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Inverse scattering transform for the derivative nonlinear Schrédinger equation
with nonvanishing boundary conditions
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An inverse scattering transform for the derivative nonlinear Schrédinger equation with nonvanishing bound-
ary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-
soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright
or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the
modified nonlinear Schrédinger equation by a gaugelike transformation, predicting some sub-picosecond soli-
tons in optical fibers.
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I. INTRODUCTION is a double-valued function of the eigenvalue usually ap-
L ) . i pears. The IST usually has to be developed on the Riemann
The derivative nonlinear SchrodingePNLS) equation sheets of the eigenvalue. Second, there possibly exists a
phase shift across the soliton which is relevant to soliton
parameters, complicating the derivation of the phase factor
. . — of the soliton. In 1978, Kawata and Inoue developed an IST
where the SUbS.C”ptS de_not_e partial de_rlvatl_ves a1, for the DNLS equation with NVBG17] where theypconsid-
has many physical appllcanons, esp_eC|aIIy In space plas,m@red the double-valued problem with Riemann sheets. But
physms_. It well descnbe; sma]l-amplltude non_llnear AIfventhey only obtained a complicated formula for modulus of the
waves in a lows (the ratio of kinetic to magnetic pressyire one-soliton solution. With this formula they showed that the
plasma, propagating strictly parallél-3] or at a small angle solution, generally characterized by two parameters, is a

[4,5] to the ambient magnetic field. Recently it was shownbreathert : . . X
o . . ; -type soliton called paired soliton. When the discrete
that the derivative nonlinear Schroding@NLS) equation eigenvalue becomes redibr m=1) or purely imaginary(for

also  describes _ large-amplitude magne;ohydrodynamlﬁq:_l), the breather reduces to a one-parameter bright or
(MHD) waves in a highg plasma propagating in an arbitrary dark soliton, depending on its initial conditig7,18. One

angle to the ambient magnetic .fie[.a]. Sinceu represents decade later, Mjglhupl] solved the phase factor of the one-
the complex transverse magnetic field, generally these prok%—

lems should be modeled with the nonvanishing boundary(/Oliton solution(for the case ofm=1) from formulas pro-
conditions (NVBC, |u] — const as|x| —). The vanishing ided in Ref.[17] and obtained a rather complicated explicit

" formula of the two-parameter soliton solution. This solution
boundary conditiongVBC, u— 0 as|x| — ) can only deal b

th " lel to th bient field | showed the phase shift across the soliton is zeran inte-
with waves exactly paraliel 1o the ambien iefd.5]. in ger times 2r). When the discrete eigenvalue becomes real it
nonlinear optics, it is well known that the nonlinear

SchrodingenNLS) equation well describes transmission of reduces to a simple bright or dark soliton. Behavior of the

: d oul ! tical fibefdl. For femt q two-parameter soliton found in Ref4] was numerically
picosecond pulses In optical Ti e(3]. ror temtosecond 4o monstrated in Ref5]. Recently, by using Backlund trans-
pulse, it was suggested that the nonlinear dispersion ter

"Brmation Steude[16] derived a formula folN-soliton so-
should be included in the NLS equation, resulting in the .. o .- -
modified nonlinear SchrodingeiMNLS) equation [8—11] lution with VBC and NVBC but the explicit expression for

L . X the two-parameter one-soliton solution with NVBC is still
which is related to the DNLS equation by a gaugelike trans b

. : o not simpler than that in Ref4].
formation[12]. For problems in optical fibers both VBC and . P - :
NVBC are of interes{7]. The physical situations giving rise to exactly solvable

Like other integrable nonlinear equations, soliton dynam_equations are highly idealized. Small perturbations violating
ics of the DNLS equation is of interest both in theoreticalthe'r integrability, such as Landau dampiffgl and density

