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The variational modified hypernetted chain approach as proposed by Rosghf&tht. Phys.42, 437
(1986)] is used to describe strongly coupled Yukawa fluids. The integral equations of interest can be solved
using the spherical harmonic oscillator wave functions as a seed. Comparisons are done with simulation results
for equation of state and transport coefficients over the entire fluid domain for a wide range of the system

parameters.
DOI: 10.1103/PhysReVvE.69.066402 PACS nuni®er52.25.Fi, 52.25.Kn, 52.27.Gr
[. INTRODUCTION are freely interacting with each other through Coulomb po-

The physics of strongly coupled, screened Coulomb sysit'rfgrt'leiléelg dtigee: ir?etri i\lgcgicr)gsbri%krgerSEQE;QESIQSSS&GC%ZP ge
tem is of great interest in many quite disparate fields such asutral flu7ids y q 9

dusty plasmas in connection with astrophysics and litho- Screened Coulomb systems are frequently modeled with
graphic application§l], dense stellar material and inertially the Yukawa(Y) interparticle interaction of the form

confined plasmag$2,3], “mesoscopic plasmas” of charged-
stabilized colloidal suspensiorig—6], or ultracold plasmas 2
[7.8]. In the case of dusty plasmas, for instance, recent labo- vy(r) = ——exp(-ar). 1)
ratory experiments have shown that the interparticle potential
of charged dust particles in a plasma is given by the Yukawdlere,e, Z, anda are the electron charge, the ion charge, and
potential with high accuracy in the absence of plasma flow@n effective inverse screening length, respectively. If we ex-
[9]. Moreover, dustycolloidal) plasmas are normal plasmas Press all lengths in units of Wigner-Seitz radiags the
that achieve strong coupling with micron-sized impuritiesinterparticle pair interactiony times the inverse temperature
that can acquire Foelementary charges. Indeed, dilute sys-B can be read under a more usual and compact expression
tems are relatively easy to produce and diagnose experimen- r
tally. This explains why dusty plasmas show great promise Uy(r) = —exp(— «r), (2
for studying the static and dynamic properties of strongly '
coupled, screened Coulomb systems over a wide paramet@here I'=8Z%¢?/ a5 and k=aayg are dimensionless cou-
range. As a consequence, an extensive and intensive invesgiing and screening parametefés 1/kgT, (47/3)ad,;=1.
gation of thermodynamics and transport coefficients for the, =N/Q is the particle density of the system fions con-
three-dimensiona(3D) Yukawa fluid is a topic of present tained in the volume), T is the temperature of the system
considerable concern in dusty plasma physics. supposed to be in thermodynamic equilibrium, &ads the

Of course, in actual dusty plasmas, dynamics of chargegoltzmann constant. For dusty plasmas, the coupling refers
dust particles can be more complex and subject to severg the dust grains and the screening to the hot background
other forces, such as collisions with background neutraklectron-ion plasma. For ultracold plasmas, the coupling re-
gases. Here, our focus is on thermodynamics and transpoérs to the cold ions and the screening to the partially degen-
properties in the absence of damping by background speciegrate electron gas. Similar arguments hold for other situa-
The Yukawa model therefore may be used as a simplifiegions.
model for charged dust particles in a plasma, on which one |n short, the Yukawa system is Simp|y a one-component
can construct more realistic models to represent actual dusplasma model constituted of a neutral classical plasma made
plasmas under various conditions. However, the Yukawa sysf N identical point chargeZ (ions) immersed in a uniform
tem may also be of special interest as a mathematical modgleutralizing backgroungelectrons of volume () and charge
for many-body systems since it allows the full range of be-density p,=-Zp,. The effective interactioft{, between ions
havior between systems governed by short-range and longtue to the polarization background of electrons may be ex-
range forces. For example, the Yukawa system is known agressed as followgl0]:
the one-component plasng®CP in the absence of screen-
ing. The OCP represents a system of ions when electrons are 7y, = }2 Z%,(ri -1 - > J A3 pzv (| = 1i))
extremely mobile. The OCP has often been used as a classi- i+ i
cal model for the dense interiors of white dwarfs, where ions

1
+5jd3rfd3r’p§va(|r—r’|)+NS, (3)
*Email address: gerald.faussurier@cea.fr wherev,(|r))=€?e*/r andi,j=1,... N. In the right-hand
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side of Eq.(3), the first term is the particle-particle interac- [32,33. Furthermore, no simple analytic expressions exist
tion, the second one is the particle-background interactiorfor g(r) and S(k) of the YOCP that are precise, robust, and
the third one is the background-background interactionconsistent with the equation of state determined from the MC
whereas the last term fixes the zero of energy with respect tor MD simulations. As for the variational method based on

the self-energy of a bare Coulomb charge: the Gibbs-Bogolyubov inequalitjl4], it is not clear ifg(r)
and S(k) of the reference system may be of particular utility
&= llim[sza(r) — Z204(N)]. (4) in t_his context. This method is known to be_ well s_uited to
2r-0 estimate system free energy but great care is required when

g(r) of the reference system is employed to calculate any-

The Yukawa one-component plasidOCP) model can be  thing else than the free energg4]. Second, the screening
characterized by the couple of parametémnd«. The OCP  potential H(r) is a function of fundamental interest in
system is recovered for=0. . strongly coupled plasmas becau$gthe enhancement fac-

Thermodynamic and structural properties of the YOCPyqs for the thermonuclear reaction rates, which are important
have been thoroughly studied by means of Monte Carlgoy stellar evolution, are essentially controlled by the short-
(MC) simulations on the hypersphef&0], by equilibrium  range part of the screening potentiéil) the screening po-
molecular dynamics(MD) simulations  within - periodic  tentials play a key role in the study of the short-range behav-
boundary condition§11-13, and by variational methods jor of the Bridge functions, notably their universal
based on the Gibbs-Bogolyubov inequali¥4—-16. The  hroperties, which proved seminal for developing an accurate
liquid-solid phase boundary and reliable estimates of the freﬁheory of liquid structure, andiii) they offer consistency
energy are thus available in a wide range of the system pamecks for the equation of state of a mixture and for closure
rametersl’, «} [10-14. By contrast, less is known about the gpproximation in integral equation theories for the fluid pair
dynamical properties of the YOCP and, in view of hydrody- structure[3]. Again, this function is very difficult to extract
namical simulations, valuable estimates of the transport cofrom MC or MD simulations[34-39 and the variational

efficients of YOCP are clearly wanted. _ method seems to have nothing to say concerning this topic.
Very recently, MD, variational methods using the known gsomething else should thus be done.
properties of the reference systefh4], or approximate Fortunately, the integral equation theory for the pair struc-

methods based on excess entr¢py,18 have been used to tyre of simple fluids, which was developed in 1950s and
estimate self-diffusiorj14,19, shear viscosity14,20, and  early 1960s[23], has been the subject of a strong interest
thermal conductiorj14] o_f the YOCP fluid in a systematic during the last three decadgg9-4g. Among many methods
manner over an extensive range of the system parametergyaijlable in literature, the variational modified hypernetted
For completeness, Salin and Caill@1,22 have presented. chain (VMHNC) approach, as proposed by Rosenfgg],
molecular dynamics computations of the thermal conductivhas been proven to be very accurate to describe the structure
ity and the shear and bulk viscosities of the YOCP. Moregpq thermodynamic properties of liquid metals by compari-
intensive MD calculations should bring many more resultSggns with molecular dynamics resul#9-51. Based on the
for thermal conductivity and bulk viscosity over a wider gpproximation of universality of the Bridge function, the
range of the system parametél «} within the entire fluid  gerjvation of the VMHNC method ensures the thermody-
domain in order to determine the principal transport coeffi-namic consistency between the Helmholtz free energy and
cients of the YOCP completely. the virial routes to the equation of state. So doing, the energy
One could thus think the problem of characterizing theand the virial pressure equations of state satisfy the Hiroike's
main static and dynamic properties of the YOCP nearlytest[52]. This consistency is also enjoyed by the hypernetted
solved. In fact, this is not the case for, at least, two mainchain (HNC) approximation from where it originates but,
reasons. First, the static structure fac&k) and the pair ynlike the HNC, the variational procedure ensures reason-
distribution functiong(r) form the basic ingredients in nearly ably good thermodynamic consistency between the com-
all theories describing strongly coupled regimes]. To pressibility and the virial routes without enforcing it. More-
study the excitation and propagation of waves, one needs thg/er, the VMHNC has the advantage of avoiding small,
dynamical dielectric function. The latter is not easily deter-unphysical, structural deficiencies posed by the analytic be-
mined in a strongly coupled plasma. An approximationhavior of the Verlet-Weiss-Grundke-Hendergé8,54 hard-
scheme, however, referred to as QLQAuasilocalized sphere(HS) parametrized Bridge function used by Ladb
charge approximatior24] has been successfully used for a al. [44]. A bootstrap procedure akin to the one introduced by
variety of plasma systemi25], including strongly coupled Ross[55] to deal with the softness of the repulsive potential
dusty plasma$26,27. In this approachg(r) is a key param-  allows one to use directly the much better behaved Percus-
eter that governs the behavior of the dynamical dielectricvevick (PY) Bridge function[56-5§, without any resort to
function. In the same spirit, the pair correlation function issimulations. To sum up, the VMHNC method provides a
known to play a key role in the APEX method of generatingsimple, robust, and entirely first principles approach to the
the electron ion microfield for use in the line shape formal-theory of the structure and thermodynamics of simple clas-
ism [28—-31. We must confess that MC or MD codes are notsical liquids based on a locéle., without the need to inte-
black-box algorithms and have not been designed to give grate along an isotherm or an isochofeee-energy func-
rapid access ta@(r) and S(k) for computing time reason, tional that determines by variation both the structure and the
whateverI” and « may be within the entire fluid domain equation of state. The VMHNC theory is free from any ad-
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justable parameter and the energy-virial thermodynamic selfa necessary correction term; this term originates from using
consistency is guaranteed without imposing it. To be comthe HSPY Bridge function instead of the exact HS Bridge
plete, it can also be used to extract the potential from paifunction. The corresponding recipe for calculatigg) from
distribution function and/or structure factor obtained fromgiven potentialg(r), temperature3, and densityp; reads as
experiment or quantum molecular dynamics simulations. Irfollows. Solve the MHNC equations usir@sp\(r, ) for
summary, this approach for calculating the pair structure fokarious values ofy, i.e.,
a given potential and for inverting structure factor to obtain
the potential and the thermodynamic functions has no
equivalent in the field of simple liquids.

