter of the soliton family, which
is proportional to the soliton energy and takes values
0,u,p.

A simple but important remark is that, as the exact solu-
tions (16) and (17) to Eq. (15) exist in the interval
−1,x, +1, the frequency of the solitons corresponding to
the expressions(14) falls into an interval

− 1 −l , vsymm; x − l , 1 − l, s18d

which is, obviously,broader than the bandgap(7), although
it is always located inside the semigap(6). This means that,
in the case ofl,1, the exact symmetric solitons belonging
to the subinterval

− 1 −l , vsymm, − u1 − lu s19d

may be classified as embedded solitons(ES’s). Moreover, in
the case ofl.1, when the true bandgap(7) of the four-wave
system does not exist at all, the exact symmetric solutions
are still available in the interval(18).

On the other hand, the substitution(13), as well as the
similar substitution(25) for the antisymmetric case, con-
denses the underlying system of four equations(1)–(4) into a
system of two equations equivalent to the usual[15] single-
core fiber-grating model. In terms of the reduced model, the
symmetric and antisymmetric solitons are regular GS’s,
rather than ES’s(this may be compared to the situation for
solitons in the usual two-core fiber, without the BG[43]).
Nevertheless, small perturbations added to the soliton may
violate the reduction(13) and (25), and they thus “feel” the
actual band structure of the full four-wave system. Therefore,

FIG. 1. The bifurcation diagram for stationary gap solitons with
u=0.4p. The curved branch corresponds to the asymmetric soliton
solutions, while the horizontal line represents the symmetric solu-
tions. Stable and unstable branches are shown by solid and dashed
lines, respectively. Note that the asymmetric solutions exist only
inside the true bandgap: a condition for this, following from Eqs.
(7) and (18), is 2l,1+coss0.4pd<1.309, and it is obvious that
this condition is met.
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stability of the symmetric and antisymmetric solitons in the
four-wave system may be completely different from that of
the regular two-wave GS’s(which is the case indeed, as
shown below), revealing the “hidden embeddedness” of the
symmetric and antisymmetric solitons.

Symmetric moving solitons(with cÞ0) are looked for in
the form

u1,2sx,td ; usx,td = eiltūsx,td;v1,2sx,td ; vsx,td = eiltv̄sx,td.

s20d

The substitution of these expressions into Eqs.(1)–(4) results
in a system

iūt + iūx + suūu2/2 + uv̄u2dū + v̄ = 0, s21d

iv̄t − iv̄x + suv̄u2/2 + uūu2dv̄ + ū = 0. s22d

Moving-soliton solutions to Eqs.(21) and (22) are well
known [41,42]:

ū = aWsXdexp fy/2 + ifsXd − iT cosu + if0g,

v̄ = − aW*sXdexp f− y/2 + ifsXd − iT cosu + if0g,

s23d

wheref0 is an arbitrary real constant and

a−2 ;
3

2
+ c2,tanhy ; c,X ;

x − ct
Î1 − c2

,T ;
t − cx

Î1 − c2
,

fsXd = a2 sinhs2ydtan−1ftanhsX sinudtansu/2dg,

WsXd = ssin ud sechfX sin u − isu/2dg. s24d

Solutions for antisymmetric solitons with

u1 = − u2,v1 = − v2 s25d

can also be easily found in an exact form. For zero-velocity
antisymmetric solitons, Eq.(14) is replaced by

u1sj,td = e−isx+ldtUsjd,v1sj,td = − e−isx+ldtU*sjd, s26d

whereUsjd again obeys Eq.(15) and is thus given by the
expressions(16) and (17). So, Eqs.(26) imply that the anti-
symmetric soliton solutions exist in the interval

− 1 +l , vanti ; x + l , 1 + l, s27d

which is again broader than the true bandgap(7) but smaller
than the semigap(6), see Eq.(18). In particular, they occupy
a subinterval[see Eq.(19)]

u1 − lu , vanti , 1 + l, s28d

where they are ES’s, as it does not overlap with the true
bandgap(7), and they exist also in the case ofl.1, when
the four-wave system has no true bandgap.

