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In the long-wavelength limitk=0, the response function has been investigated with respect to the external
and internal fields which is expressed by the external and internal conductivity, respectively. Molecular dy-
namics simulations are performed to obtain the current-current correlation function and the dynamical collision
frequency which are compared with analytical expressions. Special attention is given to the dynamical collision
frequency and the description of plasma oscillations in the case ofk=0. The relation between the external and
internal conductivity and the current-current correlation function is analyzed.
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I. INTRODUCTION

The treatment of strongly correlated Coulomb systems is
a challenge for many-particle theories. It has applications in
different fields such as dense ionic plasmas and the electron-
hole plasma in excited semiconductors. Within a quantum
statistical approach, the methods of equilibrium and nonequi-
librium Green functions have successfully been utilized to
calculate the properties of dense plasmas, see Ref.[1]. How-
ever, a problem is the validity of perturbative approximations
when using the Green function approach for strongly corre-
lated systems.

With increasing computer capacities, simulation tech-
niques such as molecular dynamics(MD) simulations have
been developed to obtain physical quantities from correlation
functions, see Refs.[2–7]. The MD approach allows the ap-
plication to large coupling parameters. On the other hand,
quantum effects are difficult to include. This shortcoming is
partially cured by considering pseudopotentials which effec-
tively take into account the uncertainty principle by a short
distance modification of the Coulomb interaction within the
range of the thermal wavelength, see Ref.[1]. More rigorous
methods to include quantum effects are wave packet MD
simulations[8] or path integral Monte Carlo calculations[9].

Other points are the finite particle number and the limited
accuracy when solving the equations of motion. The latter
will not be discussed any further. The transition from a finite
system to the thermodynamic limit of an infinite system can
be performed by periodic boundary conditions. The total
force on a given particle from all the other particles in a basic
cell, as well as from the infinite array of their periodic

images, can be obtained using the standard Ewald procedure
[2,3].

In the present paper, the long-wavelength limitssvd
=limk→0ssk,vd of the dynamical conductivity is considered
for a two-component plasma. According to the fluctuation-
dissipation theorem(FDT), this transport quantity can be ex-
pressed in terms of equilibrium correlation functions, in par-
ticular the autocorrelation function(ACF) of the electrical
current or the ACF of the electrical charge density. In the
literature[3,10], see also Ref.[11], the internal as well as the
external conductivity are introduced, relating the electrical
current density to the internal or the external electrical field
strength, respectively. We will present the corresponding re-
lations in the following Sec. II. An important quantity related
to the dynamical conductivity is the dynamical collision fre-
quencynsvd. Analytical expressions can be derived in differ-
ent approximations within a perturbative approach, see
Ref. [12].

Section III defines the current ACF in the context of MD
simulations, and the connection to the collision frequency is
shown. While results from MD simulations and analytical
approaches for the structure factor and other frequency de-
pendent quantities at finite wave numberk are in good agree-
ment, see e.g. Refs.[2,7], we will discuss the zero-wave
number case of MD simulations which is relevant for the
dielectric functionesk=0,vd or the dynamical conductivity
ssvd, see Sec. IV. Results for the current ACF and the dy-
namical collision frequency at parameter values of a strongly
coupled plasma are shown.

The inclusion of a mean field when performing MD simu-
lations is considered in Sec. V. Calculations are presented
and compared with previous results. In both cases, the same
dynamical collision frequency is obtained and compared
with results of an analytical approach. With this, an apparent
controversy between the internal and external conductivity in
calculating the collision frequency is resolved. Conclusions
are drawn in Sec. VI.
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II. DYNAMICAL CONDUCTIVITY OF THE
TWO-COMPONENT PLASMA

We consider a two-component fully ionized neutral
plasma, such as a H plasma consisting of electrons and pro-
tons, at temperatureT and particle densityn of each compo-
nent. The interaction of this Coulomb system is given by the
Coulomb potential, and the plasma is characterizd by the
nonideality parameterG=e2s4pn/3d1/3s4pe0kBTd−1 and the
degeneracy parameterQ=2mekBT"−2s3p2nd−2/3. The linear
response to external perturbations in general is presented in
various references, see, e.g., Refs.[1,12]. In the following,
we will restrict ourselves to relations which are relevant for
further discussion.

