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A model system of partial differential equations in two dimensions is derived from the three-dimensional
equations for thermal convection in a horizontal fluid layer in a vertical magnetic field. The model consists of
an equation of Swift-Hohenberg type for the amplitude of convection, coupled to an equation for a large-scale
mode representing the local strength of the magnetic field. The model facilitates both analytical and numerical
studies of magnetoconvection in large domains. In particular, we investigate the phenomenon of flux separa-
tion, where the domain divides into regions of strong convection with a weak magnetic field and regions of
weak convection with a strong field. Analytical predictions of flux separation based on weakly nonlinear
analysis are extended into the fully nonlinear regime through numerical simulations. The results of the model
are compared with simulations of the full three-dimensional magnetoconvection problem.

DOI: 10.1103/PhysReVvE.69.066314 PACS nuni®erd7.54+r, 47.20.Bp, 47.27.Te, 47.20.Lz

I. INTRODUCTION this leads to a large-scale neutral mode representing rear-

Heat transfer in the convection zone of the Sun is inﬂu_r_angement of the magnetic field. Near the onset of convec-

enced by the interaction of the motion of the plasma with thd!On: the usual Ginzburg-Landau equation for the amplitude

Sun’s magnetic field. Regions of intense magnetic field, sucRf convection rolls must be coupled to this large-scale mode:

as sunspots, resist the fluid motion and hence reduce convel@lysis of this coupled pair of equations then leads to the

tive heat transport, while the fluid motion itself may rear- conclusion that all convection rolls can be made unstable
range or intensify the magnetic field. This complex interacN€ar onset to an amplitude modulation on large horizontal
tion provides the motivation for the study of scales. This instability occurs for small values of the mag-

magnetoconvection, where thermal convection of an electrin€tc cﬁffusmty and moderate vaIl_Jes qf the |mpo§ed mag-
etic field[13]. Of course, such an idealized analysis of con-

. ; : n
cally conducting fluid takes place in a plane layer threade({llection near onset cannot be applied directly to the

by a vertical magnetic field. This problem has been widely,,nerica| simulations of strongly nonlinear, compressible

studied and yields a wide range of interesting dynamical pher'nagnetoconvectiofs,lo], but it may help to suggest param-

nomeng[1-§. _ o _eter regimes for future numerical studies.

Numerical simulations of magnetoconvection in regions A sjgnificant hindrance to three-dimensional numerical
of large horizontal extent exhibit a phenomenon known asimylations is that such computations are expensive, because
flux separation, where the convection cells and magnetigyx separation occurs only in a large domain and can also
field rearrange spontaneously into areas where there is vigequire a long integration time for the instability to develop.
orous convection and weak magnetic field and other areasince(discounting geometrical parametetisere are four di-
where the magnetic field is strong and the convection is remensionless parameters in the problem, it is not possible to
duced[5,9,10. In its most extreme form, this process leadscarry out a significant survey of parameter space using full
to the formation of “convectond’1,12, which are isolated, three-dimensional simulations.
stationary convection cells surrounded by practically station- Our aim in this paper is to develop a reduced two-
ary regions of strong magnetic field. Convectons can easilgimensional model for magnetoconvection in a horizontal
be found in two-dimensional simulations; while they canfluid layer, in which the equations are averaged in the verti-
also be found in three dimensions, the behavior in that caseal direction. Such reduced models have been widely used
is typically more complicated and unstea@ee[11,12 and  for other convection problems, the original example being
the simulations in Sec. Il below that of Swift and Hohenberg14], where the three-