In this paper, we propose to provide a benchmark test
regarding the calculation of the complete equation of state, __ _
structure, and transport coefficients for the bulk YOCP fluid In[g(r]==A(r) + h(r) = c(r) + Buspr, m),
employing the VMHNC theory, with the general purpose of
stimulating its quotidian use. This paper is a companion, h(r)=g(r) - 1. (5)
1 ee v enelk AE0foricr  unil he excess oo enegf{“"*i6,p 7
ing the variational method based on the Gibbs-Bogolyubov F(B.pi /N is minimum for some valugy= 7y, i.€.,
inequality[14]. In Sec. I, the VMHNC is reviewed and ap- ds . JB r
plied to Yukawa system. A simple method is presented to OZ—dM‘ % f dr[g(r) _gHSPKr!ﬂ)JW
deal with the long-range interaction. This method is consis- K K
tent with and generalizes the original one proposed for the (6)
OCP systeni59]. A technique is proposed to cope with the with
initialization of the HNC-like equations for strongly coupled
cases. The general idea consists in rewriting and solving the (4 - 37) 67
HNC equations using a variational principle. The unknownds(7) = fcs(n) = feyd(7) = L= -m 2In(1 - 7).
function is the short-range direct correlation function. This K K
function is expanded in the harmonic oscillator wave func- (7)

tions (HOF) [60] and the undetermined coefficients of the Here, fed ) andfpyy(7) are the Carnahan-StarliigS) and

ﬁr?q\i/teelg%?rirge?rgffaglg gls,nlllfﬁgléglr?t ?ofu?fé'gnraelazfdggilis]}i'rgPY—virial (PYV) free energies, respectively. Once done, the
9 air correlation function is the solution of the MHNC equa-

guess to speed up the convergence of the HNC equations. . . : .
Computational details are also given. In Secs. Ill and IV, we ons with the Bridge function given bBysp\r, 7ry) and

compare our results for thermodynamics and transport coe%—he excess free energy of the system is given by
ficients to the most recent, accurate, and extensive sets of P

simulation data presented by Hamaguchét al. NGB ) = EI J drg(n)[Be(r) — Buspvr, 1))
[11-13,19,2D Section V is devoted to the pair correlation

function, structure factor, and screening potential. Section VI oi 1,2
is the conclusion. =7 | dr{zh(n)®+h(r) - gn)Ing(r)]}

h(r) =c(r) + p; f dr’h(jr = r’|)c(r’),

Il. FORMULATION - i(277)‘3f dk{In[1 +h(K)]-h(k)}
2p;

Taking advantage of the universal character of the Bridge

function[40], Rosenfeld constructed an effective excess free- * 04(m) + Apy(7), (8)
energy functionalF(8,p;, 7) that satisfies the virial-energy with 7= 7, and where

consistency criterion for a given pair potenti@(r). Then,

making use of the Percus-Yevick hard-sphere Bridge func- _J” ,}J 9 Bpspr, 1)

tion, the best free energy is determined by minimization with Ap(7) = 0 d7 2 drghsp (T, 7) an ©)

respect to the pair distribution function and to the packing

fraction of the auxiliary hard-sphere system. The minimiza-Note that one may encounter authors, who consider the
tion with respect to the pair distribution function leads to theBridge function to be eitheBysp\(r, 7) Or =Bysp(r, 7). The
modified hypernetted chain equatiaiddHNC) [40Q], i.e., the ~ VMHNC can be applied to YOCP straightforwardly, with a
standard integral equations of simple fluid theory, with thecareful treatment of the long-range Yukawa interaction, and
HS Bridge function expressed within the PY approximationwith a slight modification of the excess free-energy expres-
replacing the exact but unknown Bridge function of the sys-sion due to backgrounfd.e., g(r) Bvy(r) must be replaced by
tem under study. Minimization with respect to the packingh(r)Buvy(r)] and energy referendee., 8€ must be includegd
fraction » leads to a criterion for its optimum choice involv- Since these questions are related, let us discuss the long-
ing the Bridge functiorByspy(r, 7) and the pair distribution range question first. We will then give the resulting practical
functiongyspy(r, 7) of the HS system treated in PY approxi- expression of the YOCP excess free energy within the
mation, the pair distribution of the MHNC equatigfr), and VMHNC theory.
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As well known, the MHNC equations are not easy to 2 (%
solve for strongly coupled Yukawa system for two main rea- erf(x) = e f etdt,
sons. First, in the weak-screening limit, i.&.g[0,1], the Vo
more we approach the OCP limit, the less the Yukawa poten- - (12
tial can be considered as short range. Since the direct corre- erfox) = 1 — erf(x) = i_f et
lation functionc(r) is equivalent to B¢(r) whenr — oo, the VarJx

Fourier transfornt(k) of c(r) cannot be calculated numeri-

cally. This prevents the inversion of the Ornstein-Zernikeanyc=1.08 suggested by Nfp9] has been kept for YOCP
equation, i.e., the one-to-one map betw@k) and F(k), too. We recall that with this valug ane=0, uy(r) agrees to
and, as a consequence, the resolution of the MHNC equ&9% or more with €(r) over a wide range of values for
tions. Second, in the limit of strong coupling, i.E3 1, the ~ andT'. Using erfaycr) as a cutting function allows one to
more we approach the liquid-solid phase boundary, th&ompute analytically the Fourier transfoiim (k) of uy, (r),
slower is the convergence of the iterative process to solve th&hile ensuring the continuity of the treatment in the weak-
MHNC equations. Indeed, these equations form a highlyscreening limit with the OCP. The explicit expression of
nonlinear coupled set of equations, which is a rather nontly,(k) is found after standard algebraic calculations and
trivial numerical problem to handle. The iterative scheme reads

even with a relaxation scheme, can suffer from slow conver-

gence, oscillation, and instabilif$1]. Moreover, the MHNC ~ _4al k K+ik
equations have to be solved by constantly going back and Uy, () = K2 Re|:k+iK ( )]
forth between real and reciprocal spaces. This is due to the

convolution product, and the arising Fourier transform bringsyherei is the complex number such th&=-1 and Ré&z)

additional numerical difficulties. Though some progress hagneans the real part of complex numkemw(z) involves the
been made in this field, there is still a need for a simplecomplex error function,

rapid, and robust algorithm to solve MHNC equations, i.e., a
black-box package that works for awm(r) of physical inter- P 2 (% .
wiZ)=e?|1+— dt
varJo

13
ZaNG ( )

est, given either analytically or by a set of two-column data (14)

point file. This question is far more crucial, for instance,

when MHNC equations are coupled to self-consistent fieldn practical calculation, we have used therRTRAN routine
equations to determine the electronic and ionic structures igyyerf from the CERN libraryMATHLIB [62,63. We can
warm and hot, correlated, dense plasiféd. The firstissue check that the formula proposed by N&9] for OCP is re-

is solved by extending to Yukawa system the method of Ngtovered as a particular case when0. With such a decom-
[59], while the second issue is assessed by looking for aposition, the MHNC equations are easily solved since the

approximate solution of the MHNC equations with a Brigge function remains short range by essence. Now, the
spectral-Galerkin-like method based on the 3D sphericaffective MHNC equations read iy units

HOF.
The method of Ng59], originally proposed for OCP sys- 3
tem, consists in mapping a long-range to a short-range sys- h(r) =—uy(r) - — f dr'h(jr =r'[)uy(r') +cgr)
tem. As for YOCP, this can always be done by considering A
the Yukawa potentialiy(r) as a sum of two terms, a short- 3 , , )
range potentialuy (r) and a long-range potentialy, (r). +Efdr h(r =r"es(r"),
Due to the asymptotic behavior ofr), —uy (r) can be con-
sidered as the long-range part df). It is thus natural to

introduce the short-range pard(r), such that In[g(r)]==uyg(r) +h(r) —cg(r) + Buspy(r, 7), (15
c(r) =cg(r) = uy, (r). (100  whereas
All the trick, then, is to have fouy, (r) a function with an FUMHNC g 1 )

analytic Fourier transform, and a corresponding nonsingular
and well-behavedc4(r), that can easily be Fourier trans-
formed numerically. The simplest solution is to employ the
method of Ng[59], i.e.,

= % f dr[h(r)Buy(r) = g(r)Byspyr, 7)] +,35—%

1 -
Uy, (r) = uy(rerflangr), x J dr{zh(n? +h(r) - g(ninfg(n)]} - 2_pi(2ﬂ-) i

Uy () = uy(r)erf r), ~ ~
) = (nerfelangf) [ dkinit ko1 =0} + 5,m + Aexin),
Uy(r) =uy  (r) +uygr), 11
(1) = Uy L(r) + Uy &(r) (11) 16)
where erfaygr) and erféaygr) are the error and comple-
mentary error functions using the MHNC equations, reduces to
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I'e 3
N ) == 2 - o dr[ = 2h(r)? = h(r)uy, (1),

