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Spatially modulated thermal convection of viscoelastic fluids
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The thermal convection of modulated viscoelastic flow is examined in this study. The modulation is assumed
to be weak enough for a regular perturbation solution to be implemented. In addition to being more accurate,
the second-order perturbation results reveal new physical phenomena that could not be predicted by the
first-order analysis. Inertia was found to enhance globally the discrepancies between the first- and the second-
order perturbation solution. A comparison between the Newtonian and the non-Newtonian solution is carried
out and the influences of inertia, modulation amplitude, and wave number are emphasized. The present results
show that elasticity has a marked effect on fluid patterns, especially regarding the roll structure and symmetry.
The influence of elasticity is greater for larger Rayleigh number and aspect ratio.
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[. INTRODUCTION modulations. One may replace, for instance, imperfections at
Thermal convection and flow in a microchannel with the boundaries in convection by temperature variations and
modulated walls is a classical problem that has attracted reanalyze their consequences for the onset of convection.
newed interest because of its immediate relevance to nov&avis [13] studied the case of temporal periodic variations.
microtechnologies, such as compact heat exchangers, am@lly and Pal[14] examined the effects of spatially periodic
membrane blood oxygenators in extracorporeal sysfdins boundary conditions on the stability of the Rayleigh-Bénard
Moreover, the analy_sis of such flows can help to qnderstangrob|em_ Chen and Whitehedd5] evaluated the extent to
the generation of wind waves due to the change in the Sukyhich well-defined initial perturbations affect stable bound-
face of the earth temperature as well as the atmosglre jes aithough they were steady in time. The practical value
The flow can exhibit many of the features present in muc s that one might want to make the boundary wavy if the

more complex geometries, which can significantly impact ean Nusselt number could be increased, which have moti-

heat or mass transfer performance. This richness in physicgl1

phenomena in a relatively simple geometry motivates funday@t€d Watson and Poofd6] to study the effects of wavy

mental interest by providing an ideal setting to understandPoundaries on laminar free convection in a flow between
pattern formation for both Newtonian and non-Newtonianparallel vertical walls.
fluids [3]. Other modulated systems have also been examined, such
The effects of spatial wall variations on the steady flowas the flow through sinusoidally shaped channels. Steady
between smooth boundaries were examined only relativelflow [4,17], as well as stability aspects were considered
recently [see Ref.[4] and bibliography therein One may [18,19. Modulated rotating flow was also considered. Re-
refer to such variations from perfect geometries as dirty efcently, Li and Khayat showed the existence of interesting
fects. On the other hanfb], these deviations can lead to pattern formation in modulated Taylor-Couette flow for
interesting phenomena, which are not present in systems ¢fewtonian fluids[20].
high geometry. Sidewalls, for example, may restrict the |nteresting effects in pattern formation are related to finite
structure of stable wave numbers for cellular patterns okjze or inhomogeneity effects. However, the flow of complex
modify the orientation of convection roll$-8]. Reflection  fjigs present additional exciting phenomena. In the present
effects [9] or dynamical structureglO] can be induced in  naner the modulated thermal convection of viscoelastic flu-
systems such as rotating Rayleigh-Bénard convection. Ifys is examined. The solution is obtained by mapping the
regularities at the boundaries may lead to localized cellula hysical domain onto the rectangular computation domain,
structures at the threshold of convection, similar to those of g applying a perturbation representation for the trans-
gravity waves{11]. Such phenomena modify the bifurcation ¢5med equations, similarly to Zheet al. [4,17]. The results
behavior of cellular structures, as shown for a model systeMzsed on the perturbation method will be benchmarked
[12]. o ) against results obtained from a traditional finite-volume for-
To gain insight on the effects of roughness in pattern fory,ation for Newtonian thermal convection. The influence of
mation, it is often helpful to have it replaced with periodic i, Rayleigh number, Deborah number, dimensionless wave
*Corresponding author. Email address: rkhayat@eng.uwo.ca number, and amplitude on the flow and heat transfer is em-
phasized.
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Il. PROBLEM FORMULATION AND SOLUTION Newtonian solvent, and a polymeric componéntcorre-
PROCEDURE sponding to the solute. Thus,
In this section, the general equations and boundary con- o=—Pl +p(VU+VUY) +T (5)

ditions for the steady-state flow of a viscoelastic fluid in a

weakly modulated channel are derived for a small-amplitudevhereP is the hydrostatic pressurk,s the identity matrix,
modulation. A regular perturbation expansion for the flowandt denotes matrix transposition. The constitutive equation
field is carried out after the equations are mapped over &r T is taken to correspond to an Oldroyd-B fluid, which
rectangular domain, reducing the problem to a set of ordican be written a$21]

nary differential equations with homogeneous boundary con-

ditions, which will be solved using a variable-step-finite- ~ AU -VT=T-VU-VU"-T)+T = 4, (VU +VU'). (6)