The physical mechanism for flux separation is a straightdimensional equations for thermal convection are reduced to
forward feedback process: regions of slightly weaker maga single partial differential equation in two horizontal space
netic field lead to stronger convection, and stronger conveadimensions. For stress-free boundaries, a horizontal mean
tion cells are more effective at expelling magnetic field. Thisflow is only weakly damped on large horizontal scales, and
process is resisted only by the diffusion of magnetic field,this mean flow plays an important role in some of the insta-
which is weak over large horizontal scales. A quantitativebilities of convection rolls. Mannevill§l5] derived a model
calculation of the circumstances under which flux separatioin which the stream function for this large-scale flow is
may develop was given by Matthews and Cgk13], by coupled to a Swift-Hohenberg equation. Closely related
considering the stability of small-amplitude two-dimensionalmodels have also been derived for rotating convection, at
convection rolls near the onset of convection, under “ideal’infinite Prandtl numbef16], and at finite Prandtl number
boundary conditions. They began by noting a crucial featur¢17] and used to investigate the small-angle and Kippers-
of magnetoconvection, which is that the total flux of the Lortz instabilities of convection roll§18,19. For magneto-
magnetic field through the layer is a conserved quantity, andonvection, such models have not yet been derived, although
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a two-dimensional system of 11 equations has been obtained The conditions for the onset of convection are obtained by
by a modal truncation of the governing equatigfg]. Our linearizing the equations and introducing a horizontal wave
derivation below results in just two equations, describing thenumber k [1]. The marginal curve, for stationary distur-
amplitude of convection and the magnitude of the verticalbances, takes the form
magnetic field. 5 4
We begin in Sec. Il by summarizing the three-dimensional _a Q7 +a’)
. . Rin(K) >
magnetoconvection problem from which our two- k
dimensional model is derived and some associated linear sta—h 222412 Thi h . itical
bility results. Numerical simulations of the full three- wherea = - This curve has a minimum at a critica
dimensional model are described in Sec. lll; these illustratd/ave numbek. that satisfies
the phenomenon of flux separation and allow later compari- a2k - ) = Qn®, 7)
son with corresponding numerical results for the reduced
model, which is derived in Sec. IV. The stability of magne- where a2=7?+k:. By eliminating Q between Eqs(6) and
toconvection rolls according to both the full and reduced(7), the critical Rayleigh numbeR; may be written as
models is discussed in Sec. V, and the nonlinear evolution of 6
the instability is analyzed in Sec. VI. Numerical simulations R.= Z;ac (8)
of the reduced model are presented in Sec. VII. m

, (6)

Il. GOVERNING EQUATIONS AND LINEAR THEORY Correspondingly, the critical wave number is given in terms

FOR MAGNETOCONVECTION of R; by
. . . . . 13
The dimensionless governing equations for incompress- k§: (7’2Rc> -2 (9)
ible magnetoconvection are 2

An explicit expression relatin@®; andQ may be derived by

1|du _ JB
_{E tu-v U} == VP+ROZ+{Q—— +{QB- VB using Egs(9) and(7); this leads to

g
+Vu, 1 Rox |13
. Q=%{1—<—F§f) : (10

X
—+u-Vo=w+V20, (2)  whereRgg is the critical Rayleigh number for convection in
It the absence of a magnetic field:

9B au 277"

— =V X (uXB)+—+{V?B, 3 Rre =

Y (u ) P 4 (3 RB= ",

B B The formula(10) is analogous to that obtained for the case of
V.u=0, V-B=0. (4) rotating convectiorj20]. Note that Eq(10) can be inverted

Here u=(u,v,w) is the fluid velocity, 6 is the temperature t0 give the critical Rayleigh number explicitly as

perturbation from the basic state temperature profilez,1- 1

and B=(B,By,B,) is the perturbation from the initial uni- R.= éRRB(A*' 1+A ) +Qm2(1+2A7Y), (11)

form vertical magnetic field0,0, 1. Lengths are nondimen-

sionalized with the depth of the layer, times with the thermal,here

diffusion time, andB with the strength of the imposed mag- "

netic field[3]. The dimensionless parameters are the Prandtl 4Q 8Q

number o, the magnetic Prandtl number measuring the AP=1+ 3.2 m[l L+ AQM. (12)

ratio of magnetic to thermal diffusivity, the Chandrasekhar

numberQ [1] proportiona| to the square of the imposed mag- The model derived below holds near the onset of convec-

netic field, and the Rayleigh numb& measuring the im- tion through a stationary bifurcation, and so in applying the

posed temperature difference across the layer. model we shall need to ensure that this bifurcation precedes
We adopt the usual “ideal” boundary conditions, whichthe onset of oscillatory convection. A detailed analysis of the

allow the linear eigenfunctions to be trigonometid. The  relative positions of the stationary and oscillatory marginal

boundaries are stress free and maintained at a fixed temper@lrves has been given by Dangelmdgd], and for com-

ture, and the magnetic field is constrained to remain verticapleteness the relevant results are summarized here. For oscil-
at the boundaries, so latory onset, which applies <1 andQ is sufficiently large

[1], the formula analogous to E¢LO) is

w=2Y-2"_y-p =B,=0 (5 3
a
atz=0 andz=1. In the horizontal directionsandy, periodic
boundary conditions are assumed. where
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TS, (CLT) - ] 4
o

T o 4 4 i -

By comparing Eqs(13) and (10), a useful explicit formula
can be found to determine whether the onset of convection is F ¥ ]
steady or oscillatory, for given values &, ¢, ando. The ™ .
result is that the stationary bifurcation occurs firstRass

increased ifQ<Q", while the oscillatory bifurcation occurs

()
first if Q>Q", where P E ] ]
‘I“‘.”

