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(1986)] is used to describe strongly coupled Yukawa fluids. The integral equations of interest can be solved
using the spherical harmonic oscillator wave functions as a seed. Comparisons are done with simulation results
for equation of state and transport coefficients over the entire fluid domain for a wide range of the system
parameters.
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I. INTRODUCTION

The physics of strongly coupled, screened Coulomb sys-
tem is of great interest in many quite disparate fields such as
dusty plasmas in connection with astrophysics and litho-
graphic applications[1], dense stellar material and inertially
confined plasmas[2,3], “mesoscopic plasmas” of charged-
stabilized colloidal suspensions[4–6], or ultracold plasmas
[7,8]. In the case of dusty plasmas, for instance, recent labo-
ratory experiments have shown that the interparticle potential
of charged dust particles in a plasma is given by the Yukawa
potential with high accuracy in the absence of plasma flows
[9]. Moreover, dusty(colloidal) plasmas are normal plasmas
that achieve strong coupling with micron-sized impurities
that can acquire 105 elementary charges. Indeed, dilute sys-
tems are relatively easy to produce and diagnose experimen-
tally. This explains why dusty plasmas show great promise
for studying the static and dynamic properties of strongly
coupled, screened Coulomb systems over a wide parameter
range. As a consequence, an extensive and intensive investi-
gation of thermodynamics and transport coefficients for the
three-dimensional(3D) Yukawa fluid is a topic of present
considerable concern in dusty plasma physics.

Of course, in actual dusty plasmas, dynamics of charged
dust particles can be more complex and subject to several
other forces, such as collisions with background neutral
gases. Here, our focus is on thermodynamics and transport
properties in the absence of damping by background species.
The Yukawa model therefore may be used as a simplified
model for charged dust particles in a plasma, on which one
can construct more realistic models to represent actual dusty
plasmas under various conditions. However, the Yukawa sys-
tem may also be of special interest as a mathematical model
for many-body systems since it allows the full range of be-
havior between systems governed by short-range and long-
range forces. For example, the Yukawa system is known as
the one-component plasma(OCP) in the absence of screen-
ing. The OCP represents a system of ions when electrons are
extremely mobile. The OCP has often been used as a classi-
cal model for the dense interiors of white dwarfs, where ions

are freely interacting with each other through Coulomb po-
tentials in degenerate electron backgrounds. As the screening
increases, the system acquires more characteristics of charge
neutral fluids.

Screened Coulomb systems are frequently modeled with
the Yukawa(Y) interparticle interaction of the form

vYsrd =
Z2e2

r
exps− ard. s1d

Here,e, Z, anda are the electron charge, the ion charge, and
an effective inverse screening length, respectively. If we ex-
press all lengths in units of Wigner-Seitz radiusaWS, the
interparticle pair interactionvY times the inverse temperature
b can be read under a more usual and compact expression

uYsrd =
G

r
exps− krd, s2d

where G=bZ2e2/aWS and k=aaWS are dimensionless cou-
pling and screening parameters,b=1/kBT, s4p /3daWS

3 ri =1.
ri =N/V is the particle density of the system ofN ions con-
tained in the volumeV, T is the temperature of the system
supposed to be in thermodynamic equilibrium, andkB is the
Boltzmann constant. For dusty plasmas, the coupling refers
to the dust grains and the screening to the hot background
electron-ion plasma. For ultracold plasmas, the coupling re-
fers to the cold ions and the screening to the partially degen-
erate electron gas. Similar arguments hold for other situa-
tions.

In short, the Yukawa system is simply a one-component
plasma model constituted of a neutral classical plasma made
of N identical point chargesZ (ions) immersed in a uniform
neutralizing background(electrons) of volumeV and charge
density −re=−Zri. The effective interactionHY between ions
due to the polarization background of electrons may be ex-
pressed as follows[10]:

HY =
1

2o
iÞ j

Z2vasur i − r jud − o
i
E d3rreZvasur − r iud

+
1

2
E d3r E d3r 8re

2vasur − r 8ud + NE, s3d

wherevasur ud=e2e−ar / r and i , j =1, . . . ,N. In the right-hand*Email address: gerald.faussurier@cea.fr
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side of Eq.(3), the first term is the particle-particle interac-
tion, the second one is the particle-background interaction,
the third one is the background-background interaction,
whereas the last term fixes the zero of energy with respect to
the self-energy of a bare Coulomb charge:

« ;
1

2
lim
r→0

fZ2vasrd − Z2v0srdg. s4d

The Yukawa one-component plasma(YOCP) model can be
characterized by the couple of parametersG andk. The OCP
system is recovered fork=0.

Thermodynamic and structural properties of the YOCP
have been thoroughly studied by means of Monte Carlo
(MC) simulations on the hypersphere[10], by equilibrium
molecular dynamics(MD) simulations within periodic
boundary conditions[11–13], and by variational methods
based on the Gibbs-Bogolyubov inequality[14–16]. The
liquid-solid phase boundary and reliable estimates of the free
energy are thus available in a wide range of the system pa-
rametershG ,kj [10–14]. By contrast, less is known about the
dynamical properties of the YOCP and, in view of hydrody-
namical simulations, valuable estimates of the transport co-
efficients of YOCP are clearly wanted.

Very recently, MD, variational methods using the known
properties of the reference system[14], or approximate
methods based on excess entropy[17,18] have been used to
estimate self-diffusion[14,19], shear viscosity[14,20], and
thermal conduction[14] of the YOCP fluid in a systematic
manner over an extensive range of the system parameters.
For completeness, Salin and Caillol[21,22] have presented
molecular dynamics computations of the thermal conductiv-
ity and the shear and bulk viscosities of the YOCP. More
intensive MD calculations should bring many more results
for thermal conductivity and bulk viscosity over a wider
range of the system parametershG ,kj within the entire fluid
domain in order to determine the principal transport coeffi-
cients of the YOCP completely.

One could thus think the problem of characterizing the
main static and dynamic properties of the YOCP nearly
solved. In fact, this is not the case for, at least, two main
reasons. First, the static structure factorSskd and the pair
distribution functiongsrd form the basic ingredients in nearly
all theories describing strongly coupled regimes[23]. To
study the excitation and propagation of waves, one needs the
dynamical dielectric function. The latter is not easily deter-
mined in a strongly coupled plasma. An approximation
scheme, however, referred to as QLCA(quasilocalized
charge approximation) [24] has been successfully used for a
variety of plasma systems[25], including strongly coupled
dusty plasmas[26,27]. In this approach,gsrd is a key param-
eter that governs the behavior of the dynamical dielectric
function. In the same spirit, the pair correlation function is
known to play a key role in the APEX method of generating
the electron ion microfield for use in the line shape formal-
ism [28–31]. We must confess that MC or MD codes are not
black-box algorithms and have not been designed to give a
rapid access togsrd and Sskd for computing time reason,
whateverG and k may be within the entire fluid domain

[32,33]. Furthermore, no simple analytic expressions exist
for gsrd and Sskd of the YOCP that are precise, robust, and
consistent with the equation of state determined from the MC
or MD simulations. As for the variational method based on
the Gibbs-Bogolyubov inequality[14], it is not clear ifgsrd
andSskd of the reference system may be of particular utility
in this context. This method is known to be well suited to
estimate system free energy but great care is required when
gsrd of the reference system is employed to calculate any-
thing else than the free energy[14]. Second, the screening
potential Hsrd is a function of fundamental interest in
strongly coupled plasmas because(i) the enhancement fac-
tors for the thermonuclear reaction rates, which are important
for stellar evolution, are essentially controlled by the short-
range part of the screening potential,(ii ) the screening po-
tentials play a key role in the study of the short-range behav-
ior of the Bridge functions, notably their universal
properties, which proved seminal for developing an accurate
theory of liquid structure, and(iii ) they offer consistency
checks for the equation of state of a mixture and for closure
approximation in integral equation theories for the fluid pair
structure[3]. Again, this function is very difficult to extract
from MC or MD simulations[34–38] and the variational
method seems to have nothing to say concerning this topic.
Something else should thus be done.

Fortunately, the integral equation theory for the pair struc-
ture of simple fluids, which was developed in 1950s and
early 1960s[23], has been the subject of a strong interest
during the last three decades[39–48]. Among many methods
available in literature, the variational modified hypernetted
chain (VMHNC) approach, as proposed by Rosenfeld[48],
has been proven to be very accurate to describe the structure
and thermodynamic properties of liquid metals by compari-
sons with molecular dynamics results[49–51]. Based on the
approximation of universality of the Bridge function, the
derivation of the VMHNC method ensures the thermody-
namic consistency between the Helmholtz free energy and
the virial routes to the equation of state. So doing, the energy
and the virial pressure equations of state satisfy the Hiroike’s
test[52]. This consistency is also enjoyed by the hypernetted
chain (HNC) approximation from where it originates but,
unlike the HNC, the variational procedure ensures reason-
ably good thermodynamic consistency between the com-
pressibility and the virial routes without enforcing it. More-
over, the VMHNC has the advantage of avoiding small,
unphysical, structural deficiencies posed by the analytic be-
havior of the Verlet-Weiss-Grundke-Henderson[53,54] hard-
sphere(HS) parametrized Bridge function used by Ladoet
al. [44]. A bootstrap procedure akin to the one introduced by
Ross[55] to deal with the softness of the repulsive potential
allows one to use directly the much better behaved Percus-
Yevick (PY) Bridge function[56–58], without any resort to
simulations. To sum up, the VMHNC method provides a
simple, robust, and entirely first principles approach to the
theory of the structure and thermodynamics of simple clas-
sical liquids based on a local(i.e., without the need to inte-
grate along an isotherm or an isochore) free-energy func-
tional that determines by variation both the structure and the
equation of state. The VMHNC theory is free from any ad-
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justable parameter and the energy-virial thermodynamic self-
consistency is guaranteed without imposing it. To be com-
plete, it can also be used to extract the potential from pair
distribution function and/or structure factor obtained from
experiment or quantum molecular dynamics simulations. In
summary, this approach for calculating the pair structure for
a given potential and for inverting structure factor to obtain
the potential and the thermodynamic functions has no
equivalent in the field of simple liquids.