2k apop) = (= D23 (K, Vayop) . (20

Third, the HOF satisfy the crucial theorem of separability,
1 i.e., any product of HOF can be written as a finite sum of
+9(r)cs(r)+uv,s(r)]‘ﬁfdk HOF. With this information in mind, the unknown coeffi-
cients{c,} are determined by minimizing the following func-
x{In[1 +h(k)] - h(K)} + Sp(m) + Apy(m) tional F(c,, ), which is equivalent to the MHNC equations,
(17) at fixed # [65,64:

in ays units.
In order to speed up the resolution of MHNC equation in

F(Cnm) = J dr[1 +h(r) = g s H0-es Brse V.72,

strong-coupling limit and stabilize the interactive convergent (21)
process, the short-range pax(r) of the direct correlation \yhere
function is expanded in the 3D spherical HQE(r, ayor)},
which form a complete basis for a given harmonic oscillator hr) =f dk Co(k) =Ty (k) (22
parameteryor (2m)°1 - p[Es(k) ~ Ty, (0]
and
cs(r) = X Crn(r, aiop), (18)
n=0 NHor
Tk = 2 (- D",(2m)* %0k Lapop).  (23)
n=0
¢n(r@or) In practice, the MHNC equations are solved withor=5

—10 HOF at givenayoe=5. The approximate solutioc(r)

is then injected in the standard MHNC equation solver with
relaxation scheme. Following N§9], we are using fast
Fourier transform with real and reciprocal meshes with con-
stant stepsAr and Ak; 4096 mesh points are usedr
where{LY%(x)} are Laguerre polynomials! =T'(n+1), and  =50a,,5/4096 andArAk=7/4096. As for Buspy(r, ), We
(n+1/2)!'=I'(n+3/2). I'(2) is theT function, i.e.,I'(z+1) have adopted the Baxter solution for the HSPY problem
=2I'(2), and should not be confused with the coupling param{24,58. The exact HSPY expression of the pair distribution
eter I' of the Yukawa system. Sinceg(r) is finite, short function is used for between one and two times the HS
range, and takes values small in magnituderfletween 0  diametero, in order to have a smooth junction around

and a feways only a finite and limited numbeN,or of  between the expression &,sp(r,7), based on the exact
HOF is sufficient to have a good starting point to solve theHSPY expression of the direct correlation function belew
MHNC equations from scratch. For strong coupling, thisand the one based on the HSPY expression of the pair dis-
seed is better than the simple guesg)=0. Note that this tribution function aboveo. Byspy(r,7) is expanded in
approach is local and is well suited to the general philosophychebyshev polynomials, with respect to betland » vari-

of the VMHNC theory. Moreover, there is less need to star@ables, and tabulated. The calculations dspy(r, 7)/ 7,

from a closed solution with a small€}; this nonlocal method  8,(7), and Apy(7m) are
having the drawback of requiring a painstaking, careful, andhen straightforward using the properties of the
computer time consuming resolution of MHNC equationsChebyshev polynomial§64]. As noted by Perrof67], the
from small to the present value bf There exist tremendous value of #» obtained in the variational method using the
ways to expand a function upon a complete basis. We hav&ibbs-Bogolyubov inequality and the HS system to describe
chosen the 3D spherical HOF because they possess maW{OCP is a very good starting point for solving the MHNC
advantages for numerical and physical purpose as welktriterion. We have thus simply used the analytic fit #pm
Originally, they have been extensively used in nuclear physfunction ofI' and x proposed in Ref[14] [Egs.(19—21)].

ics to calculate two-body matrix elements within the Hartree-As for the minimization of Eq.(21), we have used the
Fock-Bogolyubov theory combined with effective density- conjugate-gradient program suggested by Krauth and Stau-
dependent interactiof60]. Their important properties can be dacher[65].

summarized as follows. First, for a well-behaved and local- Before closing this section, one must confess that we
ized function[such asc4(r) herd, a limited number of terms could have used the HOF directly within the expression of
of the series is needed to represent it. Moreover, the coeffthe excess free enerdy™"™(3, p;, 7) and minimize it with
cients of the development are easily calculated by Gaussespect to{c,} and », in the spirit of the VMHNC theory.
Laguerre quadrature when such a function is known fronSuch a strategy is challenging but deserves a particular study,
outside[64]. Second, due to the properties of the associategvhich is beyond the scope of this paper. Since our original
generating functions, the Fourier transfoi(k, aoF) is  idea was to simply have a seed to speed up the resolution of
simply related top,(r, ayor) by the formula the MHNC equations, we have foung,oe=5 highly suffi-

_ [ n!(1/2)! ]1’2< ahor |

1/2 2\ a-apopt42
(n+1/2)| - ) Ln (aHOFr )e HOF ,

(19
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+MD
—— HS
- --- Bridge freezing rule
— —- Hansen-Verlet rule

FIG. 1. Phase diagram of the Yukawa system
in the{I", x} plane. The liquid-solid phase bound-
ary is shown as predicted by the molecular dy-
namics results of Hamaguclet al. [13] (MD)
and by the VMHNC theory using the effective
HS closed-packing fraction at meltify MHNC?
or HS) [14], the semiempirical freezing criteria
using the Bridge functiofVMHNCP® or Bridge
freezing rule@ [70], and the structure factor
(VMHNCE or the Hansen-Verlet rujg71].

cient for our business. But the minimum value of the func-and compared to the simulation data of Hamagusthal.
tional F(c,, 7 depends onayor and Nyoe too. We have [13]. The phase boundary is first found by solving for the
tested on some examples that at fixed number of HOF, thereritical HS parameter,, and for variousk the equation
exists an optimal value fatyor, which gives the best mini-

mum for F(c,, 7). Moreover, the larger iblyor, the flatter is e = MetdI' 1), (24)

the curve around the minimum. This means that WNBBF  \yhereT is the unknown. The critical, at which the HS
is large, the expansion afs(r) upon the HOF does not de- system is known to solidify, is equal tg.= 2776/ 3. 7p is the

pend very much onor around the minimum due to the (josed-packing fractiony,,=m/3/\2 [68]. This procedure
complete character of the basis. Yet, we have not 'mple(VMHNCa) is identical to the one proposed in RéL4].

mented a refined algorithm to optimizg;or and Nyor for Results are plotted in Fig. 1. Following Rosenf¢&9], we

the reasons explained above. Again, all these comments ez e added two more indicators to detect the criticakt

tend straightforwardly to the VMHNC excess free energy,hich the YOCP fluid begins to freeze. We have used the
that could be considered as an algebraic functioB,gf, 7. «rigge freezing rule”(VMHNCY), stressing that the Bridge

{Cn}c’j, NHOFi ang “Hgg'ﬁ Moreol\éert,) pofwerful conjugate- ¢ nction absolute value at the origBy=|B(0,T", ¥)| is nearly
gradient algorithms{65,64 could be of great interest to o 5| 15 50/70], and the “Hansen-Verlet rule’VMHNC?),

achieve its minimization with respect tpand{c,}. Finally, . - i
this general approach of expandiagr) in the 3D spherical L€ Skjmax~3 at freezmg[?l]. We have thus solved for
various k the equations

HOF can be generalized to treat mixty&®] and nonspheri-
cal potential[60]. This paper suggests the existence of an |B(0,I',x)| = 50 (25)
interesting gap between nuclear physics, condensed matter,

and plasma physics. Works are in progress in this field. —and

IIl. THERMODYNAMIC PROPERTIES SKpmax(I', ) =3, (26)

The VMHNC theory predictions concerning the thermo- wherel is the unknown. The agreement with the simulation

dynamics of the Yukawa system are compared to the exterf—ata s gxcellent considerin_g jche §imp|icity_ of the th_eory.
sive molecular dynamics simulation results by Hamagethi ndeed, it was not Cleaa priori which physmal meaning
al. [11-13. The liquid-solid phase boundary, thermodynamicCOUId be attributed to the effective HS packing fraction of the
consistency, and equation of state are discussed. The regim.\ég/'HNC' It is also a nice confirmation of the Bridge freez-

of weak screening and strong screening for Yukawa fluid ard9 ”_“e' However, we should confess that the Hansen-Verlet
considered. rule is the most robust way to detect freezing. To be com-

plete, we give the associated maximum value of the structure

factor S(k)yax Minus the excess entropysy (see belowy,

and the absolute value of the Bridge function at the origin
To quantify the accuracy of the VMHNC theory, the By= for the exact values df . determined by Hamaguclei

liquid-solid phase boundary of the Yukawa fluid is predictedal. [13] in Table I. Again, we confirm the pertinence of the

A. Phase diagram
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TABLE I. Maximum values of structure factd®k)vax minus  of pressure and internal energy by quadrature. The standard
excess entropysy’, and absolute value of the Bridge function at the quadrature formulas lose meaning and interest, especially
origin By calculated using the VMHNC theory at the fluid-solid \when the behavior of(r, T,p;) with respect toT and p; is
phase-transition valued'c deduced from MD simulations by complicated and sometimes even unknown analytically. Such

Hamaguchiet al. [13]. a situation is typically encountered in liquid metal theory or
o dense plasma physics. This explains why the thermodynamic
K MD S(K)max —Sy Bo consistency between the compressibility and the virial routes
0.0 171.8 3.058 4.152 47.12 is not enforced in the VMHNC, though known to be reason-

ably good[48,49. This means that the partial differentiation

0.2 173.5 3.058 4.144 47.08 . .

