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Internal versus external conductivity of a dense plasma: Many-particle theory and simulations
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In the long-wavelength limik=0, the response function has been investigated with respect to the external
and internal fields which is expressed by the external and internal conductivity, respectively. Molecular dy-
namics simulations are performed to obtain the current-current correlation function and the dynamical collision
frequency which are compared with analytical expressions. Special attention is given to the dynamical collision
frequency and the description of plasma oscillations in the cake @f The relation between the external and
internal conductivity and the current-current correlation function is analyzed.
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[. INTRODUCTION images, can be obtained using the standard Ewald procedure
[2,3].

The treatment of strongly correlated Coulomb systems is In the present paper, the long-wavelength limitw)

a challenge for many-particle theories. It has applications inzl'mkﬂo‘f(k"") of the dynamical conductivity is considered

different fields such as dense ionic plasmas and the electrOtle.r a two-component P'as”?a- According 1o t_he fluctuation-
hole plasma in excited semiconductors. Within a quantunﬁjISSIpatlon theorenDT), this transport quantity can be ex-

statistical approach, the methods of equilibrium and nonequipressed in terms of equilibrium correlation functions, in par-
L ' I ticular the autocorrelation functiolACF) of the electrical
librium Green functions have successfully been utilized to X i

lculate th H fd | H current or the ACF of the electrical charge density. In the
caiculate the properties of dense plasmas, see[Re oW literature[3,10], see also Ref.11], the internal as well as the
ever, a problem is the validity of perturbative approximations

h ing th f 4 hf | external conductivity are introduced, relating the electrical
when using the Green function approach for strongly correg,rrent density to the internal or the external electrical field
lated systems.

- SYe ) o ] ] strength, respectively. We will present the corresponding re-
With increasing computer capacities, simulation teChyations in the following Sec. Il. An important quantity related
niques such as molecular dynami@4D) simulations have o the dynamical conductivity is the dynamical collision fre-
been developed to obtain physical quantities from correlatiogyuency(w). Analytical expressions can be derived in differ-
functions, see Ref§2-7]. The MD approach allows the ap- ent approximations within a perturbative approach, see
plication to large coupling parameters. On the other handRref. [12].
guantum effects are difficult to include. This shortcoming is  Section Il defines the current ACF in the context of MD
partially cured by considering pseudopotentials which effecsimulations, and the connection to the collision frequency is
tively take into account the uncertainty principle by a shortshown. While results from MD simulations and analytical
distance modification of the Coulomb interaction within theapproaches for the structure factor and other frequency de-
range of the thermal wavelength, see R&f. More rigorous  pendent quantities at finite wave numbeare in good agree-
methods to include quantum effects are wave packet MDnent, see e.g. Ref§2,7], we will discuss the zero-wave
simulations[8] or path integral Monte Carlo calculatiof@. number case of MD simulations which is relevant for the
Other points are the finite particle number and the limiteddielectric functione(k=0,w) or the dynamical conductivity
accuracy when solving the equations of motion. The latte(@), see Sec. IV. Results for the current ACF and the dy-
will not be discussed any further. The transition from a finitenamical collision frequency at parameter values of a strongly
system to the thermodynamic limit of an infinite system cancoupled plasma are shown. . _
be performed by periodic boundary conditions. The total 'he inclusion of a mean field when performing MD simu-

force on a given particle from all the other particles in a basidations is considered in Sec. V. Calculations are presented
cell, as well as from the infinite array of their periodic and compared with previous results. In both cases, the same

dynamical collision frequency is obtained and compared

with results of an analytical approach. With this, an apparent

controversy between the internal and external conductivity in

*Corresponding author. FAX+490)381-498 6942; calculating the collision frequency is resolved. Conclusions
Email address: heidi@physics.uwa.edu.au. are drawn in Sec. VI.
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Il. DYNAMICAL CONDUCTIVITY OF THE real constant equal to the inverse of the relaxation tinire
TWO-COMPONENT PLASMA momentum phase space.
In analogy to the internal conductivity, a so-callexter-
nal conductivity[3,10] can be introduced from the response
function (1)

