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The thermal convection of modulated viscoelastic flow is examined in this study. The modulation is assumed
to be weak enough for a regular perturbation solution to be implemented. In addition to being more accurate,
the second-order perturbation results reveal new physical phenomena that could not be predicted by the
first-order analysis. Inertia was found to enhance globally the discrepancies between the first- and the second-
order perturbation solution. A comparison between the Newtonian and the non-Newtonian solution is carried
out and the influences of inertia, modulation amplitude, and wave number are emphasized. The present results
show that elasticity has a marked effect on fluid patterns, especially regarding the roll structure and symmetry.
The influence of elasticity is greater for larger Rayleigh number and aspect ratio.
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I. INTRODUCTION

Thermal convection and flow in a microchannel with
modulated walls is a classical problem that has attracted re-
newed interest because of its immediate relevance to novel
microtechnologies, such as compact heat exchangers, and
membrane blood oxygenators in extracorporeal systems[1].
Moreover, the analysis of such flows can help to understand
the generation of wind waves due to the change in the sur-
face of the earth temperature as well as the atmosphere[2].
The flow can exhibit many of the features present in much
more complex geometries, which can significantly impact
heat or mass transfer performance. This richness in physical
phenomena in a relatively simple geometry motivates funda-
mental interest by providing an ideal setting to understand
pattern formation for both Newtonian and non-Newtonian
fluids [3].

The effects of spatial wall variations on the steady flow
between smooth boundaries were examined only relatively
recently [see Ref.[4] and bibliography therein]. One may
refer to such variations from perfect geometries as dirty ef-
fects. On the other hand[5], these deviations can lead to
interesting phenomena, which are not present in systems of
high geometry. Sidewalls, for example, may restrict the
structure of stable wave numbers for cellular patterns or
modify the orientation of convection rolls[6–8]. Reflection
effects [9] or dynamical structures[10] can be induced in
systems such as rotating Rayleigh-Bénard convection. Ir-
regularities at the boundaries may lead to localized cellular
structures at the threshold of convection, similar to those of
gravity waves[11]. Such phenomena modify the bifurcation
behavior of cellular structures, as shown for a model system
[12].

To gain insight on the effects of roughness in pattern for-
mation, it is often helpful to have it replaced with periodic

modulations. One may replace, for instance, imperfections at
the boundaries in convection by temperature variations and
analyze their consequences for the onset of convection.
Davis [13] studied the case of temporal periodic variations.
Kelly and Pal[14] examined the effects of spatially periodic
boundary conditions on the stability of the Rayleigh-Bénard
problem. Chen and Whitehead[15] evaluated the extent to
which well-defined initial perturbations affect stable bound-
aries, although they were steady in time. The practical value
is that one might want to make the boundary wavy if the
mean Nusselt number could be increased, which have moti-
vated Watson and Poots[16] to study the effects of wavy
boundaries on laminar free convection in a flow between
parallel vertical walls.

Other modulated systems have also been examined, such
as the flow through sinusoidally shaped channels. Steady
flow [4,17], as well as stability aspects were considered
[18,19]. Modulated rotating flow was also considered. Re-
cently, Li and Khayat showed the existence of interesting
pattern formation in modulated Taylor-Couette flow for
Newtonian fluids[20].

Interesting effects in pattern formation are related to finite
size or inhomogeneity effects. However, the flow of complex
fluids present additional exciting phenomena. In the present
paper, the modulated thermal convection of viscoelastic flu-
ids is examined. The solution is obtained by mapping the
physical domain onto the rectangular computation domain,
and applying a perturbation representation for the trans-
formed equations, similarly to Zhouet al. [4,17]. The results
based on the perturbation method will be benchmarked
against results obtained from a traditional finite-volume for-
mulation for Newtonian thermal convection. The influence of
the Rayleigh number, Deborah number, dimensionless wave
number, and amplitude on the flow and heat transfer is em-
phasized.

*Corresponding author. Email address: rkhayat@eng.uwo.ca

PHYSICAL REVIEW E 69, 066319(2004)

1539-3755/2004/69(6)/066319(19)/$22.50 ©2004 The American Physical Society69 066319-1



II. PROBLEM FORMULATION AND SOLUTION
PROCEDURE

In this section, the general equations and boundary con-
ditions for the steady-state flow of a viscoelastic fluid in a
weakly modulated channel are derived for a small-amplitude
modulation. A regular perturbation expansion for the flow
field is carried out after the equations are mapped over a
rectangular domain, reducing the problem to a set of ordi-
nary differential equations with homogeneous boundary con-
ditions, which will be solved using a variable-step-finite-
difference scheme.

A. Governing equations and boundary conditions

Consider the steady-state flow of an incompressible non-
Newtonian fluid lying horizontally between two infinite rigid
stationary boundaries, the lower being straight and the upper
periodically modulated. LetT0 and T0+dT be the tempera-
tures of the upper and lower plates, respectively, withdT
being the temperature difference. The problem is first intro-
duced in thesX,Zd plane, with theX axis taken along the
lower wall and theZ axis along the direction perpendicular
to the plates. The general shapes of the lower and upper
plates are given byZ=0 andD+AfsXd, respectively.D is the
mean channel width andA is the modulation amplitude. Here
fsXd is a general dimensionless function ofX that may be
arbitrarily prescribed. In this work, however, a sinusoidal
modulation will be considered. The substances of main inter-
est are assumed to obey the following equation of state:

r = r0f1 − bsT − T0dg, s1d

where r0 is the density atT0 and b is the coefficient of
volumetric expansion.

