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Mechanisms for phase distortion in a traveling wave tube
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We present a view of the physics of phase distortion in a traveling wave (IMW&) based on unique
insights afforded by the MUSE models of a TWI. Wohlbier, J. Booske, and I. Dobson, IEEE Trans. Plasma
Sci. 30, 1063 (2002]. The conclusion, supported by analytic theory and simulations, is that prior to gain
compression phase distortion is due to harmonic frequencies in the electron beam and the resulting “inter-
modulation” frequency at the fundamental, and not the often cited “slowing down of electrons in the electron
beam.” We draw these conclusions based on MUSE simulations that allow explicit control of electron beam
frequency content, an analytic solution to the S-MUSE md@deWohlbier, J. Booske, and |. Dobson, IEEE
Trans. Plasma Sci30, 1063(2002] that reveals that phase distortion is due to the fact that the fundamental
frequency is an intermodulation product of itself, and large signal LATTEWGhIbier, J. Booske, and I.
Dobson, IEEE Trans. Plasma SE0, 1063(2002] simulations that are modified to remove the effect of the
slowing down of electrons in the electron beam. As applications of the theory we compare S-MUSE simula-
tions to an amplitude phase model using the analytic phase transfer curve, we study dependence of phase
distortion on circuit dispersion and electron beam parameters at the second harmonic with large signal LATTE
simulations for narrow and wide band TWT designs, and we consider the phase distortion theory in the context
of TWT linearization.
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I. INTRODUCTION perspective it is better to say that the transfer curves “cap-

) ) . ture” aspects of TWT nonlinearity, and thus can be used to

~ Traveling wave tubeg¢TWTs) are widely used as ampli- hregict input-output behavior of the TWT. For example, an
fiers in cpmmunlcatlons and. electronic co_untgrmeasurg.sy%put_output model such as amplitude-phase modgP]

tems. It is well known that in many applications amplifier \sing the single frequency TWT transfer characteristics pre-

nonlinearities can compromise system performance. This Pajicts intermodulation spectrum around closely spaced carri-

per is part of a continuing effort to understand sources ofysr3), but the amplitude-phase model does not predict har-

nonlinear distortions in TWTS using simulation and analysis.onics of the carrier frequencies. Since it is well established
Conventionally, TWT nonlinearity has been quantified vianat the carrier harmonig@nd sum frequencigexist in the

single frequency input-output transfer characteristics. In Parutput spectrum of a TWT, one concludes that the single

ticular AM/AM (output power vs input powgrcurves and  frequency transfer characteristics capture certain nonlinear
AM/PM (the derivative of output phase vs input poyer

curves are usegsee Fig. L AM/AM curves exhibit a “linear ] ] . P
gain” region, followed by “nonlinear” gain compression and sl —LATTE 3/\
saturation for increasing input powers. In a linear amplifier --- MUSE @
the AM/PM curve is a flat line, i.e., the difference in phase ¢ 5 SMLSE >
between the output and the input does not depend on inputgm_ 2%
power. In the TWT, as with any amplifier, the output phase 5 9
does depend on input power as seen in Fig. 1. The physics of 3 g
. . . . . . Q >
this dependence is the subject of this paper. One sees in Fig. ;.| 5
1 that the AM/PM curve deviates from linear behavior for £ 1;
input powers much smaller than those that first produce com- © e
pression in the AM/AM curve. This shows that phase distor- . 4 <§:
tion in TWTs is significant even in the regime defined as the S
linear gain region based on the AM/AM characteristics. e )
From a systems perspective the AM/AM and AM/PM Input power (dBm)

nonlinearities are said to “cause” undesirable output spectral
content such as intermodulation produdt However, since !
the transfer curves come from a single frequency input—LATTE' MUSE, and S-MUSE for the TWT parameters in Tables |

output measurement, they do not contain explicit informatiorf"d !l The vertical lines aPj,=-19.5 dBm andPj,=-26.5 dBm
correspond to 1 dB gain compressi@8 dB backed off from satu-

he physics internal to the TWT. In f from a physi ) ) .
about the physics internal to the act, from a phys CSratlon) and 10 dB backed off from saturation, respectively, as pre-
dicted by LATTE. The simulations to generate the results accounted
for circuit frequencies up to the third harmonic and ten space charge

*Present address: LANL, MS H851, Los Alamos, NM 87545.  harmonics.

FIG. 1. AM/AM and AM/PM curves at 14 GHz generated by
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physics of the TWT, but fail to capture other nonlinear phys-In Sec. lll we present simulation, theory, and physical argu-
ics. ments to support the case that the majority of phase distor-
The physics behind the AM/AM curve can be understoodtion, at least prior to 1 dB of gain compression, is due to
in terms of power saturation, which is a result of electronbeam harmonics and intermodulation distortion of the funda-
bunches falling into accelerating phases of the rf wave anghental with itself, and not due to the slowing down of elec-
hence taking energy from the rf wave. The physics of phasgons in the beam. In Sec. IV we compare S-MUSE simula-
nonlinearity, we claim, is less well understood. Several autions of two frequency inputs to results from an amplitude-
t_hors have claimed that phase distortion is due to the redu‘bhase model that uses the output phase of the approximate
tion of the average electron beam velocity. For examplegnayiic solution of the S-MUSE model. Section V presents
G|.Imour [4] .C'E%'ms that phase d'S“’”'Or! occurs because, 3Fesults from parametric studies of phase distortion as a func-
drive level is increased, more power is extracted from th ion of circuit dispersion and beam parameters at the second

electron beam and the velocity of the beam is reduced. A . . . LN
beam velocity decreases, the velocity of the rf wave on th armonic. we dISCU§S TWT linearization in _Sec. Vi, e_md the
per is concluded in Sec. VII. Two appendixes provide the-

circuit is reduced and this increases the phase length of AP )
TWT.” Furthermore, Ezura and Kanfb] state “in Refs. oretical detail to support Sec. Ill.
[1-5] where saturation was excluded, one may easily grasp
the physical image of the phase distortion due to the decrease II. TWT MODELS
of the electron velocities, but not quantitatively.” However,
in this paper we show using several arguments that, at least In this paper we use the nonlinear TWT models MUSE,
prior to 1 dB of gain compression, the slowing down of theS-MUSE, and LATTE derived in Refd.7,8. MUSE and
electron beam is not the dominant mechanism for phase did-ATTE are frequency domain formulations of the same ini-
tortion. tial equations where MUSE uses Eulerian coordinates for the
Dimonte and Malmberg studied TWT phase distortion inelectron beam and LATTE uses Lagrangian coordinates for
the context of trapping oscillatiori§], i.e., in operating re- the electron beam. The S-MUSE model is obtained from
gimes where the TWT is strongly overdriven. Although this MUSE by neglecting certain nonlinearities, and was derived
is an interesting regime to understand physics, in a practicdlecause it is analytically solvable while retaining many sa-
amplifier there are “no compelling reasons to study the interlient nonlinear features of MUSE. The major implication of
action much beyond saturatio]. The explanation of choosing Eulerian coordinates in MUSE and S-MUSE is
phase distortion in Ref[6] relies on energy conservation that, unless special methods are emploj@dthe models do
relations of approximate single frequency models. Ultimatelynot predict electron overtaking and hence do not agree with
the phase evolution simply appears as a term in a conservaagrangian models in the region of power saturation. How-
tion relation that must shift to “simultaneously balance en-ever, there is much physics to be learned from the Eulerian
ergy flow.”[6] In contrast to the motivation of Reff6] which  models prior to electron overtaking as this and other work
was the nonlinear physics beyond saturation, our model d§10-12 have shown. The reader is referred to R&. for
velopment emphasizes the physics of phase distortion priatetailed analysis and comparison of the models.
to saturation, and we provide a functional, quantitative pre- For the present work there are two primary benefits of the
dictive model of phase distortion. Eulerian models over Lagrangian models such as LATTE.
In this paper we offer a view of phase distortion providedFirst, the spectral representation of the electron beam in
by the new spectral TWT models MUSE and S-MUGH. MUSE allows one to investigate how electron beam frequen-
By artificially suppressing harmonic and dc effects in thecies, including “dc” effects such as the reduction of the av-
electron beam equations of the MUSE model, we show thagrage electron beam velocity, affect phase distortion. In prin-
the beam second harmonic plays a far greater role in theiple, Lagrangian simulations may also be modified to
AM/PM distortion prior to gain compression and power satu-eliminate spectral components from the electron beam de-
ration than the average slowing down of electrons. Nextscription by generalizing a method we present in this paper.
using an approximate analytic solution of the output phasélowever, such modifications are far more cumbersome than
for the approximate nonlinear model S-MUSE, we concludehe analogous MUSE simulations. Second, S-MUSE pos-
that the phase distortion prior to gain compression is mostlgesses an analytic solution which has a direct physical inter-
a result of the fact that the fundamental frequency is an inpretation of phase distortion not afforded by either MUSE or
termodulation frequency of itself. We also compare the spectATTE.
trum of an amplitude-phase model using the output phase of The TWT models in Ref[7] are derived from a one-
the approximate analytic solution to the spectrum predictediimensional(1D) nonlinear model which uses transmission
by simulation of the S-MUSE model. Furthermore, since it isline equations to represent the slow wave circuit and Eule-
found that phase distortion depends primarily on the secondan electron beam equations. The MUSE model is the result
harmonic existing in the electron beam, we study the depemsf a spectral analysis of these equations, whereas LATTE is
dence of the phase distortion on circuit dispersion and eleahe result of spectral analysis of the field quantities and a
tron beam parameters at the second harmonic. Finally, usingansformation of the electron beam equations to Lagrangian
insights developed throughout the paper we discuss ouwoordinates. Both models are steady state and assume that all
phase distortion theory in the context of TWT linearization. frequencies present are integer multiples of a base frequency
In Sec. Il we give an overview of the TWT models used wy. There are five quantities in the TWT description: trans-
in our study, referring the reader to RET] for model details.  mission line voltageV, transmission line currenit, space
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charge electric field, electron beam velocity, and electron TABLE |. Ku-band TWT electron beam and circuit
beam charge density. The MUSE model is a system of parameters.
ordinary differential equations for the spatially dependent