Solutions for antisymmetric moving solitons are looked
for, instead of Eq.(20), in the form

u1sx,td ; usx,td = e−iltūsx,td;v1sx,td ; vsx,td = e−iltv̄sx,td.

s29d

Again, the functionsū andv̄ obey Eqs.(21) and(22), and are
given by the expressions(23).

III. STATIONARY SOLITONS AND THEIR STABILITY

A. Regular (nonembedded) asymmetric solitons

Symmetric and asymmetric soliton solutions for the
present model, found in Ref.[19] for the case of small cou-
pling constant, are presented by dint of a bifurcation diagram
in Fig. 1, which is a plot of the asymmetry parameter

: ;
u1m

2 − u2m
2

u1m
2 + u2m

2 s30d

versus the coupling constantl, u1m andu2m being the ampli-
tudes of the fieldsu1,2 in the two cores. The diagram dem-
onstrates the appearance of stable asymmetric solutions and
simultaneous destabilization of the symmetric one at a criti-
cal value ofl. Due to symmetries of Eqs.(9)–(12), the bi-
furcation diagram forl,0 is the mirror image of that with
l.0. In fact, this diagram was already obtained in Ref.[19],
and is included here for completeness of the description.

However, existence and stability limits for the solitons
were found in Ref.[19] only in a partial form, therefore the
global picture of stable and unstable soliton solutions re-
mained unexplored(it was displayed in a more complete
form for the abovementioned system ofthree linearly
coupled fiber gratings, forming a triangular configuration, in
the recent work[20]). The first result of the present work is
a full stability diagram for the quiescent(zero-velocity) soli-
tons, both GS’s and ES’s, in the model based on Eqs.(1)–(4),
which is displayed in Fig. 2 in terms of thesl ,ud plane
[recall u is the intrinsic parameter of the soliton solution
defined by Eq.(17)]. The stability and instability was iden-
tified in direct simulations, which is not as rigorous as the
definition based on computation of stability eigenvalues for
small perturbations[44], but it is closer to the stability as it
may be observed in the experiment. In particular, a notewor-
thy peculiarity, obvious in Fig. 2, is that stable symmetric ES
never(at no value ofl) coexist with stable asymmetric GS’s,
while their coexistence with stable symmetric regular GS’s
occurs.

The area aboveu=0.5p is not included, as all solitons are
unstable ifu exceeds a critical value<1.01sp /2d [44,45].
We note in passing that the instability of solitons in that area
can be effectively controlled in a model including a local
attractive defect[46,47]: the unstable solitons quickly relax
to a stable one withu<0.5p by shedding off excess energy
in the form of radiation.

B. Quiescent (zero-velocity) embedded solitons

Any soliton which exists below the bandgap edge in Fig.
2 is classified as an ES, in the sense that was explained
above. Such solitons were not considered in the present
model before. Here, we started by seeking for ES’s, different
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from the exact solutions given above, in a numerical form.
The systematic search in the system’s parameter space had
turned upno new (asymmetric) ES solutions, which is a
drastic difference from the situation inside the bandgap,
where the obvious exact symmetric and antisymmetric soli-
tons coexist with nontrivial asymmetric ones[19]. Note that
the region occupied by asymmetric solitons in Fig. 2 is iso-
lated from the bandgap’s edge.

Nevertheless, the exact symmetric solitons, given by the
expressions(13), (14), (16), and(17), and their antisymmet-
ric counterparts, given by Eqs.(25), (26), (16), and (17),
exist as a continuous family of the ES’s in the interval(19),
if l,1, and in the whole interval(18) if l.1, or in the
intervals (28) and (27), respectively. A nontrivial issue is
their stability. Indeed, as was shown in a general form in Ref.
[24], ES’s are linearly but nonlinearly semi stable(which
means that, beyond the linear approximation, a weak insta-
bility may be initiated by a small perturbation, depending on
its sign), in the case when they exist as isolated solutions. In
actual simulations, the semistable ES’s may behave, in some
parameter regions, as truly stable solitons[28,29]. In the case
when ES’s can be found in continuous families, they are,
generally speaking, semistable too[38].