In this paper, we propose to provide a benchmark test
regarding the calculation of the complete equation of state,
structure, and transport coefficients for the bulk YOCP fluid
employing the VMHNC theory, with the general purpose of
stimulating its quotidian use. This paper is a companion,
both in scope and methods, to a recent general-purpose
methodology to describe strongly coupled Yukawa fluids us-
ing the variational method based on the Gibbs-Bogolyubov
inequality [14]. In Sec. II, the VMHNC is reviewed and ap-
plied to Yukawa system. A simple method is presented to
deal with the long-range interaction. This method is consis-
tent with and generalizes the original one proposed for the
OCP system[59]. A technique is proposed to cope with the
initialization of the HNC-like equations for strongly coupled
cases. The general idea consists in rewriting and solving the
HNC equations using a variational principle. The unknown
function is the short-range direct correlation function. This
function is expanded in the harmonic oscillator wave func-
tions (HOF) [60] and the undetermined coefficients of the
development are found minimizing a functional of interest. A
limited number of HOF is sufficient to give a reasonable first
guess to speed up the convergence of the HNC equations.
Computational details are also given. In Secs. III and IV, we
compare our results for thermodynamics and transport coef-
ficients to the most recent, accurate, and extensive sets of
simulation data presented by Hamaguchiet al.
[11–13,19,20]. Section V is devoted to the pair correlation
function, structure factor, and screening potential. Section VI
is the conclusion.

II. FORMULATION

Taking advantage of the universal character of the Bridge
function[40], Rosenfeld constructed an effective excess free-
energy functionalFsb ,ri ,hd that satisfies the virial-energy
consistency criterion for a given pair potentialfsrd. Then,
making use of the Percus-Yevick hard-sphere Bridge func-
tion, the best free energy is determined by minimization with
respect to the pair distribution function and to the packing
fraction of the auxiliary hard-sphere system. The minimiza-
tion with respect to the pair distribution function leads to the
modified hypernetted chain equations(MHNC) [40], i.e., the
standard integral equations of simple fluid theory, with the
HS Bridge function expressed within the PY approximation
replacing the exact but unknown Bridge function of the sys-
tem under study. Minimization with respect to the packing
fractionh leads to a criterion for its optimum choice involv-
ing the Bridge functionBHSPYsr ,hd and the pair distribution
functiongHSPYsr ,hd of the HS system treated in PY approxi-
mation, the pair distribution of the MHNC equationgsrd, and

a necessary correction term; this term originates from using
the HSPY Bridge function instead of the exact HS Bridge
function. The corresponding recipe for calculatinggsrd from
given potentialfsrd, temperatureb, and densityri reads as
follows. Solve the MHNC equations usingBHSPYsr ,hd for
various values ofh, i.e.,

hsrd = csrd + ri E dr 8hsur − r 8udcsr8d,

lnfgsrdg = − bfsrd + hsrd − csrd + BHSPYsr,hd,

hsrd = gsrd − 1. s5d

Monitor h until the excess free energyff
VMHNCsb ,ri ,hd

=bFsb ,ri ,hd /N is minimum for some valueh=hef f, i.e.,

0 =
ddfshd

dh
−

ri

2
E dr fgsrd − gHSPYsr,hdg

] BHSPYsr,hd
] h

,

s6d

with

dfshd = fCSshd − fPYVshd =
hs4 − 3hd
s1 − hd2 −

6h

s1 − hd
− 2lns1 − hd.

s7d

Here,fCSshd and fPYVshd are the Carnahan-Starling(CS) and
PY-virial (PYV) free energies, respectively. Once done, the
pair correlation function is the solution of the MHNC equa-
tions with the Bridge function given byBHSPYsr ,hef fd and
the excess free energy of the system is given by

ff
VMHNCsb,ri,hd =

ri

2
E drgsrdfbfsrd − BHSPYsr,hdg

−
ri

2
E dr h 1

2hsrd2 + hsrd − gsrdlnfgsrdgj

−
1

2ri
s2pd−3E dkhlnf1 + h̃skdg − h̃skdj

+ dfshd + DPYshd, s8d

with h=hef f and where

DPYshd =E
0

h

dh8
1

2
E drgHSPYsr,hd

] BHSPYsr,hd
] h

. s9d

Note that one may encounter authors, who consider the
Bridge function to be eitherBHSPYsr ,hd or −BHSPYsr ,hd. The
VMHNC can be applied to YOCP straightforwardly, with a
careful treatment of the long-range Yukawa interaction, and
with a slight modification of the excess free-energy expres-
sion due to background[i.e., gsrdbvYsrd must be replaced by
hsrdbvYsrd] and energy reference(i.e.,bE must be included).
Since these questions are related, let us discuss the long-
range question first. We will then give the resulting practical
expression of the YOCP excess free energy within the
VMHNC theory.
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As well known, the MHNC equations are not easy to
solve for strongly coupled Yukawa system for two main rea-
sons. First, in the weak-screening limit, i.e.,kP f0,1g, the
more we approach the OCP limit, the less the Yukawa poten-
tial can be considered as short range. Since the direct corre-
lation functioncsrd is equivalent to −bfsrd whenr →`, the
Fourier transformc̃skd of csrd cannot be calculated numeri-
cally. This prevents the inversion of the Ornstein-Zernike

equation, i.e., the one-to-one map betweenc̃skd and h̃skd,
and, as a consequence, the resolution of the MHNC equa-
tions. Second, in the limit of strong coupling, i.e.,G@1, the
more we approach the liquid-solid phase boundary, the
slower is the convergence of the iterative process to solve the
MHNC equations. Indeed, these equations form a highly
nonlinear coupled set of equations, which is a rather non-
trivial numerical problem to handle. The iterative scheme,
even with a relaxation scheme, can suffer from slow conver-
gence, oscillation, and instability[61]. Moreover, the MHNC
equations have to be solved by constantly going back and
forth between real and reciprocal spaces. This is due to the
convolution product, and the arising Fourier transform brings
additional numerical difficulties. Though some progress has
been made in this field, there is still a need for a simple,
rapid, and robust algorithm to solve MHNC equations, i.e., a
black-box package that works for anyfsrd of physical inter-
est, given either analytically or by a set of two-column data
point file. This question is far more crucial, for instance,
when MHNC equations are coupled to self-consistent field
equations to determine the electronic and ionic structures in
warm and hot, correlated, dense plasmas[61]. The first issue
is solved by extending to Yukawa system the method of Ng
[59], while the second issue is assessed by looking for an
approximate solution of the MHNC equations with a
spectral-Galerkin-like method based on the 3D spherical
HOF.

The method of Ng[59], originally proposed for OCP sys-
tem, consists in mapping a long-range to a short-range sys-
tem. As for YOCP, this can always be done by considering
the Yukawa potentialuYsrd as a sum of two terms, a short-
range potentialuY,Ssrd and a long-range potentialuY,Lsrd.
Due to the asymptotic behavior ofcsrd, −uY,Lsrd can be con-
sidered as the long-range part ofcsrd. It is thus natural to
introduce the short-range partcSsrd, such that

csrd = cSsrd − uY,Lsrd. s10d

All the trick, then, is to have foruY,Lsrd a function with an
analytic Fourier transform, and a corresponding nonsingular
and well-behavedcSsrd, that can easily be Fourier trans-
formed numerically. The simplest solution is to employ the
method of Ng[59], i.e.,

uY,Lsrd = uYsrderfsaNGrd,

uY,Ssrd = uYsrderfcsaNGrd,

uYsrd = uY,Lsrd + uY,Ssrd, s11d

where erfsaNGrd and erfcsaNGrd are the error and comple-
mentary error functions

erfsxd =
2

Îp
E

0

x

e−t2dt,

s12d

erfcsxd = 1 − erfsxd =
2

Îp
E

x

`

e−t2dt.

aNG=1.08 suggested by Ng[59] has been kept for YOCP
too. We recall that with this value andk=0, uYsrd agrees to
99% or more with −csrd over a wide range of values forr
and G. Using erfsaNGrd as a cutting function allows one to
compute analytically the Fourier transformũY,Lskd of uY,Lsrd,
while ensuring the continuity of the treatment in the weak-
screening limit with the OCP. The explicit expression of
ũY,Lskd is found after standard algebraic calculations and
reads