Q= Rrec(B— D(aB- 1)
- m(a—1)3

At Q=Q’, there is a codimension-2 mode interaction be- [ L] ] ] ] '
tween the steady and oscillatory convection modes. The re- i i J
sults of this paper concern the ca@<Q". Note that our (d
expression forQ" corrects a minor typographical error in

Dangelmayr’'s equatiotb.24) [21]. FIG. 1. Stable, stationary solutions for two-dimensional magne-
An important feature of magnetoconvection is that thetoconvection, showing grayscale images of total magnetic field
total flux of magnetic field through a horizontal surface, strength. Parameters agse=1,/=0.6Q=100, and the Rayleigh and
Nusselt numbers a@) R=2700N=1.75,(b) R=2800N=1.91,(c)

FB:f f B, dx dy, (16) R=3500N=2.19,(d) R=4000N=2.36.

. . - .. to Eq. (15 the stationary bifurcation occurs first &sin-
where the integral is over the whole periodic domain, iS areases. The critical Rayleigh numberRs=2654 and the
conserved quantity=z=0 for all time (recall thatB, is the |\, ove number i%.=3.70. The values 0D and ¢ are well

perturbation to the vertical magnetic figlihs discussed by ithin the region where convection rolls are unstable to am-
Matthews and Cox{13], this conservation law leads t0 an it de modulation according to Matthews and Gag]. The
eigenmode that is only weakly damped on large horizontalj;¢ of the periodic box is chosen to be 10.18; this allows
scales and therefore must be included in any analysis involsy ey six pairs of rolls with the critical wave number. The
ing large domains. This mode corresponds to displacing,merical resolution is 64 points in each horizontal direction
magnetic field lines but keeping them vertical, 8  3n4 25 points in the vertical direction; the initial condition is
<explik-x+\t), with growth rate given by a small-amplitude random perturbation from the equilibrium
=0k 1y see o .

Simulations in two dimensions carried out for a range of

The coupling of this mode to the convective mode forms thevalues ofR initially show a regular roll pattern, but this state

(15

basis of the reduced model derived in Sec. IV. is unstable and is replaced by a stationary state exhibiting
flux separation. FOR=2800 this stable state has two pairs of

. SIMULATIONS OF THREE-DIMENSIONAL convection cells occupying approximately one-half the do-
MAGNETOCONVECTION main, while in the other half the fluid is almost stationary.

These states are closely related to the isolated solutions

Because of the astrophysical motivation, most previouknown as “convectons[11]. In the stationary region the
numerical simulations of magnetoconvection have been cormagnetic field strength is approximately 1.8 times its initial
cerned with the case of a compressible flidd-6,10. There  value. The transition from periodic rolls to a flux-separated
have been very few three-dimensional numerical simulationstate involves a significant increase in the Nusselt nurhber
of the Boussinesq equatio(iy—(4); one example is the work (defined as the ratio of heat flux in the convective state to
of Cattaneo, Emonet, and Wei§8], but this is concerned that in the conductive statefrom N=1.08 toN=1.91. AsR
only with very large Rayleigh numbers. is increased, the proportion of the domain filled by convec-

In view of the lack of previous simulations and in order to tion rolls increases, and &=4000 there is one narrow plug
provide comparison with the reduced model of Sec. IV, weof intense magnetic field surrounded by convection cells.
present in this section some simulations of Hd$-(4) near  This sequence is shown in Fig. 1.
the onset of convection. The numerical code is based on the A three-dimensional simulation &=2700 results in a
convection code of22], extended to include the magnetic stationary pattern that does not show flux separaffag. 2).
field. The pseudospectral method is employea], using The pattern shows a zigzag arrangement of convection rolls.
Fourier series for the horizontal directions and ChebysheWypically, zigzag instabilities occur when straight convection
polynomials in the vertical direction, with fast transforms to rolls are forced to have a wave number less tharbut this
switch between the spectral coefficients and the corresponds not the case here. To check that this behavior is not a
ing physical values on the spatial grid. consequence of the domain size, further simulations were

The first simulations shown here are o1, (=0.6, and carried out for different domain sizes; in each case, essen-
Q=100. For these values of and{, Q"=137, so according tially the same zigzag solution was found.
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FIG. 2. Stable, stationary solution for three-dimensional magne-
toconvection witho=1,{=0.6Q=100R=2700. The figure shows a
contour plot of the vertical velocity at the middle of the layer, at
contour levels -1,-0.5,0,0.5,1.