difference scheme. In the limit us— 0, the systen{1)—(6) reduces to that corre-

sponding to a Maxwell fluid. On the other hand, in the limit
A. Governing equations and boundary conditions up— 0, the Newtonian fluid is recovered. The boundary con-
Consider the steady-state flow of an incompressible nonditions are given by
Newtonian fluid lying horizontally between two infinite rigid
stationary boundaries, the lower being straight and the upper U(X,2=0)=U(X,Z=D+Af) =0,
periodically modulated. LeT, and Ty+ 6T be the tempera-

tures of the upper and lower plates, respectively, wilth T(X,Z=0)=Ty+ 6T,
being the temperature difference. The problem is first intro-
duced in the(X,Z) plane, with theX axis taken along the T(X,Z=D+Af)=T,. )

lower wall and theZ axis along the direction perpendicular

to the plates. The general shapes of the lower and uppéfhe dimensionless coordinatesandz, velocity components
plates are given b¥=0 andD +Af(X), respectivelyD is the  u andw, pressure and components Bfp, g, r, ands, and
mean channel width andlis the modulation amplitude. Here temperatured are introduced as follows:

f(X) is a general dimensionless function Xfthat may be

arbitrarily prescribed. In this work, however, a sinusoidal _x _Z2 _DU o= T-To
modulation will be considered. The substances of main inter- D’ D’ K oT
est are assumed to obey the following equation of state:

p=pd1-BT-To)l, ) D DTz T T

p=M—K(P+pogZ), (q,r,s) = (8

where pg is the density afT, and B is the coefficient of KK
volumetric expansion. _ _ _ _Five dimensionless groups emerge in the problem, namely,
The fluid is assumed to be incompressible viscoelasti¢he Rayleigh number, the Prandtl number, the Deborah num-

polymeric solution of density, relaxation timek, and vis-  per, the solvent-to-solute ratR,, and the aspect ratie:
cosity u. In this study, only fluids that can be reasonably

represented by a single relaxation time and constant viscosity 5TgpD® v K\ s A
are considered. The polymeric solution is assumed to beRa= v P = De:ﬁ, Rv="=, e=p
composed of a Newtonian solvent of viscosjiy, and a Ho
polymeric solute of viscosity,, such that the solution vis- (9)

cosity is given byu=pus+ u,. Regardless of the nature of the
fluid, the continuity and momentum balance equations mu
hold. If the Boussinesq approximation, which states that th
effect of compressibility is negligible everywhere in the con-
servation equations except in the buoyancy term, is assumed U +W.=0 (10)
to hold, then, the equations for conservation of mass, mo- xooe

mentum, and energy read, respectively,

S\fvhere v=pulp, is the kinematic viscosity. In this case, the
equations for conservation of mass, momentum, and energy
ecome

Pri(uu, +wu,) =-p,+aRvAu—-r,—s,, (11

V-u=0, (2)
poU - VU=V - 0+ pg 3 Pri(uw, +ww,) = - p,+ aRvAW+ Rad - s, +q,, (12)
0 ' - ) ’
U 'VT=KV2T, (4) U0X+W022A6, (13)

whereU(U, W) is the velocity vectorg is the stress tensor, Whereas the constitutive equati¢d) leads to
V is the two-dimensional gradient operatgris the gravity
acceleration vectol is the thermal diffusivity, and is the
temperature. The deviatoric part of the stress tensas
composed of a Newtonian component, corresponding to the urg+wr,— 2(u,s+ur) =-Del(r+2au), (15

us, +Ws, = (U, g+ W)= - De s+a(u, +w)], (14)
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fX) Ly C. Perturbation expansion and solution procedure

In this work, only small-amplitude modulation is exam-

N ined, so that is small(e <1). A regular perturbation expan-

D sion is used on the velocity, the pressure, the temperature,
and the stress components:

v=v0 + evt + 22 + O(&3), (20)

X wherev=(u,e, 8,p,q,r,s). Terms of O(¢% and higher are

FIG. 1. Physical domain and flow configuration for a spatially neglected. Substitution of expression®0) into Eqgs.
modulated channel. (A1){A7) and conditiongA8) leads to a hierarchy of equa-
tions and boundary conditions that must be solved to each
(16) order ine. To leading order ire, one recovers the equations
encountered for a fluid lying between two straight plates. In
where a subscript denotes partial differentiatidn,is the this case,
two-dimensional Laplacian operator, and=1(R,+1)