; . . fluctuation[19] for the DNLS equation, actually exist. Per-
anq applied .aspects. For the DNLS gquatlon with V.BC’ ON€3\rbation theories for solitons were developed to study ef-
soliton solution has been found by inverse scattering tran

form (I_ST) [13], N-soliton formulas have also been obtainedt?;f? sl;sz;(I)I_rz)ze];fulr:%?tltohr;s Slr\llLséolggﬁt;:]zn\slvr::;]ss\l;gﬂg’e,a
by various approachgd4-1q. . direct perturbation theory was recently develogea], in
Solutions for NVBC problems are much more compl!— which the eigenfunctions of the linearized equation around
cated than those for VBC problems. First, a parameter WhIC'goliton solution were constructed with the squared Jost solu-
tions obtained from the ISTL3]. The linearization operator
and the way to construct its eigenfunctions with the squared
*Electronic address: xiangjun-chen@21cn.com Jost solutions are the same for both VBC and NVBC. There-
"Electronic address: wakunlam@21cn.com fore, with results of IST for the DNLS equation with NVBC,

iUy + Uy, — im(|u?u), = 0, (1)
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in principle, the direct perturbation theory for the DNLS soli- A= %(k— p’kh, (6)

ton with VBC [23] can be extended to that with NVBC.

However, the IST and the soliton solution for the DNLS we have

equation with NVBC in present literatur,17] seem too g o1

complicated to be applied in developing a perturbation {=3k+p%k), (7)

theory. o which is a single-valued function & Asymptotic solutions
The IST for the DNLS equation with NVBC do have a of Eq. (23 are

space for further simplification. It has been shown that the

IST with NVBC can become single valued on the plane of an Ef(x,K) = €1993(] —ipk o) M%7 asx — oo, (8)

appropriately chosen affine paramefed]. Some compli- ) ) ) ) )

cated IST problems were greatly simplified by this tech_whgrel is the unit matrix. As usual,_we defme Jost solutions

nique, yielding closed forms of soliton solutiorsee, e.g., Which have the following asymptotic behaviors

Refs. [25,26). In this paper, we develop an IST for the +

DNLS equation with NVBC by a similar technique. Because Fxk) — Bk

the case ofm=1 can be obtained from the case of

=-1 by a transformatior— —x, we just consider the case of d(x,k) = E"(x,k) as x— -, (9b)

m=-1. On the plane of the affine parameter, the IST is muc

simpler than that in Refl17]. A much simpler two-parameter

one-soliton solution than that in Ref§4,5] is obtained, D(x,k) =W (x,k)T(K), (10)

which can be easily verified numerically because of its

simple form. Although we could not analytically show our Where

solution is identical to that in Ref44,5], their numerical

as X— oo, (9a)

de the scattering coefficients by

behaviors can be shown to be in agreement. When the W(x,K) = [g(x,K), (x,K)], (113
boundary conditions vanish, both of our solution and that in
Ref. [4] approach the solution with VB{13]. As the discrete D(x,K) = [ p(x,K), D(x,K)], (11b)
eigenvalue becomes purely imaginary, our solution degener-
ates to a one-parameter bright or dark soliton which is ana- ~
lytically equivalent to that in Refl4]. Again, the phase shift (k) = a(k) -b(k) (12)
across the soliton is shown to be zero, as a direct result of the b(k) Ak '
IST. In the last section, we map the obtained soliton solution . _
to that of the MNLS equation by a gaugelike transform. ~ Equation(10) yields
a(k) = det ¢, y)/det WV, (1339
II. JOST SOLUTIONS 5
The Lax equations of Eq1) (for m=-1) are a(k) = dety, ¢)/det ¥, (13b)
oF =LF, (29 and
det® =detWV detT. (14)
oF =MF, (2b)