Under the influence of an external electric fieldEW extsrW ,td
=EW 0

exteiskW·rW−vtd a longitudinal electrical current densitykJWklt is
induced. If we consider the response in an isotropic system,
thez axis can be selected without loss of generality in such a

way that EW 0
ext=E0

exteWz, kW =keWz, JWk=Jk
longeWz. The relationship

between the induced longitudinal current and theexternal
field is given by the response functionxsk,vd. Within linear
response theory,xsk,vd is related to the equilibrium correla-
tion function of the longitudinal electrical current density
[2,12]

xsk,vd = − ibV0
k2

v
kJk

long;Jk
longlv+ih s1d

=− ibV0
k2

v
E

0

`

dteisv+ihdtkJk
longstdJk

longl, s2d

where V0 is the normalization volume. The bracketsk¯lt

indicate taking the statistical average with the thermody-
namic equilibrium distribution and the limith→0 has to be
taken after this averaging process. Since the longitudinal part
of the current density is related to the charge density accord-
ing to the balance equation(due to charge conservation), the
longitudinal current ACF can also be expressed in terms of
the charge density ACF.

According to the FDT, the response function is related to
the dynamical structure factor or the longitudinal part of the
dielectric tensorêsk,vd according to(c.f. [1,2,11,13])

elongsk,vd = 1 −
xsk,vd

e0k
2 + xsk,vd

= 1 −
1

e0k
2Plongsk,vd. s3d

The longitudinal polarization functionPlongsk,vd gives the
relation between the induced current and theinternal fieldas
does the dynamical conductivity

slongsk,vd =
iv

k2 Plongsk,vd =
e0vpl

2

− iv + nsk,vd
. s4d

It is also called theinternal conductivity[10]. Via Eq.(4), the
dynamical collision frequencynsk,vd is defined by a gener-
alized Drude formula wherevpl=sne2/e0meid1/2 is the plasma
frequency andmei the reduced mass. The phenomenological
Drude model is obtained from the generalized Drude for-
mula, Eq.(4), if the collision frequency is considered to be a

real constant equal to the inverse of the relaxation timet in
momentum phase space.

In analogy to the internal conductivity, a so-calledexter-
nal conductivity[3,10] can be introduced from the response
function (1)

sextsk,vd =
iv

k2 xsk,vd = bV0kJk
long;Jk

longlv+ih. s5d

This quantity is directly related to the longitudinal current
ACF. Note that it is not the dynamical conductivity defined
by Eq. (4). Instead, it is related to the dynamical collision
frequency in the following way:

sextsk,vd =
e0vpl

2 v

− isv2 − vpl
2 d + vnsk,vd

. s6d

The transverse part of the dielectric tensor can also be
related to a conductivity according to

êsk,vd = 1 +
i

e0v
ŝsk,vd. s7d

The transverse conductivity is defined in analogy to the lon-
gitudinal (4) as

stranssk,vd =
iv

k2 Ptranssk,vd =
e0vpl

2

− iv + ñsk,vd
, s8d

where ñsk,vd is commonly called memory function[2]. In
principle, the investigation of the transverse conductivity re-
quires the inclusion of the coupling to the transverse Max-
well fields in addition to the Coulomb interaction. Consider-
ing only Coulomb interactions, the Kubo-Greenwood
formula [2–4,11,13,14] relates the polarization function di-
rectly to the transverse current ACF,

stranssk,vd = bV0kJk
trans;Jk

translv+ih. s9d

Within a Green function approach, a diagram representation
is possible[12]. In contrast toxsk,vd and the transverse
polarization function, which are given by diagrams contain-
ing Coulomb interaction in any order, the respective current
ACF Plongsk,vd is given only by the irreducible diagrams. In
the long-wavelength limit, transverse and longitudinal con-
ductivities should lead to the same response of the system,

ssvd = lim
k→0

s transsk,vd = lim
k→0

s longsk,vd. s10d

This implies that the longitudinal and transverse current ACF
for Coulomb systems behave differently in the long-
wavelength limit as also pointed out in Ref.[3].