04 178.6 3.054 4123 4693 of pressure with respect to density at constant temperature
should satisfy

0.6 187.1 3.045 4.091 46.64

0.8 199.6 3.035 4.052 46.25 P

1.0 217.4 3.026 4.016 45.93 B — :1—pifc(r)dr (29)

1.2 243.3 3.035 3.997 45.99 Ipil

1.4 268.8 3.000 3.925 44.76 o , _

20 440.1 3.070 3921 45.71 for:)l?r(]ageratl p?lrW|se,Fstats(—;réd:ptir_wder]t,t_and Wl(tjh no back-

6 758 9 3.042 3.835 44.23 g potentiaki(r). For , this relation reads

3.0 1185. 3.081 3.855 44.88

3.6 2378. 3.089 3.849 44.75 B Pl _ 1-p, J [c(r) + Boy(r)]dr . (30)

4.0 3837. 3.068 3.825 44.06 Ipilt

4.6 8609. 3.124 3.899 45.52

5.0 15060. 3.161 3.954 46.57 When one faces state-dependent potential, there is no way

but differentiating analytically in the best case, numerically
in the worse case, the free energy of the system. This can

Hansen-Verlet rule and the reasonable agreement with th@ways be done in the framework of the VMHNC, but rules
Bridge freezing rule and the semiempirical rule of Rosenfeldout any other theory that does not stand, from the beginning,

[72], which states that excess entropy, i.e., the reduced co®h a free energyeven effective or approximateOne can
figurational entropy, is close to 4 at freezing. realize why enforcing the thermodynamic consistency be-

tween the compressibility and the virial routes appears to be

not so crucial in the VMHNC theory.

_ o A wide range of physical conditions may be described by
The existence of a free enerdy within the VMHNC  gimpje relations if we choose the dimensionless quantities

theory guarantees that internal enetdg F~ToF/dTlo and  and ., in lieu of the particle density; and temperatur& (or

B. Thermodynamic consistency

pressureP=-gF /30| satisfy the fundamental equation inverse temperaturg), as independent thermodynamic vari-
U 9P ables. Since the effective inverse screening length of the con-
—| =T —| -P, (27 sidered Yukawa system is constant, the transformation of
IQ |y ITla standard thermodynamic equations to dimensionless form is
where then governed by the relations
pUY _3  pi J
— =+ r)g(r)dr, ar r or
N 2 2 Aengr) L B and Bﬁ; =T, (31)
(28) Pils g
P i ,
5=l f Br¢’ (Ng(rdr,
° IR K and g 2K| =0 (32)
andPy=p;/ 8. The VMHNC theory ensures thus the thermo- pi 3 p; B_ 3 B B p__ '

dynamic consistency between the Helmholtz free energy and

the virial routes to the equation of state, and the enéigy ~ Given the free energlf=U-TSof the system in function
and the virial pressur® equations of state pass the Hiroike's of T andp;, where entropys=—dF/JT]q, the relations defin-
test[52]. This is clearly true for Yukawa system, as long asing U, P, and S can be recast in terms of dimensionless
the effective inverse screening length is independent of temintensive variable$l1,14

perature and density. This is the case here, replacing, as

usual, ¢(r) and g(r) by vy(r) and h(r), respectively, and 9 af
adding the energy reference te8. However, great care is u=pg ﬁ%  PER ands=u-f, (33
required for state-dependent potentidl,T,p;,) [73-75. In Pi Pilp

such a situation, the dependency of the pair potential with
respect tol and p; brings additional terms in the calculation where
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BF BU BP S sions may be drawn from a blind one-to-one correspondence
f= N u= N p= 7- ands= WB (34) between formalism and practical applications. Finally, when
! the VMHNC is employed, i.e.,
f, u, p, ands denote the free and internal energies per par-
ticle in units ofkgT, the pressure in units gikgT, and the f (T, 1) = FYMINAT &, ), (38)

entropy per particle in units d.

Once known the free energy as a functiorf@f, «) of the the(i thermodynamic quantities of interest should be read

ex ex ex
parameterd” and «, internal energy, pressure, and entropy ' Yymrne Yvvmine Syvmpne @NdPyyvine

can be determined as functions of these variables using Eq, As an illustration, we have checked the VMHNC thermo-
(31) and the chain rule to rewrite E¢33), ynamic consistency between the compressibility and the

virial routes for YOCP for integek € [0,5]. Equation(27)
af K(9f+£(7f reduces to

=I'—, =——— -, ds=u-f. (35
RO PT TR T ANesT (39
aul _ dp
The ideal-gas behavior is recovered in the lilnit: 0. In that pia_pi _’B&B 39
limit [14,23 ’ "
3 3 (272 or
f = f9%=In(p;) + =In +—In( )—1,
(P|) 2 (ﬁ) 2 m E &U$X x &U$X B &p\e(x (40
3 ' |, 3 dk |y  or'|,
u—ul= > whereas the virial-compressibility consistency reads
r op¥| « ap{
— O: ex+1+_ T T o
p—p°=1, Py 3 aU |, 3 dklr
L 0= 0_¢0 3
s =100, (36) -1-2 J oy ) + Uy (D)]dr (41)

The deviation with respect to the ideal compondrtsu®, <°,
andp® comes from interactions between particles and constig, awsunits. Let us introduce the normalized temperaflife
tutes obviously the nontrivial part of the problem. Subtract-55 the ratio of the system temperattieo the fluid-solid

ing the ideal-gas contribution®, u°, <%, andp® from f, u, s, melting temperature or critical temperatuiie, i.e., T"
andp, respectively, allows us to define the excess free energ¥ T/7_=r'./T. The normalized temperature has been shown

f the excess internal exnerg;‘ix, the excess entrops™, {5 pe very convenient to describe Yukawa system and to find
and the excess pressupg’. For Yukawa system practical general trends or universal behavidts3,19,20. We have

formulas of interest read finally in units afys plotted in Fig. 2 the excess compressibility normalized to the
3 I'x coupling parameter in function of inverse normalized tem-
uS (T, k) = — | uy(r)h(r)dr - —, peraturet"=1/T ", obtained by quadrature using the com-
v 8 Y 5 Ure1 :
™ pressibility equatior(30),
r,e ’
e _ uw(r’, e t* _3 J + d 42
= [ S ar e |l i, @2)
. ox . ex and the numerical differentiation qﬂ&P/&pi|ﬁ calculated
SAUNG R o from the virial equation28),
1 . P 1 apY Kk JpY
XK= - — | ru! - he s =0 = Y 43
pSAT, k) 87-rf rul(r)h(r)dr. (37) T3 ar | A ok, (43

The function(T", k) — pY(T, ) is the equation of state for The partial differentiations are performed using Chebycsshev
the Yukawa system. An accurate representation of this funggolynomials[64]. A variation of 0.1 % is made fof" and

tion is of practical interest in, for instance, the formulation of around the reference poiflt', k) and eight polynomials are
macroscopic descriptions for the behavior of dust/plasmaufficient to calculate the partial derivatives with good accu-
suspensions that can help in understanding and controllingacy. We find that the virial-compressibility inconsistency is
particulate contamination in industrial process plasmas. Noteather smallfless than 20% for OCP which is the worst case
also that this function is not universal for givéh,«). In-  over the entire Yukawa fluid plan for the screening param-
deed, the effective screening length, assumed constant heegers considered. This fact is remarkable since the thermody-
may depend on temperatufeand particle density; [11]. namic consistency between virial and compressibility routes
This fact is hidden in the variable change formul8%) be- is not enforced a priori in the
tween(p;, T) space andI’, k) space. So, erroneous conclu- VMHNC theory.
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—— Quadrature
-0.05 - --- Numerical differentiation

k=5

FIG. 2. Excess compressibility
normalized to coupling parameter
I' vs inverse normalized tempera-
ture t'. Quadrature(solid line)
means that the normalized excess
k=3 compressibility is computed di-
rectly from the compressibility
equation(42). Numerical differen-
tiation (dashed ling means that

-0.15
k=4

-0.25

Normalized excess compressibility

K=2 ;
the normalized excess compress-
~0.35 ibility is compute(.j.diﬁerentiating
k=1 the pressure or virial eq43).
k=0
-0.45 R el e
107 10 10" 10°
t*
C. Excess internal energy [13] to expand it in Chebyshev polynomials using spline

For strong coupling(F>1) Hamaguchiet al. gave two  technique[64] for I <[0,1] at fixed . Uyyp(I', ) is then
known for any value of" [0, 1].

fitting formulas foruy* for the cases of weak screenilg el )
<1) [11,12 and strong screeninge=1) [13], respectively. We have plotte(_j in Fig. 3 excess internal energy normal-
ized to I versus inverse normalized temperatdreusing

In the weak-screening case, Hamaguehial. [11,12 pro- h .
9 g (11,12 p VMHNC theory, i.e., uf\,yunc/I’ and MD results, i.e.,

osed to fit their molecular dynamics data by the formula
P Y y uywmp/T for integerx e [0,5]. Agreement between MD and

uywo(L, k) =a(k)T +b(k)I®+c(x) +d(x)[°,  (44)  VMHNC results is excellent.
with s=1/3. Using the Magdelug energy for bcc Yukawa

lattices, D. Excess free energy
Epcd k) = — 0.895 929 - 0.103 73& + 0.003 084* f ¥ can be obtained fromu$* by quadrature using Eqg.
6 (35). For strong coupling, the excess free energy can be in-
—-0.000 13%”, (45) tegrated analytically with the result
- r dr’
a(x) = Eped &) + da(k), (46)  fex (u)= f us,xMD<r',K>F +1(0) =alk)( = 1)
and 1
_ 4 -1 r=-1
da(x) =-0.003 366 + 0.000 666 — 0.000 08%*, + b(K) +c(x)In(T) —d(k) + (k)
b(x) = 0.565 004 - 0.026 134 - 0.002 68%*, (48
with
c(x) =—0.206 893 - 0.086 384 - 0.018 27&*, . .
fi(k) = uY i, K)_. (49
d(x) = — 0.031 402 + 0.042 428 — 0.008 03%*. (47) ' o MP