From Eq.(2), we haved,detV(x,k)=0 and d,det ®(x,k)

where the Lax pairs are =0. Therefore

L=-iN203+\U, (3a)

detW(x,k) = detE*(x,k) = 1 + p’k 2, (15a
M = —i2M%a5 + 203U — iN2U%0 + \U% — AU, 0. (3b) detdOCK) = detE(uk) = 1+ p2kC?, (155
Here
0 u detT(k) =1. (16)
V7 (—U o)’ “
0i(i=1,2,3 are Pauli matrices, the bar stands for complex . SYMMETRIES ON THE k PLANE

conjugate, and is the time-independent eigenvalue. Without

loss of generality, the NVBC can be written as The key to simplify the IST is to find symmetries of the

Jost solutions and the scattering coefficients orkthkane. If

u— pe?® as x— oo, (5)  one finds that (x,k) is unchanged upon a transformation, for
example,
Herep is real and we have assumed that there is a phase shift P
of 4« across the soliton. In asymptotic solutig)nszolfm@p) UzL(X,B o= L(%,K), 17)
as|x| —, a double-valued function of, =(\%+p?'2 ap-
pears. Introducing an affine paramejf24] k satisfying then, if F(x,Kk) is a solution of Eq(2a), we have
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,0oF (X, K) o5 = L(X, K) 0o F (X, K) 7. (18)

Thus,aZF(x,F)az or G'ZF(X,?)O'Zol is also a solution of Eq.
(2a), corresponding to the same eigenvakudhey only dif-
fer in a constant factor. I(x,k) is a Jost solution, this

constant factor can be determined by its definite asymptotic

behavior. We find

0B (X, K) 0y = EX(%,K), (19)
hence
V(K)o = T(XK), aDxKoy=D(xK), (20)
and, with Eq.(10), we get
Uzﬁgz =T(k), (21)
that is,
XK =ioppxk),  BxK) = -iopp(xK), (22
Ak = alk). (23
The second symmetric relation is upkr-—k. We find
oL (%~ K)og = L(%,K), (24)
3EE(%, — K)o = EX(%,K) . (25)
Therefore
0'3\1’(X,_k)0'3:\1,(x,k), 03(19(X,—k)0'3=<13(x,k),
(26)
osT(= Koz =T(K). (27)
That is,
Y-k =-ogpk), Y-k =ouk), (288
=K =03p(k), -k =-o3d(k), (280
a(-k) =a(k). (29)
The third symmetric relation is upda— p?k™*. We find
sl (X, p?’k Doz = L(x,K), (30)
3B (X, p’k Y o0y = ip KEE(X,K) . (31
Therefore
W(x,p?k ™) = p koW (x,K)op,  P(x,p?kY)
= p ko3 ®(x,K) 05, (32
(0?7 = 05K, = T(K. (39

That is,

PHYSICAL REVIEW E 69, 066604(2004)

Im(k)

Re(k)

FIG. 1. Integration path for Eq55). The radius of the dashed
circle is p. The radius of the large solid circle approaches

P pPkY =ip kog(x,K),  Bx,pKY) == ip kosp(x,K),
(34)

a(p?kY) =3(K) = a(k). (35)

Thus, as shown in Fig. 1, K,; =k, is a simple zero oé(k) in
the first quadrant, outside the circle, k,,=-k, is also a
simple zero in the third quadrant outside thecircle, k3

=p2k;1 is also a simple zero in the first quadrant inside ghe
circle, andkm,:—pzk;1 is also a simple zero in the fourth

quadrant inside thep circle. Correspondingly, ?nj(j
=1,2,3,9 are zeros of(k). Equation(133 yields

B, Kn) = Bjth(X,Knp), X Knp) = DX, kny) . (36)
Equation(20) yields

bnjz_bnj' (37)
Because of Eq928) and(34), we get
bn2 == bn: bn3 :Eni bn4 = _En (38)
Equations(29) and(35) yield
k) =~ alky),  alk) = = pkGalky),  alkyy)
= p Acalk,). (39)
Letting
ey = (40)
" a(knj) ,
we have
Cn2=Cn1=Cp, (413)
Cr = Cna = = pPK . (41b)
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IV. ASYMPTOTIC BEHAVIORS ON THE k PLANE

In the first and the third quadrants &fplane, In{\¢)
=0, ¥(x,k), ¢(x,k), anda(k) are analytic. In the second and
the fourth quadrants d€ plane, In{A) <0, (X, k), ?i)(x,k),
anda(k) are analytid17]. As usual, asymptotic behaviors of
Jost solutions ask| —~ or k—0 can be found from Eg.
(2a). Asymptotic behaviors ofi(k) anda(k) are then ob-
tained from Eq(139).