The fluid is assumed to be incompressible viscoelastic
polymeric solution of densityr, relaxation timel, and vis-
cosity m. In this study, only fluids that can be reasonably
represented by a single relaxation time and constant viscosity
are considered. The polymeric solution is assumed to be
composed of a Newtonian solvent of viscosityms, and a
polymeric solute of viscositymp, such that the solution vis-
cosity is given bym=ms+mp. Regardless of the nature of the
fluid, the continuity and momentum balance equations must
hold. If the Boussinesq approximation, which states that the
effect of compressibility is negligible everywhere in the con-
servation equations except in the buoyancy term, is assumed
to hold, then, the equations for conservation of mass, mo-
mentum, and energy read, respectively,

= ·U = 0, s2d

r0U · =U = = · s + rg, s3d

U · =T = k=2T, s4d

whereUsU ,Wd is the velocity vector,s is the stress tensor,
= is the two-dimensional gradient operator,g is the gravity
acceleration vector,k is the thermal diffusivity, andT is the
temperature. The deviatoric part of the stress tensors is
composed of a Newtonian component, corresponding to the

Newtonian solvent, and a polymeric componentT corre-
sponding to the solute. Thus,

s = − PI + mss=U + =Utd + T , s5d

whereP is the hydrostatic pressure,I is the identity matrix,
andt denotes matrix transposition. The constitutive equation
for T is taken to correspond to an Oldroyd-B fluid, which
can be written as[21]

lsU · =T − T · =U − =Ut ·Td + T = mps=U + =Utd. s6d

In the limit ms→0, the system(1)–(6) reduces to that corre-
sponding to a Maxwell fluid. On the other hand, in the limit
mp→0, the Newtonian fluid is recovered. The boundary con-
ditions are given by

UsX,Z = 0d = UsX,Z = D + Afd = 0,

TsX,Z = 0d = T0 + dT,

TsX,Z = D + Afd = T0. s7d

The dimensionless coordinates,x andz, velocity components
u and w, pressure and components ofT p, q, r, ands, and
temperatureu are introduced as follows:

x =
X

D
, z=

Z

D
, u =

DU

k
, u =

T − T0

dT
,

p =
D2

mk
sP + r0gZd, sq,r,sd =

D2sTzz,Txx,Txzd
mk

. s8d

Five dimensionless groups emerge in the problem, namely,
the Rayleigh number, the Prandtl number, the Deborah num-
ber, the solvent-to-solute ratioRV, and the aspect ratio«:

Ra =
dTgbD3

ky
, Pr =

y

k
, De =

kl

D2, Rv =
ms

mp
, « =

A

D
,

s9d

where n=m /r, is the kinematic viscosity. In this case, the
equations for conservation of mass, momentum, and energy
become

ux + wz = 0, s10d

Pr−1suux + wuzd = − px + aRvDu − rx − sz, s11d

Pr−1suwx + wwzd = − pz + aRvDw + Rau − sx + qz, s12d

uux + wuz = Du, s13d

whereas the constitutive equation(6) leads to

usx + wsz − suzq + wxrd= − De−1fs+ asuz + wxdg, s14d

urx + wrz − 2suzs+ uxrd = − De−1sr + 2a uxd, s15d
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uqx + wqz − 2swzq + wxsd = − De−1sq + 2a wzd, s16d

where a subscript denotes partial differentiation,D is the
two-dimensional Laplacian operator, anda=1sRv+1d
=mp/m is the polymer-to-solution viscosity ratio. The above
equations must be solved subject to the following boundary
conditions:

usx,z= 0d = usx,z= 1 +«fd = wsx,z= 0d = wsx,z= 1 +«fd

= 0,

usx,z= 0d = 1, usx,z= 1 +«fd = 0. s17d

It is further assumed that the flow field(velocity and pres-
sure) is spatially periodic, commensurately with the wall
modulation. This periodicity condition is written as

usx = 0,zd = usx = 2p/a,zd,wsx = 0,zd = wsx = 2p/a,zd,

usx = 0,zd = usx = 2p/a,zd,psx = 0,zd = psx = 2p/a,zd,

qsx = 0,zd = qsx = 2p/a,zd,rsx = 0,zd = rsx = 2p/a,zd,

ssx = 0,zd = ssx = 2p/a,zd, s18d

wherea is the dimensionless channel wave number related
to the wavelengthl by the relation:l=2p /a. The problem
(11)–(19) is defined over the physical domainVxz
= [sx,zd /xP f0,lg ;zP f0,1+«fsxdg], which is next mapped
onto the rectangular domain. The physical domain and flow
configuration are schematically illustrated in Fig. 1.

B. Domain transformation

The periodic physical domainVxz is mapped onto the
rectangular domainVjh= [sj ,hd /jP f0,lg ;hP f0,1g]. Here,

jsx,zd = x,hsx,zd =
z

1 + «fsxd
, s19d

where 1+«fsxd is the dimensionless gap. The transformed
equations and boundary conditions are given in Appendix A.
The solution to Eqs.(A1)–(A7) is sought subject to condi-
tions (A8). This is a difficult nonlinear two-dimensional
problem, with variable coefficients in the governing equa-
tions. There are, however, some limit flows that may be con-
sidered, which can simultaneously be of practical and funda-
mental significance.

