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Trapping and steering on lattice strings: Virtual slow waves and directional and nonpropagating
excitations
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Using a lattice string model, a number of peculiar excitation situations related to nonpropagating excitations
and nonradiating sources are demonstrated. External fields can be used to trap excitations locally but also lead
to the ability to steer such excitations dynamically as long as the steering is slower than the field’'s wave
propagation. | present explicit constructions of a number of examples, including temporally limited nonpropa-
gating excitations, directional excitation and virtually slowed propagation. Using these dynamical lattice con-
structions | demonstrate that neither persistent temporal oscillation nor static localization are necessary for
nonpropagating excitations to occur.
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[. INTRODUCTION contributions are particularly relevent for the discussion
here: Schotf13,14 gave the condition for nonradiation of a
~spherical shell on a circular orbit. Bohm and Weinstif]
‘extended this result to more general spherical charge distri-

. ) . butions and Goedeckgl6] showed how an asymmetrical
Berry et al. [1] described a peculiar excitation case for thecharge distribution with spin is nonradiating. All of these

one-dimen;ional wave-equation of a perfectly eIastic_strinqNorkS are concerned with the case of spatially moving
under tension. They show that the response of the string Calhyrces. Finally, it is worth noting that nonradiating sources

bﬁ ma}de tof be c(:jonfln$<jt_to afbouqld?d r(?[glon _lt_?: Carefu”%blay an important role in inverse problems and have been
choosing a forced excitation of osciliatory type. This mean nvestigated in a one-dimensional electrodynamic situation

that the excitation will not propagate away along the string.by Habashy, Chow, and Dudid¢7]
Denar_do gives a simple and intuitive explanation by using a In this paber our,purpose is to describe this phenomena in
wave interference argume{®]. Gbur, Foley, and Wol{3] the case of a lattice string in one dimensions by discretizing

dlsg:rs]s condm?ns °fkf"f“te s:_rmg: Igngth and dlsstl_patlon. i D’Alembert’s solution. This approach is used extensively to
er recent work investigated nhonpropagaling excitay;., 3te vibrating strings and air tubes of musical instru-

tions include Marengo and Ziolkowskd—6] who discuss the ments. See Re{18] and references therein.

generalization doff nonpropagating  conditions  of This leads to explicit dynamical constructions of previ-
e . . . . ..

, . w2 2 2 . _ ously reported nonpropagating excitations. Its simplicity al-

D’Alembertian (0 = V2-c™22/ 4t?) operators and its tempo lows for additional insight into the mechanism that allows

i 2 2
rally reduced version the Helmholtz operat@‘ k) on for the local confinements and the conditions under which
various related classical scalar and vector fields. Marengqhey occur. | will show how the basic mechanisms that pro-
Devaney and Ziolkowsk{7] give the condition for time- ;ije 5 time-harmonic stationary nonpropagating excitation in

dependent but not necessarily time-harmonic nonradiating. qimension as studied by Berey al. and Gbur, Foley,

sources and for selectlve.d|rect|onal radiation for the '”ho'and Wolf[1,3] allows for a much wider class of excitations.
mogeneous wave equation

: in three spatial dimensiong=q instance, can such an excitation be relieved from the
Marengo and Ziolkowsk]

8] generalize these conditions 10 tjye harmonic assumption beyond one period allowing for

more general §(I:I<’21Iar Ell(nd vef:tor f|'eld dynamllcs. Marengo, Deﬁonpropagating sources that are short lived. Directional ex-
vaney, and Ziolkowski9] also give examples in one and cjiarions can easily be achieved using very simple bidirec-

three spatial dimension for the time-harmonic case. Hoendg, 5| excitation patterns. These are explicit constructions of
ers and Ferwerdfl0] discuss the relationship of nonradiat- g0, \yaves in one spatial dimension whose general condi-
ng and rad|qt|ng parts of th_e case of the redyced Hel_mholtﬁon of existence in the three-dimensional case has been de-
equation, which can be derived from the string equation by, by Marengo, Devaney and Ziolkowsk7]. Wave
assuming general oscillatory time solutiof@e Ref.[1]).  onagation can be virtually slowed down. In general | will
Denardo and Millef11] discuss the related case of Ieakageshow that nonpropagating excitations can be extended to

from an imper_fect nonpropagating excitation on a String'steered excitation regions with basic physical restrictions im-
Gbur [12] provides a comprehensive recent review of th'sposed by the underlying field dynamics.