complex Fourier coefficients of the five quantities per fre- Parameter Value
quency:Ve(2),1,(2),E((2),v,(2), andp,(z) where{ indexes Cathode voltage —4.92 kV
the frequencyf,wy and z is the axial distance. From the Beam current 0177 A
\Ijic;‘urler coefficients the circuit voltage may be synthesized Beam radius 0.3175 mm
Helix radius 0.60 mm
V(zt = 3 Vi(z)e! o0, @) )
{=—x 1 1
d(P; ):fgwof {———}dz. (3)
" o Lop(Pn2 v

whereuy is the dc electron beam velocity. The other physical
variables may be similarly synthesized from their FourierTherefore, by definition phase distortion is the result of the
coefficients. nonlinear velocity change of the hot circuit wave. When the

For the circuit quantities and space charge field LATTEcold circuit velocity is less than the dc electron beam veloc-

retainsV,(2),1,(2), andE,(2). However, the Eulerian electron ity (Pierce velocity pargmetéxh> 0), the hot velocity usually
beam velocity and density function§(z, ) andpE(z, y) are ~ first slows down relative ta, increasing the electrical
transformed to the Lagrangian velocity and density functiondéngth of the TWT relative to the linear behavior, and can
vL(z, ) and pt(z, ). We also define the functiolr(z,y,)  SPeed back up in saturation. When the cold circuit velocity is
which is the nonlinear transformation between the coordinatd"€ater than the dc electron beam velog®jerce velocity
systems and represents the phase position of fluid elegent parame}&b<0), the hot velocity usually first speeds up rela-
with respect to the stream way#3] at axial positionz. See  UVe t0vjpy, decreasing the electrical length of the TWT rela-
Ref. [7] for details of the transformation between Eulerian V€ {0 the linear behavior, and can slow back down in satu-
and Lagrangian coordinates. ration (see, for example, Fig. 1 of Ref5]). In general the
factors influencing)ﬂf"(Pm,z) are not fully understood for all
operating regimes of the TWT.
. PHASE DISTORTION MECHANISMS It will be useful to define hot phase velocity using the

. . . . . . model variables we have introduced. For frequefey, we
In this section we study using simulation and analysis the, it 5 term of Eq(l) as

mechanisms of phase distortion. We defibéP;,) as the
phase difference between the TWT output and input of the |Y/€(z)|ei04(z)eifewo([z/u()]—t), (4)
“hot” circuit voltage wave at frequency,w, where the ) ]

“small signal” phase difference is subtracted off. Using thisand from this one can find that

definition, any nonzero value @b is considered a “distor-

. . . f

tion” from the linear behavior. The term hot refers to the fact 1%z = g—wo, (5)
that the spatially dependent local velocity and local wave B+ dé,

number of the voltage wave at frequenigyw, are in general ¢ dz

not equal to the “cold circuit” quantities, i.e., the velocity _ :
and wave number of a voltage wave with no beam presen}',vhereﬂe_ff")o/uo 's the stream wave number.

nor are they in general equal to the electron beam velaogity
or effective electron stream wave numbfetwy/u,. Rather,
the local velocity and wave number of the hot wave must be For the first set of simulation studies we choose param-
computed from analytic theory or simulation. eters for a representative Ku-band TWT. The electron beam
If we define B, as the hot wave number predicted by and circuit parameters are listed in Table | and the cold cir-
linear theory{14], i.e., the wave number corresponding to the gt phase velocit,, interaction impedanc&, and space

expor}entllallr?/ tgrowmg mocz)e of thg. stol(;Jtlt;)n, iﬁq'(P‘”’Z?. charge reduction factaR [4,14] are found in Table II. The
as ? .OC?] ot wave Inum er pr(Ia tI'C € thy el ehr non Inea[)arameters represent a single lossless, constant pitch section.
analytic theory or nonfinear simulation, then we have AM/AM and AM/PM curves at 14 GHz are given in Fig. 1.

A. Simulation results

L
dD(Pyy) :f [Bni(Pin,2) = Biin] dz, (2) TABLE II. Ku-band TWT dispersion parameters.
0
. o f(GHz Tpn( X107 m/9) K(Q R
wherez=L is the TWT output. Note tha8;, is independent (GH2) o ) @
of input powerP;, and axial positiore. For small input pow- 14.0 3.858 32.625 0.156
ers By tends top;,. 28.0 3.673 1.161 0.389
Rewriting Eq.(2) in terms of linear and nonlinear hot 5 3.501 0.061 0.547

hot
lin

phase velocities| andv'*(P,,,2) we get
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. FIG. 3. MUSE computations of the hot phase velocity, &),
~ FIG. 2. Output phase vs input power curves generated by MUSE;; 1 fundamental frequency with varying frequencies included in
simulations with varying frequencies included in the simulation. 4 o simulation. The legend indicates which frequencies were in-

The legend indicates which frequencies were included in the Simu&luded in the simulation generating the trace. The input pcRyer
lation generating the trace. The maximum input power represented _19 5 qgm corresponds to the 1 dB gain compression point
on the graph corresponds to the 1 dB gain compression point 8, in Fig. 1. For this input power the phase difference as pre-

seen in Fig. 1. For the input powers in this figure LATTE and yioieq by | ATTE is nearly identical to MUSE when accounting for
MUSE have nearly identical phase predictions accounting for dcdC through the tenth harmonic.

through the tenth harmonic, as seen in Fig. 1.
added to the simulatiofif +2f) we include both the circuit
h§nd beam second harmonic components. Therefore, the rela-
. . . tive influence of the beam second harmonic vs the circuit
Since the Eulerian models apply only prior to electronge oy harmonic on the level of phase distortion cannot be
overtaking, we restrict our attention in this section to input

. ; . leaned from Fig. 2.
powers smaller than the 1 dB gain compression point. FrorTsiJ g

P . : Since the circuit voltage hot phase velocity is the physical
the AM/AM curve in Fig. 1 we find that for our TWT design .- st internal to the TWT that causes phase disto f
this corresponds to 3.8 dB backed off from saturation. Acq ty b

