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In recent experiments, localized and stationary optical wave packets have been generated in second-order
nonlinear processes with femtosecond pulses, whose asymptotic features relate to those of nondiffracting and
nondispersing polychromatic Bessel beams in linear dispersive media. We investigate the nature of these linear
waves and show that they can be identified with the X-shd@edhapedl modes of the hyperbolielliptic)
wave equation in media with norméhnomalouy dispersion. Depending on the relative strengths of mode
phase mismatch, group velocity mismatch with respect to a plane pulse, and the defeated group velocity
dispersion, these modes can adopt the form of pulsed Bessel beams, focus wave modes, and (© waves
wavey, respectively.
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I. INTRODUCTION tal [3] and second-harmonig5] nonlinearly generated X

Stationary, temporally, and spatially localized, X-shapedVaves- H -
optical wave packets, having a duration of a few tens of For these reasons, in this paper we present a more com-
femtoseconds and spot size of a few microns, have beeplrehens',lve' descrlptlon pf Iocah;ed and stationary optical
recently observed to be spontaneously generated in dispefl@ves in linear dispersive media, henceforth calveave
sive nonlinear materials from a standard laser wave pack&fodes which is particularly suitable for understanding and

[1-3). Balancing between second-order or Kerr nonIinearityprediCting the spatiotemporal features of the nonlinear X

group velocity dispersion, and angular dispersion and dif}Naves generated in experiments. From a linear point of view,

! . . this description allows us to predict the existence of new
fraction has been suggested to act as a kind of mode-locklnI%nds of wave modes and classify all of them according to

me_chanism that drives pulse reshaping and keeps the intetrﬁe values of a few physically meaningful parameters.
acting waves trapped and phase and.grou_p matpheﬂ. Each wave mode is specified by the values of the defeated
The purpose of the present paper is to investigate the Ngsaterial GVD, the mode group velocity mismatgBVM),
fcure o_f th_ese_waves. The main hypothesis underlying ougnq phase mismatotPM) with respect to a plane pulse of
investigation is that these nonlinearly generated X-shapeghe same carrier frequency in the same medium. Wave modes
waves behave asymptotically as linear waves. This aSSUm@re then ShOWmSec_ |D to be'ong to two broad Categories:
tion is based, first, on the observed stationarity, not only ohyperbolic modes, with X-shaped spatiotemporal structure, if
the central hump of the wave packet, but also of itsmaterial dispersion is normal, or elliptic modes, with
asymptotic, low-intensity, conical pait—3], stationarity that  O-shaped structure, if material dispersion is anomaja6k
cannot be attributed to nonlinear wave interactions, but tdn Sec. Ill we show that each wave mode can adopt the
some linear mechanism of compensation between materialpproximate form ofl) a pulsed Bessel bea(RBB), (2) an
and angular dispersion. Indeed, several kinds of linear polyenvelope focus wave modeFWM), or (3) an envelope X
chromatic versions of Bessel bearf, such as Bessel-X (eX) wave in normally dispersive medignvelope O(eO)
pulseq8,9], pulsed Bessel beami$0,11], subcycle Bessel-X wave in anomalously dispersive medjaaccording to
pulses or focus wave modg4?], and envelope X waves whether the mode bandwidth makes PM, GVM, or defeated
[13], with the capability of maintaining transversal and tem-GVD, respectively, to be the dominant mode characteristic of
poral (longitudina) localization in linear media with normal propagation. This classification allows us to understand the
group velocity dispersiofGVD), have been described in spatiotemporal features of wave modes in dispersive media
recent yeargfor a unified description and an extension to in terms of a few parametelghe characteristic PM, GVM,
media with anomalous dispersion, see also R&4]). In and GVD lengthg including modes with mixed pulsed
contrast to free-space X wavg&5] and Bessel-X pulses Bessel, focus wave mode, and X-lik@-like) structure.
[16,17, stationarity in dispersive media requires the intro- The above description is obtained from the paraxial ap-
duction of an appropriate amount of cone-angle dispersioproximation to wave propagation. We choose this approach
that leads to the cancellation of material GVD with cone-because of its wider use in nonlinear optics and because it
angle dispersion-induced GVI[B-14. Second, polychro- leads to simpler expressions in terms of parameters directly
matic Bessel beams, with or without angular disper$icH, linked to the physically relevant properties of the mode and
have the ability of propagating at rather arbitrary effectivedispersive medium. In Sec. IV we compare the paraxial and
phase and group velocities in dispersive media, as has to beore exact nonparaxial approaches to show that the paraxial
done by the phase-matched and mutually trapped fundameapproach is accurate enough for the description of wave
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modes currently generated by linear optical devifg40] (@) 3
and in nonlinear wave mixing procesgds-3|. 3 e
S 2
Il. WAVE MODES OF THE PARAXIAL WAVE EQUATION g o ¢<°O
o ~