to_pic an_d th.e reader is referred to this review for more de- First | will give a quick derivation of the simple lattice
tailed historical context. Of the earlier work the following ,5qel from the wave equation as can also be found in Ref.

[18]. Then | will give an argument and construction of the
Berry et al,, type-nonpropagating excitation purely based on
*Electronic address: georg@mle.media.mit.edu discrete string dynamics. This will then be compared to the

Can a local excitatiorisource in classical field theories
be invisible to observers outside the region of excitation
This question has recently received renewed interest.
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original approach. Then | will extend the discussion to ex- .
g(s)ds+ 3k(Xo).

amples of additional types of nonpropagating waves, includ-
ing directional and slowed waves. Finally, | will discuss very
general constraints on such “steered” localized excitations.

vix+et)=3 f(X,ti)+§:f 9

Xo

We see that forced displacemefit) splits evenly be-
tween left and right traveling waves and the integrated forced
velocity g(-) splits with a sign inversion.

For our current discussion | will share the assumption of

The lattice string model can easily be derived from theno initial velocity of Berryet al. [1] and hence the integral
wave equation by discretizing the D’Alembert solution. overg(-) will vanish.
Hence the continuous case will be discussed first. For the infinite string this is already the complete solution
for any twice differentiable function of free solutions and
external forced displacements.

Il. LATTICE STRING MODEL

A. Continuous wave solutions

The one-dimensional homogeneous wave equation of the
perfectly elastic string under tension is
Py

Py _ Py
APTORRPI

B. Discrete wave solutions

To arrive at lattice equations we discretize the solution of
the wave Eq(2) in time via the substitution— Tn whereT
is the discrete time-step amds the discrete time index. This
automatically corresponds to a discretization in space as
well, because in finite tim& a wave will travelX=cT dis-
tance according to Eq2). The spatial index will be called
m. The free-field discrete D’Alembert solution

wherec?=K/u is derived from mass density and tension

K. The D’Alembert solution of the homogeneous “free field”

case has the well known forfdi9, p. 596, Eq(4)]
y(x,t) =w*(x — ct) + w (X + ct).

2

(10)
Hence the solution of the general of the homogeneous | | Il di . :
wave equation are two propagating waves whose content is M 9éneral, we can always express all discrete equations in

restricted by initial and boundary conditions. As wave equa_terms of finite time steps or finite spatial lengths. We chose a

tion is linear we have a connection between initial conditiond€MPOral expression and substitu¥=cT and suppress
and external driving forces. Driving forces can be seen a§hared terms ieT to arrive at the index version of the dis-
infinitesimal time frames that act on the wave dynamics bycréte D’Alembert solutiorj18]

imposing an initial condition at each point in time. Hence we

y(mXnT) =w* (mX-cnT) +w (mX+cnT).

need to consider the initial value problem to gain insight into

both processes at once.
At a give time framg; let the following initial conditions
hold:

y(thi) = f(X!ti)! (3)

yt(X!ti) = g(X!ti) . (4)
Equation(3) with Eq. (2) gives a particular solution*

5

Taking the first temporal derivative of E¢R) and satis-
fying Eq. (4) we get

vi(x—ct) + v (x+ct) = f(x,t).

(6)
Integrating with respect tg we get[19, Eq.(10) p. 596

—cy; (X - ct) + cy (x+cty) =g(x.t).