III. CURRENT AUTOCORRELATION FUNCTION

Within MD simulations[3,4,11,13], the normalized cur-
rent ACF

Kstd =
kJkstdJkl

kJk
2l

s11d

is calculated. Here, the long-wavelength limitsk→0d of the
current
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Jk=0std =
1

V0
o
c

o
i=1

N

ecvi,c
z std s12d

is considered, whereN is the number of electrons and singly
ionized ions. At this stage it is not possible to distinguish
between transverse and longitudinal components of the ve-
locities. Due to isotropy, an arbitrary direction was chosen to
be inz direction for the speedvi,c

z of the ith particle of com-
ponentc, denoted byhi ,cj. For convenience, we will drop
the indexk in the following. The normalizing factor is equal
to

kJ2l =
e2

3V0
2Nkv2l =

e0vpl
2

V0b
. s13d

The Laplace transform of the current ACF reads

kJ;Jlv+ih = kJ2lE
0

`

eisv+ihdtKstddt. s14d

On the basis of this quantity, two different results for the
conductivity

ssvd = e0vpl
2E

0

`

eisv+ihdtKstddt s15d

are derived depending on whether the current densities are
considered to be long-wavelength limit of the longitudinal or
transverse case.

First, within the transverse response, the Kubo-
Greenwood formula(9) is utilized. The conductivity(15) is
then related to the memory functionñsvd [2,4,13,14] via the
Drude like formula(8) and we find

ñsvd
vpl

=
e0vpl

stranssvd
+ i

v

vpl
. s16d

If we assume a constant memory function(collision fre-
quency) ñsvd= ñ, the Laplace transformation ofstranssvd
back to Ktransstd using the functional dependence given by
Eq. (15) leads to a monotonically decreasingKtransstd=exps
−ñtd. This behavior is observed indeed in simulations forG
ø1 [2,4,6,13,14].

Second, within longitudinal response, we have to distin-
guish between the external and the internal conductivity. In-
serting Eqs.(14) and (13) into Eq. (5), this implies that ex-
pression (15) is the external conductivity. The internal
conductivity can be calculated via

slongsvd =
sextsvd

1 − isextsvd/se0vd
s17d

and due to the generalized Drude formula(4) the collision
frequency is, in contrast to Eq.(16),

nsvd
vpl

=
e0vpl

sextsvd
+ iS v

vpl
−

vpl

v
D . s18d

Using a constant collision frequencynsvd=n in the re-
spective relationship(6) for the external conductivity, we
find for the longitudinal current ACF via a Laplace transfor-
mation

Klongstd = expH−
n

2
tJF−

n

2z
sinsztd + cossztdG ,

s19d

z=Îvpl
2 −

n2

4
.

This shows that an oscillating behavior is expected for the
ACF. The oscillation frequency tends tovpl in the limit
n→0.

In conclusion we find that the current ACF for the longi-
tudinal and transverse response cannot be identical under the
assumption that in the long-wavelength limit bothnsvd and
ñsvd coincide. This should also be reflected in the actual
procedure taken in the MD simulations. In the following
Secs. IV and V we will resolve this apparent contradiction
between the internal conductivity as obtained from the cur-
rent ACF according to Eqs.(17) and (5) and the transverse
conductivity obtained from the current ACF according to
Eqs.(16) and (9).

IV. SIMULATION TECHNIQUE

In the MD simulation scheme, the Newtonian equations
of motion are solved for a system consisting ofN singly
charged ions andN electrons exerting Coulomb forces on
each other. The ith particle of componentc shall be denoted
ashi ,cj. This is a classical treatment where the trajectories of
each particle are determined. The original Coulomb interac-
tion can be replaced by a pseudopotential, where the short-
range part of the interaction is modified reflecting the quan-
tum character of the interaction. A systematic derivation of a
pseudopotential which reproduces the equilibrium properties
has been given by Kelbg, see Refs.[1,15] on the basis of the
Slater sum. In particular, we use the so-called “corrected
Kelbg” potential[15]

Vcdsrd =
eced

4pe0r
FFS r

lcd
D − r

kBT

eced
ÃcdsjcddexpX− S r

lcd
D2CG ,

s20d

where

lcd =
"

Î2mcdkBT
,

1

mcd
=

1

mc
+

1

md
, jcd = −

eced

kBTlcd
,

Fsxd = 1 − exps− x2d + Îpxf1 − erfsxdg,

Ãeesjeed = Îpujeeu + lnF2ÎpujeeuE
0

` y exps− y2ddy

expspujeeu/yd − 1G ,
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Ãeisjeid = − Îpjei + lnFÎpjie
3Szs3d +

1

4
zs5djie

2D
+ 4ÎpjeiE

0

` y exps− y2ddy

1 − exps− pjei/ydG ,

wherejsnd are the Riemann-Zeta functions. This interaction
potential corresponds to the Coulomb potential at large dis-
tances and provides the exact value of the Slater sum and its
first derivative atr =0.