We start by considering the propagation of a three- < Q%'
dimensional wave packeE(x,z,t)=A(X,,z,t)exp(—iwgt
+ikgz)[x |, =(x,y)] of a certain optical carrier frequenay, pui of
subject to the effects of diffraction and dispersion of the ¢ ©
material medium. Within the paraxial approximation and up gl
to second order in dispersion, the propagation of narrow- S R . S L
band pulses is ruled by the equation o 2 3 4 5 6 1 2 3 4.5 6

o, (fs') w, (fs')
i ko
02A:§OALA_'50&A’ &) FIG. 1. Values ofa and B of the localized and stationary,

second-harmonic waves of different carrier frequencigs for
where z is the propagation directior;=t—kyz is the local  phase and group matching with the fundamental wave in the pro-
time, A, = 3)2(+ 35 and k8>E ag)k(w)|wo, with k(w) the propa- cess of 0o-e second harmonic generation in LBO at room tempera-
gation constant in the medium. Equati¢d) is valid for a ture. Dispersion formulas for the refraction index are taken from

~ Ref.[19].
narrow envelope spectrurA(x,,z,{)) around Q) =w-wq ef. [19]

=0 — that is, for bandwidths ) . - .
sults if conditiong2), (4), and(5) are satisfied, as is the case

AQ < wy, (2)  of the experiments and numerical simulations demonstrating

. : . _— the spontaneous generation of X-type wayks3).
a condition that requires at least few carrier oscillations to Equation(1) with ansatz(3) yields

fall within the envelopéA.
We search for stationary and localized solutions of @g. A D- kokgﬁiq) + 2ikoad,® + 2koBD = 0, (6)

in the wide sense that thetensitydoes not depend anin a

reference frame moving atome velocity These solutions as the differential equation for the reduced enveldpef the

must then be of the form wave modes. Equatiof6) is a hyperbolic differential equa-
. tion in normally dispersive media and an elliptic differential

AXY,7,2) = D(X,y, 7+ az)exp—ipz). (3)  equation in media with anomalous dispersi@d]. For the
The free parameters and 3 are assumed to be small in the temporal spectrum®(x,y,(2) of the reduced envelope
sense that ®d(x,y, 7+ az), Eqg. (6) yields the Helmholtz-type equation

6 2 5 —
1
8 <k © ()= \ 2 a2 + B @

so that the group velocity 1Kk)—«) and phase velocity
wol (ko= B) of the wave differ slightly from those of a plane

pulse of the same carrier frequency in the same materiagf the wave vector with the detuning of each monochro-
1/ky and wg/ ko, respectively.

Under th " ¢ totic I behavi fmatic wave component from the carrier freqL_Jem;Jy Fo_rQ
nder the assumption of asymptolic linear beénavior Olg, ., thatK(Q)) is real, the Helmholtz equation admits the
nonlinear X waves, we can get some insight into the poss'blﬁounded cylindrically symmetric, Bessel-type solution
values ofa and 8 of nonlinear X waves on the only basis of - N - ! i
the linear dispersive properties of the medium. If, for in- P(r, Q) =F(Q)I[K(Q)r], wheref(€Q) is an arbitrary spectral
stance, a pulse of frequeney: generates a stationary and amplitude and(-) the Bessel function of zero order and first
localized second-harmonic pul$e,=2we) traveling at the class[21.]. By inverse Fourier transform we can write the
same group and phase velocities as the fundamental pul§&Pression
[5], we must havek)—a=k{ and ky—B=2k: —that is, «

will be referred to as thdtransversal dispersion relation
ince it relates the modulus of the transversal component

=ki—kj and B=Ak=Kky—2kg. For illustration, Fig. 1 shows D, 41, 7+ az) = if dOF(Q)IK[(Q)r]
the values ofa and B of the second-harmonic pulse in ’ 27 Jk(@yreal
lithium triborate(LBO) as a function of its carrier frequency xexg—iQ(r+ a2)] (8)

wo. Note also thata| and || satisfy the conditiong4) and

(5) for any carrier frequency in the entire visible range andfor the reduced envelope of the cylindrically symmetric

beyond. wave modes, or localized, propagation invariant solutions of
In Sec. IV, a nonparaxial approach to the problem statedhe paraxial wave equation, in the sense explained above. As

above will be performed. It will be shown that the paraxial indicated, the integration domain extends over frequerfeies

and nonparaxial descriptions yield substantially the same resuch that the dispersion curg(}) is real. According to Eq.
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(a) k| normal dispersion reciprocal quantitiefKy[™* and ||, respectively. Equation
(ky'>0) (8) with f(Q)=1 and the changf’=Q+a/K} yields

. 1
oY (r,z,7)=—
aﬁ( 7 20

f dQ’ ILK(Q)r]
K(Q)real

xXexd-iQ'(r7+ az)]exp{ikgg(r+ az)} :

(11

k| anomalous dispersion where
® (k'<0)

B>/ 2k, K(Q') = \/k%(ﬂ’z LB a—z) : (12

K ko
/ The integral in Eq.(11) can be performed in all possible

=/k . cases from formulas 6.677(®r k>0, B> a2/ 2ky), 6.677.2
o —a@/k £2 (for K3 >0, B< a?/2Kk), and 6.677.Gfor ki <0, B> a?/2K})
of Ref.[21], to yield the closed-form expression for impulse

FIG. 2. Dispersion curve of the wave modes in a medium with"€SPonse modes,
(a) normal dispersion anth) anomalous dispersion.