ucy +Wa, = 2(W,q +W,s) = - De(q+2a w,),

= up/ w is the polymer-to-solution viscosity ratio. The above u=w’=0, p?, =Ral-7), =1-5. (21
equations must be solved subject to the following boundaryy, equations t®(s) become
conditions:
1 1_
u(x,z=0)=u(x,z=1+ef) =w(x,z=0) =w(x,z= 1 +&f) Ug +w, =0, (22)
=0, —pg+raRv(ug+ul ) -ri-s =-qf'pd, (29
0(x,z=0)=1, 6(x,z=1+ef)=0. (17) - py+aRv(Wg +w,,) = s; -, + Ragt =~ fp),  (24)
It is further assumed that the flow fiel@delocity and pres-
sure is spatially periodic, commensurately with the wall ngg’/— 9;31,5- 9}777: 0, (25)
modulation. This periodicity condition is written as
u(x=0,2) = u(x = 2/ a,2),W(x = 0,2) = W(x = 27/, 2), st+a(uy+wy) =0, (26)
6(x=0,2) = 6(x = 27l ,2),p(x = 0,2) = p(x = 27l a,2), rt+2au;=0, (27)
g(x=0,2 =q(x=27/a,2),r(x=0,2) =r(x = 27l a,2), qt+ 2avvi:0, (28)
S(x=0,2) = S(x = 27/ t,2), (18) which must be solved subject to
1 1
where « is the dimensionless channel wave number related u u
to the wavelength by the relation:\ =27/ a. The problem wh (& =0 =[w! |(&np=1)=0,
(11)«19) is defined over the physical domaifl,, Pl Pl
=[(x,2)/xe[0,\];z€[0,1+ef(x)]], which is next mapped
onto the rectangular domain. The physical domain and flow ViE=0,7) =vi(E= 2mla, ). (29)

configuration are schematically illustrated in Fig. 1.

Note that the first expressions in EQ1) have been used.
_ i The general solution of the nonhomogeneous system
B. Domain transformation (22)~(28) may be written as

The periodic physical domaiti,, is mapped onto the

LIV ] N
rectangular domaifl,, =[(¢,7)/£<[0,N]; 7 [0,1]]. Here, Vg 7) = S v (psininax) + vE(m)cosnax).  (30)
z n=1
] = y y :—l 19 . . .
€x2) =xn(x.2) 1+ef(x) (19) The equations t@(¢?) for a non-Newtonian fluid become
where 1+4f(x) is the dimensionless gap. The transformed u§+wz =nf'ul = fwt (31)
n 7 7

equations and boundary conditions are given in Appendix A.
The solution to Eqs(A1)—(A7) is sought subject to condi-
tions (A8). This is a difficult nonlinear two-dimensional
problem, with variable coefficients in the governing equa- = prl(ulué+w1u}?) —nf’p}Y— 77f’r}7—fs}7
tions. There are, however, some limit flows that may be con- 1 1 _— e 0
sidered, which can simultaneously be of practical and funda- —aRv(=27f'ug, - 2fu;, - nf'w,) + nf'fp,,
mental significance. (32

P rEms, taRv(ug )
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-, 120, =5~ o + Rt +aRv(wg + w7 )
=Pri(utw; + w'w)) - fpy - nf's, - fq;,
Ik 1 AR}
—aRv(=29f'w, - 2fw, , = nf'w;), (33

— 2 1 n ol 12 11
0§§+ Hfm—wze(,’?——an 0z, = 2t6,, —nf"6, +nf 08],u 0;
- nf'utd) + whe; - fw'ed, (34)

_ Pl S D P T RS T B |
De (s’ +au’ +awf) = u's; + w's, — r'w; - g'u;,

—aDe (fuy, +fpw;), (35

_Peale2 2y 1.1 1.1 _~.1,1_ ol
De (r +2aup) =UT W, — 2rug - 2su;

_ -1 er 1
2aDe 'nf'u;, (36)

- De(q? + 2aw’) = u'q; + w'a, - 25'w; - 20w,
- 2aDe *fwy, (37)
which must be solved subject to

2 2

u u
W2 [(&n=0)=|w? |(&7=1)=0,
& &
VA(E=0,m) =V (E=2mla, 7). (38

Note that the first of expressiorl) has been used. The

general solution of the nonhomogeneous syst8t)—37)
may be written as

M N
VA& ) = 2 2 Ve (m)sin(n+ m)ax

m=1n=1
+y22 23 . _
Viz(mcodn + m)ax + Vi 7)sin(n — m)ax

+ V24 (m)codn - m)ax. (39

PHYSICAL REVIEW E 69, 066319(2004

[lI. RESULTS AND DISCUSSION

In this section, the influence of inertia, elasticity, and
modulation parameters is examined on the thermal convec-
tion pattern. The numerical assessment of the numerical
implementation is also carried out against the finite-volume
method for a Newtonian fluid. All results reported below are
based on Pr=10. Since the effect of the viscosity ratio is to
modify the elastic character of the fluid, only the influence of
the Deborah number is examined, with the viscosity ratio
fixed toR,=1.