- cv'(x - cty) + cv(x+ ct) =k(xo) + f ' g(s)ds,k(xp) =

)

From Eqgs.(5) and (7) we can solve for the traveling wave
components

- cv' (o) + v (X) -

. ) 1 [xch N
v (X_ Cti) = > f(X,ti) - 2_Cf g(S)dS_ Ek(xo): (8)

y(m,n) =w*(m-n) +w (m+n). (11

By Egs.(8) and(9) we see that at an instance, n; the
discrete contribution of external forced displacements splits
evenly between the traveling waves and we arrive at the
discrete field equations including external forced displace-
ments

WH(m, = ) =wH(my = ) + 5 f(my,ny), (12

W (m—n)=w (m-n)+ % f(m,ny). (13

IIl. NONPROPAGATING EXCITATION

Next we will construct the nonpropagating excitation
from the lattice string dynamics directly.

For simplicity and without loss of generality, we will as-
sume a region aligning with the discretization domain
throughout. We want to construct an excitation which is con-
fined to a length E<x=<L. For now we will assume that the
string should otherwise stay at rest. This implies that there
are no incoming waves into the regiéb=[-L,L] from the
outside. We are interested in a nontrivial excitation within
the region.

First we consider the contributions to the positidn. As
there are no incoming external waves we get

w'(-=L+n)=0. (14
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We do expect nontrivial wavev (-L—n) to reach the A condition for stopping a nonpropagating excitation can
boundary but we require the total outgoing wave to vanistbe derived from the fact that an impulse will return to its
we have initial position every 4 time steps. Additionally it is easy to

L see that the traveling impulses will occupy the same spatial
Wi(-L-n=wi(-L-n+3f(-L,n=0. (15 position every odd multiple of 12 with a sign inversion.
. . . -l
The necessary external forced displacement contributiorE'ence_"j‘n |m'pulsnie forced ¢splaceme‘r(1( 1) P’4L’“)
; =(-D)#Ha, with u=1,2,... will cancel an initial impulse
for cancellation needs to be P . . :
f(p,0)=a, From this we can immediately deduce the fol-
2f=Lm=-w(-L-n), (16)  lowing property:
. . ) Theorem 1. The shortest possible single impulse finite
The complete incoming wavel?) will see the same nponpropagating excitation take. time steps
fOI’CEd Contl’ibutior(lG) and W|th Eq(14) we get and more genera”y:
_ Theorem 2. The time of any single impulse excitation
- =_ - - - . o
Wi-L+m=3f(-Lm=-w(-L-n). (17 finite nonpropagating excitation has to Bl , u < .

Hence, the matched forced displacement leads to a reflec- More importantly, we observe the properlyonpropagat-

tion with sign inversion at the region boundary at.- ing excitations can be finite in duration _
Following the same line of argument at pointve get the This is an extension beyond Berst al. [1] which as-
related condition sumes infinitely periodic temporal progressions in their deri-
vations.
W(L-n)= % f(L,n)=-w*(L+n). (19 The general solution for discrete nonpropagating wave

i . .. functions can be derived by observing that any initial
With these two conditions we can study the perm|SS|bIe‘phasen pi is orthogonal to other phases for i,j e 2\
form of excitations. First we assume an initial forced dis-—(— | ) je. (f(p;,0),f(p;,0))=0 fori#]. Within a 2 pe-
placement impulse from a positigm in the interior of the !
domain Q\dQ=(-L,L). Hence + <p<L and f(p,0)=a,
with a, € R.