C. Perturbation expansion and solution procedure

In this work, only small-amplitude modulation is exam-
ined, so that« is smalls«!1d. A regular perturbation expan-
sion is used on the velocity, the pressure, the temperature,
and the stress components:

v=v0 + «v1 + «2v2 + Os«3d, s20d

where v=su,e,u ,p,q,r ,sd. Terms ofOs«3d and higher are
neglected. Substitution of expressions(20) into Eqs.
(A1)–(A7) and conditions(A8) leads to a hierarchy of equa-
tions and boundary conditions that must be solved to each
order in«. To leading order in«, one recovers the equations
encountered for a fluid lying between two straight plates. In
this case,

u0 = w0 = 0, ph
0 = Ras1 − hd, u0 = 1 −h. s21d

The equations toOs«d become

uj
1 + wh

1 = 0, s22d

− pj
1 + aRvsujj

1 + uhh
1 d − rj

1 − sh
1 = − hf8ph

0 , s23d

− ph
1 + aRvswjj

1 + whh
1 d − sj

1 − qh
1 + Rau1 = − fph

0 , s24d

w1uh
0 − ujj

1 − uhh
1 = 0, s25d

s1 + asuh
1 + wj

1d = 0, s26d

r1 + 2auj
1 = 0, s27d

q1 + 2awn
1 = 0, s28d

which must be solved subject to

1u1

w1

u1 2sj,h = 0d = 1u1

w1

u1 2sj,h = 1d = 0,

v1sj = 0,hd = v1sj = 2p/a,hd. s29d

Note that the first expressions in Eq.(21) have been used.
The general solution of the nonhomogeneous system
(22)–(28) may be written as

v1sj,hd = o
n=1

N

vn
11shdsinsnaxd + vn

12shdcossnaxd. s30d

The equations toOs«2d for a non-Newtonian fluid become

uj
2 + wh

2 = nf8uh
1 − fwh

1 , s31d

− pj
2 − rj

2 − sh
2 + aRvsujj

2 + uhh
2 d

= Pr−1su1uj
1 + w1uh

1d − nf8ph
1 − hf8rh

1 − fsh
1

− aRvs− 2hf8ujh
1 − 2fuhh

1 − nf9uh
1d + nf8fph

0 ,

s32d

FIG. 1. Physical domain and flow configuration for a spatially
modulated channel.
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− ph
2 − f2ph

0 − sj
2 − qh

2 + Rau2 + aRvswjj
2 + whh

2 d

= Pr−1su1wj
1 + w1wh

1d − fph
1 − hf8sh

1 − fqh
1

− aRvs− 2hf8wjh
1 − 2fwhh

1 − nf9wh
1d, s33d

ujj
2 + uhh

2 − w2uh
0 = − 2nf8ujh

1 − 2fuhh
1 − nf9uh

1 + nf82uh
0,u1uj

1

− nf8u1uh
0 + w1uh

1 − fw1uh
0 , s34d

− De−1ss2 + auh
2 + awj

2d = u1sj
1 + w1sh

1 − r1wj
1 − q1uh

1

− aDe−1sfuh
1 + fhwh

1d, s35d

− De−1sr2 + 2auj
2d = u1rj

1 + w1rh
1 − 2r1uj

1 − 2s1uh
1

− 2aDe−1hf8uh
1 , s36d

− De−1sq2 + 2awh
2d = u1qj

1 + w1qh
1 − 2s1wj

1 − 2q1wh
1

− 2aDe−1fwh
1 , s37d

which must be solved subject to

1u2

w2

u2 2sj,h = 0d = 1u2

w2

u2 2sj,h = 1d = 0,

v2sj = 0,hd = v2sj = 2p/a,hd. s38d

Note that the first of expressions(21) has been used. The
general solution of the nonhomogeneous system(31)–(37)
may be written as

v2sj,hd = o
m=1

M

o
n=1

N

vnm
21 shdsinsn + mdax

+ vnm
22 shdcossn + mdax + vnm

23 shdsinsn − mdax

+ vnm
24 shdcossn − mdax. s39d

The coefficients in expansions(30) and(39) are governed by
two sets of ODEs, which are solved using a variable-step
finite-difference scheme(subroutine IMSL-DBVPFD inFor-

tran). The basic discretization is the trapezoidal rule over a
nonuniform mesh chosen adaptively so that the local error
has approximately the same size everywhere. The linear sys-
tem of equations is solved using a special form of Gauss
elimination that preserves sparseness. At this point, it is nec-
essary to introduce explicitly the modulated wall profilef.
Various wall configurations may be easily incorporated, in-
cluding arbitrary wall shape, as long as the shape is continu-
ous. In this work, however, the upper wall is assumed to be
modulated in the form of a cosine wave such that

fsjd = cossajd, s40d

The corresponding equations in this case for the first and the
second order are detailed in Appendixes B and C.

III. RESULTS AND DISCUSSION

In this section, the influence of inertia, elasticity, and
modulation parameters is examined on the thermal convec-
tion pattern. The numerical assessment of the numerical
implementation is also carried out against the finite-volume
method for a Newtonian fluid. All results reported below are
based on Pr=10. Since the effect of the viscosity ratio is to
modify the elastic character of the fluid, only the influence of
the Deborah number is examined, with the viscosity ratio
fixed to Rv=1.