Eq. (3)], we look at MUSE predictions of hot phase velocit
cording to Ref[4] the maximum point of AM/PM distortion qu (3, w precict P v 1y

or P,,=—19.5 dBm including and excluding different fre-
typically occurs anywhere between 3 and 10 dB backed o n incucing xeuaing d

f on. indicating that the i hich uencies. The results shown in Fig. 3 confirm that the inclu-
rom saturation, indicating that the input powers to Which Wegjq, of the second harmonic accounts for most of the change

res_lt_rrl]ct our attelntlon are offp:]actlsl:alslgterezt.l I in hot phase velocity, which in turn accounts for most of the
The spectral structure of the U mode’ allows one tophase distortion in Fig. 2 via E¢3). The variation of the hot
art|f|C|§1IIy SUPPress elecfcron beagand C"C‘%" freque_nues_ ._phase velocity foz=<4 cm is due to the mixing of the three
as a diagnostic tool to discover where various nonlinearitie odes of linear Pierce theofg4]

manifest in TWT behavior. In the following MUSE simula- get a feel for the level Of' the circuit and beam har-
tions we include and exclude dc effegtane average elec-

b loGitvG d ti | b monic distortions in the case of Fig. 3, we plot in Fig. 4 the
tron beam velocityuy(2) and time average electron beam circuit power at the fundamental through third harmonic, and

charge densitypy(2)], second harmonics, and higher order ihe magnitude of the beam density modulation at the funda-
harmonics. A frequency,w, is excluded from a simulation  mental through tenth harmonics. Note that at the output
by forcing derivgtives of the TWT state variables at that(Z:Q cm) the second harmonic circuit power is about 20 dB
frequency(e.g.,dV,/dz,dp,/dz, etc) to zero in the simula- |ess than the fundamental, while all of the beam charge den-
tion. sity modulation harmonics are within 1 dB of each other.
Figure 2 shows output phase versus input power curveFhis indicates that even in a narrow band TWT, where the
from MUSE simulations with varying frequencies included. second harmonic is out of the linear gain bandwidth, the
When the fundamental frequencf) is the only frequency in  harmonic beam modulations are very strong, even at an input
the simulation the model reduces to a linear model, and therpower corresponding to the 1 dB gain compression point.
is no phase distortion. Separately including the dc frequenc¥he beam velocity harmonics, not shown here, look very
and the second harmonic with the fundamental al¢de similar to the beam charge density harmonics, and are within
+f” and “f+2f,” respectively indicates that most of the 1.3 dB of each other at the output.
phase distortion is associated with the inclusion of the sec- Next we provide more evidence that the average velocity
ond harmonic and not due to reduction of the dc velocity ofreduction in the electron beam is not the primary cause of
the beam. Furthermore, including all frequencies up to thehase distortion by using MUSE and LATTE simulations as
tenth harmonic(dc+f+---+10f) supports the conclusion well as a physical argument. First we consider a large signal
that most of the phase distortion is associated with the incluLATTE simulation that has been modified to remove the av-
sion of the second harmonic. When the second harmonic israge velocity reduction using the approach given in Appen-

Space charge reduction factors for harmonics higher than t
third are computed by Eq23b) of Ref. [15].
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FIG. 4. Circuit power at the fundamental through third harmonic ~ FIG. 6. Average electron beam velocities computed by LATTE

(@), and beam charge density magnitude at the fundamental througt'd MUSE. LATTE traces were computed by H&6), MUSE
tenth harmoniab) for the case of Fig. 3. Faz<8 cm in(b), the  traces are the dc frequency of the velodig(z). Shown are com-
charge density magnitude at the fundamental frequency is the largiutations with and without the velocity adjusted to remove the
est and the magnitudes of the higher order harmonics decrease wighange in the dc component. The input power used to generate the
increasing harmonic order. At the outp@t=9 cm) the second har-  traces isPj=-23 dBm, which is the maximum power appearing in
monic circuit power is about 20 dB less than the fundamental, whildig. 5.
all of the beam charge density modulation harmonics are within
1 dB of each other. computation of the dc component of the beam velogifg),

. ) ) ) we compare the average beam velocities of both models be-
dix B. In Fig. 5 we show the phase distortion produced byfore and after the removal of the spatially evolving average
LATTE simulations with and without the average velocity velocity for P,,=—23 dBm in Fig. 6. For this input power

adjustment. The result confirms that average velocity reducypte that the average electron beam velocities predicted by
tion, at least prior to gain compression, is not the primary\uSE and LATTE are virtually identical.
cause of the phase distortion. o Finally, we consider how the reduction of the average
We limit the maximum power in Fig. 5 toPi,=  peam velocity could not account for the majority of phase
—23 dBm for computational reasons. As discussed in Appengistortion. First we consider a comparison of the hot phase
dix B, we use Eq.B6) to compute the evolution of the yelocity predicted by MUSE and LATTEcomputed using
average disk velocity in a LATTE simulation. For input pow- Eq.(5)] to the average beam velocity computed by MUSE in
ers greater than or equal ®,=-23 dBm, the number of Fig 7 for p,,=-20 dBm. According to Fig. 2, the phase dis-
space charge harmonics required for #86) to converge tortion for this input power is about 10° which, according to
can become quite large. For convergence WE}=  Fig 7, corresponds to a change in hot phase velocity of about
—23 dBm 100 space charge harmonics were required. 1%. As seen in Fig. 7 the average beam velocity for this
To verify that the average velocity computed from theinnyt power only reduces from its initial value by 0.2%. If
Lagrangian calculation of EqB6) agrees with the MUSE s reduction in beam velocity solely determined the change
6 : | : in the hot phase velocity to cause phase distortion, then over

LATTE the length of 0.5 cn{16] Eq. (3) indicates that this only

Sln --- Average velocity reduction removed ‘ ‘ , . | ‘ ,
=) _ 397 == LATTE 418 @
D 4 Q) —— MUSE £
=) £ o’
@ o> 3881 ;416 ©
3 (= <
s 2 4148
32 3 ]
£ Q 412 g

[0}

O, 2 3
5. 41 0
0 E 5
>
| | | ! | 38 ‘ ‘ | | ‘ | 408 2

-50 -45 -40 -35 -30 25 0 2 7 ' 6 )

Input power (dBm) Axial distance (cm)

FIG. 5. Output phase for LATTE simulations with and without  FIG. 7. Average electron beam velocity computed by MUSE,
removal of the average beam velocity reduction as described iand hot phase velocity at the fundamental computed by LATTE and
Appendix B. One hundred space charge harmonics were used tdUSE for P;,=—20 dBm. The ranges of values on both vertical
compute(v)o from Eq. (B6). axes are 3% of the value of the respective curve=8 cm.
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accounts for about 1.3° of phase distortion, far below the 10° 10 | w .
seen in Fig. 2. — Simulation i
-=-- Analytic - 3IM o
— = Analytic - 5IM i

oo}
T

B. Analytic results

The Eulerian model S-MUSH7], a simplification of
MUSE, admits an analytic solution which allows us to probe
further into the physical mechanisms of phase distortion. Be-
cause of the approximations made in deriving the S-MUSE
model, the phase distortion predicted by MUSE, S-MUSE,
and LATTE agree qualitatively but not quantitatively. How-
ever, we postulate that the physical interpretations made for
the S-MUSE model are also true for the MUSE and LATTE 5

I 1 i I | | | |
models for input powers prior to gain compression. 55 75 =5 = 0 5 25

(22}
I

Output phase (deg)
N
T

N
T

The structure of the S-MUSE solution for a physical vari- Input power (dBm)
able at a particular frequency is a linear combinatiorz of
dependent complex exponentidl0—12. For example, the FIG. 8. Numerical solutions and analytic predictions of
voltage at the fundamental may be approximated as S-MUSE output phase. For the phase of EQ.to match the nu-
_ merical solution the contributions from 3IM and 5IM terms need to
Vi(z,t) ={Aq explug +irg)Z+ 2 Aﬁl exq,ugl be included. The maximum input power represented on the graph
q corresponds to the 1 dB gain compression point as seen in Fig. 1.
+ iKgI)Z}eiflwo([ﬂuO]_t), 6) The numerical solution accounts for circuit frequencies up to the

third harmonic and ten space charge harmonics.