We consider a two-component fully ionized neutral
plasma, suchsaa H plasma consisting of electrons and pro-
tons, at temperatur€ and particle density of each compo-
nent. The interaction of this Coulomb system is given by the iw long. ~lon
Coulomb potential, and the plasma is characterizd by the Texd ki) = 17 x(K, @) = BT Iy Dotin- ()
nonideality parametel =e*(4mn/3)Y3(4mekgT) ™t and the
degeneracy paramet@:2rnekBTﬁ—2(3ﬂ2n)‘2/3_ The linear This quantity is directly related to the longitudinal current
response to external perturbations in general is presented H#CF. Note that it is not the dynamical conductivity defined
various references, see, e.g., Rg¢fis12). In the following, by Eg. (4). Instead, it is related to the dynamical collision
we will restrict ourselves to relations which are relevant forfrequency in the following way:
further discussion.

Under the influence of an external electric fidid(r,t) Oexik,w) =
=ESek™D g Jongitudinal electrical current density,)! is
induced. If we consider the response in an isotropic system, The transverse part of the dielectric tensor can also be
thez axis can be selected without loss of generality in such d€lated to a conductivity according to
way that EX'=ESE,, k=ké,, J,=J°"%, The relationship i
between the induced longitudinal current and theernal ek,o)=1+—a(kw). (7)
field is given by the response functigytk, w). Within linear 0@
response theory(k, w) is related to the equilibrium correla- The transverse conductivity is defined in analogy to the lon-
tion function of the longitudinal electrical current density gitudinal (4) as

(2,12

2
Goa)p|(1)

—i(w?- wg|) +ovko)

(6)

; 2
a_traHS(k, w) - Ik_aZ)Htrans(k’ w) - ﬂlﬂ_ (8)

k2 = ,
x(k ©) = =1 B—(F"% 3 i (1) o+ (ko)
w

where(k, w) is commonly called memory functiof2]. In
> oo principle, the investigation of the transverse conductivity re-
- i,Bon_J dté(“’””)‘(J:f“g(t)Jt’” , ) quire_s the_inclusiqn of the coupling to the transverse _Max-
wJo well fields in addition to the Coulomb interaction. Consider-

ing only Coulomb interactions, the Kubo-Greenwood

where () is the normalization volume. The brackets-)'  formyla [2-4,11,13, 1% relates the polarization function di-
indicate taking the statistical average with the thermodyyectly to the transverse current ACF,

namic equilibrium distribution and the limig— 0 has to be
taken after this averaging process. Since the longitudinal part 0"k, ) = LA T i - (9)
of the current density is related to the charge density accor

ing to the balance equatiqtue to charge conservatipiihe C{Mthm a Green function approach, a diagram representation

longitudinal current ACF can also be expressed in terms of po§5|ple[12]. I_n contr_ast toX(k.'“’) and _the transversg
the charge density ACF. polanzatlon fqnctlon,_wh|_ch are given by d|agram_s contain-
According to the FDT, the response function is related tgng Coulomb interaction in any order, the respective current

Iong . . . . .
the dynamical structure factor or the longitudinal part of theACF IT®"k, w) is given only by the irreducible diagrams. In

dielectric tensof(k, w) according to(c.f. [1,2,11,13)

k) oL egiw). (3) o) = limo ™k, = lime %k w). (10
Gok + X(k, (,()) Eok k—0 k—0

the long-wavelength limit, transverse and longitudinal con-
ductivities should lead to the same response of the system,

€29k, w) =1 -

The longitudinal polarization functiofl'®"%(k,w) gives the  This implies that the longitudinal and transverse current ACF
relation between the induced current andititernal fieldas ~ for Coulomb systems behave differently in the long-

does the dynamical conductivity wavelength limit as also pointed out in RE8].
iw €nw> Ill. CURRENT AUTOCORRELATION FUNCTION
G_Iong(k1 w) — _ZHIong(k, w) - —0P|_ (4) o - . .
k —iw+ vk w) Within MD simulations[3,4,11,13, the normalized cur-
It is also called thénternal conductivity{10]. Via Eq.(4), the rent ACF
dynamical collision frequency(k, w) is defined by a gener- (DI
alized Drude formula where,=(n€?/ egmg;)*2 is the plasma Kt = B (11)
k