For R=2800, the three-dimensional solution does exhibit
strong flux separation, but the behavior is highly time depen-
dent(Fig. 3). Less than half of the domain contains localized,
vigorous, three-dimensional convection cells, while in the
remainder the flow is very much weaker. The peak vertical
velocity is approximately 15, but in the quiescent regions,
the maximum vertical velocity is approximately 1 and the
field strength is increased to 10% —20% above its initial
value. The flow structure is constantly changing, but the
shapshots of Fig. 3 show typical behavior. The Nusselt num-
ber fluctuates in the range 1.15-1.22.

Further simulations carried out for different valuesFof _ _ ] ] _
show a generally similar picture to that of Fig. 3. No station- FIG. 3. Solutions for three-dlm_ensmnal magnetoconvection with
ary solutions showing flux separation were found.Rén- ¢~ +¢=0.6Q=100R=2800. The figures show contour plots of the
creases, flux separation becomes less clearly defined, as mé’nglcal velocityw at the middie of the layer, at contour leYEIS ~15,

. . . . =13, ..., 15. The two plots are separated by 10 time units.
and more of the domain is occupied by vigorous convection.
Two-dimensional solutions such as those of Fig. 1 are un-
stable in three dimensions, exhibiting a rapid buckling along
the axis of the rolls.

In order to provide a closer comparison with the two- |n this section, we introduce a reduced two-dimensional
dimensional model derived below, which has infinite Prandtimodel for magnetoconvection in a Boussinesq fluid. Such
number, some further simulations were carried out with models have been widely used for studying convection
=100 andQ=100. However, for these parameter values thg14-17,19,2#and have the advantage of greatly simplifying
onset of magnetoconvection is oscillatory {6r0.6, whereas  poth analytical and numerical studies, while capturing the

the two-dimensional model assumes stationary onset. Thergssential features of convection patterns and their instabili-
fore we takef=0.7 instead, for which onset is indeed steady.ties. The simplest model of this type is

In two dimensions, the results at=100 are very similar to

those ato=1: a sequence of results analogous to those oW

shown in Fig. 1 was obtained & increases. But in three gt =[r =@+ V9 w+Nw), (18)
dimensions the behavior at largeis quite different. Results

atR=2800 andR=3000 are shown in Fig. 4; in each case thewhereN(w) represents nonlinear terms andx,y,t) repre-
behavior is unsteady but the figures show typical snapshotsents the amplitude of the vertical velocity of convection
Convection cells are less vigorous thancatl and retain a after the dependence arhas been projected out. The model
roll-like structure locally. Modulation of the amplitude of (18) is generally referred to as the Swift-Hohenberg equa-
convection is less pronounced tharvatl, showing a varia- tion, although it does not appear explicitly in the original
tion of approximately a factor of 2 in the vertical velocity. paper of Swift and Hohenbeid4]. Certain simplifying as-

IV. DERIVATION OF THE TWO-DIMENSIONAL
MAGNETOCONVECTION MODEL
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dB
e {V?B, (20)

so the growth rata of this mode is as given by E¢L7). Our
aim is to construct a system of two equations foand B,
which will take the form of Eqs(18) and(20) with nonlinear
coupling terms. To avoid the additional complications of the
large-scale flow, which would lead to a system of three
coupled equations, we take the limit of infinite Prandtl num-
ber.

We suppose that the convection is close to onset and in-
troduce a small parametersuch that

R=R.+ €°R,, (21)

whereR,=0(1). The amplitude of convective velocity is
then of ordere and we anticipate that the mean vertical mag-
netic fieldB is of ordere 2 since it should be unaffected by a
sign change iw. Time derivatives are also of order. We
derive our model equations in two steps: first we compute
the appropriate linear terms in the evolution equationvipr
then, we compute the nonlinear terms in this equation and
the equation foB. To accomplish the first of these steps, we
begin by linearizing the governing equatiofl—(4), then
eliminating # andB, from z-V X V X (1) using Egs(2) and

(3). The result is a linearized evolution equation far

« € sin 7z in the form

92\ 9 2) _ z<i_ 2)
(at éaV)(&t Ve Viw=-RVy at &vew

sl -
(22)

If we now make the substitutiof®1) and assume that time
FIG. 4. Solutions for three-dimensional magnetoconvection withderivatives are of ordee ? and that£EV2+a§:O(e), as is
0=100£=0.7Q=100, showing contour plots of the vertical veloc- appropriate for patterns with horizontal wave numbkerk.,
ity w at the middle of the layera): R=2800, contour interval =1. we find atO(e %) in Eq. (22) that
(b): R=3000, contour interval =2.