where the dr subscript refers to the driven portion of the
solution, i.e., the exponentially growing mode due to theS-MUSE equationgEqgs. (25—29) of Ref. [7]) for input
fundamental input, and the nl subscript refers to quantitiepowers up to the 1 dB compression point. We show the out-
occurring as a result of the nonlinear interactions. The subput phase of Eq(6) accounting for only the 3IM and also
script 1 appearing iV, andf, refer to the fundamental fre- accounting for the 3IM and the 5IM. The analytic prediction
quency. In Eq(6) Ay, A are complex angg, ud, xg, %  accounting for the 5IM matches the simulation almost iden-
are real. Forms similar to Ed6) apply to the other TWT tically.
state variables at the fundamental frequency. Comparing the AM/PM curvegderivatives of the output

In Eq. (6) each complex exponential is related to a par-Phas¢ of S-MUSE and LATTE in Fig. 1 we see that
ticular order of intermodulation produ¢t7], and each suc- S-MUSE predicts most of the phase distortion of the large
cessive term in the sum overaccounts for the next higher Signal simulation prior to gain compression. Then from Fig.
order odd intermodulation produgthird, fifth, etc). Since 8 we conclude that the majority of tharge signal TWT
the fundamental frequency is an odd order intermodulatioPhase distortior{18] prior to gain compression is predicted
product of itself, e.g., & —f,=3f,—2f,=f, etc., we can ap- DY Ed.(6). Hence the primary mechanism for the large signal

proximate Eq(6) as phase distprtion is that the fundamental frequency is an in-

_ - o termodulation product of itself, which is the view that comes

Vi(z,t) = {Age?e? + AZMeri 2+ A2Menni 2+ .. 1@f1e0lZW0 - from the analytic solution to the S-MUSE model. We at-
%) tribute the output phase discrepancies between LATTE and

S-MUSE to the nonlinearities that were neglected in deriving
where we have written the growth ratesand wave numbers S-MUSE, including the approximation of the average beam
k in Eqg. (6) together as complex propagation constapnts  velocity and the average charge density as constants, and the
The complete solution to S-MUSE is made up of an infi-resulting underpredictions of intermodulation spectra by
nite number of complex exponentidl$1,12. In Eq.(7) we  S-MUSE as can be seen in RET].
only express the dominant terms and ignore the terms that do Based on the above comparison of large signal simula-
not contribute appreciably to the solution near the output ofions to the analytic solution to S-MUSE, and supported by
the TWT. Due to the neglect of nongrowing or weakly grow- the simulations of Sec. lll A, we submit the following view
ing modes in Eqs(6) and(7), both from the linear and non- of TWT phase distortion valid prior to gain compression, and
linear portions of the solution, evaluation of the equations aspeculatively into saturation.
z=0 does not give the correct value of the input. The equa- The fundamental drive frequency induces second har-
tions are therefore only good approximations, both in ampli-monic distortions on the electron beam, and hence into sec-
tude and phase, for lengths such that the exponentially growsend harmonic circuit quantities. These second harmonic dis-
ing modes dominate the total solutigior examplez=4 cm tortions combine back with the beam and circuit quantities at
in Fig. 7). In Appendix A we provide the details of the ana- the fundamental frequency to produce distortions in the
lytic solution of S-MUSE required to compute Eq$) and  beam quantities, and hence the circuit voltage, at the funda-
). mental frequency. In a similar manner the third harmonic
In Fig. 8 we compare the output phase computed with Eqdistortions in the electron beam and circuit combine with the
(6) to the output phase obtained by numerical solution of thesecond harmonic beam and circuit distortions to produce dis-
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tortions in the circuit voltage at the fundamental frequency.
This process also occurs for higher order harmonics, but
to a more limited extent as the order becomes higher. There-
fore, the voltage at the fundamental frequency is composed
of the driven mode, the 3IM and 5IM distortion modes, as
well as higher order odd intermodulation modes. The relative
weights of the driven mode and the distortion modes deter-
mine the evolving phase of the fundamental circuit voltage,
and hence the evolving hot phase velocity of the fundamental
circuit voltage. The hot phase velocity then determines the
phase distortion via Eq.3). The S-MUSE equationéEgs.
(25—29) of Ref.[7]) may be used to convince oneself of the
above mixing process. ; ; . ; : ; - ; .
One may wonder why in Fig. 2 thiet 2f MUSE simula- .
tion produced an output phase smaller than fthe- - + 10f Axial distance (cm)
MUSE simulation, while in Fig. 8 the S-MUSE analytic S0- g1, 9. Analytic and numerical predictions of S-MUSE hot
lution accounting only for the 3IM mode predicts an outputypase velocity at the fundamental frequency. Inclusion of the 3IM
phase larger than simulation of the S-MUSE: - +10f sys- 54 51M contributions to the analytic solution, E@), are required
tem. First, S-MUSE is a different nonlinear system thani, match the numerical results. All of the complex exponentials
MUSE, so subtle qualitative differences may be expectegrom the linear portion of the analytic solution are included to get
between the models. In particular, simulation of the S-MUSEhe correct behavior of the hot phase velocity x4 cm. The
f+2f system predicts a slightly larger output pha@®t  numerical solution includes circuit frequencies up to the third har-
showr) than simulation of the S-MUSE+ - --+10f system, monic and ten space charge harmonics.
which is opposite to what is seen in Fig. 2 predicted by the

MUSE model. Therefore, one should not be prejudiced as 1§44 approximation to the infinite frequency system that is

whether they expect S-MUSE approximate analytic solutiongechnically needed to represent the partial differential equa-
to predict larger or smaller phase distortions than thgions S-MUSE was derived from.

)

w

o

)
|

3.84- N\ 4

—— Simulation
----- Analytic - 3IM a

3.82|- X )
— — Analytic - 5IM !

Hot phase velocity (1 0° cm/s

S-MUSEf+:--+10f system. , For more insight into how the hot phase velocity at the
_ Furthermore, one may suspect that sincefthef MUSE  fngamental changes to produce phase distortion, we con-
simulation predicts an output phase very close tofthe::  gjger the evolution of the fundamental voltage phége) as

+10f MUSE simulation in Fig. 2, that the lineadrive)  yofined in E o
T . g(4) and computed from Ed6). For simplicity
mode and a 3IM mode would be sufficient in the analytic,s consider input powers for which only the 3IM contribu-

expression to approximate the numerical S-MUSE solutionjop, 1 the analytic solution is required to match the numeri-

in Fig. 8. This would logically follow from the fact that a ., solution(e.g., P, less than —28 dBm in Fig.)8For such
system that only accounts for second harmonic excitationﬁ1puts we have

on the beam can only produce 3IM distortions at the funda-

mental, and cannot produce 5IM distortions at the fundamen- k)2 ik
tal. However, the analytic solution to tlie 2f S-MUSE sys- 6,(2)=tari! Im{Aqe : W7+ Al : "y .
tem contains an infinite number of complex exponential Re{AgeHarixa? + Ay glenrixnz)
modes[12]. In general, we see no obvious or simple rela-

tionship between the number of these analytic complex exWorking through the calculations in Appendix A one can
ponential modes required to adequately approximate a solshow that for the input powers under considerat|dg,|

tion, and the number of frequencies included in the model>|A,|. However, for large enough values afthe terms
That is, even though the+ 2f S-MUSE system has only two Age“d? and A,e** can become comparable singeg,
frequencies, the complete analytic solution to this system has3 ug. In the limiting cases of small and largeone has

an infinite number of complex exponentials, and there iano dé;/dz=«y, andd6,/dz=«,, respectively, implying constant
priori reason to expect that only two of these exponentials/alues of hot phase velocity via E¢). The limiting case of
(e.g., the linear and the 3IM modeare sufficient to approxi- smallzis seen, for example, between 4 cm and 7 cm in Fig.
mate the solution. In fact, based on simulations of the 7 [the behavior foz<<4 cm is due to the complex exponen-
+2f S-MUSE systemnot shown we find that the analytic tial modes neglected in Eq6)]. Since 3IMs rarely attain
solution to thef+2f S-MUSE system would also require comparable power levels to fundamentals before power satu-
three complex exponential modéhe drive, the 3IM, and ration, the limiting case of large whered#6,/dz=«,, is not

one othey to adquately approximate the output pha®ote  attained. Therefore the change in hot phase velocity as a
that this third analytic mode would not be the same 5IMfunction of distance along the TWT fa>7 cm in Fig. 7
mode of Fig. 8, because tlie- 2f system cannot describe 5th reflects the evolution of the relative weights of the modes in
order intermodulation physigsln any event, in Fig. 8, we Egs.(6) and(8).