As K| — =, we have

K _ik_lu Lo 2
P(x, ke M L 79+ 0(K™?), (429
. 1 o
¢mww“aﬂmq9@”m+mMﬂ.(mm
and, by using Eq(13a),
a(k) — explin—i2a). (43
Here
+ 1 = 2 2
=tz (p* = |u]?)dx, (44)
2Jx
+ — 1 +°c 2 2
n=q =5 (b = |u[dx. (45)
As k— 0, we have
. —ipkt\ .
pix e ™ | T e 9+0(1), (468
pu
) p_lu .
¢(x,k)e"‘5x—>( : k_1>e"(” “9+0(1), (46b)
—lp
and, by using Eq(13a), we have
ak) — exd-i(n-2a)]. (47

With analytic and asymptotic behaviors afk) anda(k),

usual IST procedure yields
ak) = exrii(n
In a(k’) 2
-2l Tl L [ AL |
n=1j-1 k — k 21

(48)

Herel is the path consisting of lines froie to 0, from 0 to
oo, from —ico to 0, and from O to ee.
As k— 0, Eq.(48) becomes

a(kwexp{i(n—za)ﬂsmn], Ba = argk,).
(49)

Comparing Eq(49) with Eqg. (47), we get a relation between
the phase shift and the soliton parameters:

PHYSICAL REVIEW E 69, 066604(2004)

N

4a=27+8, By
n=1

(50)

V. ZAKHAROV-SHABAT INVERSE SCATTERING
EQUATION

For the case whea(k) only has simple zeros, we define
O(x,k)
{a‘l(k)qs(x, 9
i

in the first and third quadrants &f
in the second and fourth quadrantskof

(51)
With Eqgs.(42), (46), and(22), we get

: - 1
O(x,k)ehx — g ‘“><O) as|k| — = (52

and

. 4 “lu
O(x, ke g —M(_F:pk_l) as|k| —0. (53

Thus, besides the Nt poles correspond to zeros afk),
0(x,k) has an extra pole d=0. While across the real or
imaginary axesP(x,k) has a jump,

() (x, k) = (X, K) = r(K)x,K), (54)

wherer(k)=b(k)/a(k) is the reflection coefficient. Fdg in-
terior to the closed path shown in Fig. 1, Cauchy’s formula
yields

O(x,keM* - e‘“”“‘”((l))