Initially, all the particles are gathered in a cubic box with
the edge sizeL. The number of particlesN in this basic cell
is obtained from a given mean plasma densityn via N=nL3.
To simulate an infinite homogeneous plasma, images of this
charge-neutral basic cell are considered shifting the basic cell
by integer multiples ofL in different directions. This ex-
tended system has a constant mean plasma densityn. Arte-
facts may occur due to the periodicity of the particle posi-
tions, but they are suppressed if the basic cell size is
increased.

The dynamics of both electrons with charge −e, massme
and ions with chargee, massmi is considered. Because of the
continuous expansion of such plasma, the nearest image
method is applied to the force calculation procedure. Here,

the forceFW i,c=FW i,c
short+FW i,c

long on a particlehi ,cj is considered to
consist of two contributions. The interaction forces between
particle hi ,cj and the nearest neighbor images of all other
particles found in the basic cell centered around the position
rWi,c of the considered particlehi ,cj is the short-range contri-

bution FW i,c
short. The contributionFW i,c

long is originated from the
remaining images, which are not in the basic cell.

The short-range part of the force is calculated as

FW i,c
short= o

d
o
jsÞid

N

FW cdsrW j ,d
n.n.− rWi,cd, FW cdsrWd = −

rW

r

dVcdsrd
dr

.

s21d

The time argumentt is suppressed. According to this method
it is assumed that the particlehi ,cj does not interact with
original particles which at larget may be found far away due
to the motion in space beyond the basic cell, but with their
next neighbors’ images obtained by periodically shifting
their coordinates into the basic cell centered around the par-
ticle hi ,cj. Thus, the position of each original particlerW j ,d is
replaced by the position of an imagerW j ,d

n.n.,

r j ,d
n.n.,a = r j ,d

a − mL, ur j ,d
n.n.,a − r i,c

a u ø
L

2
, s22d

wherea=x,y,z, andm is an integer. It should be noted that
this procedure is repeated for each particle atrWi,c. This
method implies that each particle is always surrounded by
2N−1 other particles with a constant mean density and the
plasma is homogeneous in scales larger than the simulation
cell.

The forcesFW i,c
long due to the interaction with images outside

the basic cell centered around the positionrWi,c of the particle
hi ,cj are treated in a different way. If the dimensionL of the

basic cell is large in comparison to the screening length, the
contributions of all images except the nearest one can be
neglected. In particular, this is justified in the case of a non-
ideal plasma where the effective interaction potential de-
creases exponentially with distance due to screening. The
influence of the far images can be taken into account consid-
ering Ewald sums. They are expected to give only a small
contribution to the forces providedN is high enough. They
do not change the behavior of the current ACF significantly
and are not relevant with respect to our considerations.

For explicit MD simulations, we consider a model plasma
consisting of singly charged ions and electrons with density
n=3.831021cm−3 at a temperature ofT=33 000 K. This
corresponds to recent experiments in dense xenon plasmas
[16]. The plasma parameters introduced in Sec. II take the
valueG=1.28,Q=3.2. It is a nondegenerate strongly coupled
plasma. The computations of the current ACF for the ion-
electron mass ratiosmi /me=1836 andmi /me=100 show no
considerable difference. Thus the ratiomi /me=100 is se-
lected for better convergence when averaging over the con-
figurations of ions. The total number of particlesN=250 was
found to be enough forG<1. Further increase of the number
of particlessN=400d does not affect any simulation results
including the mean interaction energy, equilibrium correla-
tion functions, and others. The equilibrium state of the
plasma at the given temperature was obtained using a special
procedure described in Ref.[5].

The current ACF is calculated directly from the velocities
of the particles in subsequent time instances according to
Eqs. (11) and (12), whereV0=L3 with L the length of the
basic cell. The averaging of the ACF is performed over
s1–5d3105 initial configurations. These configurations are
obtained from a long MD trajectory at different time mo-
ments. As shown in Ref.[6], two configurations are statisti-
cally independent if they are taken at times separated by the
dynamical memory time. In our case about 53103 initial
configurations are already fully statistically independent for
electrons. The dynamical memory time for ions increases
with the ion mass[6]. Thus the smaller mass ratio the better
averaging for ions is obtained.