In this work, we focus on investigation of the stability of
the continuous-family ES’s, running direct simulations in a
systematic way, with random perturbations added to the soli-
ton wave form. As was mentioned above, this approach is
adequate to predict a possibility of observation of ES’s in an
experiment. This way, the existence interval of the ES’s was

scanned for their stability. The numerical method was based
on the split-step code combined with the Fourier transform.

We stress that not all the symmetric ES’s, available in the
exact analytical form, are stable. Their stability region has a
nontrivial shape, and it is included in the general stability
diagram displayed in Fig. 2. It can be seen that the stable
symmetric solitons cluster around the region with smallu
and l<1, where the bandgap(7) closes up. Outside this
region, the symmetric ES’s are unstable; however, the insta-
bility is weak, and develops slowly near borders of the sta-
bility region.

The simulations demonstrate that unstable symmetric
ES’s with a small amplitudeu.0.1p, decay into radiation.
See an example in Fig. 3(a); in this case, the solitons decay
and remain symmetric, i.e., without violating the reduction
(13) which lead to the exact symmetric solutions. Unstable
solitons with a larger amplitudeu*0.3p first develop oscil-
lations [see Fig. 3(b)], but eventually they also decay. It is
seen from Fig. 3(b) that, in the latter case, the perturbations

FIG. 2. Regions in thesl ,ud plane, where different types of
standingsc=0d gap solitons are found[recall thatu is the intrinsic
parameter of the soliton family, see Eq.(16)]. In region A, stable
asymmetric regular(nonembedded) solitons exist in the bandgap
(note that it ends atl=1, in accordance with Eq.(7). In region B,
symmetric regular solitons are stable. The bandgap edge is identi-
fied as a curve where the frequency of the exact soliton, given by
Eqs.(14) and(16), is equal to 1−l, which is the edge of the gap in
the linear spectrum of the four-wave system(2)–(4), see Eq.(7) (in
particular, for l=1, the bandgap edge is atu=p /2). Below the
bandgap edge, only solitons of the embedded type(in terms of the
full four-wave system) may exist. They are unstable in region C, but
stablein region D, wherel is close to 1, andu is small. Note that
the latter stability region extends to valuesl.1, where the system
has no true bandgap gap in its spectrum.

FIG. 3. Typical examples of the evolution of unstable symmetric
embedded solitons. The time dependence of the amplitudes of the
soliton, i.e., maxima ofuu1u (solid) and uu2u (dotted), is displayed.
The decay of the fieldsv1 and v2 is similar. (a) c=0, l=0.7, and
u=0.1p (in this case, the solid and dotted lines completely overlap).
(b) c=0, l=0.7, andu=0.3p, which is larger than in panel(a).
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which destroy the stable ES are antisymmetric, i.e., they vio-
late the reduction(13) and arouse full dynamics of the four-
wave system.

The antisymmetric quiescent solitons arealwaysunstable,
both outside the true bandgap and inside of it. All of them
decay, although the ones withl close to 1 and smallu do it
slower than those withl taken farther away from 1. Unstable
antisymmetric solitons withu*0.3p develop oscillations
similar to those demonstrated by their unstable symmetric
counterparts.

In fact, the instability of the antisymmetric solitons has a
simple explanation: a part of the HamiltonianH of the un-
derlying model(1) and (2), which accounts for the linear
coupling between the cores, is

Hcoupling= − lE
−`

+`

su1
*u2 + v1

*v2ddx+ c.c.,

where c.c. stands for the complex-conjugate expression. As it
immediately follows from here, the substitutions(13) and
(25) yield, respectively,Hcoupling,0 andHcoupling.0 (recall
we setl.0), while making no difference in other parts of
the full H. Obviously, a symmetric state which minimizesH
may give rise to a stable solution, but an antisymmetric one,
which corresponds to the maximum ofH, cannot do it.