A. Newtonian flow and numerical assessment

Consider first the modulated thermal convection of a
Newtonian fluid. This flow is important, as it constitutes a
limit case for the viscoelastic fluid, and will be used for
numerical assessment. Recall that for a Newtonian fluid ei-
ther the first- or second-order solution may be used. In this
case, the validity of the first- and second-order solutions will
be assessed against the finite-volume method(Fluent), which
will be taken as exact. Typically, a grid of 138340 elements
is chosen. Periodic boundary conditions are imposed, with
negligible flow rates10−9 kg s−1d. The Boussinesq approxi-
mation is also imposed. The second-order resolution is cho-
sen, and the convergence criteria are set to 10−4 for the mo-
mentum and 10−6 for the continuity and energy conservation
equations. Convergence is typically secured after 700 itera-
tions. It is well established that while the semianalytical first-
order perturbation expansion leads to an accuracy in the or-
der of «2, this accuracy is improved to order«3 for the 2nd
order perturbation expansion. Although it may be generally
inferred that the qualitative picture remains the same for any
order, this may not always be true as will be observed later.

The overall influence of the truncation level is illustrated
in Fig. 2, for a Newtonian flow at Ra=1200,«=0.1, anda
=1.5. In these figures, the first- and second-order solutions as
well as the finite-volume solution are displayed for compari-
son. The velocity, temperature, and pressure profiles are plot-
ted againstz at x/l=0.43, and againstx/l at z=0.3. These
locations are deliberately chosen where the difference among
the three methods is greatest. The three methods exhibit the
same qualitative picture for all variables except forw. In-
deed, the results for the second-order and the finite-volume
solutions are very close. The larger discrepancy is found to
be for the velocity componentsu and w between the first-
and second-order(or Fluent). This is also confirmed below
when the average relative error is examined. The temperature
distribution is the same regardless of the solution method.
The pressure magnitude is essentially the same for the per-
turbation methods, but is slightly underestimated.

The accuracy of the numerical implementation is further
assessed by monitoring the relative error to each order of the
perturbation solution against Fluent. In this case, although
the results based on Fluent imply a certain level of inaccu-
racy, they will be taken to correspond to the exact solution.
Figure 3 shows the average relative error in percentage for
each variable, namelykesudl, keswdl, kesudl, and kespdl as
function of the Rayleigh number. The error is defined, for
each variablev, by esvd=100usv«−v fd /v fu, wherev« and v f
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are the variables based on the perturbation method and the
finite-volume method, respectively. In general, there is a sig-
nificant improvement when the second-order terms are in-
cluded, reducing the error to less than a few percent. Finally,

additional numerical assessment was carried out by monitor-
ing the change in volume flow rate. The flow rate is found to
be conserved to within 10−6 for both the first- and the
second-order perturbation analysis. Given the assessment

FIG. 2. Streamwise and depthwise velocity, temperature, and pressure distributions atx/l=0.43 for Ra=1200, Pr=10,«=0.1, anda
=1.5. The figure shows the distributions based on the first-, second-order perturbation, and finite-volume methods.
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above, all the results reported below will be based on the
second-order perturbation solution.

B. Influence of elasticity

The influence of elasticity is best assessed by varying De
and keeping the remaining parameter fixed. The Newtonian
flow remains significant in this case, as it constitutes the limit
of viscoelastic flow for vanishingly small Deborah number
or infinite viscosity ratio. The overall change between New-
tonian and non-Newtonian behavior is typically summarized
in Fig. 4, which compares the flow and temperature fields for
Ra=1200,«=0.1, anda=1.5. Here De=1 for the viscoelas-
tic flow. Note that the same scale is used for each variable for
clarity of comparison. A noticeable effect of the elasticity is
the distortion of the convective cells, which is particularly
evident from the velocity contours. The streamlines indicate
that the cells become diamondlike as opposed to circular, and
increase in size in the non-Newtonian case. As a result, the
downward flow has increased in strength below the trough.
Thus elasticity tends to make the cells more symmetrical
compared to the Newtonian pattern. Recall from the discus-
sion above that the loss of symmetry is directly related to the
strength of the second-order terms. In this case, the higher-
order terms induce a loss of symmetry in the velocity rather
than the streamlines. Although the temperature remains es-
sentially unaffected by elasticity, the pressure exhibits some

modulation in the streamwise direction. The level of distor-
tion depends on both elastic and inertial effects.

The influence of inertia is now examined by varying the
Rayleigh number Ra from 300 to 1500, while keeping the
other parameters as before. Figure 5 shows the influence of
inertia for both Newtonian and non-NewtoniansDe=2d flu-
ids. In the Newtonian case, besides the expected increase in
flow intensity, the rolls retain their circular shape, and tend to
center below the crests, with increasing distance in between,
as Ra increases. The relative void below the trough leads
eventually to the birth of two new weak vortices of opposite
direction. In contrast, in the non-Newtonian case, the rolls
tend to distort in shape, approaching one another, as Ra in-
creases. New rolls appear below the crest.