ũY,Lskd =
4pG

k2 ReF k

k + ik
wSk + ik

2aNG
DG , s13d

where i is the complex number such thati2=−1 and Reszd
means the real part of complex numberz. wszd involves the
complex error function,

wszd = e−z2S1 +
2i
Îp
E

0

z

et2dtD . s14d

In practical calculation, we have used theFORTRAN routine
wwerf from the CERN libraryMATHLIB [62,63]. We can
check that the formula proposed by Ng[59] for OCP is re-
covered as a particular case whenk=0. With such a decom-
position, the MHNC equations are easily solved since the
Bridge function remains short range by essence. Now, the
effective MHNC equations read inaWS units

hsrd = − uY,Lsrd −
3

4p
E dr 8hsur − r 8uduY,Lsr8d + cSsrd

+
3

4p
E dr 8hsur − r 8udcSsr8d,

lnfgsrdg = − uY,Ssrd + hsrd − cSsrd + BHSPYsr,hd, s15d

whereas

fY
VMHNCsb,ri,hd

=
ri

2
E dr fhsrdbvYsrd − gsrdBHSPYsr,hdg + bE −

ri

2

3E dr h 1
2hsrd2 + hsrd − gsrdlnfgsrdgj −

1

2ri
s2pd−3

3E dkhlnf1 + h̃skdg − h̃skdj + dfshd + DPYshd,

s16d

using the MHNC equations, reduces to
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fY
VMHNCsG,k,hd = −

Gk

2
−

3

8p
E dr f− 1

2hsrd2 − hsrduY,Lsrd,

+ gsrdcSsrd + uY,Ssrdg −
1

12p2 E dk

3hlnf1 + h̃skdg − h̃skdj + dfshd + DPYshd
s17d

in aWS units.
In order to speed up the resolution of MHNC equation in

strong-coupling limit and stabilize the interactive convergent
process, the short-range partcSsrd of the direct correlation
function is expanded in the 3D spherical HOFhwnsr ,aHOFdj,
which form a complete basis for a given harmonic oscillator
parameteraHOF:

cSsrd = o
nù0

cnwnsr,aHOFd, s18d

wnsr,aHOFd

= F n ! s1/2d!
sn + 1/2d! G1/2SaHOF

p
D3/4

Ln
1/2saHOFr2de−aHOFr2/2,

s19d

wherehLn
1/2sxdj are Laguerre polynomials,n! = Gsn+1d, and

sn+1/2d ! = Gsn+3/2d. Gszd is the G function, i.e.,Gsz+1d
=zGszd, and should not be confused with the coupling param-
eter G of the Yukawa system. SincecSsrd is finite, short
range, and takes values small in magnitude forr between 0
and a fewaWS, only a finite and limited numberNHOF of
HOF is sufficient to have a good starting point to solve the
MHNC equations from scratch. For strong coupling, this
seed is better than the simple guesscSsrd=0. Note that this
approach is local and is well suited to the general philosophy
of the VMHNC theory. Moreover, there is less need to start
from a closed solution with a smallerG, this nonlocal method
having the drawback of requiring a painstaking, careful, and
computer time consuming resolution of MHNC equations
from small to the present value ofG. There exist tremendous
ways to expand a function upon a complete basis. We have
chosen the 3D spherical HOF because they possess many
advantages for numerical and physical purpose as well.
Originally, they have been extensively used in nuclear phys-
ics to calculate two-body matrix elements within the Hartree-
Fock-Bogolyubov theory combined with effective density-
dependent interaction[60]. Their important properties can be
summarized as follows. First, for a well-behaved and local-
ized function[such ascSsrd here], a limited number of terms
of the series is needed to represent it. Moreover, the coeffi-
cients of the development are easily calculated by Gauss-
Laguerre quadrature when such a function is known from
outside[64]. Second, due to the properties of the associated
generating functions, the Fourier transformw̃nsk,aHOFd is
simply related townsr ,aHOFd by the formula

w̃nsk,aHOFd = s− 1dns2pd3/2wnsk,1/aHOFd. s20d

Third, the HOF satisfy the crucial theorem of separability,
i.e., any product of HOF can be written as a finite sum of
HOF. With this information in mind, the unknown coeffi-
cientshcnj are determined by minimizing the following func-
tional Fscn,hd, which is equivalent to the MHNC equations,
at fixedh [65,66]:

Fscn,hd =E dr f1 + hsrd − e−uY,Ssrd+hsrd−cSsrd+BHSPYsr,hdg2,

s21d

where

hsrd =E dk

s2pd3

c̃Sskd − ũY,Lskd
1 − rifc̃Sskd − ũY,Lskdg

s22d

and

c̃Sskd = o
n=0

NHOF

s− 1dncns2pd3/2wnsk,1/aHOFd. s23d

In practice, the MHNC equations are solved withNHOF=5
−10 HOF at givenaHOF=5. The approximate solutioncSsrd
is then injected in the standard MHNC equation solver with
relaxation scheme. Following Ng[59], we are using fast
Fourier transform with real and reciprocal meshes with con-
stant stepsDr and Dk; 4096 mesh points are used,Dr
=50aWS/4096 andDrDk=p /4096. As for BHSPYsr ,hd, we
have adopted the Baxter solution for the HSPY problem
[24,58]. The exact HSPY expression of the pair distribution
function is used forr between one and two times the HS
diameters, in order to have a smooth junction arounds
between the expression ofBHSPYsr ,hd, based on the exact
HSPY expression of the direct correlation function belows,
and the one based on the HSPY expression of the pair dis-
tribution function aboves. BHSPYsr ,hd is expanded in
Chebyshev polynomials, with respect to bothr and h vari-
ables, and tabulated. The calculations of]BHSPYsr ,hd /]h,
dfshd, and DPYshd are
then straightforward using the properties of the
Chebyshev polynomials[64]. As noted by Perrot[67], the
value of h obtained in the variational method using the
Gibbs-Bogolyubov inequality and the HS system to describe
YOCP is a very good starting point for solving the MHNC
criterion. We have thus simply used the analytic fit forh in
function of G andk proposed in Ref.[14] [Eqs.(19)–(21)].
As for the minimization of Eq.(21), we have used the
conjugate-gradient program suggested by Krauth and Stau-
dacher[65].

Before closing this section, one must confess that we
could have used the HOF directly within the expression of
the excess free energyfY

VMHNCsb ,ri ,hd and minimize it with
respect tohcnj and h, in the spirit of the VMHNC theory.
Such a strategy is challenging but deserves a particular study,
which is beyond the scope of this paper. Since our original
idea was to simply have a seed to speed up the resolution of
the MHNC equations, we have foundaHOF=5 highly suffi-
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cient for our business. But the minimum value of the func-
tional Fscn,hd depends onaHOF and NHOF too. We have
tested on some examples that at fixed number of HOF, there
exists an optimal value foraHOF, which gives the best mini-
mum forFscn,hd. Moreover, the larger isNHOF, the flatter is
the curve around the minimum. This means that whenNHOF
is large, the expansion ofcSsrd upon the HOF does not de-
pend very much onaHOF around the minimum due to the
complete character of the basis. Yet, we have not imple-
mented a refined algorithm to optimizeaHOF and NHOF for
the reasons explained above. Again, all these comments ex-
tend straightforwardly to the VMHNC excess free energy
that could be considered as an algebraic function ofb, ri, h,
hcnj, NHOF, and aHOF. Moreover, powerful conjugate-
gradient algorithms[65,64] could be of great interest to
achieve its minimization with respect toh and hcnj. Finally,
this general approach of expandingcSsrd in the 3D spherical
HOF can be generalized to treat mixture[50] and nonspheri-
cal potential[60]. This paper suggests the existence of an
interesting gap between nuclear physics, condensed matter,
and plasma physics. Works are in progress in this field.

III. THERMODYNAMIC PROPERTIES

The VMHNC theory predictions concerning the thermo-
dynamics of the Yukawa system are compared to the exten-
sive molecular dynamics simulation results by Hamaguchiet
al. [11–13]. The liquid-solid phase boundary, thermodynamic
consistency, and equation of state are discussed. The regimes
of weak screening and strong screening for Yukawa fluid are
considered.

A. Phase diagram

To quantify the accuracy of the VMHNC theory, the
liquid-solid phase boundary of the Yukawa fluid is predicted

and compared to the simulation data of Hamaguchiet al.
[13]. The phase boundary is first found by solving for the
critical HS parameterhc and for variousk the equation

hc = hef fsG,kd, s24d

whereG is the unknown. The criticalhc, at which the HS
system is known to solidify, is equal tohc=2hcp/3. hcp is the
closed-packing fractionhcp=p /3 /Î2 [68]. This procedure
sVMHNCad is identical to the one proposed in Ref.[14].
Results are plotted in Fig. 1. Following Rosenfeld[69], we
have added two more indicators to detect the criticalGc at
which the YOCP fluid begins to freeze. We have used the
“Bridge freezing rule”sVMHNCbd, stressing that the Bridge
function absolute value at the originB0= uBs0,G ,kdu is nearly
equal to 50[70], and the “Hansen-Verlet rule”sVMHNCcd,
i.e., SskdMax<3 at freezing[71]. We have thus solved for
variousk the equations

uBs0,G,kdu = 50 s25d

and

SskdMaxsG,kd = 3, s26d

whereG is the unknown. The agreement with the simulation
data is excellent considering the simplicity of the theory.
Indeed, it was not cleara priori which physical meaning
could be attributed to the effective HS packing fraction of the
VMHNC. It is also a nice confirmation of the Bridge freez-
ing rule. However, we should confess that the Hansen-Verlet
rule is the most robust way to detect freezing. To be com-
plete, we give the associated maximum value of the structure
factor SskdMax, minus the excess entropy −sY

ex (see below),
and the absolute value of the Bridge function at the origin
B0= for the exact values ofGc determined by Hamaguchiet
al. [13] in Table I. Again, we confirm the pertinence of the

FIG. 1. Phase diagram of the Yukawa system
in the hG ,kj plane. The liquid-solid phase bound-
ary is shown as predicted by the molecular dy-
namics results of Hamaguchiet al. [13] (MD)
and by the VMHNC theory using the effective
HS closed-packing fraction at melting(VMHNCa

or HS) [14], the semiempirical freezing criteria
using the Bridge function(VMHNCb or Bridge
freezing rule) [70], and the structure factor
(VMHNCc or the Hansen-Verlet rule) [71].
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Hansen-Verlet rule and the reasonable agreement with the
Bridge freezing rule and the semiempirical rule of Rosenfeld
[72], which states that excess entropy, i.e., the reduced con-
figurational entropy, is close to 4 at freezing.