In the strong-screening case, Hamaguethal.[12,13 do not  No fit was proposed foff;(«) calculated through a direct
use Taylor expansion ir for the coefficients, as defined by Simpson-rule quadrature of the(),,/T" values obtained
Egs. (45)—(47). Instead, they fit the potential energy func- from molecular dynamics simulations. Data can be found for
tional forms of Eq.(44) directly to the simulation data for some values ok in Table VII of Ref.[13]. For weak cou-
eachx value separately. Data can be found for some valuegling, fYMD(F,K) is integrated numerically using Cheby-
of x in Table VIII of Ref. [13]. shev polynomial propertief64]. Excess free energy is thus
For weak couplingI'=<1), Eq. (44) is no longer valid. available for any value of [0, 1]. We have plotted in Fig.
We have thus decided to use the valuesu@f,(I',x)/T" 4 excess free energy normalizedltoversus inverse normal-
given in Table 1V, p. 9889 of Ref11] and Table VI of Ref. ized temperaturé¢’ using VMHNC theory, i.e.f {\,yune/T
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0 .
—— MD

B *+ VMHNC
E + * ot FIG. 3. Excess internal energy
3 M normalized to coupling parameter
5 + + F—k k=2 I' vs inverse normalized tempera-
£ ture t° as predicted by the
§ . L ‘ N VMHNC theory (asterisk and the
E ‘ B A ‘ R B simulation resultgsolid line) for
8 the Yukawa system using the pro-
TEv 2t ‘ L ) L ‘ Lo e cedure and the fits proposed by
g ‘ T " T T T Hamaguchkt al.[11-13 for inte-
Z gerke[0,5].

1 F—f—— 3 b—f—k—+ + F—f—f k=5
10° 10° 10" 10°

t¥

and MD results, i.e.f {p/T" for integerx<[0,5]. As for ~ €[0,5]. As above, VMHNC theory predictions agree very

excess internal energy, agreement between the VMHNG@vell with simulation results. Moreover, one sees that minus

theory predictions and simulation results is excellent. excess entropy tends towards 4 wténs 1, i.e., in the vi-
cinity of the liquid-solid phase boundary.

E. Excess entropy

Once excess internal energ{y,, and excess free energy F. Excess pressure

f Yo are known, excess entropsfy, can easily be ob- As for excess pressumgyy,, we can use Eq(35) and
tained from the relatios{y,=u{yip—f Viup Using EQ.(35).  recover Eq(27) of Ref. [11] changingx/6 by —«/3, due to
We have plotted in Fig. 5 minus excess entropy versus inthe different particle density and temperature of our model
verse normalized temperatureusing VMHNC theory, i.e., and the one studied by Hamaguddti al. [11]. For strong
-Syvmhne @and MD results, ie., s for integer x  coupling, we find

— MD
+ VMHNC

FIG. 4. Excess free energy
normalized to coupling parameter
I' vs inverse normalized tempera-
ture t° as predicted by the

/
*
*
=
I
)

Normalized excess free energy

M & L ‘ I VMHNC theory (stap and the
k4 * — - simulation resultgsolid line) for
the Yukawa system using the pro-
2 ‘ L ‘ L 1 s cedure and the fits proposed by
‘ T ! T * s Hamaguchet al.[11-13 for inte-
gerke[0,5].
: — - e : —p—p K5
-3 L L PR | n N PR | L L PR
107 10° 107" 10°
t*
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1

10

— MD
* VMHNC

10"

FIG. 5. Minus excess entropy
Vs inverse normalized temperature
t* as predicted by the VMHNC
] theory (asterisk and the simula-

-Excess entropy
—
S
T

K=
K: tion results (solid line) for the
Yukawa system using the proce-
k=3 dure and the fits proposed by
k=0 Hamaguchet al.[11-13 for inte-
el k=2 | gerke[0,5].
K=1
10° - = = o
10 10 10 10
t*
p$n(,K) :%[a(,()r+b(,<)rs+ c(k) +d(xk)T7%], lating excess internal energy fdi<1. We have used the
’ values of Table VIII of Ref[13] to expanda(k), b(x), c(«),
_ x| daw r-n+ db(x) I*-1 and d(x) in Chebyshev polynomials using spline technique
3| dx d« s [64] for k e[1,5]. Each function and its derivative are then
s known for k e [1,5]. For weak coupling, excess pressure is
dC(K)| T) - dd(k) 7~ 1 + dfa(x) obtained by numerical differentiation of excess free energy

dx S dx using again known properties of Chebyshev polynomials
(50) [64]. We have plotted in Fig. 6 excess pressure normalized to
I' versus inverse normalized temperatu*rmsing VMHNC
Functionsda(«x)/dx, db(x)/dk, do(«)/dk, anddd()/d«x are  theory, i.e.,p§\munc @and MD results, i.e.p{y, for integer
known analytically fork € [0,1] only. For stronger screen- «e<[0,5]. Good agreement is still found between VMHNC
ing, one has kept the strategy encountered above for calctieory predictions and simulation results.

0
k=5
k=4
E k=3
2 FIG. 6. Excess pressure nor-
?5’_ malized to coupling parametd?
g - as predicted by the VMHNC
Z ¢ = theory (asterisk and the simula-
2 tion results (solid line) for the
'TE Yukawa system using the proce-
E k=1 dure and the fits proposed by
Z Hamaguchkgt al.[11-13 for inte-
K= gerke|[0,5].
—— MD
+ VMHNC
-0.4 e 5 e : e
10° 10? 10" 10’

t¥
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IV. TRANSPORT COEFFICIENTS Dus
.- 1.018961 + 0.073) + 11.6095/” — 26.951;°),

Transport coefficients such as self-diffusion, viscosity, E
and thermal conductivity are the most fundamental dynami-
cal parameters that reflect the nature of the interparticle po- De (1-9?°
tentials and characterize the thermodynamics of the system. gas = —(1 ~ a2

The VMHNC approach is used in order to estimate the self-

diffusion, the shear viscosity, and the thermal conductivity of 1
the Yukawa system from the transport coefficients of the HS Dgas_ 1 \/Ee°-2058‘1'590. (54)
system. Comparisons with MD data are done in a systematic Der 8772 VT

manner over a wide range pf_the sy_stem param_e{iérs}. . Here, Dg,s and De are the results for a dilute gas and the

Our goal is to see whether it is possible to predict dynamlcEnskog’s result, respectively. Note that the CS equation of
properties of Yukawa. systems from th_e VMHNC theo_ry thatstate for the radial pair distribution function at contact has
is only valid for studying static properties of systems in ther-been used14]. In Eq. (53), 7 is the effective hard-sphere

modynamical equilibrium. packing fraction of the Yukawa system determined by the
VMHNC method. In Eq(53), Y refers to Yukawa and HS to
A. Diffusion hard sphere.

The self-diffusion coefficient will be denoted Iy, Many
conventions exist for normalizing the diffusion coefficient _ o o
that display quasiuniversal characteristics. Some of these are The shear viscosity will be denoted by to distinguish it
by Hanseret al. [76] D'=D/D,y, by Ohta and Hamaguchi from the HS packing fraction;. The definitions of normjal-
[19] D'=D/D.;, and by Rosenfeld[17,18,72,77 D' ized shear viscosities are given by =7,/ 7y [23], 7
:D/Dmdr where Dpfzwpa'\ZNS Dewaea\st and Dmd :770/77ef [20]1 and 77r:77u/77mu [17!18172177! where Mpt

2/3

=p; "*\kgT/m. Here,Dpng, we, and wp=\4mp,Q%/m are the =mpi_wpa\2/vs nef=mpaVSwea\2,vs and 7y, =p; “VmigT. Here,
macroscopic diffusion, the Einstein frequency, and theim iS the macroscopic viscosity. Note thgt=17'" when «

plasma frequency, respectively. The ratio between the plasnia0- iI-€., for OCP system. The normalization employedsfor
frequency and the Einstein frequency can be obtained from 82s been widely used for the OCP systgt8]. The normal-

B. Viscosity

fit to the result of Ohta and HamagudHi9] as ization used fory" has been shown to be more suited for
_ Yukawa systems and is considered to be a natural extension
V3we 70205859 (51) of %' of the OCP in finite screenin@.e., x # 0) [20].