Further quantitative assessment is inferred from Fig. 6,
where the velocity, temperature, and pressure distributions
are plotted across the channel for the same fluids as in Fig. 5.
The horizontal location is fixed atx/l=0.43, where non-
Newtonian effects can be clearly illustrated. It is clear that an
increase in inertia leads generally to an increase in flow in-
tensity. However, in the Newtonian case, it is observed that
for Ra.1200 the flow intensity diminishes with Ra as a
result of the shift in roll position, but eventually significant
flow activity is predicted as the new rolls appear. It is inter-
esting to note that the streamwise(depthwise) flow remains
essentially antisymmetric(symmetric) with respect to the
middle of the roll; the slight loss of symmetry is almost

FIG. 3. Average relative error ofu, w, u, and p against Ra for Pr=10,«=0.1, anda=1.5. The figure shows the errors between the
perturbation method and the finite-volume method, whose solution is taken as exact.
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solely due to wall modulation(see theu andw curves in Fig.
6). In contrast, the symmetry is entirely lost for the non-
Newtonian fluid. The flow strengthens monotonically with
Ra. Another effect of inertia is the deviation of the tempera-
ture from the linear distribution, especially for the viscoelas-
tic fluid. Despite the significant departure in the flow struc-
ture between the Newtonian and non-Newtonian fluids as Ra
increases, the pressure distribution remains qualitatively the

same, with the pressure magnitude being slightly higher for
the viscoelastic fluid, particularly near the lower plate. Un-
like the flow velocity (see below), the pressure appears to
increase only linearly with Ra. The insensitivity to non-
Newtonian effect of the pressure can be of important practi-
cal significance. In lubrication flow, for instance, the separat-
ing force is essentially independent of the level of elasticity
of the fluid.

FIG. 4. Comparison of mean flow patterns based on the second-order perturbation method for a Newtonian and a non-Newtonian fluid
(De=1 andRv=1) for Ra=1200, Pr=10,«=0.1, anda=1.5. The figure displays the streamlines,u, w, u andp contours.
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A relevant parameter to examine in the case of convection
problems is the Nusselt number Nu which is the ratio of the
actual heat transfer to the heat transfer that would occur by
conduction alone in the case of steady-state flow between
straight plates. In the present problem, the Nusselt number is
given as Nusxd=−]u /]yuy=0. Figure 7 illustrates the variation
in Nu againstx/l for several values of Ra. The upper-wall
modulation is also shown for reference. It is noted that at

Ra=0, Nu is not constantly equal to 1 as one would expect
for the flow between parallel plates. In this case, NusxdRa=0
=1/1+«fsxd. Generally, for a Newtonian fluid, convection
tends to be strongest beneath the crest, in contrast to the case
of a viscoelastic fluid where Nu is highest beneath the
trough. The appearance of additional peaks and valleys in the
Nu distributions corresponds to the emergence of additional
rolls (compare Figs. 5 and 7).

FIG. 5. Influence of inertia on flow streamlines for a Newtonian and a non-Newtonian fluid(De=2 andRv=1) for RaP f300,1500g,
Pr=10,«=0.1, anda=1.5.
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The influence of elasticity on the flow is examined next
by varying the Deborah number De, for a flow at Ra5 1200,
keeping the remaining parameters as before. Figure 8 shows
the change in flow structure as De increases. The major de-
parture from Newtonian behavior is in the form of roll dis-

tortion and the birth of the additional rolls below the crests.
Recall that viscoelastic effects are of second order and higher
in «. As De increases, it is then expected that the flow be-
comes increasingly modulated, as expressions(39) suggest.
The additional modulation corresponds to a wavelength

FIG. 6. Influence of inertia onu, w, u, and p distributions for a Newtonian and a non-Newtonian fluid(De=2 andRv=1) at x/l
=0.43 for RaP f300,1500g, Pr=10,«=0.1, anda=1.5.
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equal to half that of the wall, which explains that four rolls
can be accommodated at De=7 in the case of a viscoelastic
fluid.

The elasticity-enhanced distortion and additional modula-
tion are clearly confirmed in Fig. 9. The modulation, how-
ever, is only visible in the velocity distributions. The effect
of elasticity tends to be limited concerning the temperature,
which shows small deviation from linear behavior. Similarly,
the pressure increases only slightly and linearly with De,
confirming the earlier observation that fluid elasticity is es-
sentially uninfluential on the pressure.

The overall interplay between inertia and elasticity is in-
teresting to examine. For this purpose, the influence of both
Ra and De is assessed on the maximum of the velocity mag-
nitude uu,wumax=maxfÎsu2+w2dg, which is taken to reflect
the flow intensity. Figure 10 shows projections over the
ranges DeP f0,5g and RaP f30,1500g. While the increase in
flow intensity with Ra is monotonic, it is piecewise linear
with respect to De. A remarkable feature in Fig. 10 is the
absence of elasticity influence at low Rayleigh number. As

Ra increases, the flow intensity increases slightly with De. At
large Ra, the flow intensity exhibits a minimum.

The overall influence of both inertia and elasticity on the
thermal convection is examined by assessing the dependence
of the mean Nusselt number,

FIG. 7. Influence of inertia on the Nusselt number distribution
along the channel, Nusxd, for a Newtonian and a non-Newtonian
fluid (De=2 andRv=1) for RaP f0,1500g, Pr=10,«=0.1, anda
=1.5. The gray solid line represents the upper wall geometry.