see that three complex exponentials, specifically the linear, In Fig. 9 we show S-MUSE numerical solutions and ana-
the 3IM, and the 5IM modes are necessary and sufficient ttytic predictions of the evolution of the hot phase velocity for
analytically approximate the S-MUSIE-- - - +10f system. In  P;,=-20 dBm. Consistent with Fig. 8 the contributions from
turn, we claim that this three-mode analytic solution is athe 3IM and 5IM terms are required for this input power to

(8
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a

accurately model the evolution of the hot phase velocity seen
in the numerical solution.

: : ; .
Simulation

40 A AP Model

A&

IV. AMPLITUDE-PHASE MODEL AND S-MUSE 20

A popular model for predicting amplifier performance us-
ing the nonlinear input-output amplitude and phase transfer
characteristics is the so-called amplitude-ph@gse) model
[2]. In this section we compare an AP model that uses the
analytic solution for the output phase from E(p) to
S-MUSE simulations with two frequency inputs. While AP
models have been proposed and studied, none have used ane
lytic solutions to nonlinear physics based models for the
transfer curves. As in Sec. lll, we restrict our attention to
input powers in the “linear gain region” of the AM/AM
curve.

For an input voltage

x(t) = A(t)cog wl),

Output power (dBm)

-20

i I

13.995 13.997 13.999  14.001
Frequency (GHz)

1

40 14.005

14.003

FIG. 10. Comparison of S-MUSE simulation and the AP model

output spectra for two input tones. The input power Rg=

-30 dBm and the modulation frequencyads,/27=1.0 MHz.
9 . :
_ . _ single frequency, namelw., the AP model is expected to
the Output VOltage in the linear pOI’tlon of the AM/AM curve app|y 0n|y over a narrow band of frequencies ab@the
for the AP model is see that the AP model with a narrow frequency spacing is in
closer agreement with the simulation.

For the same frequency spacings we repeated the above

calculations with an input powd?;,,;=—23 dBm. The results

y(t) = YA()cogwit + P[AWD]}, (10)

where y is a constant gain factor, ar;ﬁ(vin) is the voltage
phase difference between the output and input for an input

Vin COS wt. &)(Vin) in Eq. (10) is obtained fromb(P;,) in Eq.
(2) by using[7]

K

IDin (11)

whereK is the circuit interaction impedance at frequengy
If we choose

A(t) = 4Vi, codwpt), (12
thenx(t) can be equivalently written as
X(t) = 2Vip{cod (v + wp)t] + cod(w. — wt]}  (13)
and the output of the AP model is
y(t) = v4V;, codwmt)cogw.t + (T>[4Vin codw )]}
(14)

Using @ predicted by Eq(6) we compute the output spec-
trum of Eg. (14) and compare it to a simulation of the
S-MUSE equations where the input is given by E). We
perform the calculations for two different input powers and
two different values ofv,, with w./27=14.0 GHz.

First we fix the input power to =30 dBm and compute the
spectra forw,/2m=1.0 MHz andw,,/277=100.0 MHz. The

results for the narrow spacing are shown in Fig. 10 and the
results for the wide spacing are shown in Fig. 11. For

wn/27=1.0 MHz the 3IM and 5IM predictions of the AP
model are 2.3 dB and 4.2 dB below those of the simulation
respectively. Foiw,,/2m=100.0 MHz the 3IM and 5IM pre-

i

r the narrow spacing are given in Fig. 12 and the results for
e wide spacing are given in Fig. 13. In both cases the AP
model predictions of the 3IM are about 5 dB lower than the

simulation results, whereas the 5IM predictions are greater
than the simulation results by about 2 dB.

While the reasons for the increased deviations of the
higher power input relative to the lower power input are not
entirely understood, we believe that it might lie in the gain
compression that the simulation inherently contains and is
ignored in our AP model. Relative #,=-50 dBm an input
of P,;=—30 dBm corresponds to 0.11 dB of gain compres-
sion, whereas an input oP;,=—23 dBm corresponds to
0.5 dB of gain compression predicted by S-MUSE simula-
tions (see Fig. 1 To test this hypothesis an AP model ac-
counting for the gain compression could be constructed and
tested.

: - - - ;
Simulation
40 A AP model @& ) .
3
o 20 -
9]
2
1)
a o .
5
o
S
20+ _
-40 ? | | | | | ?
13.5 13.7 13.9 141 14.3 14.5

Frequency (GHz)

FIG. 11. Comparison of S-MUSE simulation and the AP model

dictions of the AP model are 2.9 dB and 4.7 dB below thoseOutlout spectra for two input tones. The input power Fis =
of the simulation, respectively. Since is computed at a -30 dBm and the modulation frequencydis,/277=100.0 MHz.
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50 " ® Smuation T TABLE 1ll. X-WING TWT electron beam and circuit
A AP Model ' & 2 parameters.
40 -
€ Parameter Value
?30 L i Cathode voltage -2.75 kV
g Beam current 0.22 A
8 Beam radius 0.55 mm
320_ | Helix radius 1.4 mm
S
10 .
through an intermodulation process. Therefore, it is of inter-
i i i i | est to know how phase distortion at the fundamental depends
043995 13997 13999 14.001 14.003 14.005 on circuit dispersion and electron beam parameters at the
Frequency (GHz) second harmonic. Using LATTE we look at the dependence

FIG. 12. Comparison of S-MUSE simulation and the AP moolelof the AM/PM distortion at the fundamental on the cold cir-

output spectra for two input tones. The input powerRs=  Cuit phase velocitYy, circuit interaction impedanck, and
-23 dBm and the modulation frequencyds,/27=1.0 MHz. electron beam space charge reduction faBat the second
harmonic. We independently set these parameters to five val-
It is instructive to note that the AP model does not predicties and generate AM/AM and AM/PM curves for each pa-
spectral content at the harmonics of the carrier frequengy fameter value. The values are evenly spaced between the
even though it is well known that such spectral distortion'€Spective parameter value at the fundamental and the pa-
exists. This fact is inherent in the construction of the Aprameter value at the third harmonic. The parameter values
model since when transfer curves are measured or simulate€f}0Sen are not necessarily physically realizable since we are
attention is restricted to the TWT behavior at the input anddirectly changing the parameter, not the circuit dimensions or
output terminals only at the fundamental frequency. The re€lectron beam dimensions to attain the set of parameters.
lation between the transfer curve distortions and the hartiowever, the results give a good indication of the relative
monic spectrum is important if one is designing devices sucticlé the parameters play in phase distortion.
as linearizers based only on TWT transfer curves, where the e expect the phase distortion to behave differently when
temptation might be to restrict one’s attention to only thethe second harmonic is in the linear gain bandwidth of the
fundamental frequency. In the case of phase distortion Sed.WT, since the second harmonic will then have a larger am-
Il provides what we believe to be the key connections peblitude and produce a larger fundamental intermodulation.