B. Thermodynamic consistency

The existence of a free energyF within the VMHNC
theory guarantees that internal energyU=F−T]F /]TuV and
pressureP=−]F /]VuT satisfy the fundamental equation

U ] U

] V
U

T

= TU ] P

] T
U

V

− P, s27d

where

bU

N
=

3

2
+

ri

2
E bfsrdgsrddr ,

s28d
P

P0
= 1 −

ri

6
E brf8srdgsrddr ,

andP0=ri /b. The VMHNC theory ensures thus the thermo-
dynamic consistency between the Helmholtz free energy and
the virial routes to the equation of state, and the energyU
and the virial pressureP equations of state pass the Hiroike’s
test [52]. This is clearly true for Yukawa system, as long as
the effective inverse screening length is independent of tem-
perature and density. This is the case here, replacing, as
usual, fsrd and gsrd by vYsrd and hsrd, respectively, and
adding the energy reference termbE. However, great care is
required for state-dependent potentialfsr ,T,rid [73–75]. In
such a situation, the dependency of the pair potential with
respect toT andri brings additional terms in the calculation

of pressure and internal energy by quadrature. The standard
quadrature formulas lose meaning and interest, especially
when the behavior offsr ,T,rid with respect toT and ri is
complicated and sometimes even unknown analytically. Such
a situation is typically encountered in liquid metal theory or
dense plasma physics. This explains why the thermodynamic
consistency between the compressibility and the virial routes
is not enforced in the VMHNC, though known to be reason-
ably good[48,49]. This means that the partial differentiation
of pressure with respect to density at constant temperature
should satisfy

bU ] P

] ri
U

T

= 1 −ri E csrddr s29d

for general pairwise, state-independent, and with no back-
ground potentialfsrd. For YOCP, this relation reads

bU ] P

] ri
U

T

= 1 −ri E fcsrd + bvYsrdgdr . s30d

When one faces state-dependent potential, there is no way
but differentiating analytically in the best case, numerically
in the worse case, the free energy of the system. This can
always be done in the framework of the VMHNC, but rules
out any other theory that does not stand, from the beginning,
on a free energy(even effective or approximate). One can
realize why enforcing the thermodynamic consistency be-
tween the compressibility and the virial routes appears to be
not so crucial in the VMHNC theory.

A wide range of physical conditions may be described by
simple relations if we choose the dimensionless quantitiesG
andk, in lieu of the particle densityri and temperatureT (or
inverse temperatureb), as independent thermodynamic vari-
ables. Since the effective inverse screening length of the con-
sidered Yukawa system is constant, the transformation of
standard thermodynamic equations to dimensionless form is
then governed by the relations

riU ] G

] ri
U

b

=
G

3
and bU ] G

] b
U

ri

= G, s31d

riU ] k

] ri
U

b

= −
k

3
and bU ] k

] b
U

ri

= 0. s32d

Given the free energyF=U−TSof the system in function
of T andri, where entropyS=−]F /]TuV, the relations defin-
ing U, P, and S can be recast in terms of dimensionless
intensive variables[11,14]

u = bU ] f

] b
U

ri

, p = riU ] f

] ri
U

b

, ands= u − f , s33d

where

TABLE I. Maximum values of structure factorSskdMax, minus
excess entropy −sY

ex, and absolute value of the Bridge function at the
origin B0 calculated using the VMHNC theory at the fluid-solid
phase-transition valuesGc deduced from MD simulations by
Hamaguchiet al. [13].

k MD SskdMax −sY
ex B0

0.0 171.8 3.058 4.152 47.12

0.2 173.5 3.058 4.144 47.08

0.4 178.6 3.054 4.123 46.93

0.6 187.1 3.045 4.091 46.64

0.8 199.6 3.035 4.052 46.25

1.0 217.4 3.026 4.016 45.93

1.2 243.3 3.035 3.997 45.99

1.4 268.8 3.000 3.925 44.76

2.0 440.1 3.070 3.921 45.71

2.6 758.9 3.042 3.835 44.23

3.0 1185. 3.081 3.855 44.88

3.6 2378. 3.089 3.849 44.75

4.0 3837. 3.068 3.825 44.06

4.6 8609. 3.124 3.899 45.52

5.0 15060. 3.161 3.954 46.57
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f =
bF

N
, u =

bU

N
, p =

bP

ri
, ands=

S

NkB
. s34d

f, u, p, ands denote the free and internal energies per par-
ticle in units ofkBT, the pressure in units ofrikBT, and the
entropy per particle in units ofkB.

Once known the free energy as a function offsG ,kd of the
parametersG and k, internal energy, pressure, and entropy
can be determined as functions of these variables using Eq.
(31) and the chain rule to rewrite Eq.(33),

u = G
] f

] G
, p = −

k

3

] f

] k
+

G

3

] f

] G
, ands= u − f . s35d

The ideal-gas behavior is recovered in the limitG→0. In that
limit [14,23]

f → f 0 = lnsrid +
3

2
lnsbd +

3

2
lnS2p "2

m
D − 1,

u → u0 =
3

2
,

p → p0 = 1,

s→ s0 = u0 − f0. s36d

The deviation with respect to the ideal componentsf 0, u0, s0,
andp0 comes from interactions between particles and consti-
tutes obviously the nontrivial part of the problem. Subtract-
ing the ideal-gas contributionf 0, u0, s0, andp0 from f, u, s,
andp, respectively, allows us to define the excess free energy
f ex, the excess internal energyuex, the excess entropysex,
and the excess pressurepex. For Yukawa system practical
formulas of interest read finally in units ofaWS,

uY
exsG,kd =

3

8p
E uYsrdhsrddr −

Gk

2
,

fY
exsG,kd =E

0

G uY
exsG8,kd

G8
dG8,

sY
exsG,kd = uY

ex− f Y
ex,

pY
exsG,kd = −

1

8p
E ruY8srdhsrddr . s37d

The functionsG ,kd→pY
exsG ,kd is the equation of state for

the Yukawa system. An accurate representation of this func-
tion is of practical interest in, for instance, the formulation of
macroscopic descriptions for the behavior of dust/plasma
suspensions that can help in understanding and controlling
particulate contamination in industrial process plasmas. Note
also that this function is not universal for givensG ,kd. In-
deed, the effective screening length, assumed constant here,
may depend on temperatureT and particle densityri [11].
This fact is hidden in the variable change formulas(31) be-
tweensri ,Td space andsG ,kd space. So, erroneous conclu-

sions may be drawn from a blind one-to-one correspondence
between formalism and practical applications. Finally, when
the VMHNC is employed, i.e.,

f Y
exsG,kd = fY

VMHNCsG,k,hd, s38d

the thermodynamic quantities of interest should be read
f Y,VMHNC

ex , uY,VMHNC
ex , sY,VMHNC

ex , andpY,VMHNC
ex .

As an illustration, we have checked the VMHNC thermo-
dynamic consistency between the compressibility and the
virial routes for YOCP for integerkP f0,5g. Equation(27)
reduces to

riU ] u

] ri
U

b

= bU ] p

] b
U

ri

s39d

or

G

3
U ] uY

ex

] G
U

k

−
k

3
U ] uY

ex

] k
U

G

= GU ] pY
ex

] G
U

k

, s40d

whereas the virial-compressibility consistency reads

pY
ex+ 1 +

G

3
U ] pY

ex

] G
U

k

−
k

3
U ] pY

ex

] k
U

G

= 1 −
3

4p
E fcY,Ssrd + uY,Ssrdgdr s41d

in aWSunits. Let us introduce the normalized temperatureT *

as the ratio of the system temperatureT to the fluid-solid
melting temperature or critical temperatureTc, i.e., T *

=T/Tc=Gc/G. The normalized temperature has been shown
to be very convenient to describe Yukawa system and to find
general trends or universal behaviors[13,19,20]. We have
plotted in Fig. 2 the excess compressibility normalized to the
coupling parameterG in function of inverse normalized tem-
peraturet* =1/T * , obtained by quadrature using the com-
pressibility equation(30),

t* → −
3

4pG
E fcY,Ssrd + uY,Ssrdgdr , s42d

and the numerical differentiation ofb]P/]riub calculated
from the virial equation(28),

t* → pY
ex

G
+

1

3
U ] pY

ex

] G
U

k

−
k

3G
U ] pY

ex

] k
U

G

. s43d

The partial differentiations are performed using Chebycsshev
polynomials[64]. A variation of 0.1 % is made forG andk
around the reference pointsG ,kd and eight polynomials are
sufficient to calculate the partial derivatives with good accu-
racy. We find that the virial-compressibility inconsistency is
rather small(less than 20% for OCP which is the worst case)
over the entire Yukawa fluid plan for the screening param-
eters considered. This fact is remarkable since the thermody-
namic consistency between virial and compressibility routes
is not enforced a priori in the
VMHNC theory.
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C. Excess internal energy

For strong couplingsG.1d, Hamaguchiet al. gave two
fitting formulas foruY

ex for the cases of weak screeningsk
ø1d [11,12] and strong screeningskù1d [13], respectively.
In the weak-screening case, Hamaguchiet al. [11,12] pro-
posed to fit their molecular dynamics data by the formula

uY,MD
ex sG,kd = askdG + bskdGs + cskd + dskdG−s, s44d

with s=1/3. Using the Magdelug energy for bcc Yukawa
lattices,

Ebccskd = − 0.895 929 − 0.103 731k2 + 0.003 084k4

− 0.000 131k6, s45d

askd = Ebccskd + daskd, s46d

and

daskd = − 0.003 366 + 0.000 660k2 − 0.000 089k4,

bskd = 0.565 004 − 0.026 134k2 − 0.002 689k4,

cskd = − 0.206 893 − 0.086 384k2 − 0.018 278k4,

dskd = − 0.031 402 + 0.042 429k2 − 0.008 037k4. s47d

In the strong-screening case, Hamaguchiet al. [12,13] do not
use Taylor expansion ink for the coefficients, as defined by
Eqs. (45)–(47). Instead, they fit the potential energy func-
tional forms of Eq.(44) directly to the simulation data for
eachk value separately. Data can be found for some values
of k in Table VIII of Ref. [13].