FIG. 8. Influence of elasticity on flow streamlines for De
P f0,7g, Rv=1, Ra=1200, Pr=10,«=0.1, anda=1.5.
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kNul =
a

2p
E

0

2p/a

Nusxddx,

on Ra and De, as illustrated in Fig. 11. It is found thatkNul
increases linearly with De, at any Ra. For small
RasRa,1200d, the mean Nusselt number is essentially inde-
pendent of De. This is an interesting prediction since it states
that, while Nu changeslocally drastically between the New-
tonian and non-Newtonian cases(see Fig. 7), suggesting a
strong difference in the local heat convection, Fig. 11 clearly
indicates that theoverall heat convection is unaffected by
elasticity for most of the practical range of Rayleigh num-
bers. For the highest Ra level consideredsRa=1500d, the
change inkNul is 25% between a Newtonian fluidsDe=0d
and a strongly elastic fluidsDe=5d. In contrast, the influence
of Ra on the overall convection is strong, askNul has nearly
tripled when Ra is increased from 30 to 1500.

C. Influence of modulation geometry

The effect of the modulation geometry is best assessed by
varying the modulation wave numbera and amplitude«.
The influence of these two parameters on the flow pattern is
expected to be significant since they dictate the level of cou-
pling between the leading and higher-order perturbation
terms. Relatively strong values ofa and« unavoidably lead
to nonlinear enhancement.

The overall influence ofa is reflected in Fig. 12, where
the streamlines are displayed for both a Newtonian and a
non-Newtonian fluid at for«=0.1, Ra=1200, and De=2. In
the Newtonian case, an increase ina causes the rolls to oc-
cupy an increasingly higher portion of the flow. The rolls
tend to embrace the shape of the two walls while simulta-
neously invading the area beneath the trough(see the case
a=5). In contrast, the convection of a non-Newtonian fluid
exhibits a significant distortion of the rolls, leading to the
birth of secondary vortices beneath the crest near the upper
wall, beneath the trough near the lower wall, and on the sides
(see the casea=3). This behavior is enhanced by elasticity
(not shown). As a increases further, the secondary vortices
disappear by merging together, resulting in a pattern similar
to the one for lowa (compare the casea=5 anda=1).

The profiles in Fig. 13 confirm the consistency in the
Newtonian roll structure; all velocity, temperature, and pres-
sure profiles remain unaltered in shape asa changes. In the
non-Newtonian case, it is interesting to observe that the ve-
locity profiles are modulated for anya value; however, the
modulation amplitude is vanishingly small for small and
large wave number. Although the temperature displays the
same response as for a Newtonian fluid, the pressure exhibits
weak modulation, which is particularly visible fora=3.

The overall interplay between the modulation number and
elasticity is summarized in Figs. 14 and 15. The flow inten-
sity exhibits a maximum at a wave number slightly smaller
than 3, which is sensibly the same for any level of elasticity.
Thus, this is the optimal wave number that is required to

FIG. 9. Influence of elasticity onu, w, u, andp distributions for DeP f0,7g, Rv=1, Ra=1200, Pr=10,«=0.1, anda=1.5.
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observe the convective pattern in practice, regardless of the
fluid used. Elasticity simply enhances monotonically the
flow intensity (see Fig. 14). This enhancement depends
strongly ona, and seems to be greatest fora close to 3(see
bottom of Fig. 14). The average Nusselt number in Fig. 15
shows that the overall convection remains unaffected by fluid
elasticity for any wave number. This is also confirmed from
the lower right-hand figure, which shows that the depen-
dence of heat convection ona is dictated by a universal
curve. This universal character is in sharp contrast when the
dependence of thermal convection on Ra is examined(not
shown). At low Ra, for instance,kNul does not even exhibit
a maximum witha.

The overall influence of the wall modulation amplitude«
is illustrated in Fig. 16 for Ra=1200 anda=1.5. From this
figure, it is seen that« has a marked effect on the flow
pattern, which is similar to the effect of inertia on both the
Newtonian and viscoelastic fluids(compare with Fig. 5).
Thus, the increase in modulation amplitude causes a similar
response as the increase in inertia: roll distortion and birth of
new rolls. There is, however, a significant difference in the

pressure. Figure 16 indicates that an increase in Ra leads to
linear increase inp. Additional calculations show thatp is
sensibly independent of«. The pressure is then predicted to
increase with temperature(difference), but remains unaf-
fected by modulation amplitude. Figure 17 displays the de-
pendence of the flow intensity on De and«. The flow inten-
sity grows with «. The growth rate is found to be
independent of De for weakly elastic fluids, but increases
sharply for strongly elastic fluids(compare Figs. 10 and 17).
Finally, the similarity between the effects of inertia and
modulation amplitude is evident upon inspecting the average
Nusselt number in Fig. 18(compare with Fig. 11).

IV. CONCLUSION

The thermal convection of a viscoelastic fluid inside a
weakly modulated channel is investigated throughout the
present work. The governing equations are mapped onto a
rectangular domain. The ratio« of the modulation amplitude
to the mean channel width emerges as the perturbation pa-
rameter, allowing a regular perturbation expansion to be
used. A comparative assessment for a Newtonian fluid is car-

FIG. 10. Influence of elasticity and inertia on the maximum
velocity magnitude,usu,wdumax, for DeP f0,5g, RaP f30,1500g,
Rv=1, Pr=10,«=0.1, anda=1.5.