Using kinetic theory, Wallenborn and Ba[ig9] found an
approximate analytical formula for the OCP shear viscosity.
Note that the Einstein frequency accounts for variations irMore recenﬂy, Saigo and Hamagu({ﬁo] proposed a differ-
the vibration frequency due to screening. ent analytical formula to fit their MD calculations of shear

Pioneer work has been done by Hanseml. [76] for the  yiscosity for Yukawa system that can be used for OCP sys-

OCP system using MD simulations. They were able to protem as well.77" can be simply represented for eaetby
pose an efficient fit for the OCP diffusion coefficient that was

shown to obey a power law with respect o This law is
valid for strong coupling but fails wheh is around one or

below. More recently, Ohta and Hamagu¢h®] found that .. ) ' .
the self-diffusion coefficients in Yukawa systems follow a WhereT is the normalized temperature defined above. This

simple scaling law with respect to normalized temperaturd®'Mula applied to the OCP system was foufid to be

@p

K

* * b
n :aKT +T*+CK' (55)

T*. They fit their MD data to the form more accurate that the former one proposed by Wallenborn
' and Baug79].
D'=a (T - 1)+, (52 As for HS system, the Enskog’s theory for hard sphere is

remarkably accurate when compared to simulations, i.e., for
7<1¢,/5 [18], except near the liquid-solid phase boundary
of the HS system, where the discrepancy may reach a factor

form, compared to the original pawer law. 2 [23,80. Furthermore, the Stokes relation with slip condi-
As for HS system, the Enskog’s theory for hard sphere i%io[ns,, i.%.,DnuszT/(Z;rcr), has been found to be Pemark—

rerg]%rls(gbtlg ii%ur:tﬁtvzgephgogg?ﬁg to;f'gﬁ“ig?ﬁt}gﬁs toably precise(i.e., for n> 7,/5) [80]. Unfortunately, we nei-
FI;nspkog as obtained from the most re{ent simulations for thtgher have more recent MD calculations nor any analytical
hard-sphere fluid78]. Normalizing in terms ofD,; the xpression for the HS shear viscosity. As a consequence,

e . . since we know the self-diffusion coefficient for HS system
Yukawa diffusion may be obtained from the HS redijs as with high precision[18,78, one solution would be to esti-

mate HS viscosity using the Stokes relation fgr 7.,/5
and simply the Enskog's result foy< 7.,/5, i.e., in the gas
phase. However, in order to avoid discontinuity or treat the
where delicate joining question by a smooth interpolation between

for eachk. They were also able to fit the OCP simulation
data by Hansert al. [76] to this same and more accurate

« D Dys De D
Dyl ) = 2= ZB = T, (59
ef E Ygas Yef
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both domains, we propose to use a[_Im] to _the corrections CF o= Nis _ Mis Me Agas
to Enskog, as obtained from the simulations for the hard- Aypd D) = N e A hae (59
sphere fluid[80]. The Yukawa diffusion may thus be ob- ef T Tgas Tef
tained from the HS result as where
* A.
Tyl ) = 18 = s e aes (56) e
Met e Mgas Mef E
where 3
N 1- 1-7/2
)\_E - {ﬁ +1.20047) + 0.755(417)2%} ,
8 - (1 + 2.5502 — 23.0982/° + 44.1238;°), gas K 7
Vs (60)
— )3 _
e _ (1-n) +0.80047) + 0.76](477)2(1 7]/23)], )\Jisz /2_5 \/580.205&1590'
Mgas (1-9/2) 1-7 Nef 64\,’37]2/3 r
5 Here, Agas and \g are the results for a dilute gas and the
Tgas _ T\/E 0.2058.1-5%0 (57)  Enskog’s result, respectively. Note that the CS equation of
Ter 483772 VT state for the radial pair distribution function at contact has

. been used14]. In Eq. (59), Y refers to Yukawa and HS to
Here, 77425 and 7e are the result for a dilute gas and the hard supheqre ] a- (59 Hraw

Enskog’s result, respectively. Note that the CS equation of

state for the radial pair distribution function at contact has

been used14]. In Eq. (56), 7 is the effective hard-sphere D. Rosenfeld approach
packing fraction of the Yukawa system determined by the
VMHNC method. In Eq(56), Y refers to Yukawa and HS to
hard sphere.

A semiempirical “universal” corresponding-states rela-
tionship, for the dimensionless transport coefficients of dense
fluids as functions of the reduced configurational entropy,
) has been proposed by Rosenffld], extended to dilute flu-
C. Thermal conduction ids by the same authdf.8], and established by many simu-
The thermal conductivity will be denoted by The defi- lations[17,83. This approach is invaluable for four reasons.
nitions of normalized thermal conductivities are given byFirst, an accurate, theoretically based, approach to dense-
N =N s [23], N =N/ Nep, and N'=N Ny [17,18,72,7T,  fluid transport coefficients is still lacking. Second, no con-
where Npy=Kgpiwpads Aer=KepiV3wedlys and An  vergent perturbation theory of transport coefficients has been
established. Third, the brute-force computer methods can be
used to estimate transport coefficients, but these methods are
normalization used fox” may be considered to be a natural cOnsiderably too time consuming, for the same accuracy,
than those designed to measure equilibrium properties and

extension of\’ of the OCP in finite screening. : X
To our knowledge, no systematic MD calculations over gcannot be considered as black-box routines that generate data

wide range of the system paramet&Fs«} have been carried intensively over an industrialized scale. Fourth, this analyti-
out[21,22,81,82 We have thus decided to keep the formulacal relation between transport coefficients and excess entropy

found [14] by fitting the most recent and accurate MD data@!/lows us to estimate, for instance, self-diffusion, shear vis-
for the OCP system of Donko and Nyi[81] by the same cosity, and thermal conductivity from the equation of state of

form selected by Saigo and Hamaguchi for shear viscositﬁponatom'c fluids with arbitrary pair potentials. In summary,

[20]. Assuming a quasiuniversal behavior, we can estimate"® realizes all the benefits of the.RosenfeId approach to
the Yukawa thermal conductivity from estimate transport coefficients knowing only the excess en-

tropy of the system of interest. This method is as useful as
* . 0.881 Enskog’s original recipe relating transport coefficients to
N (k) =0.01176  + — +0.1655, (58  thermal pressursd.

Let us consider a one-component fluid with a reduced
where T" is the normalized temperature already encoun-excess entropp=-S/(Nkg), whereS is the entropy of the
tered. system of interest composed Wfparticles in the volumé&)

The situation is less dramatic for HS system because that temperaturd. In short,s is equal to minus the reduced
deviations of MD calculations from the Enskog’s expressionexcess or configurational entropy over the ideal-gas value.
have been proven to be barely perceptible within the fewlhe quasiuniversal behavior for the transport coefficients has
percent accuracy of the ddil]. As a consequence, once the been derived either from many simulations for dense fluids
effective hard-sphere packing fractionof the Yukawa sys- [17] or from the Enskog's theory for dilute fluidgl8] by
tem is obtained using the VMHNC method, the Yukawa ther-considering, i.e., normalized self-diffusidd’, normalized
mal conductivity normalized in terms of;; may be esti- shear viscosity;, and normalized thermal conductiviy.
mated from the HS resulyg as Keeping the aforementioned normalization in terms of

=p?3kg\ksT/m. Here, A is the macroscopic thermal con-
ductivity [17,18,72,77. Note that\"=\’ when «=0. The
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Einstein frequency to be consistent with the MD of E. Numerical results
Hamaguchiet al, the Rosenfeld scaling entropy transport
coefficients of self-diffusiorD,,, shear viscosityy,., and
thermal conductivityn ... for Yukawa fluid are given by

The elegant and deep method proposed by Rosenfeld re-
lates the transport coefficients to the equation of state. We
have thus used the VMHNC reduced excess entropy to see

D' = Dr% how the predictions of Eqg64) and (52) for self-diffusion
ese Des ' and shear viscosity compare to MD simulatiof®) and
(55), and to the self-diffusion and shear viscosity of the HS
D;sc: nr”_mv, syste_m given. by Eq953) and (56) using the effective HS
et packing fraction 7. of the VMHNC theory. Results are
X -— plotted in Fig. 7(Fig. 11), Fig. 8 (Fig. 12, Fig. 9 (Fig. 133*,
Nes= N ——, (61  and Fig. 10(Fig. 14), where the self-diffusion coefficiel
Net (the shear viscosity;’ ), normalized in terms of Einstein fre-
where quency, is plotted in function of normglized temperature
1500 T for k=0, k=1, k=3, andx=5, respectively. The quasi-
0.2058% 13 . . .
Dmg _ J'§77—”w _ @m_ € Am 62) universal entropy scaling formulas for dilute and dense HS
Def - Vet - Nef B T 3 : fluids proposed by Rosenfeld7,18 are compared to MD

_ calculations of Ohta(Saigg and Hamaguchi for self-
Note that norm_alizing the self-diffusion y.s= V’Swea\z,vsin— diffusion coefficient(shear viscosity [19] (Ref. [20]). The
stead 0fDgi=\3weass as proposed originallf19] would  range of variation ofT* is taken from Ref[20]. It covers

lead to the simpler and more symmetric expression strongly and weakly coupled Yukawa systems and corre-
020581590 U3 sponds roughly to Yukawa system excess entropy above and
D _ 7w _ Mnte —<4_) (63)  below one, respectively. First, we can see that the effective

Def 7t Net \ar 3 HS system is very efficient to estimate self-diffusion and

We h K h h iqinal lization for th shear viscosity. In both cases, the agreement with MD calcu-
?( a;/e ept 0W€V¢L T e orlglnall: n%rmalz;;}tpn or te|ations improves with increasing, denoting the tendency of
sake of consistency with literature. For dense i), the Yukawa system to be more HS-like at strong screening

D' ~ 0.6670%, [14]. Note that the VMH*NC theory tends towards the HNC
approximation at largd ", i.e., for uncoupled plasma. The
7" ~0.28"%, Bridge function becomes irrelevant in that limit, and one
A~ 1.5¢%% (64) cannot use the effective HS packing ftactiogf of the VM-
HNC theory for very large values of ', i.e., typically for
whereas for dilute fluid$18], we obtain for HS T">10% This explains the systematic deviation of the cal-
D' ~ 03723 culations using the effective HS n*otion with respect to MD
' ' results for weak screening at largie. Second, MD calcula-
7" =0.2%23, tions nicely interpolate between dilute fluid at high and
15 dense fluid at lowT ", tbe transitiop between both regimes
N=—gp" (65)  being located betweehi” =10 andT “=100. One could even
4 predict a minimum for shear viscoisf{4,77. Since excess
and for OCP entropy remains well defined when the VMHNC theory re-
duces to the HNC approach, one can use the Rosenfeld
) 0.40643 method even for large values of .
I E
In { 1+ (—) }
3s V. STRUCTURE FUNCTIONS
(66) : .
0.3543 Among the various structure functions that can be ob-
n' = 3 , tained with the VMHNC theory, the radial pair distribution
|nll+(£) 1 _ 1 function g(r), the structure factoS(k), and the screening
3s 3s)? potentialH(r) deserve particular attentio8(k) is simply re-
+ (E) lated to the Fourier transform of the pair correlation function
h(r)=g(r) -1,
A= En . ~
4 S(k) = 1 +pigph(Kk), (67)

The quasiuniversal behavior for dense fluids, which holds

also for the OCP case, is replaced by two different behaviorghereasH(r) is defined in terms of the pair interaction po-
that depend on the inverse power law of the pair potential fotential and the pair distribution function. For YOCP system,
dilute fluids[18]. we have
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D*

............ HS dilute fluid
— — - HS dense fluid
— - — Effective HS
—— MD

FIG. 7. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD" vs normalized
temperaturd” of the Yukawa sys-
tem with x=0. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld[17,18 are compared
to MD calculations of Ohta and
Hamaguchi[19] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Woofl8,78.