C. Moving embedded solitons

The stability of moving symmetric ES’s, which are avail-
able in the exact analytical form, given by Eqs.(13), (20),
(23), and(24), was also examined in direct simulations. The
evolution of the stability region in the planesl ,ud with the
increase of the velocityucu is shown in Fig. 4. It is seen that
the stability region quickly shrinks with the increase of the
velocity c, and no stable moving symmetric ES’s can be
found for c,

.0.5. This is a drastic difference from what is
known about stability of the moving regular GS’s in the stan-
dard single-core model, where the critical value ofu separat-
ing stable and unstable solitons very little depends on the
velocity, in the whole region 0øc,1 [44].

Similar to what was found for quiescent symmetric soli-
tons, the instability of the moving ones develops slowly
close to the border of the stability region. The unstable mov-
ing solitons with smallu decay into radiation in a way simi-
lar to what is depicted in Fig. 3(a). “Heavier” moving soli-
tons (the ones with largeru) develop oscillations similar to
those in Fig. 3(b), although the oscillations start to develop at
smalleru (close tou=0.2p) than in the quiescent solitons.
The latter feature seems quite natural, in view of the shrink-
age of the stability region with the increase of the velocity, as
per Fig. 4.

IV. COLLISIONS BETWEEN SOLITONS

Stable moving ES’s being available, it is natural to con-
sider their collisions, with regular solitons(stable GS’s inside
the bandgap), or between ES’s themselves. We display the
results here for a fixed value of the linear-coupling coeffi-
cientl=0.9. As it is smaller than 1, regular GS’s exist in this
case too. In fact, we carried out simulations at other values of
l too—in particular, in the range 0.7,l,1. The results are
consistent with what is described below. However, whenl is
close to 0.7 or to 1, either the symmetric ES’s or the regular
GS’s are too close to the instability threshold, therefore the
case withl=0.9 is more interesting, corresponding to colli-
sions between sufficiently robust solitons. Only collisions
between symmetric solitons were considered, since asym-
metric GS’s do not coexist with any stable ES for the same
value ofl, according to Fig. 2.

Figure 5(a) shows an example of a moving ES colliding
with a quiescent ES, the two solitons being in phase at the
initial moment. It is seen that the solitons repel each other
and essentially bounce from each other as particles, so that
the initially moving soliton stops, while the initially quies-
cent one picks up all the momentum. Very little radiation loss
is observed, so that the collision is almost entirely elastic.
The same collision with different values of the initial phases
(including thep-out-of-phase case) seems virtually the same
way: the former quiescent soliton starts to run, while the
former moving one halts. In this connection, it should be said
that, in the case when the colliding solitons have different
amplitudes and/or absolute values of the velocities, i.e., if the
collision is not a fully symmetric one, the initial phase dif-
ference between the solitons is not expected to play an es-
sential role.

Figure 5(b) shows the collision of a moving ES with a
quiescent regular GS, both being initially in phase. This time,
the moving solitonpassesthrough the quiescent one, with
small radiation loss. The quiescent soliton gets shifted as a
result of the collision. Essentially the same result takes place
for other values of the initial phase difference between the
solitons.

Figure 5(c) shows the cases when both colliding solitons
are of the embedded type, and both are moving(but with
different velocities). This case is not equivalent to that con-
sidered above in Fig. 5(a), as the underlying equations
(1)–(4) are not Galilean or Lorentz invariant, hence no ve-
locity change can be generated by a simple transformation.
The outcome of the collision is also very different from that