tween harmonic distortions and phase distortion at the fun] herefore we choose two TWT designs for this study, one in
damental. which the second harmonic is in the linear gain bandwidth,

and one in which the second harmonic is out of the linear

gain bandwidth. For the “narrow band” TWT we use the

V. PARAMETRIC DEPENDENCE OF PHASE DISTORTION Ku-band design of Sec. Ill, and for the “wide band” design
In Sec. Il we showed that the second harmonic frequency’® US€ simulation parameters based on the experimental

influences output phase at the fundamental frequencyVisconsin Northrup Grumman(X-WING) 1.5 octave
%-band TWT[19]. The electron beam and circuit parameters

for X-WING are listed in Table Il and the relevant disper-

% " © 'simulation ' sion parameters for X-WING are listed in Table IV.
A APmodel # ¢ T In Figs. 14-16 we show the simulation results for the
40 . Ku-band TWT. From Fig. 14 we see that the phase distortion
5 is relatively unaffected by the phase velocity at the second
20k | harmonic. We see from Fig. 15 that the interaction imped-
’a; ance at the second harmonic can affect the input power at
<3 which the maximum AM/PM conversion occurs and the
5 20 - maximum value of AM/PM conversion. Furthermore, larger
£ values of interaction impedance can produce AM/PM con-
O]
10 ? ? TABLE IV. X-WING TWT dispersion parameters.
O35 137 139 141 143 145 f(GH2) Tpn(X10° cm/9 K(Q) R
Frequency (GHz)
2.00 2.487 103.094 2.78710°2
FIG. 13. Comparison of S-MUSE simulation and the AP model 4.00 2.515 38.132 9.80210°2
output spectra for two input tones. The input power Rg= 6.00 2552 15.411 1.84610°1

—-23 dBm and the modulation frequencydsg,/27=100.0 MHz.
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FIG. 14. AM/AM and AM/PM distortion for the Ku-band de- FIG. 16. AM/AM and AM/PM distortion for the Ku-band de-
sign at 14 GHz for five values of cold circuit phase velocity at thesign at 14 GHz for five values of space charge reduction factor at
second harmonic. The legend represents the five values rangirige second harmonic. The legend represents the five values ranging
from the minimum parameter valyenin) to the maximum param- from the minimum parameter valyenin) to the maximum param-
eter valug(max). eter valug(max).

version coefficients of zero. Finally, from Fig. 16 we see thatphase distortion, as well as how TWT bandwidth influences
smaller values of space charge reduction factor have a largghase distortion. However, preliminary investigation has es-
maximum AM/PM conversion coefficient, but the input tablished that such a study will be nontrivial and beyond the

power where the maximum AM/PM conversion is attained isscope of this paper. Therefore, we leave the study to future
unchanged. work.

In Figs. 17-19 we show the simulation results for the
C-band TWT. From Fig. 17 we see that the phase distortion
is relatively unaffected by the phase velocity at the second
harmonic as was the case for the narrow band TWT. The In this section we use our insights into the mechanisms of
interaction impedance at the second harmonic for the widghase distortion to discuss two separate, but related, methods
band TWT displays the clearest trend and has the greatest TWT linearization. TWT linearization is presently a very
effect on AM/PM distortion as seen in Fig. 18. Larger valuespopular area of research due to the large economic benefits to
of interaction impedance produce the largest AM/PM distorbe gained from high power linear amplificati¢20].
tion. Finally, from Fig. 19 we see that the space charge re-
duction factor does not have much effect on either the loca-
tion or value of the maximum AM/PM coefficient.

We expect that analysis of the S-MUSE equations to- The method of harmonic injection has long been used to
gether with additional simulations could be used to underreduce the harmonic power in the TWT outpsee e.g., Ref.
stand the relative roles of circuit and beam harmonics ori21]). We have recently reported a theory of harmonic injec-

VI. INSIGHTS INTO TWT LINEARIZATION

A. Phase linearization by harmonic injection

55

55

50

(&3}
o
T

Output power (dBm
w w iy S
i (4] o (4]
w B H
[3;] o [,
T T T

w
o
T

>
AM/PM conversion (deg/dB)

AM/PM conversion (deg/dB)
Output power (dBm)

N
o
n
a1
T

| | | 1 1 | _ |
50 -45 40 -85 30 -25 -20 -15 -10 -52 -10 -5 0 5 10 15 20 2&

Input power (dBm) Input power (dBm)

_.

)
n
=

FIG. 15. AM/AM and AM/PM distortion for the Ku-band de- FIG. 17. AM/AM and AM/PM distortion for the C-band design
sign at 14 GHz for five values of cold circuit interaction impedanceat 2 GHz for five values of cold circuit phase velocity at the second
at the second harmonic. The legend represents the five values rangarmonic. The legend represents the five values ranging from the
ing from the minimum parameter valymin) to the maximum pa- minimum parameter valugmin) to the maximum parameter value
rameter valugmax. (max).
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FIG. 18. AM/AM and AM/PM distortion for the C-band design
at 2 GHz for five values of cold circuit interaction impedance atthe ~FIG. 20. Circuit voltage phase vs axial distance for a small
second harmonic. The legend represents the five values rangirfig@nal input(-10 dBm), a large signal input18 dBm, and the

from the minimum parameter valuenin) to the maximum param- large signal input with harmonic injection. With harmonic injection
eter valug(max). the output phase for the large signal input is made equal to the

output phase for the small signal input. The injected harmonic

tion based on the models used in this pafidr,12,23. The  power and phase are 17 dBm and —47.5°, respectively. The funda-
harmonic injection theory describes the fundamental and hamental input phase is 0° in all cases. Voltage phase is with respect
monic waves as superpositions of driven and nonlineato the cold circuit wave at 2 GHz.
modes. This is similar to what is described in Sec. Il B, but
in the case of harmonic injection the dominaminlinear 20 we show the relative circuit voltage phase at the funda-
contribution at the fundamental and harmonic is due to anental frequency vs axial distance for a “small signal” input
second order product rather than a third order product. ~ (-10 dBm, a large signal input18 dBm without harmonic

In standard harmonic injection schemes the inputs are adnjection, and the large signal input with harmonic injection.
justed such that the modes of the harmonic solution cancel dodeed one sees that with harmonic injection the fundamen-
the output, and hence the amount of harmonic in the outpugl output phase may be made to be same value as the small
wave form is reduced. However, if the claims that we havesignal output phase, even with a large signal input. In Fig. 21
made in this paper are true, i.e., that the voltage at the funae show the fundamental and harmonic circuit powers vs
damental should be considered as a superposition of modesxial distance with and without the harmonic injection. This
then one should also be able to use harmonic injection tshows first that 18 dBm input is a large signal input since the
manipulate the voltage phase at the fundamental by manipdundamental circuit power is saturating at the output, and
lating the relative magnitudes and phases of the modes. Isecond that to obtain this “phase linearization” the funda-
Figs. 20 and 21 we demonstrate using the large signal codwental output power is reduced by about 3 dB.
LATTE that this is indeed possible. It is important to note that the large signal LATTE model

We consider harmonic injection in the X-WING TWT

(see Sec. Ywith a fundamental frequency of 2 GHz. In Fig. % ' ' ‘

50 —— 2 GHz - no injection
| --- 4 GHz - no injection
-=-= 2 GHz - with injection
P Bum 4 GHz - with injection

12

(o))
o
—
o
N
a
T

AM/PM conversion (deg/dB)
8

8 &
Circuit power (dBm)

w

[3)]

Output power (dBm)
w
(3]

30 .

