PHYSICAL REVIEW E 69, 066603(2004)

Description of readout processes during strong beam coupling
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We show, using the symmetry properties of the coupled-wave equations for the transmission and reflection
geometries, that any readout characteristic of dynamic spatially nonuniform index gratings in photorefractive
crystals can be explicitly expressed through the characteristics of the recording light beams. This approach is
applied to describe the impact of beam coupling on the diffraction efficiency of dynamic gratings and on the
output intensities of the light beams at instantaneous input phase ch@digbegrating translation Further
implications of this general approach are discussed.
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I. INTRODUCTION spatially uniform index grating$11]. In other words, the

Photorefractive nonlinear-optical phenomena are causedynamic distortions of the grating amplitude and phase were
by dynamic processes of buildup of refractive index gratinggeglected. This approach is justified for sufficiently thin
and Bragg diffraction of light waves from these gratingssamples exhibiting weak nonlinear-optical effects but it is
[1,2]. They include wave amplification, phase conjugation,not valid when the energy and/or phase exchange between
light scattering, optical oscillations, and many other impor-the recording beams is strong. These cases are indeed of
tant effects. The major constituents of grating formation aregreat importance for applications.
charge separation under light and the linear electro-optic ef- To find the readout characteristics in the simplest case of
fect. The relevant materials include numerous photosensitivevo-wave coupling, see Fig. 1, it is necessary, in the general
crystals and polymerf2—4]. case, to calculate the grating profile at the readout moment

Typically, the photorefractive nonlinearity is already and to solve the coupled-wave equations for the light ampli-
strong under the conditions of CW experiments. At the sameydes once more using the boundary conditions relevant to
time, it is rather inertial owing to the slowness of chargeihe particular readout process. A few particular solutions to
separation under low light intensitig8,3]. This distinctive ;g readout problem are known to date. Steady state diffrac-

feature allows to employ effective methods for the testing,, efficiency has been calculated for the transmission ge-

and control of nonlinear effects. Imagine that the input con- . : : . i
ditions for the incident light beams are changed during ometry using a particular microscopic model of the photore

time period which is much shorter than the characteristi?:fr.acuvfa response{12]. It was .fou_nd that the nonllmear
distortions lead to strong modifications of the Kogelnik rela-

response time of medium. The refractive index profile re-. The i ¢ t taking int t th i
mains practically unchanged and the changes of the outp ns. The importance of taking Into account the noninear
istortions for analysis of the grating translation technique

optical characteristics are fully due to different ways of prob- . .
ing the recorded spatial grating. data was recognized recenfli3]. Controversial attempts to

The simplest testing method consists in measuring the difi@ke these corrections into account are presented in R&f.
fraction efficiency of the dynamic grating by instantaneous The first aim of this paper is to show that the symmetry of
blocking one of the incident recording light beafi®y. This  the conventional coupled-wave equations for two-wave mix-
instantaneous diffraction efficiency contains information oning enables one to express algebraically any readout charac-
the amplitude, but not the spatial positicthe phasgof the  teristic through the output characteristics of the recording
grating. The so-called grating translation technique allows tdight waves. In other words, the readout problem is reduced
measurein situ both the amplitude and phase of dynamicto the problem of wave-coupling modeling. Correspondingly,
index gratingg4—6]. This method employs a strong momen- the tedious procedure of resolving the coupled-wave equa-
tary phase modulation of one of the input beams whichtiions with nonconstant coefficients becomes unnecessary.
changes the position of the light fringes. The third importantThis is valid for both transmission and reflection geometries
implication of the readout properties is the feedback-of wave coupling. Furthermore, the general relations ob-
controlled beam coupling7—10. In this case, the readout tained at this stage are sufficient to formulate properly the
characteristics obtained with the help of an auxiliary weakproblem of feedback controlled beam coupling.
phase modulation are used to adjust the input phase via an The second aim is to apply the general relations to par-
electronic feedback loop. This loop stabilizes photorefractiveicular cases to illustrate the influence of beam coupling on
setups and, at the same time, modifies strongly the charactére diffraction efficiency and the characteristics of the grat-
of beam coupling. ing translation technique. Discussion of experimental details

Until recently, employment of the readout characteristicsand fitting experimental curves is beyond the scope of this
was overwhelmingly based on the Kogelnik relations forpaper.
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parallel to thez axis, whereas the components of the light
wave vectors are of the same and of the opposite signs, re-
spectively.

For the T geometry the coupled-wave equations for the
light amplitudesS andR can be presented in the forf8]

dS/dz=ikEqR,

dR/dz=ikE,S, (2)
wherex=mnr/\, nis the nonperturbed refractive indexijs
the light wavelengthy is the relevant electro-optic coeffi-
cient, and the asterisk means taking the complex conjugate.
The overall intensity, is constant during propagation in the
T case,ly=|S(2)|?+|R(2)|?=const. It can be regarded as the
input intensity.

For theR geometry the coupled-wave equations are

dS/dz=ikExR,

3

The minus sign in the second line stems from the negative
propagation direction of th& wave. The difference of the

dR/dz=-ikE,S.