It will take half the impulseL+p steps to reach the left
boundary and the other hdlf-p steps to reach the right one.
At each boundary the respective conditid¥) and (18)

needs to be satisfied and we get

riod f(xL,:) is well defined by Xf(p;,-). Interestingly,
though, this provides the only restriction to the forced
boundary functions. This can be seen by Theorem 1. After
2L eachp; will find constructive interference and can be
annihilated or rescaled to an arbitrary other valL).
Hence any arbitrary succession df 22 force distributions
with a 2 termination is permissible. Hence periodicity is not
f(-LL+p) =-1(p,0), (19) ~ necessary. : N -
The time harmonic case can be derived if the initial force
distribution within the domain is not modified over time.
fL,L=p)=-1(p,0). (20 Then a configuration will repeat after traveling left and right,
The impu|se will then reflect back and create periodicbeing reflected at the domain bOUndary twice, traversing the

matching conditions length of the region twice. Hence the lowest permissible
wavelength is 4. By reflecting twice the wave will have
f(-=L,L+p+4Lv) =f(p,0), (21)  gone through a 2 phase shift, but we note that the period-
icity condition is also satisfied if any number of additional
f(-L,L-p+ (20 - 1)2L) = - f(p,0) (22) 27 shifts have been accumulated. Hence we get for permis-
' o sible wave numbers
f(L,L-p+4Lv)=1(p,0), 23 2mmn
( P v)=1(p.0) 23 k:%, where n=1,2,... (25)
f(L,L+p+(2v-1)2L) =-f(p,0) 24
withv=1,2,... . nar
Hence we see that a single impulse will necessitate an kKL=—. (26)
infinite periodic series of forced external displacements at the 2

boundaries to trap the impu|se inside as each “annihilation,By a”owing 0n|y evem we get the Berr)et a|_Condition[1]
of a half- pulse reaching the boundary leads to a “creation}or an even square distribution. The oddsituation corre-

of a reflected one. sponds to the odd-harmonic out-of-phase construction pro-
The required impulse response of a boundary forced funcposed by Denard{?].

tion f(xL, -) can easily be observed from E¢&1)—(24) to be Many of these properties can be seen visually in the nu-
spatially periodic in 4 with an initial phase factor dictated merical simulation depicted in Fig. 1.

by the starting positiop. Additionally the functional shape |t is interesting to observe that two synchronous point
of the impulse responségtL, ) is completely defined for all  sources oscillating with the above phase condition will not
time steps ag(L,-)=0 for all times that Eqs(21)<24) do  be completely nonpropagating. They will only be nonpropa-
not apply. gating after waves created at the wave onset have escaped.
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FIG. 1. Simulation of a nonpropagating excitation of width 3 . . L o .
which is annihilated after 3.5 periods. The total temporal length of f::th' j Slmulatlo? of a (jlrectl((j)nal t_excrc_atlon .Of W'_(I_j:]h :i The |
the excitation is 10. The excitation leaves the string at rest after it i?de ected component experienced a sign Inversion. The ftempora

completed. Top: Complete wave pattern. Bottom: Excitation only. ength of the excitation sequence is two: |n.cIud|ng the initial im-
pulse. Top: Complete wave. Bottom: Excitations only.

This is a refinement of the argument put forward by Denardostrin is to be excited in such a way that a traveling wave in
[2] and can intuitively be described aeninterference of the onl gone direction results y 9
first trap period Hence the first pairs of pulses will have y ’

; SR S We start with a one-sided open trap. This is a trap that
half-amplitude components escaping in either direction but . e .
every subsequent period will be trapped. This behavior 55 & reflection condition§,7) and(18) only on one side of

which could be called imperfect trapping or trapping with f";m initial excitation. Evidently the wave then can only travel

transient radiation, is depicted in Fig. 2. Sources presente'él1 the opposite direction. For the discussion we will describe

. ; ight-sided propagatdar.e., a propagator traveling with in-
by Berryet al. and Denardd1,2] do not display this behav- angh S . g
ior because the force is assumed to be oscillatory at all time¥ ©2sing negative indgxThe rapping condition then reads
and hence has no onset moment.