For weak couplingsGø1d, Eq. (44) is no longer valid.
We have thus decided to use the values ofuY,MD

ex sG ,kd /G
given in Table IV, p. 9889 of Ref.[11] and Table VI of Ref.

[13] to expand it in Chebyshev polynomials using spline
technique[64] for GP f0,1g at fixed k. uY,MD

ex sG ,kd is then
known for any value ofGP f0,1g.

We have plotted in Fig. 3 excess internal energy normal-
ized to G versus inverse normalized temperaturet* using
VMHNC theory, i.e., uY,VMHNC

ex /G and MD results, i.e.,
uY,MD

ex /G for integerkP f0,5g. Agreement between MD and
VMHNC results is excellent.

D. Excess free energy

f Y
ex can be obtained fromuY

ex by quadrature using Eq.
(35). For strong coupling, the excess free energy can be in-
tegrated analytically with the result

f Y,MD
ex sG,kd =E

1

G

uY,MD
ex sG8,kd

dG8

G8
+ f1skd = askdsG − 1d

+ bskd
Gs − 1

s
+ cskdlnsGd − dskd

G−s − 1

s
+ f1skd

s48d

with

f1skd =E
0

1

uY,MD
ex sG8,kd

dG8

G8
. s49d

No fit was proposed forf1skd calculated through a direct
Simpson-rule quadrature of theuY,MD

ex /G values obtained
from molecular dynamics simulations. Data can be found for
some values ofk in Table VII of Ref. [13]. For weak cou-
pling, f Y,MD

ex sG ,kd is integrated numerically using Cheby-
shev polynomial properties[64]. Excess free energy is thus
available for any value ofGP f0,1g. We have plotted in Fig.
4 excess free energy normalized toG versus inverse normal-
ized temperaturet* using VMHNC theory, i.e.,f Y,VMHNC

ex /G

FIG. 2. Excess compressibility
normalized to coupling parameter
G vs inverse normalized tempera-
ture t* . Quadrature (solid line)
means that the normalized excess
compressibility is computed di-
rectly from the compressibility
equation(42). Numerical differen-
tiation (dashed line) means that
the normalized excess compress-
ibility is computed differentiating
the pressure or virial eq.(43).
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and MD results, i.e.,f Y,MD
ex /G for integerkP f0,5g. As for

excess internal energy, agreement between the VMHNC
theory predictions and simulation results is excellent.

E. Excess entropy

Once excess internal energyuY,MD
ex and excess free energy

f Y,MD
ex are known, excess entropysY,MD

ex can easily be ob-
tained from the relationsY,MD

ex =uY,MD
ex − f Y,MD

ex using Eq.(35).
We have plotted in Fig. 5 minus excess entropy versus in-
verse normalized temperaturet* using VMHNC theory, i.e.,
−sY,VMHNC

ex and MD results, i.e., −sY,MD
ex for integer k

P f0,5g. As above, VMHNC theory predictions agree very
well with simulation results. Moreover, one sees that minus
excess entropy tends towards 4 whent* →1, i.e., in the vi-
cinity of the liquid-solid phase boundary.

F. Excess pressure

As for excess pressurepY,MD
ex we can use Eq.(35) and

recover Eq.(27) of Ref. [11] changingk /6 by −k /3, due to
the different particle density and temperature of our model
and the one studied by Hamaguchiet al. [11]. For strong
coupling, we find

FIG. 3. Excess internal energy
normalized to coupling parameter
G vs inverse normalized tempera-
ture t* as predicted by the
VMHNC theory (asterisk) and the
simulation results(solid line) for
the Yukawa system using the pro-
cedure and the fits proposed by
Hamaguchiet al. [11–13] for inte-
ger kP f0,5g.

FIG. 4. Excess free energy
normalized to coupling parameter
G vs inverse normalized tempera-
ture t* as predicted by the
VMHNC theory (star) and the
simulation results(solid line) for
the Yukawa system using the pro-
cedure and the fits proposed by
Hamaguchiet al. [11–13] for inte-
ger kP f0,5g.
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pY,MD
ex sG,kd = 1

3faskdG + bskdGs + cskd + dskdG−sg,

−
k

3
Fdaskd

dk
sG − 1d +

dbskd
dk

Gs − 1

s

+
dcskd

dk
lnsGd −

ddskd
dk

G−s − 1

s
+

df1skd
dk

G .

s50d

Functionsdaskd /dk, dbskd /dk, dcskd /dk, andddskd /dk are
known analytically forkP f0,1g only. For stronger screen-
ing, one has kept the strategy encountered above for calcu-

lating excess internal energy forGø1. We have used the
values of Table VIII of Ref.[13] to expandaskd, bskd, cskd,
and dskd in Chebyshev polynomials using spline technique
[64] for kP f1,5g. Each function and its derivative are then
known for kP f1,5g. For weak coupling, excess pressure is
obtained by numerical differentiation of excess free energy
using again known properties of Chebyshev polynomials
[64]. We have plotted in Fig. 6 excess pressure normalized to
G versus inverse normalized temperaturet* using VMHNC
theory, i.e.,pY,VMHNC

ex and MD results, i.e.,pY,MD
ex for integer

kP f0,5g. Good agreement is still found between VMHNC
theory predictions and simulation results.

FIG. 5. Minus excess entropy
vs inverse normalized temperature
t* as predicted by the VMHNC
theory (asterisk) and the simula-
tion results (solid line) for the
Yukawa system using the proce-
dure and the fits proposed by
Hamaguchiet al. [11–13] for inte-
ger kP f0,5g.

FIG. 6. Excess pressure nor-
malized to coupling parameterG
as predicted by the VMHNC
theory (asterisk) and the simula-
tion results (solid line) for the
Yukawa system using the proce-
dure and the fits proposed by
Hamaguchiet al. [11–13] for inte-
ger kP f0,5g.

DESCRIPTION OF STRONGLY COUPLED YUKAWA… PHYSICAL REVIEW E 69, 066402(2004)

066402-11



IV. TRANSPORT COEFFICIENTS

Transport coefficients such as self-diffusion, viscosity,
and thermal conductivity are the most fundamental dynami-
cal parameters that reflect the nature of the interparticle po-
tentials and characterize the thermodynamics of the system.
The VMHNC approach is used in order to estimate the self-
diffusion, the shear viscosity, and the thermal conductivity of
the Yukawa system from the transport coefficients of the HS
system. Comparisons with MD data are done in a systematic
manner over a wide range of the system parametershG ,kj.
Our goal is to see whether it is possible to predict dynamic
properties of Yukawa systems from the VMHNC theory that
is only valid for studying static properties of systems in ther-
modynamical equilibrium.

A. Diffusion

The self-diffusion coefficient will be denoted byD. Many
conventions exist for normalizing the diffusion coefficient
that display quasiuniversal characteristics. Some of these are
by Hansenet al. [76] D8=D /Dpf, by Ohta and Hamaguchi
[19] D* =D /Def, and by Rosenfeld [17,18,72,77] Dr

=D /Dmd, where Dpf=vpaWS
2 , Def=veaWS

2 , and Dmd

=ri
−1/3ÎkBT/m. Here,Dmd, ve, and vp=Î4priQ

2/m are the
macroscopic diffusion, the Einstein frequency, and the
plasma frequency, respectively. The ratio between the plasma
frequency and the Einstein frequency can be obtained from a
fit to the result of Ohta and Hamaguchi[19] as

Î3ve

vp
= e−0.2058k1.590

. s51d

Note that the Einstein frequency accounts for variations in
the vibration frequency due to screening.

Pioneer work has been done by Hansenet al. [76] for the
OCP system using MD simulations. They were able to pro-
pose an efficient fit for the OCP diffusion coefficient that was
shown to obey a power law with respect toG. This law is
valid for strong coupling but fails whenG is around one or
below. More recently, Ohta and Hamaguchi[19] found that
the self-diffusion coefficients in Yukawa systems follow a
simple scaling law with respect to normalized temperature
T * . They fit their MD data to the form

D* = aksT * − 1dbk + gk s52d

for eachk. They were also able to fit the OCP simulation
data by Hansenet al. [76] to this same and more accurate
form, compared to the original power law.