0 d z 0 d z
() (®

light intensitiesA is conserving during propagation in this
case,A=|R(2)|?-|S(2)|?>=const.
The fact that the set®) and(3) do not include explicitly

FIG. 1. Schematic representation of the main processes far the
the time variablet means that light follows adiabatically

geometry(a—9 and theR geometry(d—¢). The subfigurega) and

(d) depict the recording processes, whereas the subfighye), slow changes of the grating amplituéig =Ex(z,1).

(e), and(f) illustrate the readout processes relevant to the funda- The coupled-wave equations can be applied to two differ-

mental amplitudesS,(z) and Ry, (z). The parallel lines show the ent physical problems.

grating fringes. The first one is determination of the readout characteris-
tics of the grating. The grating amplitudg(z,t) is treated

The symmetry properties of the Coup|ed_wave equa’[iongere as a known Complex function, and the differential equa-
have been used recently for analysis of particular photoretions for S and R are to be solved with proper boundary
fractive effectg15,16. A full-scale formulation of the novel ~conditions. While the readout problem is linear, it cannot be
approach to the description of the readout processes is, hogolved analytically(or in quadraturesin the general case.
ever, still missing. Most part of the results presented below! he well known particular case when E@g) or/and(3) can
are different; a few known particular results are reproducede solved is the case of a spatially uniform gratigg(z)

with the different method to exhibit its efficiency. =const. The corresponding simple relations foand S are
known as Kogelnik theorj11]. They are often in use even in

the situations where the assumption of spatial uniformity
cannot be justified.

We suppose that two light waves of the same frequency, The second problem is the description of beam coupling
referred to as signal and reference waves, propagate in @uring grating recording. In this case, the €tor (3) has to
photorefractive nonlinear medium. Their amplitud€sand  be supplemented by a material equation, which couples the
R are slowly varying functions of the timeand the propa- grating amplitudeEx with the light amplitudesk andS. The
gation coordinate. The waves are coupled via Bragg dif- particular form of this model equation, which depends on the
fraction from the electro-optic gratings(r), charge transport properties of the material, is not important
for us at this stage. It is essential, however, that the charac-
teristic responsébuildup) time entering the material equa-
tion is long enough to allow short-time changes of the
boundary conditions for the light amplitudéshanges of the
readout conditionswithout significant changes . The
characteristic time ranges typically from £0to 1% s in
photorefractive continuous-wave experimefits?]. Another
important feature is that the grating does not remain spatially
uniform when the beam coupling is strong.

Il. BASIC RELATIONS

(&

The grating vectoK is the difference of the light wave vec-
tors, and the grating amplitudgé; depends generally on
andt.

In what follows we consider the transmission and re-
flection (R) coupling geometries, see Figgajland Xd). In

the T andR cases the grating vectés is perpendicular and

E.=E¢ €7 +c.c.
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Our main concern is the readout characteristics of th&(d) and R(d), whered is the thickness of the sample, see
grating during strong beam coupling. The standard approacbig_ 1(a).
to this_problem i_s as follows: First, using analyti_cal or/and  "Ope kind of readout problem plays a fundamental role for
numerical tools, it is necessary to solve the nonlinear probynderstanding of the properties of diffraction and transmis-
lem of beam coupling to find the light amplitud®sandS.  sjon through thick dynamic index gratings and also for the
Second, using again the material equation, to find the depefescription of many other readout processes. Let the incident
denceE(2). Third, to substituteEy into the readout equa- R peam be blocked and the grating recorded to the moment
tions and solve them once more with new boundary condipe tested by th& beam of a unit amplitude, see Fighl We

tions forR andS. : :
We will show below that knowledge of the amplitudes of glenote as the corresponding fundamental amplit&esd

the recording wavegor even combinations of these ampli- Rs they are functions of the propagation coordinatand
tudey allows to solve explicitly any readout problem using time t. The boundary conditions for them a®(0)=1,
pure algebraic means. R{(0)=0. The convenience of our notation for the fundamen-
tal amplitudes becomes clear if the reader accepts a simple
mnemonic rule — the subscript marks the type of the only
readout beam. Using Eq4), we obtain c,=S)/lo, C,=

Until this point our notatiorS, R for the light amplitudes ~Ro/lo and therefore
was general. From now on we specialize it to avoid confu-

Ill. READOUT CHARACTERISTICS

sion. We shall seS=S, R=R for the amplitudes of the re- S=(S) S+ Ry R)/lg,
cording waves an®=S, R=R for the light amplitudes dur-
ing readout. Furthermore, we shall consider sequentially the "|:'\>s: (SB R-Ry S)/l,, (5)

T andR cases.
where$§,=S(z=0) andRy=R(z=0).
Similarly we introduce the fundamental amplitudgsR,,

that correspond to testing of the same grating byRHeeam
Let R andS be the amplitudes of the reference and signal

f a unit amplit t th iti&
waves during recording ariek be the corresponding grating of a unit amplitude and meet the boundary conditiGy®)

A. General properties: Transmission geometry

amplitude. These quantities are generally functiong ahd ~ —0 R(0)=1, see Fig. (c). One can make sure that
t. It is implied thus that we know a particular solution of the -~ o~ o~ -
set(2) for R and S which corresponds to a particular choice S=R., §=-R,. (6)

of the input light amplitudes and to a particulénon-
specified material equation.