2

. . o <a§+ M)‘9—VV = (RKZ-3aZLHw. (23
sumptions are necessary in any derivation of &), and { at
various different choices have been used for the nonlinear ) ) ]
term N(w). For convection at finite Prandtl number with T0 carry out the second step in the calculation, generating the
stress-free boundaries, a stream functiprrepresenting a nonlinear terms for Eq23) and the equation faB, the vari-
large-scale flow should be introduced as a second indepefPles are expanded as
dent mode, because the linearized equation for this mode is

- 2 e
the diffusion equation U= eth COSTzt €008 Zmzt -, =9
» U= €1C0STZ+ € 20,C0S 27Z+ -+, (25)
E = a'Vzlﬂ, (19)
W= ew; Sin wz+ € ?W, sin 27z + -+, (26)

and so this mode is only very weakly damped on large
scales. This leads to a model in which E#9) is coupled to 0= €6, sin wz+ €20, sin 2mz+ -+, (27)
Eq. (18) through nonlinear termglL5].

To derive a model for magnetoconvection we must in-

= i 2 i
clude an eigenmode representing the rearrangement of the By = By Sin mz+ € "Byp Sin 2mz+ -+, (28)
vertical magnetic field lines. The linearized equation for this
mode is, from Eq(3), the diffusion equation By = eB,, sin mz+ eszz sin 27z + -+, (29)
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B,= eB,; cosmz+ e’B+ 2By, cos 27z+ -+, (30)

where all the coefficients of the trigonometric functionszof
are functions of, y, andt only.
From this point on, we us¥ andV? to denote the two-

dimensionalhorizonta) gradient operator and Laplacian, re-

PHYSICAL REVIEW EG69, 066314(2004)

tion problem shown in Fig. 4. In this case, the solution at
second order is

by — (41)
2~ 87Tk§ac'

spectively, in order to simplify the notation. Where we use
the corresponding three-dimensional operators we hencendw,=B,,=0, with B as yet undetermined. Note that we do

forth denote these explicitly 85 and VgD
By considering terms at orderin Eq. (2) we obtain

0=w; +(V2-7?)6,. (31)

The components of Eq3) yield
0 =-muy + {(V? = 7 2By, (32
0=-my+{(V?-m?By,, (33)
0=mw; + (V2= 72)B,, (34)

and by combiningz-Vsp X (1) with Va5-u=0 it can be
shown that

W

Vau, = - ”a_xl’ (35)
aW,

Voo, =—-m— 36

U1 ay (36)

Hence all the linear quantities can be expressed in terms of

w;. Substituting these expressions inkeVyn X Vap X (1)
and settingv2=-k? gives the resul{6) for the marginal sta-
bility curve.

At order €, by evaluating the nonlinear terms in H),
Z:(3), and 2-V55 X (1), it is found that the second-order
functionsw,, 6,, andB,, are determined from

2 4m?)6,= —3M 7
27w, + (V2 - 47?)B,=0, (39
R.V26, - 2m{Q(V? - 47 2)B,, + (V2 - 47 %)°w,
Q7T3 2
=———=VM
20 o
where
M = IwE + [V wy 2. (40)

not evaluate the “linear” correction terms that arise at this
order, since their influence is entirely accounted for by the
linear terms derived in Eq23).

We shall see below, in Sec. VI, that the assumption of
constantM is too drastic and that in order to saturate the
growth of localized convective states we must modify the
model equations derived in this section to account for slow
variations inM (see the Appendix A more comprehensive
model, in which the spatial dependence Mfis retained,
leading to more complicated nonlinear terms, is given in de-
tail in [26]. However, for the moment, we retain the constant-
M approximation.

At order €2, we obtain the relevant nonlinear terms in the
evolution equation fow; by considering terms proportional
to sinzz in 2-V45 X V35X (1) and (2), and terms propor-
tional to coswz in z:(3). We further make the assumption
that the convective structures formed have horizontal wave
number roughlyk.,, and hence make the replacemért
'—>—k§. The relevant terms are then, respectively,

0= R0, - Qe B - alwy+ T2F BV wy)
agks
Q 2
2 ~——(Vw, - VB+Kw,B), (42)
together with
1ow 2 1
%?_Wg, 03 8kg 2MW1, (43)
1‘9_""1_ 25 __
§ac Py W3+ {azB k2V BVw), (49

wherews, 65, andB are the ordee® terms with the same
dependence as the ordeterms in the expansior(%) (27)
and(30). Now multlplymg Eq.(42) by aC Eq. (43) by Rckc
and Eq.(44) by Q7-rac and adding the resulting expressions
together gives, after reinstating the linear terms from Eq.