A. Newtonian flow and numerical assessment

Consider first the modulated thermal convection of a
Newtonian fluid. This flow is important, as it constitutes a
limit case for the viscoelastic fluid, and will be used for
numerical assessment. Recall that for a Newtonian fluid ei-
ther the first- or second-order solution may be used. In this
case, the validity of the first- and second-order solutions will
be assessed against the finite-volume metkdaeny, which
will be taken as exact. Typically, a grid of 13810 elements
is chosen. Periodic boundary conditions are imposed, with
negligible flow rate(107° kg s). The Boussinesq approxi-
mation is also imposed. The second-order resolution is cho-
sen, and the convergence criteria are set & idr the mo-
mentum and 10 for the continuity and energy conservation
equations. Convergence is typically secured after 700 itera-
tions. It is well established that while the semianalytical first-
order perturbation expansion leads to an accuracy in the or-
der of £2, this accuracy is improved to ordef for the 2nd
order perturbation expansion. Although it may be generally
inferred that the qualitative picture remains the same for any
order, this may not always be true as will be observed later.

The overall influence of the truncation level is illustrated
in Fig. 2, for a Newtonian flow at Ra=1206~0.1, and«
=1.5. In these figures, the first- and second-order solutions as
well as the finite-volume solution are displayed for compari-
son. The velocity, temperature, and pressure profiles are plot-
ted againstz at x/A=0.43, and against/\ at z=0.3. These
locations are deliberately chosen where the difference among
the three methods is greatest. The three methods exhibit the
same qualitative picture for all variables except or In-

The coefficients in expansioi80) and(39) are governed by
two sets of ODEs, which are solved using a variable-stejleed, the results for the second-order and the finite-volume
finite-difference schemésubroutine IMSL-DBVPFD irFor-  Solutions are very close. The larger discrepancy is found to
tran). The basic discretization is the trapezoidal rule over &€ for the velocity components and w between the first-
nonuniform mesh chosen adaptively so that the local errofnd second-ordefor Flueny. This is also confirmed below
has approximately the same size everywhere. The linear Syg\then the average relative error is examined. The temperature
tem of equations is solved using a Specia| form of Gausgistribution is the same regardIeSS of the solution method.
elimination that preserves sparseness. At this point, it is necthe pressure magnitude is essentially the same for the per-
essary to introduce explicitly the modulated wall profile turbation methods, but is slightly underestimated.

Various wall configurations may be easily incorporated, in- The accuracy of the numerical implementation is further
cluding arbitrary wall shape, as long as the shape is contini@ssessed by monitoring the relative error to each order of the

ous. In this work, however, the upper wall is assumed to b@erturbation solution against Fluent. In this case, although
modulated in the form of a cosine wave such that the results based on Fluent imply a certain level of inaccu-

racy, they will be taken to correspond to the exact solution.
f(&) = cogwé), (40) Figure 3 shows the average relative error in percentage for

each variable, namelye(u)), (e(w)), (e(0)), and (e(p)) as
The corresponding equations in this case for the first and thiunction of the Rayleigh number. The error is defined, for
second order are detailed in Appendixes B and C. each variabley, by e(v)=100(v®-v") /v, wherev® andvf
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FIG. 2. Streamwise and depthwise velocity, temperature, and pressure distributions=@t43 for Ra=1200, Pr=13;=0.1, and«a
=1.5. The figure shows the distributions based on the first-, second-order perturbation, and finite-volume methods.

are the variables based on the perturbation method and tlalditional numerical assessment was carried out by monitor-
finite-volume method, respectively. In general, there is a siging the change in volume flow rate. The flow rate is found to
nificant improvement when the second-order terms are inbe conserved to within I8 for both the first- and the
cluded, reducing the error to less than a few percent. Finallysecond-order perturbation analysis. Given the assessment
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FIG. 3. Average relative error af, w, 6, and p against Ra for Pr=10=0.1, anda=1.5. The figure shows the errors between the
perturbation method and the finite-volume method, whose solution is taken as exact.

above, all the results reported below will be based on thenodulation in the streamwise direction. The level of distor-
second-order perturbation solution. tion depends on both elastic and inertial effects.

The influence of inertia is now examined by varying the
Rayleigh number Ra from 300 to 1500, while keeping the
other parameters as before. Figure 5 shows the influence of