To describe the readout characteristics of the grating at
ar~bitrary tim~e moment, we have to solve the sé2) for S |~%|2+ |~R 2= |~Sr|2+ |~R 2=1 R
=S and R=R with the same spatial profil&(z) but new s ' '
input values of the light amplitudes. The general solution of The fundamental amplitudes fully characterize the diffrac-
this linear problem can, as known from basic mathematicstion properties of the grating in an absolute scale. At the
be presented as a linear combination of two particular indesame time, there is one-to-one correspondence between them
pendent solutions foR and'S. One particular solution is @nd the recording amplitudes. And lastly, the fundamental
known, this is the solution for the recording amplitudes,@MPplitudes provide a highly useful basis for decomposition
B -R ~ép - of the Il_ght amplltgdesgdurmg recording or rgado)JInto the_

pf’%’}é fina thaglsecond particular solution, we make the COmtransmltted and diffracted components. This important issue

plex conjugation of Eqg2). One can make sure then that the becomes evident when we express the amplitRiend S

pair Ryap=S, Shae=—R’ represents this solution for the through,; andR;
geometry. The above relations stem indeed from the symme-

One pair of the fundamental amplitudes is easily expressed
aWrough the other. It is evident also that

try properties of the coupled-wave equations. S(2)=% §(2) +Ro §(2),
Consequently, the general solution of the readout problem
s R(2)=Ro R(2) + S R(2). ®
IS IS -R In accordance with the definition of the fundamental am-
<~ ) :Cl(R> +CZ< s ) @ plitudes, see also Figs() and c) S, &(2) and R, $(2)

are the transmitted and diffracted components ofSleam
where ¢; and c, are arbitrary constants. As soon as theyhijle R, ﬁr(z) and Soﬁs(z) are the transmitted and dif-
boundary conditions for a particular readout procé8  fracted components of tHe beam.
S(0) andR(0)] are formulated, one can express algebraically The diffraction efficiency of the refractive index gratimg
cy » through the input and output values of the recordingis the simplest experimental readout characteristic. Let one
amplitudes and calculate in the next step the output valuesf the incident writing beams, see Figal, be blocked for a
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moment. Thery is defined as the intensity ratio of the output ~ One more application of our approach is the description
diffracted beam to the single input beam. In accordance witlof the feedback-controlled beam coupling. In this case an

this definition we have electronic feedback loop adjusts the input phase of the re-
~ ~ cordingS beam,gog, in such a way to keep the phase differ-
7=|R(d)|?=|S(d)|?. (9)  ence® between the diffracted and transmitted components

. . ) of the output signal beam equal' 2 or —7/2. Experimental
The above relations prove also that irrespective of thgmyiementation of this idea was correct from the beginning
spatial profileEy(2) the result of measurement gfdoes not the studieg7] but an adequate description of the operation

depend on which of the input beams is blocked. ~ mode was accomplished only recerith]. It is based on the
~ Using Egs.(5) an_d(6) we represent the diffraction effi- notion of the fundamental amplitudes.
ciency in the following explicit form: To explain the operation principle, we make use of Egs.
B 12 (8) to decompose the recording amplituBe S into the sum
_ Bo* By~ 2BoPo) cos¢’ (10)  of the transmitted and diffracted components. According to
(1+B9)(1+By) this presentation, the output phase differerzebetween

2 2 2 2 . these components is
where By=|Ro|*/|S|? and B4=|Ry*/|Sy* are the input and

output intensity ratios for the recording beams while D(t) = ,(0,1) — o (0,1) + ar = (d,t)~*(d,t)]_ (14

=arg RySIRYS) = ¢y + 03— b~ @5 is @ combination of their i s dS(dS

input and output phases. The condition®=+7/2 can be satisfied by adjustment of
Consider now the grating translation technique. It consist2(t) [with ¢’(t)=cons} unless the productS (d)S.(d)|

of introduction of a variable momentary phase skifinto :\,'m is not zero. In the case 0§=0 or 1 the phase

one of the input writing beams. Let it be the signal beam differenced® makes no sense and the phase adjustment is not
Then the boundary conditions during readout &e S, €¢,  possible.
ﬁozRo- Using Egs.(8) we obtain immediately the general O_ur approach allows thug to formulat_e the feedback pr.ob—
relations for the output amplitudes: !em wrespgcuve_of the nonhnegr dlstortlon$ _of the refractive
index profile. It is the true basis for describing of the feed-
o — X- < back controlled beam coupling. The results of nonlinear
Sd) =% € §(d) +Ro S(), modeling are in accordance with the experimental observa-
tions; they reveal highly unusual features of the feedback
~R(d) =R, ﬁr(d) +S € F\)s(d)- (1) controlled beam couplinfl0]. The formulation of the feed-
back conditions in the terms of spatially uniform index grat-
In an experiment the measurable quantities are the changésy, used initially, is not valid for the samples providing high
of the output intensities at the phase scanning. The outpwialues of the diffraction efficiency.

intensity changes S(@):[|§(d)|2—|8(d)|2], 61R(¢):[|~R(d)|2 H0\_/v to implement thg feedchk . conditio =+ /2

~|R(d)[?] can be presented in the form experimentally? An auxiliary oscillating componei?
=g coswt has been introduced into the input phase of the