T*
H(T) = Infg(r)] + e 69)

in ays units. In the same unit§(k):1+(3/4w)ﬁ(k).

tropy or the effective hard-sphere paramejgg. Note that it
can also be used to determine the nearest-neighbor distribu-
tion function either directly[85], or indirectly using known
properties of the HS reference system concerning nearest-

g(r) plays a central role in the theory of fluid since it neighbor statistics for packings of hard sphei@8,87. In-
enters in the determination of the equation of state and in thdeed, two different but closely related nearest-neighbor dis-
estimation of transport coefficients through the excess ertribution functionsHp(r) and Hy(r) can be defined. They

k=1
10°
y
1
10 FIG. 8. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD” vs normalized
temperaturd” of the Yukawa sys-
10° tem with k=1. The quasiuniversal
entropy scaling formulas for dilute
A and dense HS fluids proposed by
Rosenfeld[17,1§ are compared
0" - s to MD calculations of Ohta and
------------ HS dilute fluid Hamaguchi[19] and to the effec-
— — - HS dense fluid tive HS using the analytic formula
----- —-— Effective HS of Erpenbeck and WooflL8,7§.
_ — MD
10°
,//
v
10_3 P 1 -
10° 10' 10° 10°

T*
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10°
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10° |
*
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10" -
............ HS dilute fluid
— — - HS dense fluid
—-— Effective HS
; —— MD
10
10° o l R
10° 10" 10° 10

T*

FIG. 9. Self-diffusion coeffi-
cient normalized in terms of Ein-
stein frequencyD” vs normalized
temperaturd” of the Yukawa sys-
tem with «=3. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld[17,1§ are compared
to MD calculations of Ohta and
Hamaguchi[20] and to the effec-
tive HS using the analytic formula
of Erpenbeck and WoofiL8,7§.

only differ by the presence or the absence of a particle at theystem for Yukawa system first, and by extension, for many
chosen arbitrary reference point. It could be rather challengedifferent kinds of pair potential, owing to the flexibility of
ing to compare the predictions of the VMHNC to MC or MD the VMHNC theory. Curiously, the quantity that is deter-

simulations using analytical formulas for the vail(r) and

mined from scattering experiments is, howev8ik). But

particleHp(r) densities involvingres. One could thus bring both g(r) and S(k) enter explicitly in the study of excitation
some answer to the fundamental query of studying the effecdnd propagation of waves in dusty plasmas, as illustrated, for
of the nearest neighbor on some reference particle in thastance, by the QLCA. We have performed extensive calcu-

2 FIG. 10. Self-diffusion coeffi-

cient normalized in terms of Ein-
stein frequencyD” vs normalized
temperaturd” of the Yukawa sys-
tem with x=5. The quasiuniversal
entropy scaling formulas for dilute
and dense HS fluids proposed by
Rosenfeld[17,1§ are compared
to MD calculations of Ohta and
Hamaguchi[19] and to the effec-
tive HS using the analytic formula
of Erpenbeck and Woofl8,78.

K:S
10°
10" -
10° -
*
a
10717 e
= HS dilute fluid
— — - HS dense fluid
— - Effective HS
2 —MD
10 t
1()-3 | l l‘
10" 10' 102 |

T*
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k=0
10°
//’
1 ’/
10 Y 4
/ FIG. 11. Shear viscosity normalized in terms
of Einstein frequencyy” vs normalized tempera-
10° ture T" of the Yukawa system withc=0. The
quasiuniversal entropy scaling formulas for
" dilute and dense HS fluids proposed by
= i _ Rosenfeld[17,18 are compared to MD calcula-
10" e tions of Saigo and Hamagucli20] and to the
S HS dilute fluid effective HS using an analytic formula
— —~ HS dense fluid [18,23,80.
— - — Effective HS
102 L —— MD |
107 ‘
10° 10' 10° 10°
T*
lations forg(r) andS(k) using the VMHNC approach at vari- The properties of the screening potentifr) are unfor-

ous values ot” for integerx € [0,5]. As expected, we find tunately too often overlooked. This may be explained by the
that the most striking feature is the similarity known as thefact thatH(r) takes values in the region close to origin,
Hansen-Verlet rule concerning the height of the first peak ofvhere the potential is very highly repulsive and where the
S(k) near freezing71]. Moreover,S(k) becomes nearly in- resultingg(r) takes on very small valugpractically zero in
dependent of near the liquid-solid phase boundary. How- fact). The probability for very close encounters is essentially
ever, no other universal trend can be observed concerningero andH(r) is thus of delicate access by MC or MD simu-
eitherS(k) or g(r) and screening can have an important effectlations[35,69. However, the behavior di(r) at short sepa-

at lowt". ration plays an essential role in estimating the enhancement
=1
10°
10'
FIG. 12. Shear viscosity normalized in terms
of Einstein frequency;’ vs normalized tempera-
10° tureT" of the Yukawa system witk=1. The qua-
siuniversal entropy scaling formulas for dilute
= and dense HS fluids proposed by Rosenfeld
[17,18 are compared to MD calculations of
107 - Saigo and Hamaguchi0] and to the effective
""""""""" HS dilute fluid HS using an analytic formulgl8,23,8Q.
— — - HS dense fluid
—-— Effective HS
10 L W 1
107 :
10° 10' 10° 10°

T*
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=3
10°
10’ FIG. 13. Shear viscosity nor-
malized in terms of Einstein fre-
quencyy’ vs normalized tempera-
tureT" of the Yukawa system with
10° «k=3. The quasiuniversal entropy
scaling formulas for dilute and
& dense HS fluids proposed by
Rosenfeld[17,1§ are compared
107 to MD calculations of Saigo and
------------ HS dilute fluid Hamaguchi[20] and to the effec-
— —- HS dense fluid tive HS using an analytic formula
L e — - — Effective HS [18,23,8Q.
10 — M 4
10_3 0 ' ' ' ' : : 3

10 10' 10° 10

T*

factors of thermonuclear reaction rates and in studying théluid particles in the appropriate configuration to form an
influence of screening from bare Coulomb to Yukawa pairinteraction-site molecule, so thgg5]
interaction. MoreovertH(r) plays a key role in the study of
the short-range behavior of Bridge functions. Finally, the
zero separation theorem for the screening poteniélds9Qg
provides an important consistency test for approximate theo-
ries of the equation of state of fluid mixturgs9]. In this expressiontg*is the excess free energy per particle in

The pair correlation function can be expressed through thenits of kgT of the N-particle system in the presence of a
free energy change upon fixing the positions of the pair ouniform neutralizing background anff(r) is that of the

r
H(r)=-[f(r)-fgl+ ;e”- (69)

K=5
10°
10' | E
FIG. 14. Shear viscosity normalized in terms
of Einstein frequency;” vs normalized tempera-
10° ture T" of the Yukawa system withc=5. The
quasiuniversal entropy scaling formulas for
R dilute and dense HS fluids proposed by
= -l = Rosenfeld[17,18 are compared to MD calcula-
o L >~ e tions of Saigo and Hamagucii20] and to the
__________________ HS dilute fluid effective HS wusing an analytic formula
""""""""" — — - HS dense fluid [18,23,78.
_____ —-— Effective HS
102 ¢ —— MD |
107 :
10° 10’ 10° 10

T*
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t*=0.001

0.8 " T " T . T . :

0.6

FIG. 15. Normalized screening potential
H(r)/T in function of r in ayg units from the
VMHNC theory for«k=0,1,3,5 andnverse nor-
malized temperaturg =0.001.