frequency andn; the reduced mass. The phenomenological
Drude model is obtained from the generalized Drude fordis calculated. Here, the long-wavelength lirtit— 0) of the
mula, Eq.(4), if the collision frequency is considered to be a current
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Using a constant collision frequenayw)=wv in the re-
Jk:o(t)— E E eic(t) (12)  spective relationshig6) for the external conductivity, we
Qo’c iz find for the longitudinal current ACF via a Laplace transfor-

is considered, wheri is the number of electrons and singly Mation

ionized ions. At this stage it is not possible to distinguish

between transverse and longitudinal components of the ve- long
locities. Due to isotropy, an arbitrary direction was chosen to KP™() = ex
be inz direction for the speed; of theith particle of com-

- ’E’t} [— Z—VZsin(zt) + cos{zt)} ,

ponentc, denoted by{i,c}. For convenience, we will drop (19
the indexk in the following. The normalizing factor is equal
to 2 A
zZ= Wp ~ Z
(P = 3QZN< v?) = Q (13)  This shows that an oscillating behavior is expected for the
0’8 ACF. The oscillation frequency tends t@p in the limit
The Laplace transform of the current ACF reads v—0.

In conclusion we find that the current ACF for the longi-
© tudinal and transverse response cannot be identical under the
(3 Ding = <J2)J el (t)dt. (14)  assumption that in the long-wavelength limit batfw) and

P(w) coincide. This should also be reflected in the actual

On the basis of this quantity, two different results for theprocedure taken in the MD simulations. In the following
conductivity Secs. IV and V we will resolve this apparent contradiction
between the internal conductivity as obtained from the cur-

w rent ACF according to Eqg17) and (5) and the transverse

a(w):eowaf e @K (t)dt (15)  conductivity obtained from the current ACF according to

0 Eqgs.(16) and(9).

are derived depending on whether the current densities are
considered to be long-wavelength limit of the longitudinal or IV. SIMULATION TECHNIQUE
transverse case.

First, within the transverse response, the Kubo- ) L .
Greenwood formula9) is utilized. The conductivity15) is ~ °f motion are solved for a system consisting Nfsingly

then related to the memorv functioi 2.4.13.14 via the charged ions an_dN eleqtrons exerting Coulomb forces on
Drude like formula(8) and zve ﬁndOfﬁw) [ 4 each other. The ith particle of componenshall be denoted

as{i,c}. This is a classical treatment where the trajectories of
each particle are determined. The original Coulomb interac-

In the MD simulation scheme, the Newtonian equations

o) - _S0%i1 ;@ (16)  tion can be replaced by a pseudopotential, where the short-
wp o™ w) wp range part of the interaction is modified reflecting the quan-

tum character of the interaction. A systematic derivation of a
pseudopotential which reproduces the equilibrium properties

quency (w)=7, the Laplace transformation Gfrtrarts(“’) has been given by Kelbg, see Refs,15 on the basis of the
back toK"®'t) using the functional dependence given by gjater sym. In particular, we use the so-called “corrected

Eg. (15) leads to a monotonically decreasifa'{t)=exp Kelbg” potential[15]
—7t). This behavior is observed indeed in simulations For

If we assume a constant memory functigeollision fre-

<1[2,4,6,13,1% ce r KT ~ r\2
Second, within longitudinal response, we have to distin- v_r) = —1 {F(—) ‘riAcd(fcd)eXF<— (_> )]
d Acd

guish between the external and the internal conductivity. In- Ameor Aed
serting Eqs(14) and (13) into Eqg. (5), this implies that ex- (20)
pression (15) is the external conductivity. The internal
conductivity can be calculated via where
h 1 1 1 €€y
Iong - O-GXt(w) )\ d: —, —:_+_, gd:— y
o w) 1 —i0ew)/(ew) (7 C2mkeT Mg M. Myt C keTAcq

and due to the generalized Drude form@g the collision

= - —x2 J’l_ _
frequency is, in contrast to E16), F(x) =1 —exp-x) + Vmx(1 - erf(x)],

W) ey .(g_gm> =T {Zr - yexp(—yz)dy}
o) atn, (2on) 18 Aedted = Valtud + 1| 2VmlEd f LR,
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~ — — 3 1 5 basic cell is large in comparison to the screening length, the
Aci(&e) = = Nméei+ Inf V&l £(3) + 25(5)§ie contributions of all images except the nearest one can be
neglected. In particular, this is justified in the case of a non-