@(x,k’)e”'f'x—e‘i(”+‘“)(1>

1 0
:E_rgs K dk’ = R(x,k)
+J(x,K), (55)
where
N 4 N
Ok )& }
R(x,k) = — Res{,—,kfk-
( 21121 (k' -K) "
Ok )eN ¢ ]
- Res —,k’:o
[ (k" = k)
4 (0
= k )\ngn i k_l (77 _a)< )
nzl,%(k km>°”l‘”(X ) ipkee
(56)
and
I’(k/) (X kl) N x ,
J(x,k) = |277J ¢k’—k dk’. (57)
r
Hence
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_ e—i(n+—a) VI. ONE-SOLITON SOLUTION
O(x,k) e = - - ;
- ipk‘le'(” -a) For the case oN=1, with Egs.(28), (34), and(41), Eq.
(59) becomes
E 2 —— X, Ky €M+ I(x,K). - gl
n=1j= 1k knj " ") lﬂ(X,k)e'MXZ .
(58) - ipk_le'(” —a)
k, O :
For k in second or fourth quadrants, we have the Zakharov- +— 2 2( ! )clzp(x, k)t
Shabat inverse scattering equati@] k“-ki\0 k
Cia i2pkit [0 pAGl\_—
T I +%( o )Cll’//(x'kl)e_mx'
’ - ipk-1 i(7"~) K-pi)\k 0
(66)
iNnjdnjX — —
nEl]S; o km o ke Ot k) €T+ 3¢, ). At k=ky,=ky, with Eq. (22), we have
, - 2k _————
OF et = ipiie o - g ke e
For the case of reflectionless potentid(x,k)=0, we can 17k
find Jost solutions from Eq59). Soliton solutions can be ip .
found from Eq.(42) or Eq. (46), e.g., Eqs(46a and (22) + ———Cy (X, ky ) EMEX, (673
yield 2M6
u(x) = Pe_i(n+_a) Iim:bl(x keh& = Pe_iz(f_a) me&l?lx —gi(n™-a) _ 22kl_1cl¢l(x, ky) g
ki—k;
P> Ly P T
i o + LG ck)e ™. (67D
Considering Eqs(28), Eq. (34) and(41), we get 2M6a
It is easy to verify that foj=2,3,4, wejust have the same
u(x) = pe -i2(y-a) _ 20€" i(y* a)z [ Py (%, k) Ehnén equations or their complex conjugate. Letting
B ky=pen*PL =0, 0<pB;<ml2, (69)
G S i
+1 B lpz(x,kn)e . (60) 2)\14’1 =u + iV' (69)

In order that the Jost solutions obtained from the first Lax _ o _ 5 .
equation satisfy the second Lax equation, they must be mul- *~F sinh(2y,)cos26y), v = p® cosi2yysin(2p,),
tiplied by at-dependent factor as (70)

P KD — KRG K), Xk t) — hL(EK) g(x,K), 200
c1(0) =

sin(23;)e”o*i¢o, (71)
Ky

- e
¢kt) = h(tk) s k), 0kt = MK S k). solving Eq.(67) and substituting its solutions into E¢G0),

With standard IST techniques, we find we get
— i 2_ 2 o+ N
h(t,k) = exgd— iNZ(2\2 - pA)t], (61) u(x,t) = pe@7 —v)B, (72)
and thet dependence of all scattering data,
where
ak,t) =a(k,0), (62) , . .
N = e”'31 + sintf(2y,)e 471 131 + sin(2B,) e ¢
b(k,t) = b(k,0)exp[i2xZ(2\* = pA)t], (63) - sin(2B,)e 5tie, (73)
bnj(t) = by (0)exi2Xpni(2N5; = pAI]. (64) D = e’ A1 + sint(2y,)e *M1e 11 + sin(28,)e 317i¢
Therefore — sin(2p,)e7"e, (74)
Coj() = Cnj(0)eXHi 20 (NG = PO, (65 0=v(X-vt=—Xg), @=pu(Xx—wt)+ g, (75)
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FIG. 2. Time evolution of the breather, E@2), in three periods, wherp=2, v;=0.08, B1=7/10, Xo=0, andgy=37/2.

4
v=2p%-p? 008(231)2222213, (76)
w = 2p? — p? cosh(27y,) cod4py) (77)

cog2B,)’

In order to determiney"(x) with Eq. (44), we find a useful
relation

dD dD; p?
D;—~2-D,——="—(D)2-N]?,

78
dx dx 4 (78

whereD;=ReD, D,=Im D. With this relation, we have

7'(X) = 2[; 1+(Dlz/Dl)2ci<(D2/D1) =-i In(D/D)[}
=i |n2— 2B, (79
D
and
7=7'(-%) == 4B, (80)
a:g+2,8120. (81)

(82)

In general cas@, is complex. There are two soliton param-
etersy; and B; characterizing its behavior, and the solution
is usually called two-parameter soliton in the literat[B It

is actually a breather with a period,

T = 27 2
7 ulv-wl ~ p? tanH2yy)[cosH(2y) + cog(28))]°
(83

We have numerically verified that the breather, B®), re-
ally satisfies Eq(1) (m=-1). Its time evolution in three pe-
riods is shown in Fig. 2, in agreement with that numerically
exhibited in Ref[5].