Now the systent37)—(39) cannot be solved exactly, since we (23,

do not know the form oM. However, for magnetoconvec-

tion it is known that convection takes the form of two-

dimensional rolls at onsdgi25], and for convection in the
form of rolls, so thatw; =W cogkx), for instance M takes
the constant valueM=k®W?. Assuming that convection

(ac Q= Dm )an (RokZ — 3aZL2)w; + Ny,

¢ at
(45)

forms a pattern that locally is close to regular rolls, we make

the approximation thak is a constant. This approximation

where the nonlinear teri; can be written in terms ofv,

is consistent with the simulations of the full magnetoconvec-andB as
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2
N, =-— S&aﬁMwl -QuAVw, - VB+kw;B) B,= (VB + gZﬁkg‘ V- (V2w Vwy). (52)
2 2 2+ k2 . . .
. Qm (2w +k7) V- (BVw). (46) To write the model system in a simpler form we rescale Egs.

K (45) and (52) by introducing(x’,y") = (kx, kgy), ' =kt, w’
_ . =Ww,;, and B'=W?B, where W=(a2/127%k3)2 If all
In view of the assumed dependence of the leading-order primes are then dropped, the resulting scaled system is
contribution tow, the definition ofL appropriate here i€
=2V2+k§ (this is equivalent to the earlier definition @f as W =[r = (1 +V2)Zw-ww?+ Vw- Vw)
Vip+al).

3DToaéomplete the model we require an equation for the ~a(WB+ VW- VB)+asV -(BVW), (53
depth-averaged vertical magnetic figdd The linear terms
are given in Eq.(20) and the nonlinear terms arise from Bi={VB+a V - (VAWV W), (54)

those in thez component of the induction equatig8): where the parameters are readily found to be

. @D o (_R‘Rc)
z 3 277_2 Rc ’
where(---), denotes an average overSince the terms de-

scribing the large-scale magnetic field in EQ0) are of or- 1 4 Q- 1) 7?2
der €*, care must be taken in the evaluation of the terms in T0= 3 2k§ act ¢ '
N,; simply using Eqs(32)~(36) with V2 replaced by k§ to G
expressN, in terms ofw is not sufficiently accurate. We
rewrite the nonlinear term by introducing poloidal potentials

N, = <;—X(WBX— uB,) + j—y(wBy— vBZ)>

2

= > O,
for the leading-order contributions toandB, T ek
U=V3p X Vap X (¢ Sin 722) a2:4(2k§—772)>0, 55
= (¢ cOswz, ¢y cOS7Z,~ V2p sinwz),  (48)
— 2’” 2 .
B =V3p X Vap X (i COSTZ2) az= 1+k_§ a,>0; (56)

—(_ H _ i _v2
= (= g sin @z, = gym sin w2, V74 cosmz), (49) we have used Eq$7) and(8) to eliminateR; andQ from the

which correctly describe th@(e) terms if ¢=ew;/k? and nonlinear coefficientsy;, a,, andas. For Eq.(53) to be well

y=eB, /K2 In this formulation the nonlinear termi, be- ~ POSed, we needo>0—i.e., {=>1-/2k. [Alternatively,
comes we may write this condition as{=1 or Q<73

—20)%14(1-¢)°]

T, ) 5 ) The model consists of a Swift-Hohenberg equatibB)
N, = E[(V & U+ Vi dIxt (Vo iy + VU )y ] coupled through nonlinear terms to an equaiis4) for the
mean vertical magnetic field. Note that in this system, the
_T 2 2 horizontal average dB is conserved, according to E(p4).
= . +
2 V-V VyrViy V), (50 In view of the discussion following E@16), the systent53),

) o (54) is subject to the condition
where the factor of 1/2 arises from averagingithe terms

in sir® 7z and co$ 7z. Now it can be shown that in this (B)xy =0, (57)
form, N, can be written as

m|(d? 972
Ny=— (__ >(¢x¢x_¢y‘/"y)

where(: --),, denotes the horizontal spatial average.