Slgrllo= % [AT sin ¢ + BT(1 - cosg)], (12) signal wave to accomplish the feedbd@k9]. The oscillation

amplitude q is very small and the modulation frequency
which is consistent with the conservation of the total outputw exceeds considerably the inverse response time of the
intensity. The dimensionless parametafsandB' character- medium. The effect of this auxiliary phase shift on the
ize the output intensity oscillations which are symmetric andrecording process is negligible but it is sufficient for readout.
asymmetric against the zero level, respectively; these coeffin accordance with Eqs(8), the output intensity of the
cients can be determined experimentally. Using E§jsand  signal wave acquires the contributions oscillating as
(11) we express them explicitly through the recording char-sin wt and cos t. The amplitudes of the intensity
acteristics, oscillations are 1,=2/SRo[y7(1-7)qsin® and I,,

. =0.5%Ro|\7(1-7) ¢? cos®. Using I, as an error signal
AT = (mgmg/2)sin ¢, and controlling the sign df,, one can keep electronically the
phase difference& equal tom/2 or —m/2.

BT = (mg Wy — My Wg COS )/2, (13

. . . . B.G I ties: Reflecti t
wherem=2|SR]|/1, is the contrast of the recording light in- eneral properties: Reflection geometry

terference patterny=(|R]>*~|S?)/1, the normalized intensity With some changes, the results of the preceding section
difference for the recording beams, and the subscripts 0 angéRn be employed for thR case.

d mean, as usual, taking the recording characteristics at  If we consider the pair of the recording amplitud@sS as

=0 andd. The phase differencg has been introduced ear- tNhe firs~t basic vector for constructing the general solution for
lier. The parametenn, w, andg are coupled with each other R andS, the second basic vector can be chose® a®’. It

by the simple relationsm=(1-w?)Y2=2gY2/(g+1), w=(8 s evident from the structure of the complex conjugated set
—-1)/(B+1); the use of these parameters is the matter of con¢3). Consequently, the general solution to the readout prob-
venience. lem is
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2)selz)oel).

compare with Eqs(4).

(15

In the next step we find out the fundamental amplitudes
characterizing the diffraction and transmission properties of

the reflection grating at an arbitrary time momenthe fun-

PHYSICAL REVIEW E 69, 066603(2004)

Using Egs.(17) and (18) we expressy by the intensity
ratio for the recording waveg=|R/?/|S? (taken atz=0 and

d) and the phase differenae=arg RyGRyS),

_ (Bd Bo) Y2+ (B4l Bo) V% - 2 cosys
7 (BaBo) 2+ (B4Bo) 2~ 2 cosy

The general expression for the output amplitudes, which

(21)

damental amplitudeés(z), ~Rs(z) meet the boundary condi- is relevant to the phase modulation of the infuteam dur-

tions ~SS(O):l, ~Rs(d):o, they correspond to readout of the

grating with theS beam of a unit amplitude, see Figcel
The second pair of the fundamental amplitudg&z), R,(2),
meets the boundary conditior®(0)=0, R.(d)=1; it corre-

sponds to readout of the same grating with Ehbeam of a
unit amplitude, Fig. @f). Since the difference of the light

intensities is conserving in the case, we have

S~ RP=[RE-SP, (16)

compare with Eq(7).

Using Eg.(15) one can express algebraically the funda-

mental amplitudes through the recording amplituResdS.
We have

S=(SiS-RR)/y,

Re=(SR-ReS )/, (17)
for ~SS and~RS, and

S =(SR -Ry9)y,

R =(SS - R4, (18)

for S andR,, wherel; =SS~ R;Rq is a complex constant.
As follows from here, the pairsNSs,FQS and NS,,FQr are

coupled with each other by the relatioégzhli:(OHd) é

:'Ii;(0<—>d), which are similar to the relation®) for the T

ing readout(the grating translation techniquéllows from
EQs.(19):

S2)=%€°S(2+Ry S,

R2)=RyR (2 +S €* R(2). (22)

The output intensity changed (¢)=[|S(d)[>~|S(d)|?] and
Sr(¢@)=[|R(0)|>~|R(0)|?] can be presented in the form

Slsr/lin= = [AR sin ¢ + BR(1 - cos¢)], (23)
where l;,=|S|>+|Ry|? is the total input intensity for the re-
cording waves. Using Eq$17) and (18) and recalling that
the intensity difference is the conserving quantity, we obtain
for the modulation amplitudea® and BR:

AR= g siny
(BoB) ™+ (BoBa) M2~ 2 cosy’

gro_ U(BdB)""?~ cosy]
(BoB) ™2+ (BoBy) 2~ 2 cosy’

with g=2(1-8y)(1-B4)/(1-BuBy)- Again, the output inten-
sity changes during the translation are expressed explicitly
through the input and output intensity ratios during recording
and the phasé.

Formulation of the feedback conditions for tRegeom-
etry is not much different from this described above forThe
case. The first results on the feedback controlled beam cou-

(24)

case. The sign— means interchanging of the subscripts 0pling in the reflection geometry have been reported only re-
and d. Representation of the amplitudes as the sums of theently [17,1§.

diffracted and transmitted components, which is similar to

that given by Eqgs(8), also holds true:
S(2)= S S(2) +R¢ S(2),

R(2) =Ry R(2) + S R(2). (19

. . : a
It is applicable to both recording and readout processes. Its

meaning is illustrated by Figs(d)—Lf).