Equation(82) includes the VBC as a special case. As
—0, y;— +o, keepingpe”i=|k; | =2|\,] finite, we have

pN — |ky|sin(2B,)e7', (84)

D — e P14 2e b, (85)
Redefiningx, by absorbing —In 2# into x,, we get the one-
soliton solution with VBC,

AN sin(2By)e¢

o-i -0+
T e+ e"0-iB1)2(e P14 g 1Py,

(86)

This means there is no phase shift across the soliton. There-

fore we have the one-soliton solution

which is equivalent to that in Ref13].
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For a special case whén approaches the circle, i.e.,\; ¢ =20suft- (sw+ osH)z] + ®o- (94)
becomes purely imaginarg; — 0, u— 0, ¢— ¢o. There is

only one soliton parametg#, characterizing the soliton. Itis AS 71— 0, we also get

thus called one-parameter solit¢d]. If ¢o#nm (n is an ide cod B
. - _ 1 -i(0/2)s 2z+is It
integed, we have q(zt)=p| 1 =T € '
i4e cog
u(x,t) =p| 1 - €C0S Ay (87) (95

ettiBL— g 0B 4 j2¢ | . . . .
Therefore, when effects of the nonlinear dispersion are sig-

where x, has been redefined by absorbing nificant enough, with background wave, single-mode fibers
In[2 sin(28;)|sin @o| 1/ v into Xo, e=sgr(sin ¢g). The casee may possibly support breathers, bright solitons, and dark
=-1(1) corresponds to brigtdark) soliton, equivalent to solitons, both in the regions of normal and abnormal GVD.
those obtained in Ref4]. Here, the MNLS dark soliton is very different from its NLS
counterpart. The MNLS dark soliton not only exists in nor-
mal but also in abnormal GVD region while the NLS dark
Vil. ONE-SOLITON SOLUTION FOR THE MNLS soliton only exists in normal GVD region. There is no phase
EQUATION WITH NVBC shift across the MNLS dark soliton but there is a phase shift
The MNLS equatior{8] is across the NLS dark soliton which is relevant to soliton pa-
rametergsee, e.g., Ref.28)).

; g : 2 2. _
i+ 20+ is(|g°g); +|a[*q =0, (88) VIIl. SUMMARY AND DISCUSSION

In this paper, by introducing an affine parameter, a simple
where =11, 0=-1(1) corresponds to normaabnormal st for the DNLS equation with NVBC is developed, yield-
group velocity dispersioiGVD) region, the third term on ing 3 much simpler one-soliton solution than that in the lit-
the left is the nonlinear dispersion term, whileepresents its o ature. We show that the DNLS equation with NVBC sup-
relative magnitudg7]. It can be verified that upon a gauge- s rich soliton dynamics. It supports breathers which look
like transformation like bounded pairs of bright and dark solitons, as well as

(185 37 4i(0f2)52 unpaired bright and dark solitons. Our solution includes the
a(z,t) = Q(z, T)g s znlwzs T, (89 case of VBC as a special case. As the solution is mapped to
that for the MNLS equation with NVBC, it predicts some
solitons in optical fibers in sub-picosecond regime with
o, 3 o, background waves, especially, a completely different type of
t= > T+ 55 Z z= 5 Z, (900 dark solitons which has no phase shift across itself and may
exist not only in normal GVD region but also in abnormal
the MNLS equation, Eq(88), is transformed to the DNLS GVD region. The IST technique developed in this paper
equation make it possible to get multisoliton solutions for the DNLS/
MNLS equation. When multisoliton solutions are obtained,
iQz+Qrr+i(QPQ)r=0. (91)  they will demonstrate interesting soliton dynamics such as
From one-soliton solution of the DNLS equation obtained inggltl\ljle%r;lsb?:g;vﬁeernagggbﬂgﬁ?%rdﬁg:kSS%I:itg) T’S a.lt]ﬁeclg.lll.siggﬁ_
mﬁ”_psregegg;% nss\fiilr?r[]\ivvéechave one-soliton solution of thenique also provides a foundation for understanding effects of
q ' small perturbations on the DNLS/MNLS solitons with
NVBC. There seems no special difficulty to extend the direct