25 -
30 ]

20 -
25 e / g

15 1 | 1 s | 1 |

0 2 4 6 8 10 12 14

0555 0 : ' = et Axial distance (cm)

Inputspower1((c)ij)
FIG. 21. Circuit power vs axial distance for a large signal input
FIG. 19. AM/AM and AM/PM distortion for the C-band design (18 dBm) with and without harmonic injection to obtain “phase
at 2 GHz for five values of space charge reduction factor at thdinearization.” The fundamental output power with harmonic injec-
second harmonic. The legend represents the five values rangirigpn is reduced by about 3 dB from the case with no injection. The
from the minimum parameter valyenin) to the maximum param- injected harmonic power and phase are 17 dBm and -47.5°, respec-
eter valugimax). tively. The fundamental input phase is 0° in both cases.
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hasno representation of the distinct modes in its formulation, ok : ' r]
but Figs. 20 and 21 demonstrate that the modes do exist in —— 4896 V

the solutions to LATTHalso see Ref410,12,22 for further o ﬁggg¥ _
proof of this facj. 4932 V gt B

o
T

--- 4944V P

B. The linearization method of Chenet al.

Chenet al. [23] have recently presented a new method of
linearizing TWTs. The method involves applying small bias
voltages to thgelectrically floating helix based on either
“direct feed” or feedback processing of the input signal. The 30
bias voltage is a function of the input power “envelope,” and .
has the effect of adjusting the electron beam velocity by | i | | | | | |
changing the potential an electron sees as it enters the helix. ~ 50 45 40 '3]5 -30 _25dB 20 15 10 -5
The change in electron beam velocity can be equivalently npiftpawer (dBim)

viewed as a change in electron beam voltage. The explana- rig 22, output phase vs input power for several values of dc
tion for how the linearization technique works offered in Ref. yeam yoltage for the Ku-band TWT design. The range of the bias

[23] is based on the view that phase distortion is due tQ,ojtages spans 48 V, less than 1% of the design beam voltage.
slowing down of electrons in the beam. Our view of phase

disto_rtion qu us to hypothesize an alternative_explanationbeam voltage, but the phase difference between these values
consistent with the conceptual framework described here an\%hich to Ieadi’ng order can be predicted by linear theory, is '

I(;‘1f I;?;. [122 ;-Pee f(e;;(q_ei/r\llrﬁeizrr]\tilt rssrli(ljtﬁigslseg QBFlt?aSékAégnoc:cfSabout 25°. To obtain a constant output phase for any value of
-[23] ¢ o 1np o input power, one can select from the parametrized output
from saturation, well within the range of applicability of our phase vs input power curves. One chooses the curve that
theory. . . N . . passes through the desired value of output phase and input
We submit that_llnean;atlon using the' tec'hmque of Ref.poWer and sets the bias voltage, by a feedback loop, for
I[R’ng 0;; t\;vr? dtz?rﬁillgﬂg fr;%n?nl ?; :hgg?a'r(')f':'sgesé Ai\? 2? tl‘;’“gfexample, such that the beam voltage is equal to the value
a .e[r should not be ex Iaine% in Ferms of haée distortio labeling the intersecting curve. In this manner the phase dis-
paper, P P nl‘ortion, which is a single frequency input measurement, can

First, we claim that a constant voltage applied to the helix t e compensated for. Note that the input power used for the

compensate for phase distortion for single frequency sin . . .
wave inputs can be explained in terms of linear TWT theory.%(p_e_”g:seg;lta:]rj| iI?]elf:[iSB]zvzvoiu(lad Cgoggsgggsegpsf;ofgn%ag{u:g
|n_ . y . .y -

Second, we claim that the linearization of a two tone input_ . ;
signal with the technique should be viewed as the injectio tion (see Fig. 1. To show that the phase offset for different

of a beam velocity modulation at the difference frequency o elix voltages is well approximated by linear theory for al
) Y . q y input powers, we include input powers up to and beyond
the two input frequencies.

Applying a dc voltage bias to the helix compensates forsaturation.
pplyIng 9 b We saw in Sec. IV that an input signal consisting of two

the nonlinear output phase distortion by changing the el_ecf'requencies with a spacing ofug, centered aboui, could
trical length of the TWT, i.e., the number of wavelengths in be written as ‘

the TWT, based on thinear Pierce theory14]. That is, the
dependence of the linear “hot wave numbg, (see Sec. X(t) = co wt)cod wyt), (16)

[Il) on input voltage is sensitive enough such that a small i ) )
change in beam voltage can account for a non-negligiblé/here typicallywy < .. If such a signal is passed through a

phase change at the output of the TWT. Using the driverfliode for envelope detection, the diode output signal will
term of Eq.(6) one gets have a frequency ofd,,, due to the diode rectification. If this

low frequency signal is then used for the helix bias, one
me effectively has an input modulation on the electron beam
Bin = kar(Vo) + f100 26\’ (15 voltage at the difference frequencywg Furthermore, this
0 signal is applied to a “grid compensation circuit” in REZ3]
where V, is beam voltagem, is electron mass, and is  which would also have the effect of an input modulation on
electron charge. In Eq15) «q4(Vy) is the imaginary part of the electron beam voltage at the difference frequensy, 2
the eigenvalue of; (see Appendix Acorresponding to the Therefore, we claim that the new technique of linearization

exponentially growing solution, and we have used #%f  put forward by Cheret al. [23] is equivalent to injecting a
=(1/2)mgu3. One can show that for small changesvinEq.  difference frequency modulation on the beam velocity.

Output phase (deg)
8 3

(15) is approximately a linear function df, and that the Our recent theory of harmonic injection in a TWI1,12
accumulated phasg;, (V)L can change by as much as 25° has shown that it is theoretically possible to obtain inter-
for less than a 1% change W, modulation cancellation by injection of the difference fre-

In Fig. 22 we show LATTE calculations of output phase quency in the circuit voltage. However, because the differ-
vs input power for five values of beam voltage. The totalence frequency is typically outside of the linear gain
range of beam voltages spans less than 1% of the desidgrandwidth, substantial input powers at the difference fre-
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quency are expected to be required. Since the electron beamonlinear TWT physics, and that measuring single frequency
has no such bandwidth limitations, it is expected that modegpthase distortion characteristics captures only a part of the
difference frequency modulations of the beam velocity, suctharmonic and intermodulation physics happening internal to
as with the proposed scheme, may be more effective thatihe TWT. Second, we study how phase distortion depends on
difference frequency injection of circuit voltage. This topic circuit and electron beam parameters at the second harmonic.
will be explored further in a future work. We find that circuit interaction impedance at the second har-
monic has the greatest effect on AM/PM distortion, espe-
cially when the second harmonic is within the linear gain
VIl. CONCLUSIONS bandwidth of the TWT. Third, we use the insight that the

Phase distortion has been said to “dominate TWT nonlinfundamental is composed of driven and nonlinear modes,
earity” [23] in TWTs. In the literature many authors have together with knowledge of the mechanisms of harmonic in-
attributed phase distortion to the slowing down of electrond€ction[11,12,23, to propose harmonic injection as a method
in the electron beam, i.e., the reduction of the average ele@f pPhase linearization. We show using the large signal code
tron beam velocitysee, e.g., Ref§4,5,23). Through simu- LATTE that with a properly adjusted harmonic input, one
lation and analysis we offer evidence that phase distortion, &N obtain the same fundamental output phase for small and
least prior to 1 dB gain compression, is not due to slowingj‘?‘rge signal fundqmen_tal inputs. Note that earlier explana-
down of electrons in the beam. Rather, we show fiese  tions for phase distortion, such as that of R}, do not
distortion arises from harmonic generation in the electron@asily explain this phenomenon because they do not account
beam and an intermodulation process that results in distorfor the existence of driven and nonlinear modes. Finally, we
tions at the fundamental consider a technique of linearizati¢23] and offer a physi-

The implications of the understanding of phase distortiorcal _explanation for the Iineariza_tion mec_hanism. In this case
are many. First, provided with a view of nonlinear TWT @gain we propose that phase distortion is not the proper way
physics, one may be led to consider alternative parametrief 100king at the linearization, and that a view of the inter-
dependencies and explanations for physical phenomenon. Wodulation and difference frequency physics is required.
have provided examples of such studies in Secs. IV-VI. Fur-
thermore, the understanding may possibly lead to improved
TWT designs, since the notions that a designer has about
how a device works inevitably influence how they proceed The authors gratefully acknowledge support in part by
with a design. AFOSR Grant No. 49620-00-1-0088 and by DU$E&T)

Using the MUSE, S-MUSE, and LATTE TWT models we under the Innovative Microwave Vacuum Electronics Multi-
explore phase distortion in a TWT. The unique ability of thedisciplinary University Research InitiatiddURI) program,
MUSE model to systematically suppress the effects of differmanaged by the United States Air Force Office of Scientific
ent frequencies in the nonlinear TWT behavior shows thaResearch under Grant No. F49620-99-1-0297. We would like
the second harmonic distortion in the electron beam is theo thank Carter Armstrong, Tom Hargreaves, and Aarti Singh
dominant factor in causing phase distortion, at least prior tdor their useful suggestions on the manuscript.
gain compression. Furthermore, we show that the average
slowing down of electrons is not the primary cause of phase
distortion using MUSE simulations in addition to large signal ~ APPENDIX A: ANALYTIC FORMULAS FOR EQ. (6)

LATTE simulations that were corrected to remove the aver-
age velocity reduction.