Results are shown in Fig. 1 with circles. The current ACF
Kstd decreases monotonously as it was also obtained in pre-
vious MD simulations[2,4,6]. It indicates that the conduc-
tivity obtained numerically fromKstd according to Eq.(15)
should be treated as the transverse conductivity(8). The di-
mensionless dynamical conductivityssvd / se0vpld is shown
in Fig. 2 with circles. Asv→0, the real part has a finite
value and the imaginary part vanishes, as expected from Eq.
(16). According to the latter expression, we then deduct a
memory function or collision frequencyñsvd as shown in
Fig. 3 with circles.

The results of the MD simulations can be compared with
analytical calculations. Details of different approximations
for the dynamical collision frequency within a generalized
linear response theory can be found in Ref.[12]. The dy-
namical collision frequency in Born approximation with re-
spect to the statically screened potential(Debye potential)
taken in the nondegenerate case and within the long-
wavelength limit, is given here
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nBornsk = 0,vd

= − ig n E
0

`

dy
y8

sn̄ + y2d2FṼsqd
16mekBTV0e0

e2"2 G2

3E
−`

`

dxe−sx − yd2 1 − e−4xy

xysxy− v̄ − ihd
, s23d

where

q =
y

"
Î16mekBT, n̄ =

"2ne2

8e0meskBTd2,

s24d

g =
e4b3/2

24Î2p5/2e0
2me

1/2
, v̄ =

"v

4kBT
.

In the case of the Fourier transform of the Coulomb interac-

tion Ṽsqd=e2/ sV0e0q
2d the square brackets become 1/y2.

We will now compare the MD simulations with this ana-
lytical treatment of the dynamical collision frequency within
perturbation theory, see Fig. 4. First, we consider a system

with statically screened Coulomb interactionṼsqd
=e2/ sV0e0q

2d according to Eq.(23). The results are pre-
sented as dotted line. The Born approximation can be im-
proved by taking into account the effects of dynamically
screening, strong collisions(T matrix), and higher moments
by introducing a renormalization factor[12] in the general-
ized Drude formula, Eq.(4). This approximation is shown as
solid line. Details of the calculation are given in Ref.[12]. It
can be seen that both real and imaginary part are in good
agreement with the simulation results forv,vpl. This
means that in this region the quantum mechanical treatment
of the Coulomb potential and the classical simulations based
on the corrected Kelbg potential are consistent.

At frequenciesv@vpl the asymptotic expansion of the
analytical expression for the collision frequency is possible

FIG. 1. Current autocorrelation function(ACF) for G=1.28,
mi /me=100; total number of averages 53105; MD trajectory
length of 2.53104te, te=2p /vpl — period of electron plasma os-
cillations: MD simulations without(circles) and including (tri-
angles) an additional mean-field term in the equations of motion.

FIG. 2. Real and imaginary parts of the Laplace transformation
of the current ACF; MD simulations without(circles) and including
(triangles) an additional mean-field term in the equations of motion.

FIG. 3. Real and imaginary parts of the dynamic collision fre-
quency or memory function from MD simulations without(circles)
and including(triangles) an additional mean-field term in the equa-
tions of motion.
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using the Fourier transform of the corrected Kelbg potential
(20)

Ṽcdsqd =
ecedlcd

e0V0q
F Îp

lcd
2 q2 erfSlcd

2
qDe−slcd

2 /4dq2

−
lcd

2 kBTp3/2e0

eced
Ãcdsjcddq e−slcd

2 /4dq2G . s25d

The high frequency behavior of the real part of the collision
frequency is given in Fig. 4 as dashed line. It is found to
behave as Rensvd,v−3.5. There is good agreement between
the simulation data and the analytically derived high fre-
quency behavior. The presented analytical treatment was also
confirmed by MD calculations of the dynamical structure
factor at finitek in Ref. [7] where the Deutsch potential was
used. However, obviously the quantum Coulomb case is not
well reproduced by a classical treatment using a pseudopo-
tential based on Slater sums if the frequency is higher than
the plasma frequency.