The influence of elasticity is best assessed by varying Dénertia for both Newtonian and non-Newtoniéde=2) flu-
and keeping the remaining parameter fixed. The Newtoniaits. In the Newtonian case, besides the expected increase in
flow remains significant in this case, as it constitutes the limitflow intensity, the rolls retain their circular shape, and tend to
of viscoelastic flow for vanishingly small Deborah number center below the crests, with increasing distance in between,
or infinite viscosity ratio. The overall change between New-as Ra increases. The relative void below the trough leads
tonian and non-Newtonian behavior is typically summarizedeventually to the birth of two new weak vortices of opposite
in Fig. 4, which compares the flow and temperature fields fodirection. In contrast, in the non-Newtonian case, the rolls
Ra=1200,=0.1, anda=1.5. Here De=1 for the viscoelas- tend to distort in shape, approaching one another, as Ra in-
tic flow. Note that the same scale is used for each variable focreases. New rolls appear below the crest.
clarity of comparison. A noticeable effect of the elasticity is  Further quantitative assessment is inferred from Fig. 6,
the distortion of the convective cells, which is particularly where the velocity, temperature, and pressure distributions
evident from the velocity contours. The streamlines indicateare plotted across the channel for the same fluids as in Fig. 5.
that the cells become diamondlike as opposed to circular, antlhe horizontal location is fixed at/\=0.43, where non-
increase in size in the non-Newtonian case. As a result, thRewtonian effects can be clearly illustrated. It is clear that an
downward flow has increased in strength below the troughincrease in inertia leads generally to an increase in flow in-
Thus elasticity tends to make the cells more symmetricatensity. However, in the Newtonian case, it is observed that
compared to the Newtonian pattern. Recall from the discusfor Ra>1200 the flow intensity diminishes with Ra as a
sion above that the loss of symmetry is directly related to theesult of the shift in roll position, but eventually significant
strength of the second-order terms. In this case, the higheflow activity is predicted as the new rolls appear. It is inter-
order terms induce a loss of symmetry in the velocity ratheesting to note that the streamwigepthwisé flow remains
than the streamlines. Although the temperature remains egssentially antisymmetri¢csymmetrig with respect to the
sentially unaffected by elasticity, the pressure exhibits someniddle of the roll; the slight loss of symmetry is almost

B. Influence of elasticity
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FIG. 4. Comparison of mean flow patterns based on the second-order perturbation method for a Newtonian and a non-Newtonian fluid
(De=1 andR,=1) for Ra=1200, Pr=10s=0.1, ande=1.5. The figure displays the streamlinesw, 6 andp contours.

solely due to wall modulatio(see theu andw curves in Fig. same, with the pressure magnitude being slightly higher for
6). In contrast, the symmetry is entirely lost for the non-the viscoelastic fluid, particularly near the lower plate. Un-
Newtonian fluid. The flow strengthens monotonically with like the flow velocity (see below, the pressure appears to
Ra. Another effect of inertia is the deviation of the tempera-increase only linearly with Ra. The insensitivity to non-
ture from the linear distribution, especially for the viscoelas-Newtonian effect of the pressure can be of important practi-
tic fluid. Despite the significant departure in the flow struc-cal significance. In lubrication flow, for instance, the separat-
ture between the Newtonian and non-Newtonian fluids as Rang force is essentially independent of the level of elasticity
increases, the pressure distribution remains qualitatively thef the fluid.
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Newtonian § ‘ Non Newtonian s

.5
XA

FIG. 5. Influence of inertia on flow streamlines for a Newtonian and a non-Newtonian(bBeid2 andR,=1) for Rae [300, 1500,
Pr=10,¢=0.1, anda=1.5.

Arelevant parameter to examine in the case of convectiolRa=0, Nu is not constantly equal to 1 as one would expect
problems is the Nusselt number Nu which is the ratio of thefor the flow between parallel plates. In this case,(Nkh-o
actual heat transfer to the heat transfer that would occur by 1/1+¢f(x). Generally, for a Newtonian fluid, convection
conduction alone in the case of steady-state flow betweefends to be strongest beneath the crest, in contrast to the case
straight plates. In the present problem, the Nusselt number isf a viscoelastic fluid where Nu is highest beneath the
given as N(x)=-d6/ dy|,-o. Figure 7 illustrates the variation trough. The appearance of additional peaks and valleys in the
in Nu againstx/\ for several values of Ra. The upper-wall Nu distributions corresponds to the emergence of additional
modulation is also shown for reference. It is noted that atrolls (compare Figs. 5 and)7
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FIG. 6. Influence of inertia o, w, 6, and p distributions for a Newtonian and a non-Newtonian flgiRe=2 andR,=1) at x/\
=0.43 for Ra=[300,150Q, Pr=10,¢=0.1, anda=1.5.

The influence of elasticity on the flow is examined nexttortion and the birth of the additional rolls below the crests.
by varying the Deborah number De, for a flow at Ra200,  Recall that viscoelastic effects are of second order and higher
keeping the remaining parameters as before. Figure 8 shovits €. As De increases, it is then expected that the flow be-
the change in flow structure as De increases. The major deomes increasingly modulated, as expressi@® suggest.
parture from Newtonian behavior is in the form of roll dis- The additional modulation corresponds to a wavelength
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FIG. 7. Influence of inertia on the Nusselt number distribution
along the channel, N¥), for a Newtonian and a non-Newtonian
fluid (De=2 andR,=1) for Rae[0,1500, Pr=10,£=0.1, anda
=1.5. The gray solid line represents the upper wall geometry.

equal to half that of the wall, which explains that four rolls
can be accommodated at De=7 in the case of a viscoelastic
fluid.