The diffraction efficiency of the reflection grating is given

by

7= |R(O)12 =[S () (20)

It is worth mentioning that all above relations are free of
model assumptions about the recording process. In other
words, they are applicable to any particular model of the
grating formation. As soon as this model is specified and the
recording characteristics are calculatgd steady state or
during a transient processve can describe immediately all
readout characteristics. Below we consider representative ex-
mples of material models.

IV. PARTICULAR RESULTS
A. Models of nonlinear response

By applying the general relations, we shall restrict our-
selves to the case of steady state. We shall assume the fol-

As follows from here, the value of; does not depend on lowing fairly general relation between the grating amplitude

which of the input writing beaméS or R) is blocked.

Ex and the recording light amplitudé&sandR [1,2],

066603-5
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E =y 2
R 29

wherey=1y' +iy'=|ylexp(if) is a complex parameter charac-
terizing the type and strength of the photorefractive nonlin-
ear response. The absolute value of the ratio in the right-hand
side is the half contrast of the recording light interference
pattern,m/2=|SR|/(|5%+|R|?). The value ofg=argy) is
nothing else than the phase shift between the light and grat-
ing fringes. Ify is real, the phase shittis O or r; this is the
case of local nonlinear responseifs imaginary, the phase
shift is £77/2; this corresponds to the nonlocal response. In
the general casg is complex, i.e., the nonlinear response is
mixed.

It is possible to expresgthrough the applied electric field _ _
(if preseny, the grating vectoK, and the material parameters 02p 7.~
such as mobility-lifetime product for photoexcited carriers L e TS ]
and the trap concentration using particular microscopic mod- 0.01 0.1 1 10 100
els of light-induced charge transp¢ft-3]. Determination of (b) Input intensity ratio IROIZ/ |30|2
the dependences af ,y" (or ||, 6) on the variable experi-
mental parameters allows one to judge about the mechanisms FIG. 2. Diffraction efficiency versus the input intensity ratio for
of charge transfer. the T geometry and the cases of lo¢a) and nonlocalb) nonlocal

Calculation of the necessary steady-state recording chafesponse. The solid and dotted lines correspond to the exact rela-
acteristics does not present serious difficulties. Taking intdions and the uniform-grating model. The curves 1,2,2', and
account the conservation laws for tAeand R cases, it is 3,3 are_ plotted for the values of the coupling strength 1, 1.7, and 3,
possible to find at first the light intensities and to calculate™eSPectively.
then the phase dependengg).

To get a reference point for analysis of the role of cou- Ba=Bo e y=p. (27)
pling effects, we shall consider also a model which ignores
the influence of beam coupling on the grating amplitudeThe energy exchange between the recording beams is con-
Within this uniform-grating model the grating amplitude is trolled by the imaginary part of the coupling strength

Diffraction efficiency

—
(Y

06

04Ff

Diffraction efficiency

constant,EK:Eﬁ, where whereas the real pap’ is responsible for the phase ex-
change.
o SnRi*n 28 By substituting Egqs(27) into Eq. (10) we obtain for the
Ek=Y e 20 120 26)  diffraction efficiency,
“ IS0+ Ra? y
The subscripin means taking the input values of the record- _ mgcoshp” - cosp’ 28
ing amplitudes. For thél geometry we haves,=S,, R, =" coshp” +po) (28)

=R,, whereas in th& case one should s&,=S,, R,=Ry.

Employment of the general relations for the readout charyhere %:2\5%/(“,30) is the input light contrast angy
acteristics within the uniform—.grat?ng model giyes no reaI:|n\573_ This is not different from the result obtained by the
advantages because of the simplicity of the direct calculagirect calculations with no use of the symmetry properties
tions of the amplitudef(z) andR(2). It is useful merely to  [12].
make sure that the general relations lead here to the known Within the uniform-grating model, see E6), the dif-
results of the Kogelnik theorjl1]. fraction efficiency is given by the Kogelnik expressiom,

As follows from the structure of Eq$25) and (26) and  =sir?(my|p|/2). For nonlinearly thin samplesp|=|«yd|
the coupled-wave equatio®) and(3), the parametergand =<1, it gives the same result as E28), namely, 7
« enter the output characteristics via the dimensionless prod= (my|p|/2)?. For nonlinearly thick crystals the effects of
uct p=«yd. We shall refer to the complex parameferp’ beam coupling become important.
+ip” as to the coupling strength. The absolute value of the The solid lines in Fig. &) show the functiory(lg B,) for
coupling strengthp|, can easily exceed 5-10 in photorefrac- the case of local respongp’=0) and several values qf’
tive experimentg1,2]. =xy'd. This function is even and it does not depend on the
sign of p’. The dotted lines show the dependences calculated
within the uniform-grating model. One sees that the influ-
ence of the coupling effects is absent f8§=1. When 3,

Solution of Egs(2) and(25) for the recording amplitudes # 1 the coupling effects become essential fpf|=2. In
results in the following relations for the output intensity ratio contrast to the Kogelnik theory, the exact relation predicts
Ba=|Ry?/|Syl? and the phase=arg RgGRyS): decrease ofy with increasing|lg 3| for any value ofp’.