Nonpropagating excitations can be used as generic build- _ o o )
ing blocks for other unusual excitation induced behavior ontience the trapping excitation point ispatime-step lagging

the string. In particular, | will next describe how to construct N€gative copy of the original excitation. The emitted wave
a uni-directional emitter, and a virtually slowed propagation.Will have the form

In fac_t, a nonpropagating excitation can be seen as virtually % f(m+1,n+ 2p) - % f(m+1.n). (29)
stopping a wave at a particular position.

f(m+1+p,n+p)=-f(mn-1). 27

The emitting wave will show self-interference at a phase of
2p time steps, as can be seen in the simulation depicted in

Fig. 3. In general, the self-interference phase can be chosen

A one-gld(_ad open trap |mmed|at_ely suggests _anpther urBy the distancep between the wave creation point and the
usual excitation type, namely the directional excitation. Thetrapping point. It is worth noting that it is possible to elimi-

nate interference by trapping the lagging contribution and

IV. DIRECTIONAL EXCITATIONS

512 hence create a noninterference directional wave left of the

310 trapping region.

e 8

[V

g i V. VIRTUAL SLOW WAVES

R

? 2 Virtual slow waves can be achieved by alternating direc-
2 4 N (giscretg time1)0 12 14 tional wave propagation with trapping. The slowness of the

12 wave propagation can be controlled by the number and du-

=10 ration times of the traps along a propagation. The propaga-

88 tion characteristics of the dynamic operator have not

Q : i ”

© 6 changed at all, hence we call this state “virtually slow” as

84 opposed to the case where the field itself induces a change in

‘:’ 2 wave propagation speed. This also means that within a

2 4 6 8 10 12 14

i {liscrete fime) slowed or “steered” region the wave propagation is the one

prescribed by the dynamic operat¢d/ dx+c(d/ at))(dl ox

FIG. 2. Simulation of a nonpropagating excitation of width 3 —C(d/4t)) on the stringy(x,t).
showing escaping waves at the onset transient. Top: Complete wave The amount of time spent in traps determines the overall
pattern. Bottom: Excitation only. slowness. One example of slow wave consists of an imme-
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510 =
w
g 8
26
o
%’i; +C e
E 4 & 8 10
. n (discrete time)
S 1
=10
2 g ve
o
*g 6 FIG. 5. A grazing propagating wave against a changing trap
34 boundary can create regiotgray) in which no trap affect applies.
T2
£ -1
2 4 i (ﬁiscreti time]o 1214 have regions where no trapping is necessary and possible.
_FIG. 4. _Simulation of a finiFe-dure_lti_on virtual slow wave exci- VIl. INTERACTION WITH BACKGROUND FIELDS
tation of width 3. The wave is annihilated after ten steps. Top:
Complete wave. Bottom: Excitation only. It is important to note that while we assumed that the

incoming wave vanishes, see Ed4), the outgoing wave

diate alteration between one stage of trapping and one step ¢ndition(15) does not change if there is, in fact, an incom-
one-sided propagation illustrated in Fig. 4. The effectiveing wave. The “reflection wave(17) and(18) can be rewrit-
propagation Speed of the wave can easi]y be read from th@n for a nonzero incoming field without affecting the trap-
diagram to givec.z=c(X/3T)=c/3. As is evident from PINg

Theorem 1, a uniL;l trap will last two time steps and' will _ WH(=L +n) =w*(- L +n) +% f(-L,n),