V. LONGITUDINAL CONDUCTIVITY

We now investigate the evaluation of the longitudinal
conductivity by MD simulations. The current ACFK dis-

cussed in the preceding section has been identified as the
transverse and cannot be taken as the longitudinal since they
should behave differently as pointed out at the end of Sec. III
and also in Ref.[3]. Therefore, the current ACFKlong has to
be calculated differently to the ACFKtrans. It will be shown
in which way the simulations have to be altered in order to
obtain the longitudinal current ACF in the long-wavelength
limit. However, we note that for finite wave vectork the
conditionk.2p /L means that any charge density wave oc-
curs already within the basic simulation cell and the corre-
sponding mean electric field is accurately taken into account.
Excellent agreement for the dynamical structure factor from
MD simulations and analytical expressions has been found
[7]. The limit k→0 is not trivial. For any smallk, the system
is nearly homogeneous, but charge densities(or surface den-
sities) are present at large distances, which can also be con-
sidered as a mean field.

For this, we follow the procedure to construct an infinite
system by periodic images of a basic cell. We consider this
as a limiting case of a finite number of images. Denoting the
images inz direction byNimages, then a surface of our system
is obtained atz−=−sNimages+1dL /2 andz+=sNimages+1dL /2.
When considering the force calculation procedure, there are
contributions to the forces originating from a surface charge
density. This occurs if positive and negative charges are
moving at different rates across the surface of the basic cell.
The introduction of a finite number of images compensates
this effect at the interfaces, but not at the surface of the
whole system including all the images. A large dipole mo-
ment follows connected with a finite polarization of the sys-
tem. This surface charge density will produce an electrical
field which has to be taken into account even in the limit
when the number of images goes to infinity. If the surface is

far away, it produces a homogeneous electrical fieldEW std
within the simulation box. Following this reasoning, it is
necessary to include a mean field in the long-wavelength
limit as shown below. As a consequence, plasma oscillations
are obtained in the current ACF.

On the macroscopic level, the Maxwell equations relate

this mean fieldEW std to the average current densityJWstd, which
is oriented inz direction according to the conventions in
Sec. II,

dEW std
dt

= −
1

e0
kJWstdl. s26d

Taking the current density according to Eq.(12) as an aver-
age over all original charged particles in the basic simulation

cell and the initial conditionEW s0d=0, the integration of Eq.
(26) leads to

EW =
1

L3S− eo
i=1

N

rWi,e + eo
i=1

N

rWi,iD . s27d

In this approach, a contribution to the long-range interaction

forces is given byFW i,c
longstd=ecEW std. In particular, the equation

of motion includes two parts

FIG. 4. Dynamical collision frequency within different methods;
points — MD simulations; analytical approximations: dotted line —
Born approximation, Eq.(23), with Coulomb potential, solid line —
same approach including dynamically screening and strong colli-
sions (T matrix) and higher moments via renormalization factor
[12], dashed line — high frequency asymptote for Born approxima-
tion, Eq. (23), with corrected Kelbg potential.
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mc
dvW i,c

dt
= FW i,c

short− ecEW . s28d

The interaction forcesFW i,e
short originate from close partners in

the Debye sphere within the basic cell. It is fluctuating
around a nearly zero mean value. Nevertheless, the ampli-
tude of these fluctuations is much higher than the fluctuations

of eEW . The Maxwell field (26) originates from all charged
particles in the basic cell so thatFlong is also produced by
particles outside the Debye sphere. In contrast to the Ewald
sum, this term gives rise to plasma oscillations as shown
below.

In the MD method, if no mean-field term is taken into
account, the total energy

Etot = Epot + Ekin =
1

2o
c,d

o
i,j

iÞ j

N

VcdsrW j ,d − rWi,cd

+
me

2 o
i=1

N

vi,e
2 +

mi

2 o
i=1

N

vi,i
2 s29d

is conserved. If the particle trajectories are calculated includ-
ing the mean-field force, the energyEpot8 +Ekin8 is not con-
served. Nevertheless, the conservation law can be fulfilled by
including the mean-field energyEfield=L3e0E

2/2 so that the
total energyEtot8 =Epot8 +Ekin8 +Efield is conserved. This is illus-
trated by simulations below.

The occurrence of plasma oscillations can be demon-
strated in the following way. If the mass ratio between elec-
trons and ionsmi /me is large the ion current can be neglected
in Eq. (12). After that the derivative of the total current den-
sity is obtained from

dJWstd
dt

= −
e

L3o
i=1

N
dvW i

dt
=

eN

mL3seEW − jWd, s30d

jW =
1

N
o
i=1

N

FW i,e
short=

1

N
o
i=1

N

o
j=1

N

FW i j . s31d

The forcejW includes only electron-ion interaction forces as
all electron-electron interaction forces are compensated since
they do not change the total momentum of the electrons.