2(\ax® ay? V. ANALYSIS OF THE MODEL
J? In this section we analyze the behavior of solutions to the
+ 22— + , 51 : y
Ix ay((ﬁxlﬂy Py (5Y) model equationg53) and(54) for w andB, near the onset of

_ ) ) ) _convection, concentrating on solutions in the form of rolls
showing that each nonlinear term is subject to two derivapzng their instabilities.

tives. Therefore the mean componentN\yf on large scales
in which horizontal derivatives are of orderis of ordere?,

as required for the large-scale moBe Hence we may use A. Linear stability of the conduction state

the leading-order approximationsg= ewllkg and ¢ In the system(53) and (54), the conduction statev=B
=B, /k2=emw/ {aZk? in the formula(50) for N, to obtain =0 has two associated branches of eigenvalues correspond-
the equation foB in the form ing to infinitesimal disturbances in either or B:
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w~ expAt+ik-x), 7A=r—-(1-k??2, (58) By rescalingX, ), 7, A, and G, we may reduce these

o ) equations(in the interesting case,>0) to the canonical
and, as indicated in Eq17), form

B~ expt+ik-x), ==k (59 Ar=A+Ax—AA?-AG, (65)

where k=|k|. Thus the “pattern” branch, corresponding to

disturbances i, has maximum growth rate in this scaling Gr=S(Gyx+ Gyy) + (A2~ |A2Y), (66)
at unit wave number: the conduction state is unstable for o

r>0, to a band of wave numbeks= 1. The second, “large- with (G)x y=0, where the only remaining parameters are
scale,” branch does not itself directly give rise to any linear (e + a2)

instability of the conduction state; nevertheless, it plays a o= T8 0, p=LRTA g (67)
significant role in pattern formation, which is made clear in 4 4b

the weakly nonlinear analysis that now follows.

. ) C. Modulational stability of rolls
B. Weakly nonlinear expansion

Roll solutions of Egs.(53) and (54) with near-critical

Near the onset of instability of the conduction state, W€ ave number correspond to solutions of E(E5) and (66)

expand

of the form
W""é\Nl+52W2+...’ (60) A:Aoein, GZO,
B~ 62B,+ -+, (61)  Where|Ay?=(1-K?). The stability of these rolls is deter-
mined by considering perturbations in the form
where
— iKX —
c= %, 62 A=Af1+a(X,Y, D], G=yXY,T),

. . ... where|a|,|y| < 1. Since the linearized equations governin
We examine the weakly nonlinear development of rolls with e[ q 9 g

e . nd+y have spatially uniform coefficients, it suffices to inves-
ggglc;as! wave humber, modulated on the spatial and temporaﬁlgate individual Fourier modes

(XD, T)=(%,8y,6%) (63) a=UdXmY) 4 \/ grilX+my)

Upon substituting these expansions into EG8) and (54) y=wel*m + ¢ .

and considering the terms @ 6), we choose ) ) o
where we note thay is necessarily real valued, butis in

w; = A(X,V,7T)e" +c.c. general complex. The amplitudés V, andW all have the
, same exponentiall dependence, and the corresponding
for some complex envelope functiod(X,),7). Corre-  growth rateA satisfies a cubic equation, so there are three
spondingly, roots to be examined. The limit+m?—0 is of particular
o significance (although presumably instabilities may also
B,= —(A2® +c.c) + GX,V,T), arise at finitel or m). In this limit, one growth rate had
27 ~-2|Ay><0 and corresponds to the stability of rolls to uni-
form disturbances to their amplitude. The remaining two sat-
isfy A=0(I?+m?) and can be found from a quadratic equa-
tion, which in principle allows both monotonic and
oscillatory instabilities. However, we have observed only the
monotonic instability in simulations, so we focus on that

ToA7= oA+ 4A v — DA AP - (ap + a3) AG, case, finding that rolls are unstable if
s(12+m) (1 - 3K?) + u(m? - 1%)(1 -K?) < 0.

where G(X,),7T) represents a large-scale magnetic field.
Amplitude equations governing the evolution df and G
arise from solvability conditions @(5 %) andO(54), in Egs.
(53) and(54), respectively. These are