FIG. 4. Regions in thesl ,ud plane, where the moving symmet-
ric embedded solitons are stable. With the increase of the velocity
ucu, the stability region shrinks to nil atc<0.5.
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FIG. 5. Typical examples of collisions between symmetric solitons. The intercore linear coupling coefficientl is fixed to be 0.9. The
upper panels show the contour plots of the evolution ofuu1u, and the lower ones display the wave forms ofuu1u and uv1u (solid and dashed
lines) at the end of the simulation.(a) A moving embedded soliton withc=0.1 andu=0.1p collides with a quiescentsc=0d embedded
soliton, which also hasu=0.1p. Both solitons are initially in phase.(b) A moving embedded soliton withc=0.1 andu=0.1p collides with
a quiescentsc=0d regular one withu=0.5p, both solitons being initially in phase. The moving embedded soliton passes through the
quiescent regular gap soliton, which undergoes a position shift. Small radiation loss occurs in this case.(c) A moving embedded soliton with
c=0.3 andu=0.2p collides with another moving embedded soliton that hasc=0.1 andu=0.1p, both solitons being initially in phase. The
heavier fast soliton passes through the slow lighter one, which undergoes a position shift. The collision results in small radiation loss.(d) A
moving regular soliton withc=0.1 andu=0.5p collides with a quiescentsc=0d embedded one withu=0.1p. Initially, both solitons are in
phase.(e) The same as in the case(d), but with the initial phase differencep between the solitons. Note that, in contrast with the case(d),
both solitons move after the collision.
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in Fig. 5(a): this time, the fast soliton passes through the
slow one with a very small radiation loss. The slow soliton
demonstrates a position shift after the collision. This out-
come is actually similar to that observed in Fig. 5(b), despite
the fact that the quiescent soliton was a regular one in that
case.

Figures 5(d) and 5(e) show the situation when moving
regular solitons collide with initially quiescent ES’s. In these
cases, the heavy moving solitons pass through the lighter
quiescent ones. In the case(d), the quiescent soliton demon-
strates a position shift. However, the case(e) [which differs
from (d) only by the initial phase difference between the
solitons, which isp, rather than 0], is remarkably different:
in this case, the former quiescent solitons also acquires a
finite velocityafter the collision. In all these cases, very small
radiation loss results from the collisions.

The case when both colliding solitons are regular ones
was studied too. The collisions then seem essentially the
same way as in the case when the ES’s collide, see Fig. 5(a).

If the model is realized in terms of the spatial solitons in
planar waveguides(see the Introduction), the shift of the
soliton and(in some cases) its velocity change, which result
from the collision, can find application to switching of the
beams. In that case, the soliton which features the position
shift or velocity change(in the spatial-domain case, the latter
actually is a change of the beam’s slant) may be a signal
beam, while the other one is a control one.

V. CONCLUSION

In this work, we have demonstrated that the four-wave
model, describing two linearly coupled symmetric nonlinear
waveguiding cores with the Bragg grating written on each of
them, supports a two-parametric family of exact symmetric
and antisymmetric solitons, whose existence domains cover

the system’s bandgap and extend into the “semigap”(which
is a gap only in terms of one out of two branches of the
dispersion relation). Therefore, parts of these solution fami-
lies may be regarded as embedded solitons. The model itself
has two different physical realizations, for fibers and planar
waveguides—in the temporal and spatial domains, respec-
tively. The embedded-soliton family is found even in the
case when the system’s spectrum has no true bandgap at all,
hence no regular gap solitons may exist. Numerical search
has revealed that the system never supports asymmetric em-
bedded solitons.

Simulations of the evolution of perturbed solitons have
produced a full stability diagram, which comprises both em-
bedded and regular(gap) solitons and quiescent and moving
ones. The stability region of the embedded solitons is located
around the point where the two linear couplings(the inter-
core and Bragg-reflectivity ones) are equal. The latter finding
implies that the embedded solitons are most “endemic” to
this system. Their stability region shrinks with the increase
of the soliton velocityc, so that there are no stable embedded
solitons for the velocity exceeding half of the maximum ve-
locity. All the antisymmetric embedded solitons, quiescent
and moving ones, are unstable, to which a simple explana-
tion is given, based on the consideration of the system’s
Hamiltonian. Collisions between solitons of different types
have been studied too, with the conclusion that the collisions
always result in the mutual passage or bounce of the solitons,
with very small radiation energy losses.
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