(Dg?ﬂ(r,r+ az)

(8), a wave moded, ; is composed of locked monochro- 1 1
matic Bessel beams whose frequencies and radial wave vec- = 5| =7 2EXP
tors are linked by a specific dispersion relatikin)) and Vkokor® = (7+ a2)

whose relative weights are determined by a certain spectral . 26 &
amplitudef(Q). XH V % kgzwkowor (t+a2)”| [ +c.C.

As shown in Figs. @) and 2b), the form of the disper- ,
Xexp[—c:(r+ az)}

sion curveK () reflects the underlying hyperbolic or elliptic
geometries of the differential equati@®) for wave modes in
the respective cases of propagation in media with normal or .
anomalous dispersion. For normal dispersikfi>0), K(Q2) or, in terms of the frequency and radial wave vector gaps,
is in fact a single-branch vertical hyperbola 8> o?/2kj, iR )

and a two-branch horizontal hyperbola ff< a?12K [see CD(;)B: i{ﬂgexm ) +c.c.}exp{£(r+ a'Z):|, (14)
Fig. 2@]. For anomalous dispersiofky<0), K(Q)) takes w2 iR !

real values only if3> a?/2kg, in which case the dispersion ) ) )

curve is an ellipsdsee Fig. 2b)]. It is also convenient to WhereR=[Kgr?+Qg(r+a2)?]*2

(13

introduce the(real or imaginary frequency gap As shown in Fig. ), for ky>0 and B> a?/2kg (Q
imaginary andK, real, the impulse response wave mode is

Q.= o 28 ) singular_in the cone =|(m+a2)|/\VkoK), is zero forr<|(r

9 KeZ kg +az)|/Jkoky (within the cong, and decays as t/for

r>|(r+ az)|/y’m (out of the cong The radial beatings in
this region, of period Z/K, are a consequence of the radial
Ky= V- ko%ﬂé_ (100  wave vector gagK,. _

Figure 3b) shows the impulse response mode Kkgr0
When ()4 and K, are real, they represent actual frequencyand g< a1 2K (Qq real andK, imaginary. As in the previ-
and radial wave vector gaps in the dispersion clt\®), as  ous case, the mode is singular at the cone|(r
illustrated in Fig. 2. In any case, their moduli characterize they az)|/\gk076, but damped oscillations are now temporal, of
scales of variation of the frequency and radial wave vector irberiod 27/}, as corresponds to the frequency in the

the dispersion curves. di ; N L7
. . . ispersion curve. Out of the corle>|(7+a2z)|/ the
Closely connected with the dispersion curve are the Sofno?je is exponentially localized fle=>|( 1/ koko]

; (i)
called impulse responsevave modes® ,(r,7+az) or Modes in media with anomalous dispersion— i.e., with

modes withf(Q)=1. As seen in Fig. 3, the structure @f;?ﬁ ky<0 and B> a?/2k; (real )y and Ky) — exhibit rather

in space and time closely resembles that of the dispersiodifferent characteristic§Fig. 3c)]. These modes are no
curve in theK-Q plane and, hence, the hyperbolic or elliptic longer singular and of X type, but regular and, say, of O type.
nature of the differential equation for wave mod@§)], but  The damped oscillations decay temporally and radially as 1/
at radial and temporal scales of variation characterized by thand 14, respectively, with periods /()4 and 27/K,. The

and radial wave vector gap
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FIG. 3. Gray-scale plot of the amplltud@(')ﬂ| of the impulse response wave mod@s.Normal dispersiork) >0 with 8> a?/ 2k}, (Qq
imaginary, transversal wave vector gk rea). (b) Normal dispersiorky>0 with < @2/ 2kg (detuning gaplg real, Ky imaginary. (c)
Anomalous dispersiok) <0 with 8> a2/2l(0 (g and K real). Normalized local time and radial coordinate are deflnedrai;Qg| T
+az) andp=|Ky|r, respectively

absence of singularities is a consequence of the actual limi- 1
tation that the elliptic dispersion curve imposes to the uni- Lw= 2AQ

form spectrumf(Q) =1.

17

measuring, respectively, the axial distances at which the
mode becomes phase mismatched and walke/itff respect
Ill. CLASSIFICATION OF WAVE MODES to a plane pulse of the same spectrum in the same medium

o ) ) _ ) ) and (3) the GVD length
Numerical integration of Eq(8) with a given dispersion
curve (specified by the values af, g, ang kg) but different L= 1 (18
(bell-shapeyl spectral amplitude function&()), having also 4= ky(AQ)?'
different(but finite) bandwidthsAQ) [alternatively, numerical

integration of or distance at which the modé@nvariable duration differs

significantly from that of th€broadening plane pulse. Note

that, as defined,,, L,,, andL4 can be positive or negative. In

g1, 7+ a2) :f da(D(')ﬁ(r T+ az- o) (15  terms of the mode lengths the transversal dispersion relation
(7) takes the form

wheref(7) is the inverse Fourier transform 6€())], shows K(Q) = \/2k0<L +L 1+ = Ld192> (19
much richer and complex spatiotemporal features in com-