0.4

Normalized screening potential

0.2

same system but with the pair of particles kept at fixed sepa- Since the PYHS Bridge function is linear and negative at
rationr, forming a two-site charge cluster in the presence ofthe origin, it is by no means trivial that the VMHNC will
both the remainingN-2)-particle system and the uniform give a well-behaved screening potential around the origin.
neutralizing background. Sinc&(r) already contains the We have plottecH(r)/I" obtained by the VMHNC theory at
intramolecular interactiofI'/r)e<, H(r) is finite asr—0. t=0.001,0.01,0.1,1 for integet [0,5] in Figs. 15-18.
According to Widom[90], H(r) can be expanded in even First, the screening can have dramatic impactgn values

powers around=0 with polynomial coefficients of alternate N€&r the origin. For instancl(0)/I" can be reduced to more
signs, than one order of magnitude fror=0 to k=5. Second, the

zero-separation law is satisfied fb=0.0001, approximately
H(r) =Hg = Hyr 2+ Hor* = Har + O(r). (70)  fort'=0.01, but not fon**=0.1 andt"=1. When we go from

low to high values ofT", the screening potential deviates
The coefficientH,, ... ,H; are sufficient to determined(r)  progressively from the general Taylor expansion given by
forr €[0, 1], i.e., when we have nearly no information about Eq. (70). This indicates that the linear behavior of the PYHS
g(r), but they are very difficult to obtain in the most general Bridge function is responsible for such a feature and contra-
case[36]. As for OCP howeverH,;=I'/4 [90] and H, is  dicts the plausible fact that both the direct correlation func-
nearly known. IndeedH, can be estimated combining Eg. fion and the Bridge function behave essentially as the screen-
(69) and the linear-mixing rule for binary ionic mixture. This iNd potential near the origip41]. Yet, the shape dfi(r)/I" is

H H . 3 .. —
approximation is known to be very accurate for stronglyn€arly linear over the regiofr:g(r)>10",r:g(r)=max, a

coupled plasmags5,36,69,91. This method has been proven féature shared also by the HS systg#d]. As already en-

to be very good for YOCP tof85,3. Using the excess free hanced by Rosenfelet al. [41], these conflicting tenqienmes

energyf & of the Yukawa systeni35] do not prevent the search of universal characteristics, be-
Y 1

cause the region where the feature is distinct is obviously the
Ho = 2f ST, k) — f (2571, 2Y3). (71)  region where for computational purposes the Bridge function
is undefined. As a practical point of view, what does it mean?
As above, two methods can be employed to calcufgfe Maybe we expect too much from the VMHNC theory that
namely, the analytical fits of the MD results of Hamaguehi has been proven so successful so far to describe such a com-
al. [11-13 or the VMHNC itself. This fact constitutes an- plicated system as YOCP with long-range and short-range
other stringent test of the internal consistency of the theorgharacteristics and with correlated and uncorrelated features,
becauseH, requires the excess free energy at two pointsdepending on the coupling and screening parameters. Since
inside the Yukawa plane, one of them not necessarily insidéhe behavior of the Bridge function is ill defined near the
the fluid domain. It is a kind of nonlocal test of an essentiallyorigin, we could imagine to introduce a tiny correction to the
local approach. Owing to this particularity of the VMHNC Bridge function such that the screening potential satisfies the
theory, the calculations are rather straightforward, as exwidom expansior{70). This can be viewed as an attempt to
plained above. minimize the VMHNC excess free energy under the con-
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t*=0.01

o
3

o
N

FIG. 16. Normalized screening potential
H(r)/T in function of r in ayg units from the
VMHNC theory for «=0,1,3,5 andinverse
normalized temperaturé=0.01.

<
~

Normalized screening potential

o
o

straint of satisfying the zero-separation theorem. Last but naems{I", x} and{2%°I", 2/3«} at the same time.

the least, note that it appears intriguing that the undefined Since such modifications of the VMHNC theory are be-
values of the Bridge function near the origin have negligibleyond the scope of this paper, we have tried to estinikte
effects on the structure function, thermodynamic quantitiesiH,, andH, of Eq. (70) using the method proposed by Rosen-
and transport coefficients, as long as the PYHS Bridge funcfeld [35] to extrapolate the MC data for the OCP screening
tion is employed, whereas theses values are intimately corpotential made zero, given the simulations data in the range
nected to excess free energy difference of two Yukawa syd+ min, 2] in aws units, wherer,i,=1 for I'=160 andr;,

t*=0.1

1.2 " T " T . T . :

0.8

FIG. 17. Normalized screening potential
H(r)/T in function of r in ayg units from the
VMHNC theory fork=0,1,3,5 andnverse nor-
malized temperatur€ =0.1.

0.6

0.4

Normalized screening potential

0.2

066402-20



DESCRIPTION OF STRONGLY COUPLED YUKAWA. PHYSICAL REVIEW E 69, 066402(2004)

t*=1

1.2 " T " T . T . :

FIG. 18. Normalized screening potential
H(r)/T in function of r in ayg units from the
VMHNC theory for «=0,1,3,5 andinverse
normalized temperaturé=1.

Normalized screening potential

~0.5 forI'=10. This is performed after solving the MHNC
equations with the usual PYHS Bridge function. Using Eq.
(70), H(r) can be written as

f(r) forr=r,, (72) The extrapolation method of RosenfejRosenfeld, Eq(73)] is

) compared to the Jancovici meth@Eq. (71)] using the fits to the
where f(r) representsH(r)/I" obtained from the VMHNC  MD results of Hamaguchgt al. [11-13 (Jancovid) and the VM-
theory and expanded in Chebyshev polynomials. The fouHNC theory(Jancovid?).
unknown parametefs, h;, h,, andr, are determined requir-

H(r)/T = {ho_ hyr?+hor  forr<rg TABLE II. Screening potentials for the one-component plasma.

ing that the function and its first three derivatives are con- Rosenfeld Jancovigi Jancovic?
tinuous atr: T o h, h, ho ho ho
2 4
f(ro) =ho = harg + hor, 10000 1.420 0021 0223 1072 1.099 1.099
) = — Db+ 4y 20.000 1.103 0.021 0.221 1.069  1.095 1.096
(ro) == 2yro+ 4n,ro, 30.000 1.017 0.024 0230 1072 1.091 1.092
, ) (73 40000 0975 0027 0239 1076 1.088 1.088
f"(ro) = = 2hy + 12h,rg,
50.000 0.930 0.030 0.246 1.080 1.085 1.086
e 60.000 0.895 0.032 0.253 1.084 1.083 1.084
f7(ro) = 24h,ry.
70.000 0.884 0.034 0.259 1.088 1.082 1.082
Equations(73) generalize Eqg(10) of Ref. [35] to consider  g0.000 0.871 0.036 0.264 1.091  1.080 1.081
the case in Wth"ﬂl is not assumed to be already known. We 90.000 0.788 0.038 0.268 1.094 1.079 1.080

method (Rosenfeld wif respect o the values, evtacted 10000 0765 0040 0273 108 1078 1078
from the MD simulations[llfla (Jancovic?) or from the 11000 0.789 0041 0276 1098 1077 1.077
VMHNC theory (Jancovic?) using Eq.(71). For simplicity, 12000 0.788 0.042  0.280  1.101  1.076 1077
we have takerr,,,=0.5, i.e., we have assumed that the130.00 0.786 0.043 0283 1103  1.076 1.076
screening potential calculated by the VMHNC theory in the140.00 0.783 0.044  0.285 1.105  1.075 1.075
interval [0.5,2] for all values ofI' is known. SinceH; 150.00 0.691 0.046 0.289 1.106 1.074 1.074
=I"/4 for OCP, we tried to mimic exactly what Rosenfeld did 160.00 0.687 0.047 0.290 1.108 1.074 1.073
in Ref.[35] by looking for solutions of his set of Eq€l0) at  170.00 0.683 0.048 0.294 1.109  1.073 1.071
fixed H,. However, we did not find any soluf[ions. S0, We 18000 0.680 0.049 0.295 1.111  1.073 1.070
were forced to look for solutions of Eqe73) with H, as a
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free parameter too. As seen in Table Il, results are not badystem parametef§’, «}. A variational method has been pre-
The matching point, andh,=H,/I" decrease with increas- sented to speed up the resolution of the MHNC integral
ing I andh, remains small. Howeveh,=H,/I" departs no-  equations at strong coupling. The liquid-solid phase bound-
tably from the nominal value 0.25 anith=Ho/I" has the ary of the Yukawa system can be reproduced with a very
wrong behavior with increasind” and remains notably good accuracy using three different freezing indicators, i.e.,
around 1.1. Compared to Jancoticeference calculations, the Hansen-Verlet rule, the Bridge freezing rule, or the freez-
discrepancies may reach 2%. Note that our updateghq properties of the effective hard-sphere system that enters
Jancovici's original expressiof®0] using the fits of MD re- —j,%pe IMHNC theory. The screening potential can be esti-
sults [11-13, i.e., Jancovid| gives results identical to the .04 with good accuracy, except in the vicinity of the origin

ones given by Rosenfeld in Table | of R¢85] using the where the Widom ex ;

X . pansion breaks down for strong cou-
most accurate fit to the_’best_ OCP MC data} at the time. As fOE)Iing. Explanations and solutions have been proposed to
our updated Jancovici's original expressif®0] using di-

rectly the VMHNC theory, i.e., Jancoviciwe can see that remedy this tiny defect. Extensive comparisons with simula-
the predicted values fdmy are nearly identical with the ref- tion results have shown th"’.‘t the VMHNC ap_proaqh IS very
erence calculations denoted by Jancévici powerful to calculate equation of state quantities, i.e., pres-

What can explain these facts? It is clear that the lineafure. internal energy, free energy, and entropy. It has been
behavior of the PYHS Bridge function is one cause. AnothefProven that this method can also be very efficient to estimate
reason may be simply the overall VMHNC theory strategytransport coefficients, i.e., self-diffusion, shear viscosity, and
itself, which stands on a variational principle to calculate thethermal conductivity. One can employ either the known
excess free energy of the YOCP system. As usual, there is rigansport coefficients of the HS system or the quasiuniversal
guarantee that this method will produce reliable estimate of gntropy scaling of Rosenfeld based on a correspondence be-
guantity other than excess free energy, especially where rigveen transport coefficients and reduced excess entropy.
reference is made to a particular quantity we want to calcu- The method presented here can be extended to other sys-
late during the minimization process. The VMHNC is very tems and to other properties for which expressions are
powerful where it has been designed to be so, and does itghown for the hard-sphere system. The same method can be
best where nothing could be expected frona ipriori. It is  applied to mixtures.
clearly challenging to try to solve the VMHNC under con-
straint, i.e., by respecting the Widom expans(@n).
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