B. Transmission geometry
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I T T pressed byp”, the ratiop’/p”, and the input intensity ratio
- = T Bin=|R4?/|S|?>. The corresponding relations, obtained by
02f ’ e solving Egs.(3) and(25), are

(BaBo) %= Bin €,

02} - ]
: : (BdBo)Y?= (Bin € +€P)I(1+ By,

Modulation parameter B"
o

04 F :

0 ! 2 3 4 yr=(p'Ip")In(B4 Bo) 2 (31)
Coupling strength p**

Since the influence of coupling effects on the readout prop-
erties was never analyzed in tie case, we consider this

FIG. 3. Dependence of the modulation amplitugé on the . . .
issue in some detalils.

coupling strengthp” for the nonlocal response in thie geometry;
the dotted line is plotted for the uniform-grating model. 1. Diffraction efficiency.

An explicit relation for» can be obtained by substituting
Egs.(31) into Eq.(21). The expression fow relevant to the
uniform-grating model(Kogelnik theory, to be compared
with, is n=tantf(m,|p|/2), where the input light contrast
Min=2BY2/(1+8;,). A number of particular cases are of in-

The influence of the coupling effects is even more pro-
nounced in the case of nonlocal responges0, see Fig.
2(b). The functionz(lg By) is not even here because of the
unidirectional energy transfét,2]; the diffraction efficiency
can approach unity only for large values|pf|. The replace-

o s in the t » tiony(l ) terest.
men Ip —-p" results in the transformationz(lg fo The limit of nonlinearly thin crystalp|=|y « d|<1. The
— 7(-19 Bo)- ) ) ) exact theory and the uniform-grating model give here the
Now we turn to the grating translation technique. By sub-¢, e resulty= (m,|p|/2)2=<1, and the coupling effects are
stituting Eqgs.(27) into Egs.(13) we obtain for the modula- negligible
tion parameterd\’, BT entering the general relatiqd 2): The case of local nonlinear respons#=0. The energy
. My sin p’ exchange between the recording beams is absent here and the

only nonlinear factor affecting diffraction is the modulation
of the fringe positions. Using Eq§21) and(31) we obtain

1_ My[sinh(p” + po) = sinh pg cosp’] 1 (Bn=1?
8= 2 coshp’ + po) G 7 s S (B DI2(Bn+ D

Within the uniform-grating model these parameters are givedn the limit 3, — 1 the numerator and denominator of this

~ 2 costip” +py)’

(32)

by expression tend to zero. By resolving the 0/0 indefiniteness
N . we have »=p’?/(4+p’?). Accordingly, the diffraction effi-
Ag=mop’ sin(my|p|)/2]p, ciency grows monotonously with increasing’| and ap-
proaches unity.
By =mop” sin(me|p))/2|p|. (30) The solid lines in Fig. &) show the exact dependence

7(Bin) In a logarithmic scale fop”=0 and three representa-
tive values ofp’. The dotted lines show the dependences
relevant to the uniform-grating model. All the curves are
symmetric to the replacemems,, by g, For |p'|=1 the
influence of the coupling effects is small, but it is well pro-

! > 1
=tanhp”/2. They can serve as a basis for measurements ounced fop’ =2. The coupling effects always decrease the

: . . . iffraction efficiency. By comparing Fig.(d) with Fig. 2(a),
the real and imaginary parts of the coupling strength in gratbne can see not gnlyysimilgritieé;l bu% (a?so qualgigtafi(vg, and
ing translation experiments. In the case of local reSponsequantitative differences

”— T_pT— T-AT—qj ’ . .

!O ;]0’ v;/fe f;a\/fdg _5’10_0 aﬁgA ;Qo—ni"‘fph)/zwnir?hthers v The nonlocal respons@’ =0. The phasey is zero in this

S No eflect of beam coupling. 1NiS matches € abOV& ase so that the fringe positions remain unchanged. At the
mer:tlonled properties ,o_fc;[he dn‘fraﬁtlon Zfrff'eTnfg' Fg} thesame time, the light contrast and the grating amplitude are
E?n oca}, /;esptzjn;g_p_— ’ /;NeTh ave I._Ao_ﬁ ’t b modulated across the crystal because of the energy exchange.
- anr(!o )/2, and By=sin(p’)/2. _'he coupling €flects be- 4 yiffraction efficiency is given by the expression
come important fop’ =2, see Fig. 3.

my, sink?(p"/2)
. n= 77 1/2\ ° (33)
C. Reflection geometry costp” +In By

For nonlinearly thin crystaldp| =<1, Eqgs.(29) and(30) give
the same result.

Consider the case of equal input intensitieg=_8,=1,
which is important for experiment. The expressiga9) be-
come here especially simpleAT=sinp’/2 coshp”, BT

In this case the input amplitudes of the writing beams ardt is not an even function op” and Ing,,. The limiting
S and Ry, see Fig. 1d). The parameters(B480,)*%,  values ofz for p’>1 andp’<1 are(B,+1)! and Bi,(Bi
(Bal Bo)Y?, and ¢ entering Eqgs.(21) and (24) can be ex- +1)7%, respectively. Figure®) shows the functiom(lg S;,)
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. L LA B TR shows the dependenegp”) for two different values of the

© o8 L 1 ratio p’/p”. This dependence is symmetrical, inversiorpbf

2 does not affectp. For small values of the ratip’/p” the

£ 06 function 7(|p"]) increases monotonously from 0 to 1/2. With

S 04 increasing|p’/p”’| this function becomes oscillating but its

g ozl limiting value for |p”| — % remains equal 1/2.