parison with the case of infinite bandwidth. These featuresyhere),,=Q/AQ is the normalized detuning, which ranges
strongly depend on the choice of the spectral bandwidty  jn[-1, +1] for Q within the bandwidthAQ. Then, they are
while no essentially new properties arise from the specifighe values of the mode lengths, L,,, andL that determine
choice off(Q) (Gaussian, Lorentzial, two-side exponential, the form of the dispersion curve within the spectral band-
etc). Modes with finite bandwidth may exhibit mixed, more width and, hence, the parameters that determine the spa-
or less pronounced radial and temporal oscillations, alongiotemporal structure of the mode, as shown throughout this
with incipient or strong X-waveO-wave), focus wave mode, section. We analyze here three extreme cases— namely,

or Bessel structure, as explained throughout this se¢tiea
also the following figures The purpose of this section is to
perform a simple, comprehensive classification of wave

ILpl < [Lyl,|Lg PM-dominated case,

modes in dispersive media. In the remainder of this paper, ILwl <|LolILgd GVM - dominated case,
AQ will refer to any suitable definition of the half-width of
the bell-shaped spectral amplitude functidf). ILgl <|Lyl.|Ly] GVD -dominated case,

Given a mode of parametessand 8 satisfying conditions
(4) and (5), propagating in a dispersive material with GVD
kg, and some spectral bandwidit{) satisfying Eq.(2), we
have found it convenient to define the three following char-
acteristic lengths(1) the mode PM length

which represent three well-defined, opposite experimental
situations and which allow us also to understand, at least
qualitatively, the features of general, intermediate cases.
For illustration, we have evaluated the characteristic
lengths of wave modes of different frequencieg that
propagate in LBO at the phase and group velocities of the

L = l, (16) corresponding fundamental waves of half-frequency. In Fig.
B 4, the bandwidthsAQ =wy/27N correspond to N-cycle”
pulses[duration ~(AQ)™*=NT,, To=27/w, period at each
(2) the mode walk-off or GVM length frequencywy. The valueN=10 in Fig. 4a) leads to a pulse
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FIG. 4. Characteristic lengths of extraordinary second-harmonic
wave modes of different frequencies in the visible range that travel
. . a2 2
at the phase and group velocities of the ordinary fundamental waverg
in LBO at room temperature. Mode bandwidths at€)/wg & ,
=1/2xN, with (a) N=10 and(b) N=1. -5 -25 0 23 53 -5 0 25 E
normalized time ¢ normalized time ¢

duration (AQ) 1~20.f3 at wp=3.55 fs 1,()‘:0'53'“”])' of  FG. 5. (a Dispersion curve within the bandwidth for
the same order as in previous experiments and numer|0ﬁ1p|/“_w|_,0’ ILpl/|Lg/ 0 (thick curve and for L,/L,=~0.25,
Simu-lations. Figure (4)) shows, in contrast, the e-Xtreme CaSeLp/Ld:—O_ZS (thin curve. (b) The same as iia) but also outside
of “single-cycle” wave modes. Ge”efa"Y s_peaklng, mo_des the bandwidth of the Gaussian spectrgim arbitrary unitg f(()
long enough duration belong to, or participate mostly in, the:ex;{—(Q/AQ)Z]. (c) and (d) Gray-scale plots of the amplitude
PM-dominated casgas in Fig. 4a) for most frequencids @, | of (¢) the PBB of Eq.(21) with spectrum f(Q)=exp
modes of soméstill unspecifiedl intermediate duration be- x[ll—'[(;Q/AQ)Z] (ie. f(r)ocexp{—iZAQT)Z]) and of (d) the mode
long to the GVM-dominated case, and extremely short,.. Lp/LW:—0.25,’Lp/Ld:—0.25 and same spectrum as(@, nu-

modes to_ the GVD-dominated_ case, sim;]eis in_dependent merically calculated from Eq(8). Normalized coordinates are
of bandwidth, but , andL are inversely proportional th() =(r+a2)AQ, p=r/rg, with ro=(2ky8) V2

and AQ?, respectively. Depending, however, on the relative
s sl ap pariculry uhen one o 140 o 0 e 5 shows e oty P o s ki of e
dominated case, can extend down to the single-cycle regim@ode[Eq. (21)] with a Gaussian spectrufi(2) — that is,
[as in Fig. 4b) for most frequencigsor, on the contrary, the the limiting case|L,/L,|=0, |L,/Ly=0—or the horizontal
GVM-dominated case, even the GVD-dominated case, appl{hick lines of Figs. §a) and &b). In Fig. §d) we show, for
to considerably long modegas in the vicinity of the two comparison, the wave mode with /L, [=0.25, |Lp/L|
singularities of theL, curve of Fig. 4a)]. =0.25 and with the same Gaussian spectrum, obtained nu-
merically from Eq.(8). We see that the wave mode preserves
a spatiotemporal structure similar to that of the prototype
PBB of Fig. §c), even if|L| is not much smaller, but simply
smaller than|L,| and |Ly. Small differences can be under-
Consider first modes withi,|<|L,|,|L¢. WhenL,>0,  stood as incipient focus wave mode and O-wave-type behav-
the dispersion curve within the spectral bandwidth can beor, as described in the following sections.
approached by the real constant vaK(eQ):(ZkOL;l)l’2 or