not propagate spatially and one step of free propagation will

last one time step and and make one spatial step, hence re- N ~

sulting in a spatial to temporal ratio of 1:3. 3 f-Ln=-w(-L-n) (31

The trapping relations are and

f(lm-2-v,n+1+6)=f(Mm+1-v,n+6v)=-f(mn-1),

W (L-n)=w(L-n)+3 f(L,n),
(29

Zf(L,n)=-w"(L-n). (32

f(m=-3-v,n+4+6v)=f(m-v,n+3+6v)=f(mn-1)
(30) These conditions are “absorbing” in the sense that an ex-
ternal field entering the trapping region will not leave it.
withv=0,2,4,.... The “noninteracting” property of a trap defined by the
periodic matching conditiong21)—<24) can be seen by as-
suming a nonzero incoming wave at one point of the trap
boundarysQ). Then the total wave entering the trapping re-
The generalized interpretation of the excitation interactiorgion, the sum of the wave created by the trapping condition,
lead to the general dynamical confinement of waves by exand the incoming wave valu%af(éﬂl, )+WE(80L, ), where
ternal excitation. For instance, following very similar argu- 5Q! denotes the first trap boundary reached. When reaching
ments as for virtual slow waves a construction is possiblehe second trapping bounda#f)? the now outgoing wave
which gives a slowed “cone of influence” by successivelywill see a matching forcd(50?, -):—%f(ml, -) leaving an
widening the trap boundaries at a speed slower than the wavgitgoing wave contributiom®(502, ) =w*(80*, -) to escape
speedc. By this argument it is sufficient for the trap bound- the trapping regiorn).
aries’ change to be less tharfor it to be trapping the wave.  |n order to achieve selective radiation, only part of the
This is not a necessary condition by the following countercontent of a trapped region is trapped at the boundary as can
example: Let the trap width deand change rapidly by some pe achieved by using a reduced force at the trapping bound-

slopedL>c to some new constant width, at which it be-  ary or by selectively omitting certain phases in the trapping
comes constant. Obviously the wave will then be able tqorce pattern.

reach the new boundary even though a local change of the
boundary exceeded the dynamical speedrhe necessary
condition can be seen from our previous construction. At a
trap boundary a wave is reflected and will propagate in the Marengo and Ziolkowskj4] present ideas very much re-
opposite direction of the domain following the linear charac-lated to ideas presented here and in Betnal. [1]

teristic c. Only if this characteristic intersects with the dy-  However, they arrive at a definition of nonradiatidR)
namic trapping boundary will there be another externallysources that is not obviously similar to the traps presented
forced reflection as illustrated in Fig. 5. These may in facthere. In particular, they define NR sources as being noninter-

VI. STEERING

Relationship of traps to nonradiating sources
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acting. While Ref.[4] notes that a central property of NR and generalized. In fact, the boundaries of the confining do-
sources is that they store nontrivial field energy, traps demain need not be static, nor need the condition be used in a
scribed here cannot only store, but accumulate and seletwo-sided fashion.
tively radiate waves.
The difference can be understood by observing that, for
example, Berryet at assume a simple time-harmonic driver
[see Eq(3) of Ref. [1]] throughout their discussion: In summary, this paper presented constructions of a broad
_ i class of nonpropagating sources on a string lattice model
f(xt) = Re{f(xe™}. (33 using trapping conditions. In particular, this includes numeri-
By our earlier discussion we see that the temporal procal demonstrations of finite-duration nonpropagating excita-
gression of the boundary has to match the content of thgons, directional excitations, as well as virtually slowed
interior domain. Hence once the boundary is defined to bavaves. These examples help explain the extension of non-
oscillatory the interior of the domain needs to be spatiallypropagating sources beyond the time-periodic case and in-
harmonic as derived ifil,4] and has been re-derived here. clude treatment of onset, annihilation and spatial steering.
Hence a NR source as noted in literature, with the exceptiomhese properties ought to be observable in experiments well
of the general orthogonality formulation for time-varying described by the wave equation. This equation often arises in
sources given by Marengo, Devaney, and ZiolkowgKi problems in acoustics, elasticity, optics, and electromagne-
can be thought of as a time-oscillatory trap. tism. And hence the results presented here apply to these
The arguments made here use a formalism that is discre@omains of application. While here | discussed the forward
in nature. However, the discreteness of the arguments is ngroblem, these results also relate to the inverse problem of
necessarily restrictive. The continuous case can be imagindthding source contributions from the one-dimensional field
with the discrete time step made sméll—0) or, alterna- state as occur, for example, in acoustical, optical, and elec-
tively, discrete pulses can be substituted with narrow distrifromagnetic detection problems.
butions of compact support. In neither case are the results of
interest derived here altered._ _ N ACKNOWLEDGMENTS
As has already been derived in Ref&,3] the critical
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