As for HS system, the Enskog’s theory for hard sphere is
remarkably accurate when compared to simulations[18]. We
propose to use a fit to the relatively small corrections to
Enskog, as obtained from the most recent simulations for the
hard-sphere fluid[78]. Normalizing in terms ofDef, the
Yukawa diffusion may be obtained from the HS resultDHS as

DYHS
* sG,kd ;

DHS

Def
=

DHS

DE

DE

Dgas

Dgas

Def
, s53d

where

DHS

DE
= 1.01896s1 + 0.073h + 11.6095h2 − 26.951h3d,

DE

Dgas
=

s1 − hd3

s1 − h/2d
,

Dgas

Def
=

1

8h2/3Îp

G
e0.2058k1.590

. s54d

Here, Dgas and DE are the results for a dilute gas and the
Enskog’s result, respectively. Note that the CS equation of
state for the radial pair distribution function at contact has
been used[14]. In Eq. (53), h is the effective hard-sphere
packing fraction of the Yukawa system determined by the
VMHNC method. In Eq.(53), Y refers to Yukawa and HS to
hard sphere.

B. Viscosity

The shear viscosity will be denoted byhv to distinguish it
from the HS packing fractionh. The definitions of normal-
ized shear viscosities are given byh8=hv /hpf [23], h*

=hv /hef [20], and h r =hv /hmv [17,18,72,77], where hpf

=mrivpaWS
2 , hef=mri

Î3veaWS
2 , and hmv=ri

2/3ÎmkBT. Here,
hmv is the macroscopic viscosity. Note thath* =h8 when k
=0, i.e., for OCP system. The normalization employed forh8
has been widely used for the OCP system[23]. The normal-
ization used forh* has been shown to be more suited for
Yukawa systems and is considered to be a natural extension
of h8 of the OCP in finite screening(i.e., kÞ0) [20].

Using kinetic theory, Wallenborn and Baus[79] found an
approximate analytical formula for the OCP shear viscosity.
More recently, Saigo and Hamaguchi[20] proposed a differ-
ent analytical formula to fit their MD calculations of shear
viscosity for Yukawa system that can be used for OCP sys-
tem as well.h* can be simply represented for eachk by

h* = akT * +
bk

T * + ck, s55d

whereT* is the normalized temperature defined above. This
formula applied to the OCP system was found[14] to be
more accurate that the former one proposed by Wallenborn
and Baus[79].

As for HS system, the Enskog’s theory for hard sphere is
remarkably accurate when compared to simulations, i.e., for
h,hcp/5 [18], except near the liquid-solid phase boundary
of the HS system, where the discrepancy may reach a factor
2 [23,80]. Furthermore, the Stokes relation with slip condi-
tions, i.e.,Dhv=kBT/ s2psd, has been found to be remark-
ably precise(i.e., for h.hcp/5) [80]. Unfortunately, we nei-
ther have more recent MD calculations nor any analytical
expression for the HS shear viscosity. As a consequence,
since we know the self-diffusion coefficient for HS system
with high precision[18,78], one solution would be to esti-
mate HS viscosity using the Stokes relation forh.hcp/5
and simply the Enskog’s result forh,hcp/5, i.e., in the gas
phase. However, in order to avoid discontinuity or treat the
delicate joining question by a smooth interpolation between
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both domains, we propose to use a fit[14] to the corrections
to Enskog, as obtained from the simulations for the hard-
sphere fluid[80]. The Yukawa diffusion may thus be ob-
tained from the HS result as

hYHS
* sG,kd ;

hHS

hef
=

hHS

hE

hE

hgas

hgas

hef
, s56d

where

hHS

hE
= s1 + 2.5502h − 23.0982h2 + 44.1238h3d,

hE

hgas
= F s1 − hd3

s1 − h/2d
+ 0.800s4hd + 0.761s4hd2s1 − h/2d

s1 − hd3 G ,

hgas

hef
=

5

48Î3h2/3
Îp

G
e0.2058k1.590

. s57d

Here, hgas and hE are the result for a dilute gas and the
Enskog’s result, respectively. Note that the CS equation of
state for the radial pair distribution function at contact has
been used[14]. In Eq. (56), h is the effective hard-sphere
packing fraction of the Yukawa system determined by the
VMHNC method. In Eq.(56), Y refers to Yukawa and HS to
hard sphere.

C. Thermal conduction

The thermal conductivity will be denoted byl. The defi-
nitions of normalized thermal conductivities are given by
l8=l /lpf [23], l* =l /lef, and lr =l /lmtc [17,18,72,77],
where lpf=kBrivpaWS

2 , lef=kBri
Î3veaWS

2 , and lmtc

=ri
2/3kB

ÎkBT/m. Here,lmtc is the macroscopic thermal con-
ductivity [17,18,72,77]. Note thatl* =l8 when k=0. The
normalization used forl* may be considered to be a natural
extension ofl8 of the OCP in finite screening.

To our knowledge, no systematic MD calculations over a
wide range of the system parametershG ,kj have been carried
out [21,22,81,82]. We have thus decided to keep the formula
found [14] by fitting the most recent and accurate MD data
for the OCP system of Donko and Nyiri[81] by the same
form selected by Saigo and Hamaguchi for shear viscosity
[20]. Assuming a quasiuniversal behavior, we can estimate
the Yukawa thermal conductivity from

l*sG,kd = 0.01176T * +
0.881

T * + 0.1655, s58d

where T * is the normalized temperature already encoun-
tered.

The situation is less dramatic for HS system because the
deviations of MD calculations from the Enskog’s expression
have been proven to be barely perceptible within the few
percent accuracy of the data[81]. As a consequence, once the
effective hard-sphere packing fractionh of the Yukawa sys-
tem is obtained using the VMHNC method, the Yukawa ther-
mal conductivity normalized in terms oflef may be esti-
mated from the HS resultlHS as

lYHS
* sG,kd ;

lHS

lef
=

lHS

lE

lE

lgas

lgas

lef
, s59d

where

lHS

lE
= 1,

lE

lgas
= F s1 − hd3

s1 − h/2d
+ 1.200s4hd + 0.755s4hd2s1 − h/2d

s1 − hd3 G ,

s60d

lgas

lef
=

25

64Î3h 2/3
Îp

G
e0.2058k1.590

.

Here, lgas and lE are the results for a dilute gas and the
Enskog’s result, respectively. Note that the CS equation of
state for the radial pair distribution function at contact has
been used[14]. In Eq. (59), Y refers to Yukawa and HS to
hard sphere.

D. Rosenfeld approach

A semiempirical “universal” corresponding-states rela-
tionship, for the dimensionless transport coefficients of dense
fluids as functions of the reduced configurational entropy,
has been proposed by Rosenfeld[17], extended to dilute flu-
ids by the same author[18], and established by many simu-
lations[17,83]. This approach is invaluable for four reasons.
First, an accurate, theoretically based, approach to dense-
fluid transport coefficients is still lacking. Second, no con-
vergent perturbation theory of transport coefficients has been
established. Third, the brute-force computer methods can be
used to estimate transport coefficients, but these methods are
considerably too time consuming, for the same accuracy,
than those designed to measure equilibrium properties and
cannot be considered as black-box routines that generate data
intensively over an industrialized scale. Fourth, this analyti-
cal relation between transport coefficients and excess entropy
allows us to estimate, for instance, self-diffusion, shear vis-
cosity, and thermal conductivity from the equation of state of
monatomic fluids with arbitrary pair potentials. In summary,
one realizes all the benefits of the Rosenfeld approach to
estimate transport coefficients knowing only the excess en-
tropy of the system of interest. This method is as useful as
Enskog’s original recipe relating transport coefficients to
thermal pressure[84].

Let us consider a one-component fluid with a reduced
excess entropys=−S/ sNkBd, whereS is the entropy of the
system of interest composed ofN particles in the volumeV
at temperatureT. In short,s is equal to minus the reduced
excess or configurational entropy over the ideal-gas value.
The quasiuniversal behavior for the transport coefficients has
been derived either from many simulations for dense fluids
[17] or from the Enskog’s theory for dilute fluids[18] by
considering, i.e., normalized self-diffusionDr, normalized
shear viscosityhr, and normalized thermal conductivitylr.
Keeping the aforementioned normalization in terms of
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Einstein frequency to be consistent with the MD of
Hamaguchiet al., the Rosenfeld scaling entropy transport
coefficients of self-diffusionDesc

* , shear viscosityhesc
* , and

thermal conductivitylesc
* for Yukawa fluid are given by

Desc
* = Dr Dmd

Def
,

Desc
* = h r hmv

hef
,

lesc
* = lr lmtc

lef
, s61d

where

Dmd

Def
= Î3

hmv

hef
= Î3

lmtc

lef
=

e0.2058k1.590

ÎG
S4p

3
D1/3

. s62d

Note that normalizing the self-diffusion byDef=Î3veaWS
2 in-

stead ofDef=Î3veaWS
2 as proposed originally[19] would

lead to the simpler and more symmetric expression

Dmd

Def
=

hmv

hef
=

lmtc

lef
=

e0.2058k1.590

Î3G
S4p

3
D1/3

. s63d

We have kept however the original normalization for the
sake of consistency with literature. For dense fluids[18],

Dr < 0.6e−0.8s,

h r < 0.2e0.8s,

lr < 1.5e0.5s, s64d

whereas for dilute fluids[18], we obtain for HS

Dr . 0.37s−2/3,

h r . 0.27s−2/3,

lr .
15

4
h r , s65d

and for OCP

Dr .
0.40s−4/3

lnF1 +S 2

3s
D2G ,

s66d

h r .
0.35s−4/3

lnF1 +S 2

3s
D2G −

1

1 +S3s

2
D2

,

lr .
15

4
h r .

The quasiuniversal behavior for dense fluids, which holds
also for the OCP case, is replaced by two different behaviors
that depend on the inverse power law of the pair potential for
dilute fluids [18].