A. Phase-mismatch-dominated case: Pulsed Bessel-beam-type
modes

B. Group-velocity-mismatch-dominated case: Envelope focus
K(Q) =2k (if B>0) (20) wave modes

: : - - The case|L,|<|L,|,|L4 leads to a new kind of wave
see Fig. , regardless the exact dispersion curve is an w pl»I™=d X ) -
gctual Irgl]ypﬁear)g)olagor ellipsas in )I(:ig. 5t|))]p_ tlhat isu i\;dtla- mode that has not been reported. The dispersion curve within

pendently of the sign of material group velocity dispersion.the bandwidth is now of the form of the horizontal parabola

~ -1 1/2 \pji —
Wave modes under these conditions can only have superllhg(m_z(kol'w )™ with vertex at{)=0 or

minal phase_ velocityB3>0), but super_luminal or s_ubluminal K(Q) = V,'m (22)
group velocity(a>0 or «<0, respectively, and will adopt,
from Egs.(8) and(20), the approximate factorized form [see Fig. 6a)], regardless of whether material dispersion is
normal [as in Fig. §b)] or anomalous. For modes with su-
D, 41, 7+ az) = f(7+ az)%(v’%r) (21) perluminal group velocitya> 0), the horizontal parabola is
right handedas in Figs. 6a) and &b)], and left handed for
of a PBB of transversal size of the order (@k,8) %> subluminal modesa < 0). Independently of the group veloc-
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S 2 —iT ikor?
@ ® » E(r,zt) = —2 exp{ o }exp(—iwot—ikoz),
£3 <2 A T 2c(t—i7)
g 2 g ] (25)
X3 g »
) i with kg=wo/c, for the fundamental FWM23]. The funda-
0 05 00 05 10 4 2 3 2 4 mental FWM is a localized, stationarfree-spacewave
" " whose envelope propagates at luminal group velocity
- © - @ whereas the carrier oscillations backpropagate at the same

velocity c. The eFWM is also a stationary, localized wave
with the same intensity distribution as the fundamental
FWM, but propagates in dispersive mediurat slightly su-
perluminal or subluminal group velocity (k- ). The car-
rier oscillations propagate in the same direction at slightly
superluminal or subluminal phase velocity/ (ko— ).

Figure Gc) shows the prototype eFWM of this kind of
wave mode, obtained from numerical integration of E).
with the approximate dispersion cur@() =2k, ) [thick
curves in Figs. @) and @b)] — i.e., in the limiting case
ILw/Lp| =0, |Ly/L¢ =0) — and a Gaussian spectrum. To pur-

FIG. 6. (a) Dispersion curve within the bandwidth far,  Sue the validity of the model eFWM to describe this kind of
=10/ky, Ly/Lp—0, L,/Lg—0 (thick curve, for L,=10/k,  Wave mode, we have also evaluated the wave mode field in
Lw/Lp,=1/8, L,/Ls=1/8 (thin curve, label 1 and for L,,=10k,, some nonlimiting cases with th.e same C_;au:_55|an spectrum.
Lw/Lp=1/3, Ly/L4=1/3 (thin curve, label 2 (b) The same as in F0r||-w/|—p|:1/8, |Lw/Lg|=1/8[thin curves in Figs. &) and
(@) but also outside the bandwidth of the Gaussian specgiom 6(b), label 1, the mode is nearly undistinguishable from the
arbitrary units F(Q) =exd—(Q/AQ)2]. (c) and(d) Gray-scale plots Prototype eFWM, o_les_pite the dispersion curve d_iffering sig-
of the amplitude®, 4| of (c) the prototype eFWMthick dispersion n|f|_cantly from the limiting one. Even for the r_elatl_vely large
curve in(a)] with spectrumf(Q)=exg—(Q/AQ)?] and of (d) the ratios |LW/LP|=1/3' [Lw/Lg/=1/3 [thin curves in F!gs. @
mode withL,,/L,=1/3,L,/L4=1/3 [thin dispersion curve 2 ita)], and @b, label 2, the calculated wave modeee Fig. €d)]
numerically calculated from Eq8). Normalized coordinates are €Xhibits the same eFWM structure, with some incipient ex-

o=(r+a2)AQ, p=r/rg, With ro=(2/koAQ|a])V2 wave behavior because of the actual hyperbolic fgnuot

parabolig of the dispersion curve, as explained in the next
ity, phase velocity can be superlumiri@>0) or subluminal  section.

(B<0). In any case, their spatiotemporal form can be ap-
proached by Eq8) with K({) given by Eq.(22). Moreover,
with  the two-sided exponential spectrumf(()
=27/ AQ)exp—|Q|/AQ), Eq. (8) yields

. . 2 1. Normal group velocity dispersion: Envelope X waves
—i7 p{ iko| e ]

%)

normalized radial coordinate @

=5 L] 5 10 -10 =5 1] 5
normalized time ¢ normalized time ¢

o

'
=

10

C. Group-velocity-dispersion-dominated case: Envelope
X- and envelope O-type modes

D, 4(r, 7+ az) = We consider finally modes witf4 <|L,|,|L,| or modes

of short enough duration, or propagating in a medium with
(23) large enough GVD. When material dispersion is normal

for superluminal modega>0), and the complex conjugate (ky>0), the dispersion curve within the bandwidth ap-

of the right-hand side of Eq(23) for subluminal modes proaches the X-shaped curigee Fig. {a)]

(a<0). In Eq.(23), o= (AQ)™! characterizes the mode du-

ration. The mode spot size at pulse cerfter az=0) can be K(Q) = \,rm|g| (26)

characterized by,=(2/k,AQ|a|)*>.