The elasticity-enhanced distortion and additional modula-
tion are clearly confirmed in Fig. 9. The modulation, how-
ever, is only visible in the velocity distributions. The effect
of elasticity tends to be limited concerning the temperature,
which shows small deviation from linear behavior. Similarly,
the pressure increases only slightly and linearly with De,
confirming the earlier observation that fluid elasticity is es-
sentially uninfluential on the pressure.

The overall interplay between inertia and elasticity is in-  FIG. 8. Influence of elasticity on flow streamlines for De
teresting to examine. For this purpose, the influence of botke [0,7], R,=1, Ra=1200, Pr=1%;=0.1, anda=1.5.

Ra and De is assessed on the maximum of the velocity mag-

nitude |u, w|ma=max (u2+w?)], which is taken to reflect

the flow intensity. Figure 10 shows projections over theRa increases, the flow intensity increases slightly with De. At
ranges De=[0,5] and Ra= [30,150Q. While the increase in large Ra, the flow intensity exhibits a minimum.

flow intensity with Ra is monotonic, it is piecewise linear  The overall influence of both inertia and elasticity on the
with respect to De. A remarkable feature in Fig. 10 is thethermal convection is examined by assessing the dependence
absence of elasticity influence at low Rayleigh number. Asf the mean Nusselt number,
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a [ The overall influence ofv is reflected in Fig. 12, where
(Nu) = Z_J Nu(x)dx, the streamlines are displayed for both a Newtonian and a
o non-Newtonian fluid at foe=0.1, Ra=1200, and De=2. In
. o . the Newtonian case, an increasedircauses the rolls to oc-

on Ra and De, as illustrated in Fig. 11. Itis found ttNt)  cupy an increasingly higher portion of the flow. The rolls
increases linearly with De, at any Ra. For smalltend to embrace the shape of the two walls while simulta-
RaRa< 1200, the mean Nusselt number is essentially inde-neously invading the area beneath the troggge the case
pendent of De. This is an interesting prediction since it stateg=5). In contrast, the convection of a non-Newtonian fluid
that, while Nu changelcally drastically between the New- exhibits a significant distortion of the rolls, leading to the
tonian and non-Newtonian casésee Fig. J, suggesting a birth of secondary vortices beneath the crest near the upper
strong difference in the local heat convection, Fig. 11 clearlyvall, beneath the trough near the lower wall, and on the sides
indicates that theoverall heat convection is unaffected by (See the case=3). This behavior is enhanced by elasticity
elasticity for most of the practical range of Rayleigh num- (N0t shown. As « increases further, the secondary vortices
bers. For the highest Ra level consider@h=1500, the disappear by merging together, resulting in a pattern similar
change in(Nu) is 25% between a Newtonian fluie=0  © the one for lowa (compare the case=5 anda=1).

dast v elastic fluitDe=5). | trast. the infl The profiles in Fig. 13 confirm the consistency in the
and a strongly €lastic wCDe.—S): h contrast, I€ INTIUENCE  Na\vtonian roll structure; all velocity, temperature, and pres-
of Ra on the overall convection is strong,&&l) has nearly

sure profiles remain unaltered in shapesashanges. In the
tripled when Ra is increased from 30 to 1500. non-Newtonian case, it is interesting to observe that the ve-
locity profiles are modulated for any value; however, the
modulation amplitude is vanishingly small for small and
large wave number. Although the temperature displays the
The effect of the modulation geometry is best assessed byame response as for a Newtonian fluid, the pressure exhibits
varying the modulation wave number and amplitudes. ~ weak modulation, which is particularly visible far=3.
The influence of these two parameters on the flow pattern is The overall interplay between the modulation number and
expected to be significant since they dictate the level of couelasticity is summarized in Figs. 14 and 15. The flow inten-
pling between the leading and higher-order perturbatiorsity exhibits a maximum at a wave number slightly smaller
terms. Relatively strong values afande unavoidably lead than 3, which is sensibly the same for any level of elasticity.
to nonlinear enhancement. Thus, this is the optimal wave number that is required to

C. Influence of modulation geometry
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FIG. 10. Influence of elasticity and inertia on the maximum

velocity magnitude,|(u,w)|mae for Dee[0,5], Rac[30,1500,  pressure. Figure 16 indicates that an increase in Ra leads to
R/=1, Pr=10,=0.1, anda=1.5. linear increase irp. Additional calculations show that is

. . . sensibly independent ef. The pressure is then predicted to
observe the convective pattern in practice, regardless of thiﬂcrease with temperaturgdifference, but remains unaf-

fluid _used._EIasticity.simpIy ef?hances monotonically thefected by modulation amplitude. Figure 17 displays the de-
flow intensity (see Fig. 14 This enhancement depends pendence of the flow intensity on De andThe flow inten-

strongly ona, and seems to be greatest toclose to 3(see sity grows with &. The growth rate is found to be

bottom of Fig. 14. The average Nussellt number in Fig. 15. independent of De for weakly elastic fluids, but increases
shows that the overall convection remains unaffected by ﬂu'%harply for strongly elastic fluid&compare Figs. 10 and 17
elasticity for any wave number. This is also confirmed fromFinaIIy, the similarity between the effects of inertia and

the lower right-hand figure, W.hiCh. shows that thg depen'modulation amplitude is evident upon inspecting the average
dence of heat convection oa is dictated by a universal Nusselt number in Fig. 1&ompare with Fig. 11
e

curve. This universal character is in sharp contrast when th
dependence of thermal convection on Ra is examimed
shown. At low Ra, for instance(Nu) does not even exhibit
a maximum withea.