E. Numerical results

The elegant and deep method proposed by Rosenfeld re-
lates the transport coefficients to the equation of state. We
have thus used the VMHNC reduced excess entropy to see
how the predictions of Eqs.(64) and (52) for self-diffusion
and shear viscosity compare to MD simulations(52) and
(55), and to the self-diffusion and shear viscosity of the HS
system given by Eqs.(53) and (56) using the effective HS
packing fractionhef f of the VMHNC theory. Results are
plotted in Fig. 7(Fig. 11), Fig. 8 (Fig. 12), Fig. 9 (Fig. 13),
and Fig. 10(Fig. 14), where the self-diffusion coefficientD*

(the shear viscosityh*), normalized in terms of Einstein fre-
quency, is plotted in function of normalized temperature
T* for k=0, k=1, k=3, andk=5, respectively. The quasi-
universal entropy scaling formulas for dilute and dense HS
fluids proposed by Rosenfeld[17,18] are compared to MD
calculations of Ohta(Saigo) and Hamaguchi for self-
diffusion coefficient(shear viscosity) [19] (Ref. [20]). The
range of variation ofT* is taken from Ref.[20]. It covers
strongly and weakly coupled Yukawa systems and corre-
sponds roughly to Yukawa system excess entropy above and
below one, respectively. First, we can see that the effective
HS system is very efficient to estimate self-diffusion and
shear viscosity. In both cases, the agreement with MD calcu-
lations improves with increasingk, denoting the tendency of
the Yukawa system to be more HS-like at strong screening
[14]. Note that the VMHNC theory tends towards the HNC
approximation at largeT * , i.e., for uncoupled plasma. The
Bridge function becomes irrelevant in that limit, and one
cannot use the effective HS packing fractionhef f of the VM-
HNC theory for very large values ofT * , i.e., typically for
T * .103. This explains the systematic deviation of the cal-
culations using the effective HS notion with respect to MD
results for weak screening at largeT * . Second, MD calcula-
tions nicely interpolate between dilute fluid at highT * and
dense fluid at lowT * , the transition between both regimes
being located betweenT * =10 andT * =100. One could even
predict a minimum for shear viscoisty[14,77]. Since excess
entropy remains well defined when the VMHNC theory re-
duces to the HNC approach, one can use the Rosenfeld
method even for large values ofT * .

V. STRUCTURE FUNCTIONS

Among the various structure functions that can be ob-
tained with the VMHNC theory, the radial pair distribution
function gsrd, the structure factorSskd, and the screening
potentialHsrd deserve particular attention.Sskd is simply re-
lated to the Fourier transform of the pair correlation function
hsrd=gsrd−1,

Sskd = 1 +rionh̃skd, s67d

whereasHsrd is defined in terms of the pair interaction po-
tential and the pair distribution function. For YOCP system,
we have
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Hsrd = lnfgsrdg +
G

r
ekr s68d

in aWS units. In the same units,Sskd=1+s3/4pdh̃skd.
gsrd plays a central role in the theory of fluid since it

enters in the determination of the equation of state and in the
estimation of transport coefficients through the excess en-

tropy or the effective hard-sphere parameterhef f. Note that it
can also be used to determine the nearest-neighbor distribu-
tion function either directly[85], or indirectly using known
properties of the HS reference system concerning nearest-
neighbor statistics for packings of hard spheres[86,87]. In-
deed, two different but closely related nearest-neighbor dis-
tribution functionsHPsrd and HVsrd can be defined. They

FIG. 7. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD* vs normalized
temperatureT* of the Yukawa sys-
tem withk=0. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld [17,18] are compared
to MD calculations of Ohta and
Hamaguchi[19] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Wood[18,78].

FIG. 8. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD* vs normalized
temperatureT* of the Yukawa sys-
tem withk=1. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld [17,18] are compared
to MD calculations of Ohta and
Hamaguchi[19] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Wood[18,78].
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only differ by the presence or the absence of a particle at the
chosen arbitrary reference point. It could be rather challeng-
ing to compare the predictions of the VMHNC to MC or MD
simulations using analytical formulas for the voidHVsrd and
particleHPsrd densities involvinghef f. One could thus bring
some answer to the fundamental query of studying the effect
of the nearest neighbor on some reference particle in the

system for Yukawa system first, and by extension, for many
different kinds of pair potential, owing to the flexibility of
the VMHNC theory. Curiously, the quantity that is deter-
mined from scattering experiments is, however,Sskd. But
both gsrd andSskd enter explicitly in the study of excitation
and propagation of waves in dusty plasmas, as illustrated, for
instance, by the QLCA. We have performed extensive calcu-

FIG. 9. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD* vs normalized
temperatureT* of the Yukawa sys-
tem withk=3. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld [17,18] are compared
to MD calculations of Ohta and
Hamaguchi[20] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Wood[18,78].

FIG. 10. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD* vs normalized
temperatureT* of the Yukawa sys-
tem withk=5. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld [17,18] are compared
to MD calculations of Ohta and
Hamaguchi[19] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Wood[18,78].
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lations forgsrd andSskd using the VMHNC approach at vari-
ous values oft* for integerkP f0,5g. As expected, we find
that the most striking feature is the similarity known as the
Hansen-Verlet rule concerning the height of the first peak of
Sskd near freezing[71]. Moreover,Sskd becomes nearly in-
dependent ofk near the liquid-solid phase boundary. How-
ever, no other universal trend can be observed concerning
eitherSskd or gsrd and screening can have an important effect
at low t* .

The properties of the screening potentialHsrd are unfor-
tunately too often overlooked. This may be explained by the
fact that Hsrd takes values in the region close to origin,
where the potential is very highly repulsive and where the
resultinggsrd takes on very small values(practically zero in
fact). The probability for very close encounters is essentially
zero andHsrd is thus of delicate access by MC or MD simu-
lations[35,69]. However, the behavior ofHsrd at short sepa-
ration plays an essential role in estimating the enhancement

FIG. 11. Shear viscosity normalized in terms
of Einstein frequencyh* vs normalized tempera-
ture T* of the Yukawa system withk=0. The
quasiuniversal entropy scaling formulas for
dilute and dense HS fluids proposed by
Rosenfeld[17,18] are compared to MD calcula-
tions of Saigo and Hamaguchi[20] and to the
effective HS using an analytic formula
[18,23,80].

FIG. 12. Shear viscosity normalized in terms
of Einstein frequencyh* vs normalized tempera-
tureT* of the Yukawa system withk=1. The qua-
siuniversal entropy scaling formulas for dilute
and dense HS fluids proposed by Rosenfeld
[17,18] are compared to MD calculations of
Saigo and Hamaguchi[20] and to the effective
HS using an analytic formula[18,23,80].
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factors of thermonuclear reaction rates and in studying the
influence of screening from bare Coulomb to Yukawa pair
interaction. Moreover,Hsrd plays a key role in the study of
the short-range behavior of Bridge functions. Finally, the
zero separation theorem for the screening potentials[88–90]
provides an important consistency test for approximate theo-
ries of the equation of state of fluid mixtures[69].

The pair correlation function can be expressed through the
free energy change upon fixing the positions of the pair of

fluid particles in the appropriate configuration to form an
interaction-site molecule, so that[35]

Hsrd = − ff 1
exsrd − f 0

exg +
G

r
ekr . s69d

In this expression,f0
ex is the excess free energy per particle in

units of kBT of the N-particle system in the presence of a
uniform neutralizing background andf1

exsrd is that of the

FIG. 13. Shear viscosity nor-
malized in terms of Einstein fre-
quencyh* vs normalized tempera-
tureT* of the Yukawa system with
k=3. The quasiuniversal entropy
scaling formulas for dilute and
dense HS fluids proposed by
Rosenfeld [17,18] are compared
to MD calculations of Saigo and
Hamaguchi[20] and to the effec-
tive HS using an analytic formula
[18,23,80].

FIG. 14. Shear viscosity normalized in terms
of Einstein frequencyh* vs normalized tempera-
ture T* of the Yukawa system withk=5. The
quasiuniversal entropy scaling formulas for
dilute and dense HS fluids proposed by
Rosenfeld[17,18] are compared to MD calcula-
tions of Saigo and Hamaguchi[20] and to the
effective HS using an analytic formula
[18,23,78].
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same system but with the pair of particles kept at fixed sepa-
ration r, forming a two-site charge cluster in the presence of
both the remainingsN−2d-particle system and the uniform
neutralizing background. Sincef1

exsrd already contains the
intramolecular interactionsG / rdekr, Hsrd is finite as r →0.
According to Widom[90], Hsrd can be expanded in even
powers aroundr =0 with polynomial coefficients of alternate
signs,

Hsrd = H0 − H1r
2 + H2r

4 − H3r
6 + Osrd. s70d

The coefficientsH0, . . . ,H3 are sufficient to determinedHsrd
for r P f0,1g, i.e., when we have nearly no information about
gsrd, but they are very difficult to obtain in the most general
case[36]. As for OCP however,H1=G /4 [90] and H0 is
nearly known. Indeed,H0 can be estimated combining Eq.
(69) and the linear-mixing rule for binary ionic mixture. This
approximation is known to be very accurate for strongly
coupled plasmas[35,36,69,91]. This method has been proven
to be very good for YOCP too[35,3]. Using the excess free
energyf Y

ex of the Yukawa system[35],

H0 . 2f Y
exsG,kd − f Y

exs25/3G,21/3kd. s71d

As above, two methods can be employed to calculatefY
ex,

namely, the analytical fits of the MD results of Hamaguchiet
al. [11–13] or the VMHNC itself. This fact constitutes an-
other stringent test of the internal consistency of the theory
becauseH0 requires the excess free energy at two points
inside the Yukawa plane, one of them not necessarily inside
the fluid domain. It is a kind of nonlocal test of an essentially
local approach. Owing to this particularity of the VMHNC
theory, the calculations are rather straightforward, as ex-
plained above.