_ The functional form of the reduced envelope in E2B)is  of the limiting caséLy/L,|,|Lq/L,|=0. The actual dispersion
similar to the fundamental Brittigham-Ziolkowski focus curve of a mode may be slightly shifted towards negative
wave mode(FWM) [22,23 and, as such, will be called the frequencies[as in Figs. 7a) and 7b), labels 1 and Por
envelope focus wave mod@FWM). There are, however, nsitive frequencies for modes with superlumital>0) or
important physical differences between them, which can b ubluminal(a<0) group velocities, respectively. For modes

Egﬁjirét%?(:);ﬁ: lzihnzgeosfpvi;g\éi_e);gﬁzlslons of the COmplet\'f\“/ith superluminal phase velocifyg>0), K(Q) is real every-
Y where [Fig. 7(b), label 1], but for modes with subluminal

T+az—im 2(t+az-in)

-~ iko|a|r? phase velocity there is a narrow frequency gap alfoa0
Eqprzt) = T+ az— iTOeX 2(r+ az— i) [Fig. 7(b), label 3. A prototype wave mode for this case can
) ) _ be obtained by introducing the approximate dispersion curve
Xexp(-iBzexp—iwot +ikoz), (24 of Eq.(26) into Eq.(8). With the two-side exponential spec-
for the envelope focus wave mode, trum f(Q) =27/ AQ)exp(—Q/AQ) we obtain
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normalized time ¢

FIG. 7. (a) Dispersion curve within the bandwidth fdry=10/ky, L4/Ly—0, Lg/Ly—0, with Lq>0 (thick curve, for Ly=10/kq,
La/Lp=1/6,L4/Ly,=1/6(thin curve, label }, and forL4=10ky, Lq/L,=-1/6,L4/L,,=1/6 (thin line, label 3. (b) The same as ife) but also
outside the bandwidth of the spectryim arbitrary units f(Q)=exp(-|Q|/AQ). (c) — () Gray-scale plots of the amplitude®,, 4 of (c) the
prototype eX|[thick dispersion curve ifa)] with exponential spectrurﬁ(Q)zexp{—(Q/AQ)z] of (d) the mode withLy/L,=1/6, Ly/L,,
=1/6 [thin dispersion curve 1 iga)], and of(e) the mode withL4/L,=-1/6, L4/L,,=1/6 [thin dispersion curve 2 ii@)]. Normalized
coordinates arer=(7+az)AQ, p=r/rg, with ro=(kokpAQ2) 2,

_ o K () = V2kq(B - |kg|Q%2). (28)
(D y L) = R T ]
w07 02 e{ Vkokgr? + [ 75 +i(r+ az)z]}

(27)  Note that the term wittB, no matter how small it is, must be
retained to reproduce the real-valued part of the dispersion
curve. The group velocity of the mode can be slightly sub-
luminal (e<0) or superluminala>0), as in Figs. 8 and

8(b) (thin curves, but the phase velocity of these modes is
eatlways superluminal>0). An approximate analytical ex-

where 7,=(AQ)™! measures the pulse duration. Equation
(27) is the eX wave recently described in R¢L3] as an
exact, stationary, and localized solution of the paraxial wav

equation with luminal phase and group velocities= 3=0) . . . .
. o . pression for this type of mode can be obtained by introduc-
in media with normal GVD. The eX wav@7) is understood ing the approximate dispersion curve of E28) into Eq.(8).

here as an approximate expression for modes wij{ such Under condition L <L the frequenc ab O
that|Ld/Lp|.<1’ |Ld/L"‘{| <1. The spatiotemporal form of the _ V2p11Ky| is much|s?l1alle?|ichamﬂ o) ?hat tge agmglitugde
eX wave is shown in Fig. (€). For Ly/L,=1/6(8>0), 2 '

Ly/L,=1/6 [thin curves in Figs. @) and Tb), label 1, the spectrumf({)) can be assumed to take a constant value in the

mode retains an X-shaped structifég. 7(d)] despite the integration (_10main of integral in E@8), which then yields
dispersion curve differ significantly from the limiting one. the expression
Incipient PBB behavior, or radial oscillations, originates

from the nearly horizontal dispersion curve in the central part 1
of the spectrum. Foky/L,=-1/6 (8<0), Lq4/L,,=1/6 [thin D, 5=

curves in Figs. @) and 7b), label 2, the X-shaped mode T kglkglr2 + (7+ az)?