The overall influence of the wall modulation amplituele
is illustrated in Fig. 16 for Ra=1200 ang=1.5. From this The thermal convection of a viscoelastic fluid inside a
figure, it is seen that has a marked effect on the flow weakly modulated channel is investigated throughout the
pattern, which is similar to the effect of inertia on both the present work. The governing equations are mapped onto a
Newtonian and viscoelastic fluidecompare with Fig. b rectangular domain. The ratioof the modulation amplitude
Thus, the increase in modulation amplitude causes a simildo the mean channel width emerges as the perturbation pa-
response as the increase in inertia: roll distortion and birth ofameter, allowing a regular perturbation expansion to be
new rolls. There is, however, a significant difference in theused. A comparative assessment for a Newtonian fluid is car-

IV. CONCLUSION
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FIG. 12. Influence of wall modulation wave numheon flow streamlines for a Newtonian and a non-Newtonian fiDie=2 andR,=1)
for a €[1,5], Ra=1200, Pr=10, ang=0.1.

ried out against results based on a two-dimensional finiteNewtonian rolls retain their circular shape and tend to center
volume codgFluen). In addition to being more accurate, the below the crestgFig. 5). The flow intensity and the global
second-order perturbation method reveals new physical phéweat transfer, represented, respectively, by the maximum of
nomena that could not be determined by the first-order perthe velocity magnitude and the average of the Nusselt num-
turbation analysis. ber, exhibit a maximum at a wave number close to 3, which
As inertia increases, elasticity tends to restore the symmes sensibly the same for any level of elasticifjig. 14 and

try in the streamlines but enhances the lack of symmetry ii6). It is also predicted that the modulation amplitude and
velocity. For a non-Newtonian fluid, rolls are distorted as Rainertia have similar effects on both Newtonian and viscoelas-
increases and tend to move near the trough. In contrast, the fluids. The pressure is found to be essentially independent
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FIG. 13. Influence of wall modulation wave number onw, 6, and p distributions for a Newtonian and a non-Newtonian flyk
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of the fluid elasticity and of the wall modulation wave num- be inferred from the present results that despite strong local
ber and amplitude, which can be of practical relevance t@hanges, the overall heat convection is also unaffected by
lubrication flow, for instance. Regarding the heat transferglasticity for most of the practical range of Rayleigh numbers
which is more related to the design of heat exchangers, it caand for low wall modulation amplitudes.
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In closing, the present results show that elasticity has a Pr{uus+wu,+ (- 7f’uu, - fwu,)
marked effect on fluid patterns, especially regarding the roll
structure and symmetry. The elasticity appears to be influen-
tial when Ra ande are relatively large, particularly for a =-Ps+aRv(ug+u,,) -r.—s,+g[yf'P,
wave number = 3. One of the major motivations behind the
present study is to stimulate further experimental interest in

+ sz(nff’uu,]+ fzwu,])]

+aRv(-2f" ug, - 2fu,, - 7f"u,) + 5f'r, +fs,]

the important area of modulated viscoelastic flow. +&%(— pff’ P, +aRvyf'?u, - f?s, - 5ff'r,),
(A2)
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APPENDIX A: TRANSFORMED EQUATIONS AND
BOUNDARY CONDITIONS =-P,+taRv(wg+w,,) -5~ q,+Ra
The transformed equations, based on the mappli9y +e[fP, +aRv(2nf" wg, + 2fw,,, + 7f'w,)
read, +qf's, +1q,]
s+ W, +e(= f'u, = fw,) + e%(5ff'u, + fw,) =0, + e[~ f?P, +aRvyf 2w, - ff' s, - f2q, ],
(A1) (A3)
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udg+weo, + (- nf'ud, - fwe,) + e%(5ff'ud, + f2we,)

ug: +waq, — 2qw, — 2sw; + e(— »f'uqg, — fw
= O+ 0, (= 20O, - 216,, - 71"6,) 0 wal, ~ 2qw, = 250+ o{- 7'uq, = fwd,