in which

ND _ 2
q(zt) = prze"("/z)S ZtisT, (92)  perturbation theory for the DNLS/MNLS solitons with VBC
D [23] to that with NVBC.
Here dependence &f andD on # and¢ are the same as Egs. ACKNOWLEDGMENT

(73) and(74), while
This work was supported by the National Natural Science

6= 20s[t— (sv + oS Hz-to], (93 Foundation of China under Grant No. 10375027.
[1] A. Rogister, Phys. Fluidd4, 2733(1971). [5] E. Mjglhus and T. Hada, ifNonlinear Waves and Chaos in
[2] E. Mjglhus, J. Plasma Phy4.6, 321(1976. Space Plasmasdited by T. Hada and H. Matsumot®derra-
[3] K. Mio, T. Ogino, K. Minami, and S. Takeda, J. Phys. Soc. pub, Tokyo, 199y, p. 121.
Jpn. 41, 265(1976. [6] M. S. Ruderman, J. Plasma Phy&7, 271 (2002.
[4] E. Mjglhus, Phys. Scr40, 227 (1989. [7] Govind P. Agrawal,Nonlinear Fiber Optics 3rd ed. (Aca-

066604-7



X.-J. CHEN AND W. K. LAM PHYSICAL REVIEW E 69, 066604(2004)

demic Press, New York, 2091 [19] M. S. Ruderman, Phys. Plasm&s2940(2002.
[8] N. Tzoar and M. Jain, Phys. Rev. 23, 1266(1981). [20] D. J. Kaup and A. C. Newell, Proc. R. Soc. London, Ser. A
[9] D. Anderson and M. Lisak, Phys. Rev. 27, 1393(1983). 361, 413(1978.
[10] K. Ohkuma, Y. H. Ichikawa, and Y. Abe, Opt. Letl2, 516 [21] V. I. Karpman and E. M. Maslov, Zh. Eksp. Teor. Fiz3, 537
(1987). (1977; [Sov. Phys. JETR46, 281(1978)].
[11] E. V. Doktorov, Eur. Phys. J. B9, 227 (2002. [22] D. J. Kaup, Phys. Rev. A2, 5689(1990.
[12] Y. Ichikawa, K. Konno, M. Wadati, and H. Sanuki, J. Phys. [23] X.-J. Chen and J. Yang, Phys. Rev.a@5, 066608(2002.
Soc. Jpn.48, 279 (1980. [24] L. D. Faddeev and L. A. Takhtajatjamiltonian Methods in
[13] D. J. Kaup and A. C. Newell, J. Math. Phy&9, 798 (1978. the Theory of SolitonéSpringer, Berlin, 198y
[14] A. Nakamura and H. H. Chen, J. Phys. Soc. Jg8, 813 [25] N.-N. Huang, Z.-Y. Chen, and X.-J. Chen, J. Math. Ph$8,
(1980. 226 (1997).
[15] N. N. Huang and Z. Y. Chen, J. Phys. 23, 439(1990. [26] H. Yue, X.-J. Chen, and N.-N. Huang, J. Phys. 3, 2491
[16] H. Steudel, J. Phys. 486, 1931(2003. (1998.
[17] T. Kawata and H. Inoue, J. Phys. Soc. Jgd, 1968(1978). [27] V. E. Zakharov and A. B. Shabat, Sov. Phys. JEBE 18
[18] T. Kawata, N. Kobayashi, and H. Inoue, J. Phys. Soc. . (1971). [Sov. Phys. JETR34, 62 (1972].
1008(1979. [28] Y. S. Kivshar, IEEE J. Quantum Electro28, 250(1993.

066604-8