[Fig. 7(e)] shows instead incipient eFWM behavigdight is . T >

within the cong, together with temporal oscillations arising xsinl v 261k Vkolkglr? + (7+ a2)?],  (29)
from the frequency gap in the dispersion curve.

of the same form as the O-type impulse response mode in
2. Anomalous group velocity dispersion: Envelope O waves ~Mmedia with anomalous dispersion. Figui@)shows its spa-
tiotemporal form. For comparison, the wave mode with
When|Lg/<|Ly|,|L,| but GVD is anomalous, the disper- L4/L,=-1/6, L4/L,,==1/8 [Fig. &a), thin curvd and the
sion curve within the bandwidth can be approached by théwo-sided exponential spectrufirig. 8b)] was calculated
ellipse centered of2=0 [Figs. 8a) and &b), thick curve$  from Eq. (8), and its O-shaped spatiotemporal form is de-
given by the expression picted in Fig. &d).
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@, ®, 1 5
_a 2 D, 4r, 7+ az) = — dQf(Q)IK(Q)r]
g— S 27 K(Q) real
N =
3 3% xXexd-iQ(r+ az)], (32
N3 N
So o5 00 05 0 4 2 T but with a transversal dispersion relatiork({)

=k3(Q)-k%(Q) given now by

s K(Q) =[(2koB ~ B?) + 2(koax + kiB = )

| + (ko + 2kga = @) Q72 (33

:E up to second order in dispersipk(Q)=ky+k)Q+k30?/2].

= Equationg32) and(33) describe the most general form of

E nonparaxial wave modes in media with second-order disper-

= sion and contain as particular cases the nonparaxial wave
rormalized time o vz i :u' . o modes in free space described in previous studies. Indeed, in

rormetzec me free spacek,=wq/c, ki=1/c, Kj=0, with c the speed of light

FIG. 8. (a) Dispersion curve within the bandwidth féir | /|L,]  In vacuum, Eqgs.(32) and(33) yield the general expression
—0, |Lgl/|Ly|—0, with Ly<0 (thick line), and forLq/L,=-1/6,  (7) of Ref.[24] for free-space FWM's, if the identifications
Lg/L,,=-1/8 (thin curve. (b) The same as iia) but also outside a=(1-7y)/c andB=wya+2yBs are madey and 3, being the
the bandwidth of the spectrumin arbitrary unity f(Q)=exp the free parameters defined in RE24]). The case witha
X (-[Q]/AQ). (c) Gray-scale plot of the amplitudé, 4 of the e0 =0 and B=-2k, yields the original Brittigham’s FWM
wave of Eq.(29), (d) of the mode withLy/L,=~1/6, Lg/L,= [22,23 with forward propagating envelope and backward
-1/8, and the exponential spectrum (bj, numerically calculated propagating carrier oscillations. The choie wya leads to
from Eq. (8). Normalized coordinates are=(7+a2)\28/|k}|, p  the Bessel-X pulse of cone angle (2ca)*’ or X wave with

=\2koBr. narrow spectral amplitude centered at an optical frequency,
introduced by Saari and Sonajalg in REE6], and demon-
IV. NONPARAXIAL DESCRIPTIONS OF WAVE MODES strated in Ref[17].

As for the nonparaxial description of quasiluminal wave

The purpose of this section is to show that the precedingnodes in dispersive media, we note that the teghsag,
classification of wave modes in dispersive media in terms ofind «? in Eq. (33) can be neglected in comparison with
the characteristic lengths remains essentially unaltered whezk,g, kya, and X}e, respectively, if conditiong4) and(5) of
performed from the more exact nonparaxial approach, if conquasiluminality are satisfied, to obtain the approximate ex-
ditions (2) of gquasimonochromaticity an@4) and (5) of  pression
quasiluminal group and phase velocities are satisfied.

We consider now the polychromatic Bessel beam

K(Q) = V2(ko + kgQ)(B+ a)) + kokQ?  (34)

1 - . .
E(rzt = 20 K real dof(w = wgldo(Kr)explikz)exp-iwt), for the nonparaxial dispersion relation of quasiluminal
e modes. It then follows that the paraxial dispersion cUyig.
(30 (7)] may significantly differ, under the only condition of
guasiluminality, from the nonparaxial ofieg. (34)]. In fact,
whereK andk, must be related by(:\rkz(w)—ki for each it is not difficult to find a set of parameters for which the
monochromatic Bessel beam component to satisfy the Helnfionparaxial dispersion curve is, for instance, a vertical hy-
holtz equatiomé+ kz(w)E:O. Stationarity of the intensity in perbola, whereqs the paraxial d|s.p_er5|on curve s a horlzpntal
some moving reference frame requires the axial propag<';1tio‘qyperb0|"’{See Fig. 8a)]. If the additional condition of quasi-

constantk, to be a linear function of frequendy], a condi- monochromatipity _is imposed, however, both 'the paraxial
tion that iZS suitably expressed as ' and nonparaxial dispersion curves are essentially the same

within the bandwidthand, hence, the spatiotemporal struc-
ture of the wave mode. Writinggo/ kg~ w, for transparent
k(Q) = (ko= B) + (kg — @) Q. (31)  dispersive materials, we can rewrite Eg4) as

Equation (30) can be then rewritten in the forr&(r,z,t) ] Py

=, 4(r, 7+ az)exp(=i fz)exp(-iwt +ikez), where the re- K(8)) =~ V2Kko(1 + o) (5 + ) + koko 2 (35)
duced envelope is given by the same expression as in the

paraxial case—namely, or, in terms of the characteristic lengths,
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FIG. 9. (a) Paraxial and nonparaxial transversal dispersion
curves of the modes of carrier frequenay=4 fs! with «
=300 mmtfs, and B=400 mm?! in fused silica (kg
=19 530 mm?, k{=4988 mm? fs, andkj=77 mni! fs?). (b) The
same as ifa) but only within the bandwidth of the shortestidest
spectrum, single-cycle wave modeAQ =wqy/27).