° 0 Lt 2. Grating translation technique.

@ We restrict ourselves to the simplest case of equal input
Tp—— intensities,B;,=|Ry/?/|S|?=1. Using Eqs(24) and(31) it is

g o8l - A easy to obtain for the coefficients®, BR entering Eq(23):

o ] /i

£ 06] S NEL ] ARz tanhhp: sin ¢ . BR= }tanhp”, 35

é oal ] 2 coshp” - cosy 2

é 02 1 A ] where, as earlierg/=(p’/p”)In[cosip”)]. These relations

g [ TN e ] have to be compared with the prediction of the uniform-
O e e i S grating model,
0.01 0.1 1 10 100

(b) Input intensity ratio |RO|2/ s 2 r_ P tanH|pl/2) - p’tanH|p|/2) 36)

" |p| cosHpl/2)"  ° " |p| cosh(p|/2)”

FIG. 4. Diffraction efficiency vs the input intensity ratio for the For nonlinearly thin crystals|p|=|«xyd|=<1, Egs.(35) and
R geometry and théa) and nonlocal(b) nonlocal nonlinear re- (36) give indeed the same result.
sponse. The dotted lines correspond to the uniform-grating model. |n the case of local responsp’=0, we obtain for the
The curves 1,4 2,2, and 3,3 are plotted for the values of the intensity changes using Eq23) and (24):
coupling strength 1, 2, and 4, respectively.
sk _ . 2p’
for three representative values @f. Its maximum is shifted lin 4+p'?
to the left forp” >0 and to the right fop >0; the I_arge_r IS ' The oscillation amplitudeAR(p’) grows first asp’/2, expe-
the value of the coupling strength, the stronger this shift. It is.. . =2 (wh lol/l. =1/2. and d
interesting that coupling does not affect the maximum valug. - oo & Maximum qr' =2 (wheredllsg|/1;,=1/2, and de-
; . s creases then with increasipg, see Fig. 6a). An agreement
of 7(B;,), compare the solid and dotted lines. Qualitatively, . : .
th e in Figs.(B) and 4b) look similar but th with the uniform-grating model takes place fgr| < 2.
€ solid curves in igs.(B) and 4 ).00 simiiar but there For the nonlocal responsp;, =0, we have
are quantitative differences. In particular, for the same cou-
pling strength|p”| the maximum achievable value of is dlsr tanhp”
higher in theR geometry. Lo ET, (1-cosg). (39
Equal input intensities3;,=1. Here we have "

sin ¢. (37)

The oscillation amplituddR(p”) approaches monotonously

_ Lcoshp” +(coshp”)™ - 2 cosy (34)  the values £1/2 fop’— x. The uniform-grating model is
2 coshp” — cos ¢ ’ well applicable for|p”| <2, see Fig. ).
with ¢=(p’/p”)In(coshp”). This expression is useful to ana-
lyze the features of the mixed nonlinear response. Figure 5 V. DISCUSSION
1 F . . . ) The most general outcome of this study is in reducing the
> : 1:pP=4 ] problem of readout of dynamic index gratings to the record-
S 08Ff . 2:pfp7=3 ] ing problem regardless of particular properties of the nonlin-
2 E Vs app=2 ] ear medium. The explicit relations found in Sec. Ill express
g 0'6;' S I ""‘;4».:,;____\_4__4_, — ] the desirable readout characteristics directly through a re-
B o4f /7 i ] stricted set of data on the input and output recording ampli-
& e 1 tudes.
e 02 v ] A different approach has already allowed to investigate
0 s . ! Leas the dynamics of the feedback-controlled beam coupling and
0 1 2 3 4 5 6 to obtain a number of new particular results for the reflection
Coupling strength p™ coupling geometry, see Sec. IV. The use of this approach is

not, however, restricted to these examples. It can, in particu-

FIG. 5. Dependence)(p”) for the input intensity ratigd,,=1 lar, be applied to the transient processes of grating formation;

and different kinds of nonlinear response; the curves 1, 2, and 3 afgcording characteristics of these processes admit often a
plotted forp’/p”=2,3, and 4yespectively. complete analytical studj2].
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% ggf T to judge about validity of models of the nonlinear response.
% 0.4 g ] _ Some restrictions on our appr_oach are worthy of discgs-
ETTE ] sion. One of them is the assumption of scalar beam coupling,
g 0.3F i.e., the absence of polarization coupling. This assumption is
5 0.2 3 ora vglid for a_nisotropic ph_otorefractive crysta_ls such as
B F ] LiNbOg, BaTiO;, SBN, but is not correct for cubic materials,

g 01 . such as the sillenite crystal8i,,(Si,Ti,GeO,], and semi-

2 e e e conductors GaAs, CdTe, see Rgf9] and references therein.