Since the PYHS Bridge function is linear and negative at
the origin, it is by no means trivial that the VMHNC will
give a well-behaved screening potential around the origin.
We have plottedHsrd /G obtained by the VMHNC theory at
t* =0.001,0.01,0.1,1 for integerkP f0,5g in Figs. 15–18.
First, the screening can have dramatic impact onHsrd values
near the origin. For instance,Hs0d /G can be reduced to more
than one order of magnitude fromk=0 to k=5. Second, the
zero-separation law is satisfied fort* =0.0001, approximately
for t* =0.01, but not fort* =0.1 andt* =1. When we go from
low to high values ofT* , the screening potential deviates
progressively from the general Taylor expansion given by
Eq. (70). This indicates that the linear behavior of the PYHS
Bridge function is responsible for such a feature and contra-
dicts the plausible fact that both the direct correlation func-
tion and the Bridge function behave essentially as the screen-
ing potential near the origin[41]. Yet, the shape ofHsrd /G is
nearly linear over the regionfr :gsrd.10−3,r :gsrd=maxg, a
feature shared also by the HS system[41]. As already en-
hanced by Rosenfeldet al. [41], these conflicting tendencies
do not prevent the search of universal characteristics, be-
cause the region where the feature is distinct is obviously the
region where for computational purposes the Bridge function
is undefined. As a practical point of view, what does it mean?
Maybe we expect too much from the VMHNC theory that
has been proven so successful so far to describe such a com-
plicated system as YOCP with long-range and short-range
characteristics and with correlated and uncorrelated features,
depending on the coupling and screening parameters. Since
the behavior of the Bridge function is ill defined near the
origin, we could imagine to introduce a tiny correction to the
Bridge function such that the screening potential satisfies the
Widom expansion(70). This can be viewed as an attempt to
minimize the VMHNC excess free energy under the con-

FIG. 15. Normalized screening potential
Hsrd /G in function of r in aWS units from the
VMHNC theory for k=0,1,3,5 andinverse nor-
malized temperaturet* =0.001.
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straint of satisfying the zero-separation theorem. Last but not
the least, note that it appears intriguing that the undefined
values of the Bridge function near the origin have negligible
effects on the structure function, thermodynamic quantities,
and transport coefficients, as long as the PYHS Bridge func-
tion is employed, whereas theses values are intimately con-
nected to excess free energy difference of two Yukawa sys-

temshG ,kj and h25/3G ,21/3kj at the same time.
Since such modifications of the VMHNC theory are be-

yond the scope of this paper, we have tried to estimateH0,
H1, andH2 of Eq. (70) using the method proposed by Rosen-
feld [35] to extrapolate the MC data for the OCP screening
potential made zero, given the simulations data in the range
frmin,2g in aWS units, wherermin<1 for G<160 andrmin

FIG. 16. Normalized screening potential
Hsrd /G in function of r in aWS units from the
VMHNC theory for k=0,1,3,5 and inverse
normalized temperaturet* =0.01.

FIG. 17. Normalized screening potential
Hsrd /G in function of r in aWS units from the
VMHNC theory for k=0,1,3,5 andinverse nor-
malized temperaturet* =0.1.
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<0.5 for G<10. This is performed after solving the MHNC
equations with the usual PYHS Bridge function. Using Eq.
(70), Hsrd can be written as

Hsrd/G = Hh0 − h1r
2 + h2r

4 for r ø r0

fsrd for r ù r0,
s72d

where fsrd representsHsrd /G obtained from the VMHNC
theory and expanded in Chebyshev polynomials. The four
unknown parametersh0, h1, h2, andr0 are determined requir-
ing that the function and its first three derivatives are con-
tinuous atr0:

fsr0d = h0 − h1r0
2 + h2r0

4,

f8sr0d = − 2h1r0 + 4h2r0
3,

s73d
f9sr0d = − 2h1 + 12h2r0

2,

f-sr0d = 24h2r0.

Equations(73) generalize Eqs.(10) of Ref. [35] to consider
the case in whichh1 is not assumed to be already known. We
have compared in Table II our predictions of the VMHNC
method (Rosenfeld) with respect to the values, extracted
from the MD simulations[11–13] sJancoviciad or from the
VMHNC theory sJancovicibd using Eq.(71). For simplicity,
we have takenrmin=0.5, i.e., we have assumed that the
screening potential calculated by the VMHNC theory in the
interval f0.5,2g for all values of G is known. SinceH1

=G /4 for OCP, we tried to mimic exactly what Rosenfeld did
in Ref. [35] by looking for solutions of his set of Eqs.(10) at
fixed H1. However, we did not find any solutions. So, we
were forced to look for solutions of Eqs.(73) with H1 as a

TABLE II. Screening potentials for the one-component plasma.
The extrapolation method of Rosenfeld[Rosenfeld, Eq.(73)] is
compared to the Jancovici method[Eq. (71)] using the fits to the
MD results of Hamaguchiet al. [11–13] sJancoviciad and the VM-
HNC theorysJancovicibd.

Rosenfeld Jancovicia Jancovicib

G r0 h2 h1 h0 h0 h0

10.000 1.420 0.021 0.223 1.072 1.099 1.099

20.000 1.103 0.021 0.221 1.069 1.095 1.096

30.000 1.017 0.024 0.230 1.072 1.091 1.092

40.000 0.975 0.027 0.239 1.076 1.088 1.088

50.000 0.930 0.030 0.246 1.080 1.085 1.086

60.000 0.895 0.032 0.253 1.084 1.083 1.084

70.000 0.884 0.034 0.259 1.088 1.082 1.082

80.000 0.871 0.036 0.264 1.091 1.080 1.081

90.000 0.788 0.038 0.268 1.094 1.079 1.080

100.00 0.785 0.040 0.273 1.096 1.078 1.078

110.00 0.789 0.041 0.276 1.098 1.077 1.077

120.00 0.788 0.042 0.280 1.101 1.076 1.077

130.00 0.786 0.043 0.283 1.103 1.076 1.076

140.00 0.783 0.044 0.285 1.105 1.075 1.075

150.00 0.691 0.046 0.289 1.106 1.074 1.074

160.00 0.687 0.047 0.290 1.108 1.074 1.073

170.00 0.683 0.048 0.294 1.109 1.073 1.071

180.00 0.680 0.049 0.295 1.111 1.073 1.070

FIG. 18. Normalized screening potential
Hsrd /G in function of r in aWS units from the
VMHNC theory for k=0,1,3,5 and inverse
normalized temperaturet* =1.
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free parameter too. As seen in Table II, results are not bad.
The matching pointr0 andh2=H2/G decrease with increas-
ing G andh2 remains small. However,h1=H1/G departs no-
tably from the nominal value 0.25 andh0=H0/G has the
wrong behavior with increasingG and remains notably
around 1.1. Compared to Jancovicia reference calculations,
discrepancies may reach 2%. Note that our updated
Jancovici’s original expression[90] using the fits of MD re-
sults [11–13], i.e., Jancovicia, gives results identical to the
ones given by Rosenfeld in Table I of Ref.[35] using the
most accurate fit to the best OCP MC data at the time. As for
our updated Jancovici’s original expression[90] using di-
rectly the VMHNC theory, i.e., Jancovicib, we can see that
the predicted values forh0 are nearly identical with the ref-
erence calculations denoted by Jancovicia.

What can explain these facts? It is clear that the linear
behavior of the PYHS Bridge function is one cause. Another
reason may be simply the overall VMHNC theory strategy
itself, which stands on a variational principle to calculate the
excess free energy of the YOCP system. As usual, there is no
guarantee that this method will produce reliable estimate of a
quantity other than excess free energy, especially where no
reference is made to a particular quantity we want to calcu-
late during the minimization process. The VMHNC is very
powerful where it has been designed to be so, and does its
best where nothing could be expected from ita priori. It is
clearly challenging to try to solve the VMHNC under con-
straint, i.e., by respecting the Widom expansion(70).

VI. CONCLUSION

The VMNHC theory has been used to study the Yukawa
system over the entire fluid domain for a wide range of the

system parametershG ,kj. A variational method has been pre-
sented to speed up the resolution of the MHNC integral
equations at strong coupling. The liquid-solid phase bound-
ary of the Yukawa system can be reproduced with a very
good accuracy using three different freezing indicators, i.e.,
the Hansen-Verlet rule, the Bridge freezing rule, or the freez-
ing properties of the effective hard-sphere system that enters
in the VMHNC theory. The screening potential can be esti-
mated with good accuracy, except in the vicinity of the origin
where the Widom expansion breaks down for strong cou-
pling. Explanations and solutions have been proposed to
remedy this tiny defect. Extensive comparisons with simula-
tion results have shown that the VMHNC approach is very
powerful to calculate equation of state quantities, i.e., pres-
sure, internal energy, free energy, and entropy. It has been
proven that this method can also be very efficient to estimate
transport coefficients, i.e., self-diffusion, shear viscosity, and
thermal conductivity. One can employ either the known
transport coefficients of the HS system or the quasiuniversal
entropy scaling of Rosenfeld based on a correspondence be-
tween transport coefficients and reduced excess entropy.

The method presented here can be extended to other sys-
tems and to other properties for which expressions are
known for the hard-sphere system. The same method can be
applied to mixtures.
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