— " yexp-y’dy ideal plasma where the effective interaction potential de-

+4\77§eif0 m ' creases exponentially with distance due to screening. The

influence of the far images can be taken into account consid-

where&(n) are the Riemann-Zeta functions. This interactionering Ewald sums. They are expected to give only a small
potential corresponds to the Coulomb potential at large discontribution to the forces provided is high enough. They
tances and provides the exact value of the Slater sum and i€ not change the behavior of the current ACF significantly
first derivative atr=0. and are not relevant with respect to our considerations.

Initially, all the particles are gathered in a cubic box with ~ For explicit MD simulations, we consider a model plasma
the edge sizé.. The number of particledl in this basic cell ~ consisting of singly charged ions and electrons with density
is obtained from a given mean plasma densitia N=nL3. n=3.8X10°'cm™ at a temperature of =33 000 K. This
To simulate an infinite homogeneous plasma, images of thi§orresponds to recent experiments in dense xenon plasmas
charge-neutral basic cell are considered shifting the basic cdllL6]. The plasma parameters introduced in Sec. Il take the
by integer multiples ofL in different directions. This ex- VvalueI'=1.28©=3.2. Itis a nondegenerate strongly coupled
tended System has a constant mean p|asma defmsA‘]te_ plasma. The Computations of the current ACF for the ion-
facts may occur due to the periodicity of the particle posi-€lectron mass ratiosy/me=1836 andm,/m,=100 show no
tions, but they are suppressed if the basic cell size i§onsiderable difference. Thus the ratig/m.=100 is se-
increased. lected for better convergence when averaging over the con-

The dynamics of both electrons with charge massm, figurations of ions. The total number of particlds 250 was
and ions with charge, masam is considered. Because of the found to be enough far =~ 1. Further increase of the number
continuous expansion of such plasma, the nearest imag¥ particles(N=400 does not affect any simulation results
method is applied to the force calculation procedure. Hereincluding the mean interaction energy, equilibrium correla-
the forcelzi = [Eisléort_'_ If’!ogg on a particleli, ¢} is considered to tion functions, and others. The equilibrium state of the

consist of two contributions. The interaction forces betweerplasma at the given temperature was obtained using a special

particle {i,c} and the nearest neighbor images of all otherprocedure described in Reb].

particles found in the basic cell centered around the positior(l) f Ir?: g::ﬁ: ?et SA%FSI,Egs;%ﬂ:;?dti%r:ﬁggtggg;hchceokr)gilrt:gest o
r; . of the considered particlg,c} is the short-range contri- Egs. (11) and (12), where Qy=L3 with L the length of the

bution 'Elsgon The contributionF%" is originated from the pasic cell. The averaging of the ACF is performed over
remaining images, which are not in the basic cell. (1-5 x 10° initial configurations. These configurations are
The short-range part of the force is calculated as obtained from a long MD trajectory at different time mo-
N - ments. As shown in Ref6], two configurations are statisti-
Fohot=> > ﬁcd(F}wdn._ Fio, Fed=- [dvc_d(r). cally independent if they are taken at times separated by the
’ d j(#i) ' ' rodr dynamical memory time. In our case abouk %0° initial
21) configurations are already fully statistically independent for
electrons. The dynamical memory time for ions increases
The time argumerttis suppressed. According to this method with the ion masg6]. Thus the smaller mass ratio the better
it is assumed that the particlé,c} does not interact with averaging for ions is obtained.
original particles which at largemay be found far away due Results are shown in Fig. 1 with circles. The current ACF
to the motion in space beyond the basic cell, but with thei(t) decreases monotonously as it was also obtained in pre-
next neighbors’ images obtained by periodically shiftingvious MD simulations[2,4,6. It indicates that the conduc-
their coordinates into the basic cell centered around the pativity obtained numerically fronK(t) according to Eq(15)
ticle {i,c}. Thus, the position of each original partidlg, is should be treated as the transverse conduct{@tyThe di-
replaced by the position of an ima@%‘dnG mensionless dynamical conductivit )/ (ewp) is shown
in Fig. 2 with circles. Asw— 0, the real part has a finite
value and the imaginary part vanishes, as expected from Eq.
(16). According to the latter expression, we then deduct a
memory function or collision frequency(w) as shown in
wherea=Xx,y,z, andm is an integer. It should be noted that Fig. 3 with circles.
this procedure is repeated for each particlerat This The results of the MD simulations can be compared with
method implies that each particle is always surrounded bynaytical calculations. Details of different approximations
2N-1 other particles with a constant mean density and theyr the dynamical collision frequency within a generalized
plasma is homogeneous in scales larger than the simulatiqhear response theory can be found in R@f2]. The dy-
cell. N namical collision frequency in Born approximation with re-
The forcesF!?diue to the interaction with images outside spect to the statically screened potentidebye potential
the basic cell centered around the positippof the particle  taken in the nondegenerate case and within the long-
{i,c} are treated in a different way. If the dimensibrof the ~ wavelength limit, is given here