K(Q) = \/ 2%{ <1 + ﬁnn)(Lgl +L,20,) + %LglnﬁJ .
0]
(36)

Since (AQ/wg)|Q,] <1, the nonparaxial dispersion curve

within the bandwidth can be approached by the paraxial

one—that is, by Eq(19). This point is illustrated in Fig. ®)
for the worst possible situatiofwidest possible bandwidth
of a single-cycle modeAQ)/ wg=1/27). We can then affirm

PHYSICAL REVIEW E 69, 066606(2004)
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FIG. 10. (a) and(b) Values ofa and 8 from Egs.(37) and(38)
at different carrier frequencies in fused silica, with the refraction

that the description and classification in Sec. Il of quasimoindex obtained from Ref{19]. (c) Characteristic lengths for the
nochromatic, quasiluminal wave modes in terms of thejrimiting case of single-cycle mode&\(2=wo/2m), with « and B

characteristic lengths is independent of the approach used.
O(d) For wp=2 fs

To illustrate the relationship between the paraxial an
nonparaxial approaches and the type of results we can exp
from the paraxial one, we consider wave modes of any ban
width AQ propagating in normally dispersive medig > 0)
with

= I = Vkg? + ko = ~ Kok 2K, (37
2,
B=- kO(kO \’kO + I<OkO) - kékg/Zkéz, (38)

Vko? + ok

[see Figs. 1@) and 1Q@b) for propagation in fused silidaso
that the nonparaxial dispersion curve is, from E8g), the
(exactly horizontal straight line

koky _ [kaKs
k(l)2

keKs
KQ)=K=|—"— , 39
(@) w— (39

given by Eqs(37) and(38) at different frequencies in fused silica.
1 and AQ=wy/2w, comparison between the
raxial and nonparaxial dispersion curves within the bandwidth,

given, respectively, by Eq$7) and(33).

For these PBB's, it is easy to see that the paraxial and
nonparaxial descriptions become undistinguishable, in spite
of the apparent drawback that PBB’s are no longer exact
solutions of the paraxial wave equation in dispersive media
[when ky#0, the paraxial dispersion curg) is never a
horizontal straight ling In fact, whenkj<kj?/ko, the rela-
tionship|L | <|L,|<|L4| is satisfied for any mode bandwidth
down to the single-cycle limifsee Fig. 1(c) for the case of
fused silica. Accordingly, these modes are of PBB type; that
is, the paraxial dispersion curve within the bandwidth can be
approached by an horizontal straight lifeee Fig. 10d) for
wo=2 fs! in fused silicd. Finally, the paraxial prototype
PBB for these modes is given, from E@1), by @, 4(r, 7
+a2)=f(1+az)Jo(Kr), with K=\k3Kj/k)? — that is, by the

and the corresponding nonparaxial wave modes are th@me expression as in the nonparaxial approach.

dispersion-free, diffraction-free PBB'®, 4(r, 7+az)=f(7
+az)Jo(Kr) studied in Ref[10]. The approximate equalities
in Egs. (37)—«39) hold for weakly dispersive materials such
thatk} <kj?/ko, in which caser and 8 satisfy conditiong4)

V. CONCLUSIONS

Summarizing, we have described and classified the quasi-

and(5) of quasiluminality for the group and phase velocities.monochromatic, pulsed versions of Bessel light beams with
As seen in Figs. 1@ and 1@b), this is the case of fused the property of being localized and remaining stationary
silica at any visible carrier frequency. (diffraction-free and dispersion-frgduring propagation in a
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dispersive material with slightly superluminal or subluminal We have verified that the paraxial approach leads to the
phase and group velocities. As for the wave mode descripsame results as would be obtained from the more accurate
tion, we have found the analysis of the transversal dispersiononparaxial analysis when the conditions of narrow band-
curve K(€), which can be directly related to far field mea- width (2) and of quasiluminality4) and(5) are satisfied. All
surements in experiments, to be a useful tool for understandireviously reported Bessel beams, X waves, Bessel-X waves,
ing the spatiotemporal mode structure. Wave modes have' focus wave modes generated (tipear or nonlinearop-
been classified into three broad categories: PBB-likelical means satisfy indeed these requirements.

eFWM-like, and eX-like(eO-like) modes, depending on the
relative values of their phase and group velocity mismatch
with respect to a plane pulse, and defeated GVD, as mea- The authors thank G. Valiulis for helpful discussions and
sured by the mode phase-mismatch lendth group- acknowledge financial support from MIUR under project
mismatch length_,,, and the dispersion length,. Nos. COFIN 01 and FIRB 01.
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