FIG. 11. Influence of elasticity and inertia on the average Nus-
selt number,kNu−1l, for DeP f0,5g, RaP f30,1500g, Rv=1, Pr
=10, «=0.1, anda=1.5.
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ried out against results based on a two-dimensional finite-
volume code(Fluent). In addition to being more accurate, the
second-order perturbation method reveals new physical phe-
nomena that could not be determined by the first-order per-
turbation analysis.

As inertia increases, elasticity tends to restore the symme-
try in the streamlines but enhances the lack of symmetry in
velocity. For a non-Newtonian fluid, rolls are distorted as Ra
increases and tend to move near the trough. In contrast, the

Newtonian rolls retain their circular shape and tend to center
below the crests(Fig. 5). The flow intensity and the global
heat transfer, represented, respectively, by the maximum of
the velocity magnitude and the average of the Nusselt num-
ber, exhibit a maximum at a wave number close to 3, which
is sensibly the same for any level of elasticity(Fig. 14 and
16). It is also predicted that the modulation amplitude and
inertia have similar effects on both Newtonian and viscoelas-
tic fluids. The pressure is found to be essentially independent

FIG. 12. Influence of wall modulation wave numbera on flow streamlines for a Newtonian and a non-Newtonian fluid(De=2 andRv=1)
for aP f1,5g, Ra=1200, Pr=10, and«=0.1.
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of the fluid elasticity and of the wall modulation wave num-
ber and amplitude, which can be of practical relevance to
lubrication flow, for instance. Regarding the heat transfer,
which is more related to the design of heat exchangers, it can

be inferred from the present results that despite strong local
changes, the overall heat convection is also unaffected by
elasticity for most of the practical range of Rayleigh numbers
and for low wall modulation amplitudes.

FIG. 13. Influence of wall modulation wave number onu, w, u, andp distributions for a Newtonian and a non-Newtonian fluid(De
=2 andRv=1) for aP f1,5g, Ra=1200, Pr=10, and«=0.1.
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In closing, the present results show that elasticity has a
marked effect on fluid patterns, especially regarding the roll
structure and symmetry. The elasticity appears to be influen-
tial when Ra and« are relatively large, particularly for a
wave numbera<3. One of the major motivations behind the
present study is to stimulate further experimental interest in
the important area of modulated viscoelastic flow.
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APPENDIX A: TRANSFORMED EQUATIONS AND
BOUNDARY CONDITIONS

The transformed equations, based on the mapping(19),
read,

uj + wh + «s− hf8uh − fwhd + «2shf f8uh + f2whd = 0,

sA1d

Pr−1fuuj + wuh + «s− hf8uuh − fwuhd

+ «2shf f8uuh + f2wuhdg

= − Pj + aRvsujj + uhhd − rj − sh + «fhf8Ph

+ aRvs− 2f8 ujh − 2fuhh − hf9uhd + hf8rh + fshg

+ «2s− hf f8 Ph + aRvhf82uh − f2sh − hf f8rhd,

sA2d

Pr−1fuwj + wwh + «s− hf8uwh − fwwhd

+ «2shf f8uwh + f2wwhdg

= − Ph + aRvswjj + whhd − sj − qh + Rau

+ «ffPh + aRvs2hf8 wjh + 2fwhh + hf9whd

+ hf8sh + fqhg

+ «2f− f2Ph + aRvhf82wh − f f8hsh − f2qhg,

sA3d

FIG. 14. Influence of elasticity and wall modulation wave num-
ber on the maximum velocity magnitude,usu,wdumax, for De
P f0,5g, aP f0.1,5g, Rv=1, Ra=1200, Pr=10, and«=0.1.

FIG. 15. Influence of elasticity and wall modulation wave num-
ber on the average Nusselt number,kNu−1l, for DeP f0,5g, a
P f0.1,5g, Rv=1, Pr=10, and«=0.1.
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FIG. 16. Influence of wall modulation amplitude« on flow streamlines for a Newtonian and a non-Newtonian fluid(De=2 andRv=1)
for «P f0.04,0.2g, Ra=1200, Pr=10, anda=1.5.
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uuj + wuh + «s− hf8uuh − fwuhd + «2shf f8uuh + f2wuhd

= ujj + uhh + «s− 2hf8ujh − 2fuhh − hf9uhd

+ «2fuhhs3f2 + h2f82d + hf82uhg, sA4d

usj + wsh − rwj − quh + «s− hf8ush − fwsh

+ fquh − hf8rwhd + «2sf f8hush + f2wsh

− f2quh + f f8hrwhd

= − De−1fs+ asuh + wjd + «s− afuh − af8hwhd

+ «2saf2uh + af f8hwhdg, sA5d

urj + wrh − 2ruj + 2suh + «s− hf8urh − fwrh + 2fsuh

+ 2hf8ruhd + «2sf f8hurh + f2wrh − 2f2suh

− 2f f8hruhd

= − De−1fr + 2auj − «2af8huh + «22af f8huhg, sA6d

uqj + wqh − 2qwh − 2swj + «s− hf8uqh − fwqh

+ 2fqwh + 2hf8swhd + «2sf f8huqh + f2wqh

− 2f2qwh − 2f f8hswhd

= − De−1sq + 2awh − «2afwh + «22af2whd, sA7d

where a prime denotes total differentiation. The boundary
and periodicity conditions are written as