nna_  .a _ nna_ ,a =
rde=rig—mL |rj’d ri <

5 (22
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FIG. 1. Current autocorrelation functiofACF) for I'=1.28,
m;/m.=100; total number of averagesx3L0°, MD trajectory
length of 2.5 10%7,, 7.= 2m/ wp — period of electron plasma os-
cillations: MD simulations without(circle9 and including (tri-

angles an additional mean-field term in the equations of motion.

Bk = 0,0)

0 8 2
_ ve o [— 16mekBTQOEO}
- dy — V
ign fo y(n+y2)2[ (@ 272

1-e

_— 23
XY(Xy =@ =in) 3

X J dxe =¥

where

b Re 6(0))/800)pl
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| Re o)/ay,

FIG. 3. Real and imaginary parts of the dynamic collision fre-
quency or memory function from MD simulations withgeircles
and including(triangleg an additional mean-field term in the equa-
tions of motion.

Yy ——= —_  h’né
=Y \16meksT, Tz
T N ke
) g2 _ he @49
9 2a2m2em? T AT

In the case of the Fourier transform of the Coulomb interac-

tion V(q)=€?/(Qye,0°) the square brackets becomeyid/

We will now compare the MD simulations with this ana-
lytical treatment of the dynamical collision frequency within
perturbation theory, see Fig. 4. First, we consider a system

with  statically screened Coulomb interaction/(q)
=€?/(Qyex0?) according to Eq.23). The results are pre-
sented as dotted line. The Born approximation can be im-
proved by taking into account the effects of dynamically
screening, strong collisiond matrix), and higher moments

by introducing a renormalization fact¢t2] in the general-
ized Drude formula, Eq4). This approximation is shown as
solid line. Details of the calculation are given in REHf2]. It

can be seen that both real and imaginary part are in good
agreement with the simulation results foy<<w. This
means that in this region the quantum mechanical treatment
of the Coulomb potential and the classical simulations based

FIG. 2. Real and imaginary parts of the Laplace transformatioron the corrected Kelbg potential are consistent.

of the current ACF; MD simulations withoutircles and including

At frequenciesw> wp, the asymptotic expansion of the

(triangles an additional mean-field term in the equations of motion. analytical expression for the collision frequency is possible
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cussed in the preceding section has been identified as the
transverse and cannot be taken as the longitudinal since they
should behave differently as pointed out at the end of Sec. llI
and also in Ref[3]. Therefore, the current ACK'®"9 has to

be calculated differently to the ACK"@"S It will be shown

in which way the simulations have to be altered in order to
obtain the longitudinal current ACF in the long-wavelength
limit. However, we note that for finite wave vectdrthe
conditionk>27/L means that any charge density wave oc-
curs already within the basic simulation cell and the corre-
sponding mean electric field is accurately taken into account.
Excellent agreement for the dynamical structure factor from
MD simulations and analytical expressions has been found
[7]. The limitk— 0 is not trivial. For any smak, the system

is nearly homogeneous, but charge densitigsurface den-
sitiey are present at large distances, which can also be con-
sidered as a mean field.