+ 2fqw, + 2nf’sw,) + eX(ff' yuq, + fAwq,

+870,,(3f2+ 712 + 520, ], (A4) ) ,
- 2fcqw,, - 2ff" nsw,)
=-De ¥(q+ 2aw, - e2afw, + e?2afiw,), (A7)
us;+ws, - rw,— qu, + &(- nf'us, - fws, where a prime denotes total differentiation. The boundary

and periodicity conditions are written as

un=0=u(¢7=1=0, w»n=0=w(7n=1)=0,

+fqu, = 7f'rw,) + e%(ff’ qus, + fAws,
- f2qu, + ff' prw,)
=-De[s+a(u,+w,) +&(-afu,—af nw,) Hen=0)=1, 0(£7p=1)=0,
+&(afu, +aff' mw,)], (A5)
ué=0,np) =u(é=27nla,n), W(E=0,7)=w(¢=27la,7),
urg+wr, = 2rug+ 2su, + e(- f’ur, - fwr, + 2fsu, HE=0.m) = &= 2mla,m), P(E=0.7) = p(£= 2mla, ),
+ 25f'ru) + e%(FH ur,, + fAwr, - 2%y, A(€=0,7)=q,(£=2mla,n), 1(£=0,7) =r(¢=2mla,7),
- 2ff" pru,)
= - De'[r + 2au, - e2af’ pu, + £%2aff' yu,], (A6) s(¢=0,7) =s(£ = 2mla, 7). (A8)
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APPENDIX B: EQUATIONS FOR THE FIRST-ORDER UZ(X, 7) :UZ( n)sin(2ax), WZ(X, 7) = W( n)COS(ZaX),
COEFFICIENTS
Given the sinusoidal shape of the wall, expressiéd), p2(x, 7) = PA(p)cog2ax),  6A(x, 7) = A(7)cos2ax),
expansion(30) reduces to (C2)
vi=v(p)sin(ax) + V¥ n)cod ax), (B1)

where,u?, w?, p?, and ¢* are unknown coefficients. Substi-

wherev! is the vector containing the variables of the first- tuting expressiongC2) into Egs. (31)~«37), the governing

order perturbation method;** and v'? are vectors of un- equations for the second-order coefficients in the non-

known coefficients. It should be noted that the streamwiséNewtonian case become

velocity component is antisymmetric with respectxton /2

while other variables are symmetric. Therefore, some terms W2+ 2aU° = g(nﬁfl—ﬁl), (C3

vanish in the general solution of Eq22)—(28) leading to 2

1 _1 : wt —

ut(x, 7) = U(m)sin(ax),w'(x, 7) = W(n)cog ax), D2 o2 g2 P_ (T W) + %pq

pl(X! 7]) :Bl( n)coiax)! al(xv 7]) :E_(n)coqax)! (BZ) _ a,’](l — 7])Ra_ 3 5 —1

—
— —a‘ngu, tu
whereu!, w!, pt, and#* are unknown coefficients. Substitut- 2 ™ S
ing the above expressions into E¢82)—28), the governing awiat
equations for the first-order coefficients become -
1 = 21 _
u,,+ap’—a’u'=7(1-7n)eaRa, (B3) 1. -
—-Deaal - —u;, —aw'u, +5a°u" |,
1 1 27 K
w, +au =0, (B4)
(C4
PL+ W - Rag' + ol = Ra(1 - ), (B5) 5 ;
_pi+ 201U?7+ 40°W? - Ra ¢? = E” + ?7731 + au - Eagnﬁl
01 + W= @26t = P 7. (B6)
Note thatq?, r!, ands' in Egs. (23) and (24) have been _Rdl-»
expressed in terms af andw' [see Eqs(26)~28)]. The 2
system above is a set of nonhomogeneous ordinary differen- +Dea a(auul +wiat ),
tial equations, which together with the corresponding homo- K K
geneous boundary conditions (€5
ut ut 2 it > W=
=== 1 =
(n=0)=| W |(5=1)=0, @7 WA= ) R Bay) 5 4
_ ’ g . - @, (C6)
constitutes a boundary-value problem of the two-point type. 2
which is a set of nonhomogeneous ordinary differential equa-
APPENDIX C: EQUATIONS FOR THE SECOND-ORDER tions. Note thaty?, r2, ands? in Egs.(32) and(33) have been
COEFFICIENTS expressed according & andw? [see Eqs(35)—<38)]. The

. ) . ) corresponding homogeneous boundary conditions are given
For sinusoidal wall modulation, expansi@8) reduces to by

v2 = v2Y(p)sin(2ax) + v?3(y)cog2ax), (C1) w2 w2
wherev? is the vector containing the variables of the second- w2 (p=0)= w2 (p=1)=0. (C?
order perturbation method;?! and v?? are vectors of un- P P

known coefficients. Given the symmetry of @, p, and the
antisymmetry ofu with respect to the link=\/2, the gen- The system(C3)—(C6) with the boundary conditions above
eral solution of Eqs(31)—«37) can be written as constitutes a boundary-value problem of the two-point type.
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