0 1 2 3 4 Moreover, specific readout properties of vectorial beam cou-

(a) Coupling strength p’ pling in cubic materials have found recently an important

application for detection of weak signal[20-23. Most
..... T probably, our method can be generalized to include the ef-

x?_; 0.5 - P fects of polarization coupling.

T 04 E One more restriction concerns with the neglect of light
E g el absorption effects, especially the absorption gratings. Fortu-
8 0'3:' nately, such effects are often relatively small because the
_§ 0.2} p=0 -f values of thexy product, characterizing the rate of the spa-
3 0.1 3 E tial changes of the light amplitudes, exceed considerably the
2 ] values of the light absorption coefficient. The influence of
= Obeiii the absorption gratings can be taken into account within the

0 1 2 3 4 uniform-grating model, i.e., for weak or modest coupling

(b) Coupling strength p™* strength[17].

FIG. 6. Dependence of the modulation amplitué&ga) BR (b) VI. CONCLUSIONS

on the f:oupling strength for the local and.nonlocal response, respec- a gifferent method for description of the readout pro-
tively, in the R geometry; the dotted lines are plotted for the ;ogges for dynamic photorefractive index gratings is devel-
uniform-grating model. oped. Within this method, the readout characteristics are ex-

The general relations between the readout and recordingfessed explicitly through the input and output recording
characteristics can be applied to the problem of modeling ofmplitudes by making use of the symmetry properties of the
the material relations for the grating amplitude. These relacoupled-wave equations and with no use of particular mate-
tions are often the bottleneck of the photorefractive studiesial relations for the nonlinear response. The approach
because of complexity of the charge separation processeshanges the status of the readout problem. It is proven to be
The supplementary information on the recording processapplicable to a broad range of particular photorefractive ef-
gained by measuring the readout characteristics, allows orfects and techniques.

[1] Photorefractive Materials and Their Applications, ddited by P. Kamenov, Phys. Rev. &3, 053805(2001).
P. Giinter and J.-P. Huignard, Topics in Applied Physics Vol.[11] H. Kogelnik, Bell Syst. Tech. J48, 2909(1969.
62 (Springer-Verlag, Berlin, 1982 [12] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin,
[2] L. Solymar, D. J. Webb, and A. Grunnet-Jeps€&he Physics and V. L. Vinetskii, Ferroelectric22, 949(1979.
and Applications of Photorefractive MaterialgClarendon  [13] A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, Opt.
Press, Oxford, 1996 Lett. 22, 874(1997); J. Opt. Soc. Am. B15, 905(1998.
[3] K. Buse, Appl. Phys. B: Lasers Op64, 273(1997). [14] H. C. Pedersen, P. M. Johansen, and T. Pedersen, Opt.
[4] W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, Commun. 192 377 (2001).
Annu. Rev. Mater. Sci27, 586 (1997. [15] K. H. Ringhofer, V. P. Kamenov, B. I. Sturman, and A. I.
[5] M. Z. Zha, P. Amrhein, and P. Gunter, IEEE J. Quantum Chernykh, Phys. Rev. 61, 2029(2000.
Electron. 26, 788(1990. [16] V. P. Kamenov, K. H. Ringhofer, B. |. Sturman, and J. Frejlich,
[6] R. Hofmeister, A. Yariv, A. Kewitsch, and S. Yagi, Opt. Lett. Phys. Rev. A56, R2541(1997).
18, 488(1993. [17] M. Gorkounov, B. Sturman, M. Luennemann, and K. Buse,
[7] A. Freschi and J. Frejlich, J. Opt. Soc. Am.1B, 1837(1994). Appl. Phys. B: Lasers Opt77, 43 (2003.
[8] A. A. Freschi, P. M. Garcia, I. Rasnik, J. Frejlich, and K. Buse, [18] M. Luennemann, K. Buse, and B. Sturman, J. Appl. PI84.
Opt. Lett. 21, 152(1996. 6274(2003.
[9] S. Breer, K. Buse, K. Peithmann, H. Vogt, and E. Kratzig, Rev.[19] B. |. Sturman, E. V. Podivilov, K. H. Ringhofer, E. Shamonina,
Sci. Instrum. 69, 1591(1998. V. P. Kamenov, E. Nippolainen, V. V. Prokofiev, and A. A.
[10] E. V. Podivilov, B. I. Sturman, S. G. Odoulov, S. L. Pavlyuk, Kamshilin, Phys. Rev. B0, 3332(1999.

K. V. Shcherbin, V. Ya. Gayvoronsky, K. H. Ringhofer, and V. [20] P. Delaye, A. Blouin, D. Drolet, J. P. Monchalin, L.-A. de

066603-9



B. STURMAN AND D. M. GIEL PHYSICAL REVIEW E 69, 066603(2004)

Montmorillon, and G. Roosen, Appl. Phys. Let?4, 3087 (2002.

(1999. [22] K. Paivasaari, A. Kamshilin, V. Prokofiev, B. Sturman, G.
[21] G. F. Calvo, F. Agullo-Lopez, M. Carrascosa, B. Sturman, A. Calvo, M. Carrascosa, and F. Agullo-Lopez, J. Appl. PI8@.

A. Kamshilin, and K. Paivasaari, J. Opt. Soc. Am.1B, 1564 3135(2001).

066603-10