For this, we follow the procedure to construct an infinite
system by periodic images of a basic cell. We consider this
as a limiting case of a finite number of images. Denoting the
images inz direction byNyages then a surface of our system
is obtained az_=—(Njyagest )L/2 andz,=(Nimagest 1)L/2.
When considering the force calculation procedure, there are
contributions to the forces originating from a surface charge
"'(')1 " 1 T '“'Y&;p;io den;ity. Thi§ occurs if positive and negative charggs are

: moving at different rates across the surface of the basic cell.

FIG. 4. Dynamical collision frequency within different methods; The introduction of a finite number of images compensates
points — MD simulations; analytical approximations: dotted line — this effect at the interfaces, but not at the surface of the
Born approximation, E(23), with Coulomb potential, solid line — Whole system including all the images. A large dipole mo-
same approach including dynamically screening and strong colliment follows connected with a finite polarization of the sys-
sions (T matrix) and higher moments via renormalization factor tem. This surface charge density will produce an electrical
[12], dashed line — high frequency asymptote for Born approxima-field which has to be taken into account even in the limit
tion, Eq.(23), with corrected Kelbg potential. when the number of images goes to infinity. If the surface is

far away, it produces a homogeneous electrical fé{d
using the Fourier transform of the corrected Kelbg potentialwvithin the simulation box. Following this reasoning, it is

(20 necessary to include a mean field in the long-wavelength
— limit as shown below. As a consequence, plasma oscillations
V(g = M{ Ak erf(Mq>e‘(*§d’4)q2 are obtained in the current ACF.
€00 xgqu 2 On the macroscopic level, the Maxwell equations relate
A2 kT e . this mean fielcE(t) to the average current densitt), which
- LOAcd(gcd)q eMed¥9” | (25) s oriented inz direction according to the conventions in
€& Sec. Il
The high frequency behavior of the real part of the collision .
frequency is given in Fig. 4 as dashed line. It is found to dE(t) 1.
behave as Re(w) ~ w35 There is good agreement between T 6_0<J(t)>' (26)

the simulation data and the analytically derived high fre-
quency behavior. The presgnted analytical treatment was alsiking the current density according to Ef2) as an aver-
confirmed by MD calculations of the dynamical structureage over all original charged particles in the basic simulation

factor at finitek in Ref. [7] where the Deutsch potential was cell and the initial conditioré(O):O the integration of Eq.
used. However, obviously the quantum Coulomb case is n 6) leads to '

well reproduced by a classical treatment using a pseudopo-

tential based on Slater sums if the frequency is higher than 1 N N
the plasma frequency. E= —3<— e fie+ e T i) : (27
L =1 =1
V. LONGITUDINAL CONDUCTIVITY In this approach, a contribution to the long-range interaction

We now investigate the evaluation of the longitudinalforces is given b)ﬁff’cng(t):ecé(t). In particular, the equation
conductivity by MD simulations. The current ACK dis-  of motion includes two parts

066412-6
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dl; N R 1.1
gt = Fier- ek (28) Eul E,(0)
| 2
The interaction force§Short originate from close partners in 1
the Debye sphere Wlthln the basic cell. It is fluctuating
around a nearly zero mean value. Nevertheless, the ampli- 1 \1

tude of these fluctuations is much higher than the fluctuations

of eE The Maxwell field (26) originates from all charged

particles in the basic cell so th&°" is also produced by

particles outside the Debye sphere. In contrast to the Ewald

sum, this term gives rise to plasma oscillations as shown 1

below. 0o 2 4 6 st

In the MD method, if no mean-field term is taken into

account, the total energy FIG. 5. Conservation of the total energy in MD simulations;
curve 1 — total energy of the particle§;q+ &y, according to Eq.
(29), curve2 — total energy€,, including the mean-field energy.

0.9+

gtot_ pot+ gkln 2 E VCd(rJ d— |,c)
cd ij

o We now present MD simulations based on the solution of
17]

the equations of motiof28) in comparison to the MD simu-
Me N N 5 lations as presented in Sec. IV where the contribution of the