With the approximate analytic solution to the S-MUSE
model we give an insightful picture of the fundamental fre- o = e T ) : )
quency also being a self-intermodulation product. We showr[Xe," " Xe¢,]' =[Ve I Ecvepel’. The differential equation
that prior to 1 dB gain compression the analytic solutionfor X is
accounting for the 3IM and 5IM contributions has a phase :
distortion that closely matches the phase distortion from Xe=Axe+ 2 HomdXmXo),
simulation of the S-MUSE equations. We also show that the i
change in voltage hot phase velocity which causes phase mrinTe
distortion is due to an evolving balance of the driven andwhere matrix and tensor componenflss,,ij and Hemn, are
intermodulation modes in the solution. listed in Appendix Il of Ref[7]. One can show that EQAl)

Leveraging off of our understanding of phase distortionmay be solved with a series solution
we consider several applications. First, we compare S-MUSE .
simulations to an amplitude-phase model that uses the ap- =3 @
proximate analytic solution to S-MUSE for the output phase Xe= =t Xe
vs input power. We see that there are discrepancies in the “
intermodulation spectra predicted by the two methods, anend that this series converges under the appropriate condi-
that the disagreement is worse for wider frequency spacingtons [10,12. The index« is related to the order of inter-
and for larger input powers. The study reinforces our viewmodulation producf10]. The formulas for the terms of the
that the amplitude-phase model is an incomplete picture o$eries are given by

ACKNOWLEDGMENTS

In this appendix we provide a formalism for solving the
S-MUSE model for the components necessary to compute
Eqg. (6). We use the vector notation of Rgf7] where x,

(A1)

(A2)
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W = ez =1 A3 z
X 7 b - —
¢ ooa (A3) 211 = dominant mode o f ghaz
z a-1 0
(@= [ Az Ho IxB (1) x@B ()7 d
Xy fo gl % md Xihy (7,5 P(7)] dr, XHle[x(ll)[l](T)'X(ll)[l](T)]dT}_ (A14)
fotn=fe
Let
a=2, (A4)
. _ ¢, = Hypg(a™, a’™), (A15)
wherew, contains the initial values for frequendyw, [7]
ande’? is the matrix exponential of the matri,z [2;1]. then
The complex exponential modes of the vectot’ are _
indexed byp i P = PS)(28 )Py e e?? (A16)
N (D[], j, (DI1]
X((2) = ) af Pl PP, (A5) =aylle?i g T, (A17)
p=t where
with a(ea)[p] a complex vector. Sums like EGA5) are ordered 1
S0 that,u,([‘)[l] is the largest of all thm@“)[p]. o i=
For brevity we only provide details to compute the 3IM Se,(M=17"2 (A18)
contribution to Eq.(6) and refer the reader to Refd1,12 0, otherwise.

for details on how to compute higher order contributions. To

compute the terms of Eq6) and the input-output phase The eigenvalues, of A, have the same order as the eigen-
difference® we need to compute in order tip=1 modes  Vectors ofA, appearing in columns d?,. We have assumed
(P X 31U petails of the calculations are provided that the real part of 2 is larger than the real part ab, the

in Ref.[12]. eigenvalue ofA, with the largest real part, and that\12l

# N, for j=1,...,5, as is most often the case.
1. Series term >§1) !

The dominant term in the first ordgw=1) drive fre- 3. Series term %”

quency(£=1) solution is The third order term at the drive frequency is

X = gter egint (A6) /
x U = dominant mode o f M@
where 0
a’=P1QPTw,, (A7) X[Hy 2,1 x5 (7))
" = Refn, ), (8) + H1,_1,2<x<_1£[”<r),x<22>[”(r)>]dr}. (A19)
kP = 1mix " (A9)  Let
and C1=Hyp (a1, aqM) + Hy LM,
o _{1, i=j=1 (A10) (A20)
"0, otherwise, with a_,=a; then

assuming thaP;, the modal matrix ofA;, has the eigenvec-
tor associated Wit|7t11, the eigenvalue of; with the largest
real part, in its first column. Then for E¢6) we have

XM = P1S(2hy, + )\11) PIlC]_e(Z)\ll”\;'l)z (A21)

(11, ; (D[1]
_ ] =@ tgdui gz (A22)
Agr=aP™, (A11) 1
Therefore for Eq(6)
par= i, (A12) o1
Au=ai, (A23)
K= kD, (A13)
o = 3, (A24)
2. Series term )éz)
For x?™ we have i = K. (A25)
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Any of the TWT state variables may be computed by N Mo N ditr-wy |71
choosing the appropriate vector components faj* and W@p=2| 22— . (B6)
a3l i=1 [ =M j=1 Uj

Similarly to compute the 5IM contribution to E¢6) one
needs to computee=4 and «=5 terms. For details of the
computations we refer the reader to Rgf2].

where we have assumdg(ip)=Iy and used the notation
V(z, ) =W and v(z, ¥g)=v;, where i is an initial disk
phase. For a simulation with small enough input power we
can confirm that Eq(B6) is correct by comparing it to the
average electron beam velocify,(z) computed by the
MUSE model.

In this appendix we provide the theory necessary to re- To remove the effect ofv(2)), in a subsequent LATTE
move the effect of the reduction of the average beam velocitgimulation, we first compute the adjusted disk velocities
in the large signal code LATTE. We first need an expression
to compute the average velocity from a LATTE simulation,
then a way to remove this effect from a subsequent simula-

APPENDIX B: EFFECT OF AVERAGE BEAM VELOCITY
IN LATTE

V=0 = (v)o + Up. (B7)

tion. We confirm by computing Eq(B6) using the adjusted ve-
In Eulerian Coordinates the e|ectr0n beam average Ve|odOCitieS that fOI‘ the pOWer |eVe|S we are interested in we ha.Ve
ity is
L (Uido = Uo, (B8)
— E
(0(2))o= 2 ), Y (zy)dip, (B1)  then given the adjusted velocities we compute disk phase
o ) . trajectoriesW; using[7]
which in Lagrangian coordinates becon&$
1 A\ IV, wo( Uo)
- = L oy —=—(1-=. B9
=5 | Tl @2 PR Ceh (89
From the adjusted velocities and phase trajectories we can
_1 |o(_¢o)d%' (B3) compute the adjusted electron beam density coefficient given

27 ) 5, Aoz, ) by Eq. (B5) where the integral is replaced by a sum over
_ . . . disks. Finally, one can compute a circuit voltage at the fun-
where = wg(z/uy—1) is a phase variabldy(iy) is the dc damental frequency corresponding to the adjusted beam

beam currentA is the beam cross sectional area, and thgnarge density from the LATTE lossless circuit equatipfis
other quantities are defined in Sec. Il of the paper. We can

write p‘ using the Fourier synthesis equation in Lagrangian

dV,  ifewee,  ifewpK
dve _ ewow_ 9o aq

coordinates = - s (B10)
} dz Ug Uphe
Pz ) = 2 el e (B4) ~
== dl( if(/wo ~ |f(/wg"
_:—~—V€_ - |€+if€w0A7)€, (Bll)
where Az K@ 0
~ 23 1) it e ST o o
o= Po(z %)e diy. (B5)  whereV, andl, are the complex circuit voltage and circuit
2 1 1

For computations the integrals become sums oV&disks,”
we consider a finite number of positive frequendssand
we can combine EqgB3)—<(B5) to get

current envelopes as defined in Ed), K, is the circuit
interaction impedance at frequen€ywg, vpr is the circuit
phase velocity at frequendyw,, andA is the electron beam
cross sectional area.
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