usj,h = 0d = usj,h = 1d = 0, wsj,h = 0d = wsj,h = 1d = 0,

usj,h = 0d = 1, usj,h = 1d = 0,

usj = 0,hd = usj = 2p/a,hd, wsj = 0,hd = wsj = 2p/a,hd,

usj = 0,hd = usj = 2p/a,hd, psj = 0,hd = psj = 2p/a,hd,

qsj = 0,hd = q,sj = 2p/a,hd, rsj = 0,hd = rsj = 2p/a,hd,

ssj = 0,hd = ssj = 2p/a,hd. sA8d

FIG. 17. Influence of elasticity and wall modulation amplitude
on the maximum velocity magnitude,usu,wdumax, for DeP f0,5g,
«P f0.004,0.2g, Rv=1, Ra=1200, Pr=10, anda=1.5.

FIG. 18. Influence of elasticity and wall modulation amplitude
on the average Nusselt number,kNu−1l, for DeP f0,5g, «
P f0.004,0.2g, Rv=1, Pr=10, anda=1.5.
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APPENDIX B: EQUATIONS FOR THE FIRST-ORDER
COEFFICIENTS

Given the sinusoidal shape of the wall, expression(40),
expansion(30) reduces to

v1 = v11shdsinsaxd + v12shdcossaxd, sB1d

wherev1 is the vector containing the variables of the first-
order perturbation method,v11 and v12 are vectors of un-
known coefficients. It should be noted that the streamwise
velocity component is antisymmetric with respect tox=l /2
while other variables are symmetric. Therefore, some terms
vanish in the general solution of Eqs.(22)–(28) leading to

u1sx,hd = ū1shdsinsaxd,w1sx,hd = w̄1shdcossaxd,

p1sx,hd = p̄1shdcossaxd,u1sx,hd = ū1shdcossaxd, sB2d

whereū1, w̄1, p̄1, andū1 are unknown coefficients. Substitut-
ing the above expressions into Eqs.(22)–(28), the governing
equations for the first-order coefficients become

ūhh
1 + ap̄1 − a2ū1 = hs1 − hdaRa, sB3d

w̄h
1 + aū1 = 0, sB4d

p̄h
1 + a2w̄1 − Raū1 + aūh

1 = Ras1 − hd, sB5d

ūhh
1 + w̄1 − a2ū1 = a2h. sB6d

Note thatq1, r1, and s1 in Eqs. (23) and (24) have been
expressed in terms ofu1 and w1 [see Eqs.(26)–(28)]. The
system above is a set of nonhomogeneous ordinary differen-
tial equations, which together with the corresponding homo-
geneous boundary conditions

1 ū1

w̄1

ū1 2sh = 0d = 1 ū1

w̄1

ū1 2sh = 1d = 0, sB7d

constitutes a boundary-value problem of the two-point type.

APPENDIX C: EQUATIONS FOR THE SECOND-ORDER
COEFFICIENTS

For sinusoidal wall modulation, expansion(39) reduces to

v2 = v21shdsins2axd + v22shdcoss2axd, sC1d

wherev2 is the vector containing the variables of the second-
order perturbation method,v21 and v22 are vectors of un-
known coefficients. Given the symmetry of w,u, p, and the
antisymmetry ofu with respect to the linex=l /2, the gen-
eral solution of Eqs.(31)–(37) can be written as

u2sx,hd = ū2shdsins2axd, w2sx,hd = w̄2shdcoss2axd,

p2sx,hd = p̄2shdcoss2axd, u2sx,hd = ū2shdcoss2axd,

sC2d

where,ū2, w̄2, p̄2, and ū2 are unknown coefficients. Substi-
tuting expressions(C2) into Eqs. (31)–(37), the governing
equations for the second-order coefficients in the non-
Newtonian case become

w̄2 + 2aū2 =
a

2
shūh

1 − ū1d, sC3d

ūhh
2 + 2ap̄2 − 4a2ū2 =

Pr1

2
saū12

+ w̄1ūh
1d +

ahp̄h
1

2

−
ahs1 − hdRa

2
−

3

2
a2hūh

1 + ūhh
1

−
aw̄1ūhhh

1

2

− De aaF−
11

2
ūh

12
− aw̄1ūh

1 + 5a2ū12G ,

sC4d

p̄h
2 + 2aūh

2 + 4a2w̄2 − Ra ū2 =
P̄h

1

2
+

ah

2
ūhh

1 + aūh
1 −

3

2
a3hū1

−
Ras1 − hd

2

+ De a asaū1ūh
1 + w̄1ūhh

1 d,

sC5d

ūhh
2 + w̄2 − 4a2ū2 =

aū1

2
sū1 + hd +

ūh
1

2
sw̄1 − 3a2hd +

w̄1

2
+ ūhh

1

−
a2h

2
, sC6d

which is a set of nonhomogeneous ordinary differential equa-
tions. Note thatq2, r2, ands2 in Eqs.(32) and(33) have been
expressed according tou2 andw2 [see Eqs.(35)–(38)]. The
corresponding homogeneous boundary conditions are given
by

1 ū2

w̄2

ū2 2sh = 0d = 1 ū2

w̄2

ū2 2sh = 1d = 0. sC7d

The system(C3)–(C6) with the boundary conditions above
constitutes a boundary-value problem of the two-point type.
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