2 .M 2
?i:l Vie*t Ei:l Vi (29 mean field €E was not taken into account. The energy con-
servation is demonstrated in Fig. 5 according to &§). It
is conserved. If the particle trajectories are calculated includcan also be seen that the field enefgyy is rather small
ing the mean-field force, the energj,+ &y, is not con-  compared to the particle energyt Ein-
served. Nevertheless, the conservation law can be fulfilled by Results for the longitudinal and transverse current ACF
including the mean-field energ$.q=L3€,E?/2 so that the are shown in Fig. 1. After including the mean field into the
total energy&iy=_Eport Exin+ Eriela 1S conserved. This is illus- MD simulations, the plasma oscillations t) become well
trated by simulations below. pronounced in contrast to a monotonously decreasing behav-
The occurrence of plasma oscillations can be demonior. It should be stressed that the amplitude of these oscilla-
strated in the following way. If the mass ratio between elections does not depend dx
trons and ionsn,/m, is large the ion current can be neglected The conductivity calculated according to E@L5) is
in Eq. (12). After that the derivative of the total current den- shown in Fig. 2. In comparison to the transverse case, the

sity is obtained from conductivity shows a qualitatively different behavior. The
) real part following from the MD simulations including mean
dit) e N do, eN - - field is zero for zero frequency as is expected from the ex-
dt L3 . dat - E(EE‘ &), (30 pression for the external conductivi(g). For the case with-
=

out mean field, Rer has a finite value. In the high frequency

limit, both curves coincide. The dynamical collision frequen-
-1 N ~hort_ 1 NN ciesv(w) and the memory functio(w) calculated from the
&= NE Fie = NE E Fij. (31) simulation data for the ACFs are shown in Fig. 3. As pointed
=1i=1 out, the results for the Laplace transform of the ACF differ
The force§ includes only electron-ion interaction forces as significantly(Fig. 2). Nevertheless, if Eq18) is used for the

all electron-electron interaction forces are compensated smc%olhsmn frequency(w) and Eq.(16) for the memory func-

they do not change the total momentum of the electrongdion 7w) in order to calculate the collision frequency, the
short results for both coincide quite clearlFig. 3). The difference
Although the forceF; g™ on each electron is typically much between Imp(w) and Imi(w) in the low frequency limit is

greater than the forceE from the mean electric field, the caysed by the numerical error of Infw) due to subtraction

average over all electrons is of the same order of magnitudgs +vo large terms in Eq(189).

aseE If we now differentiate Eq(26) and substitute the Therefore, our analysis showed that the apparent contra-

derivative of the current using E¢30), we obtain the equa- diction between the transverse conductivity which should be

tion for the mean field identical with the internal conductivity in the long-
wavelength limit and the external conductivity could be re-

ilg + W2E= gg_p 32 solved if the simulations for the transverse and longitudinal
e =~ =T e 3 (32 current ACF are carried out differently.

o . I VI. CONCLUSION
On an average¢ vanishes, so that plasma oscillations are

described. The corresponding oscillations in the current ACF  Molecular dynamics simulations of strongly coupled plas-
are obtained from MD simulations as the results below showmas were performed using the quasiclassical Kelbg interac-

066412-7



REINHOLZ et al. PHYSICAL REVIEW E 69, 066412(2004)

tion potential. The current autocorrelation function was com+ions in the longitudinal current ACF. The results for the
puted for a nondegenerate two-component plasma. Whereasllision frequency as obtained in both simulation methods
for finite k the dynamical structure factor and the plasmausing the corresponding relations for the internal or external
oscillations are reproduced by MD simulations, see Refsgonductivities do coincide.
[2,4,7, the original methods do not allow to consideval- Additionally, the dynamical collision frequency inferred
ues withk<2w/L. On the other han#=0 should be pos- from the simulation data was compared with analytical re-
sible to investigate with MD simulations in a finite volume. syt which were derived using a generalized linear response
We presented calcul_atlo_ns for the transverse current Ac'fheory. We found good agreement in the low and high fre-
as well as for the longitudinal one. Although in the lirkit  ¢,ency Jimits for a moderate nonideality. In particular, for
—0 the transverse and longitudinal dielectric function andw<wph classical MD simulations using the corrected Kelbg

conductivities, respectively, coincide, the current ACF be'potential are able to reproduce the quantum behavior of Cou-
have differently in this limiting case. It was shown that the lomb plasmas

results of MD simulations without a mean field in the long-
wavelength limit provide the monotonously decreasing trans-

verse ACF. Its Laplace transform is to be directly related to ACKNOWLEDGMENTS

the transversal conductivity.
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