Although the forceFW i,e
short on each electron is typically much

greater than the forceeEW from the mean electric field, the
average over all electrons is of the same order of magnitude

as eEW . If we now differentiate Eq.(26) and substitute the
derivative of the current using Eq.(30), we obtain the equa-
tion for the mean field

d2EW

dt2
+ vpl

2 EW =
vpl

2

e
jW . s32d

On an average,jW vanishes, so that plasma oscillations are
described. The corresponding oscillations in the current ACF
are obtained from MD simulations as the results below show.

We now present MD simulations based on the solution of
the equations of motion(28) in comparison to the MD simu-
lations as presented in Sec. IV where the contribution of the

mean field −eEW was not taken into account. The energy con-
servation is demonstrated in Fig. 5 according to Eq.(29). It
can also be seen that the field energyEfield is rather small
compared to the particle energyEpot8 +Ekin8 .

Results for the longitudinal and transverse current ACF
are shown in Fig. 1. After including the mean field into the
MD simulations, the plasma oscillations inKstd become well
pronounced in contrast to a monotonously decreasing behav-
ior. It should be stressed that the amplitude of these oscilla-
tions does not depend onN.

The conductivity calculated according to Eq.(15) is
shown in Fig. 2. In comparison to the transverse case, the
conductivity shows a qualitatively different behavior. The
real part following from the MD simulations including mean
field is zero for zero frequency as is expected from the ex-
pression for the external conductivity(6). For the case with-
out mean field, Res has a finite value. In the high frequency
limit, both curves coincide. The dynamical collision frequen-
ciesnsvd and the memory functionñsvd calculated from the
simulation data for the ACFs are shown in Fig. 3. As pointed
out, the results for the Laplace transform of the ACF differ
significantly(Fig. 2). Nevertheless, if Eq.(18) is used for the
collision frequencynsvd and Eq.(16) for the memory func-
tion ñsvd in order to calculate the collision frequency, the
results for both coincide quite clearly(Fig. 3). The difference
between Imnsvd and Imñsvd in the low frequency limit is
caused by the numerical error of Imnsvd due to subtraction
of two large terms in Eq.(18).

Therefore, our analysis showed that the apparent contra-
diction between the transverse conductivity which should be
identical with the internal conductivity in the long-
wavelength limit and the external conductivity could be re-
solved if the simulations for the transverse and longitudinal
current ACF are carried out differently.

VI. CONCLUSION

Molecular dynamics simulations of strongly coupled plas-
mas were performed using the quasiclassical Kelbg interac-

FIG. 5. Conservation of the total energy in MD simulations;
curve1 — total energy of the particlesEpot8 +Ekin8 according to Eq.
(29), curve2 — total energyEtot8 including the mean-field energy.
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tion potential. The current autocorrelation function was com-
puted for a nondegenerate two-component plasma. Whereas
for finite k the dynamical structure factor and the plasma
oscillations are reproduced by MD simulations, see Refs.
[2,4,7], the original methods do not allow to considerk val-
ues withk,2p /L. On the other handk=0 should be pos-
sible to investigate with MD simulations in a finite volume.

We presented calculations for the transverse current ACF
as well as for the longitudinal one. Although in the limitk
→0 the transverse and longitudinal dielectric function and
conductivities, respectively, coincide, the current ACF be-
have differently in this limiting case. It was shown that the
results of MD simulations without a mean field in the long-
wavelength limit provide the monotonously decreasing trans-
verse ACF. Its Laplace transform is to be directly related to
the transversal conductivity.

In MD simulations for the longitudinal case, a mean-field
term has to be included into the equations of motion in ad-
dition to the short-range forces inside the Debye sphere. This
mean-field term originates from surface charges not taken
into account in the usual procedure of force calculation by
the nearest image method. Simulations with these altered
equations of motion show well pronounced plasma oscilla-

tions in the longitudinal current ACF. The results for the
collision frequency as obtained in both simulation methods
using the corresponding relations for the internal or external
conductivities do coincide.

Additionally, the dynamical collision frequency inferred
from the simulation data was compared with analytical re-
sults, which were derived using a generalized linear response
theory. We found good agreement in the low and high fre-
quency limits for a moderate nonideality. In particular, for
v,vpl, classical MD simulations using the corrected Kelbg
potential are able to reproduce the quantum behavior of Cou-
lomb plasmas.
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