G7r={(Gxx* Gyy) + 011(|A|§(X_ |A|§)y)' . ;
For a given value of+n?, the most dangerous disturbances

where havem=0, and hence there is instability tme-dimensional
(3ay - a) 7R = )22 ) modulations if
b=4+—""———==4|1+ 4 2 12 . 2 2
2 U2+ KD) s(1-3K?) < w(1-K?).
(64) Al rolls are thus unstable if13]
We assume thdi> 0, so that the rolls branch supercritically. uls>1. (68)
This condition is satisfied for alf if Q>4 2 or provided{
is sufficiently large ifQ <4 2. In terms of the original parameters, we find that
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2212 = 7 2) (K2 + 37 2) — (K2 + 7 2)KA 4R?2 _ ,
Bo1=Z 2( 2 a 3( 2 71-2) i (2 77-2) ; B, = (eAXHP) 4 @720 )y 1 B, (75)
S 72(2k% - w2) (K - 7 2) + (K + 7o)k 3az— ay
and so all rolls are unstable for whereB,o(X,,7g) is, as yet, unknown. AO(53), we find
20912 _ — 2\ (12 2
w2k -7k +37°) RS _ _ .
1+ m 2K e (69) Ws= - E((_:,e,u(x+cla) + g AR 4 R (XHP) 4 i)y
This result exactly recovers the stability boundary obtained (76)

from the full governing equation].

The stability of rolls to the zigzag instability is, to leading Where Ry(X»,7¢) is for the moment arbitrary. In addition,
order, unaffected by the presence of the large-scale magnefig@m the terms in Eq(53) proportional toe***®), we find
field: a standard weakly nonlinear analysis predicts that, nedhat
onset, rolls are unstable to zigzags if their wave number is
less than critical(i.e., if k<1). A detailed analysis is not 1 8R?

presented here but is given by Pollicf26]. Boo= as+a, 3az-—a, (7"

VI. NONLINEAR DEVELOPMENT Thus, in view of Eq(57),

OF THE MODULATIONAL INSTABILITY

n_ 3E-1
The instability of rolls to modulation of their amplitude, (R = 8(E+1)’ (78)
as described above, was first discussed by Matthews and Cox
[13]. The nonlinear development of this instability in large where we have introduced
domains requires a delicate analysis, first given by Proctor
[27], which reveals how the saturation of the instability de- - _ 3 (79

pends on the parameters of the problem. In this section we @
derive a nonlinear amplitude equation that governs the insta-
b|||'[y, in the form derived by Proctor, and examine its evo- The remainder of the calculation is rather algebraically
lution for the modek53), (54). involved, so we note here only the structure of the results at

We consider Eqs(53) and (54) in one space dimension, the various orders id. At 0(54), we findB4, up to its Spatial
with r=&%,. As in Sec. V B, we expana andB in the form  averageB,o=(By). At O(5°), we find, from the imaginary
(60), (61). To decide the direction of the bifurcation to modu- part of the coefficient o€ **®) in Eq. (53), that «, takes the
lation, it proves necessary to examine very wide boxes, antbrm
so instead of Eq(63) we introduce modulational scal¢®7]

h(7¢) = 3(92 - 7)R?
Te=0% Ap=o%. (70 “TTRZ TaE+1) | BEE-D)

(80)

The analysis below holds near the onset of the modulation
instability, and it is convenient to take, as a tuning param-
eter to achieve this. We thus write

%r someh(7g); from the corresponding real part of this co-
efficient, we find grather complicatedexpression foB,g. It

follows from Eq.(80) that
ay = ag(1+6%ayy), (71 21 - 112

h(R™) = (k) + 6A=+1)

where, in view of Eqs(64), (67), and(68), the threshold is (81)

8¢

as‘a’zl

We also find a complicated expression fay. At O(5°), the
solution is complicated and sheds little light on the calcula-
tion at hand. The problem &(57) yields equations foR,
We now systematically consider Eq&3) and (54) at suc-  and«, upon consideration of the real and imaginary parts of

o= 3 (72)

cessive orders ib. At O(5"), we write the coefficient ofd**®), respectively. These expressions are
68 D) 3 oriHD) not, however, necessary for the present calculation.
wy =R +€ )s (73 Finally, atO(58), consideration of the spatial average of
where R=R(X,, 7o) and ®=d(X,, 7y, and we define Eq. (54) yields the evolution equation
Ko(Xz,%) and Kz(Xz,%) by IR 52 2§<R2> 52R h2
R— = 5|~ >~ 53 +CR2+dR4 y
Jd , 7 0Te 9X3 R \ax3 R
S~ Ko+ 82k,
gx, foTefe ( (82)
At O(5?), we find where
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08 1

06} 1

04 .

FIG. 5. Stable solution to the
model equations(53) and (54)
in one dimension, forQ=100L
=12m,(=1.0. Solid line: w.

. Dashed line: 10B.

-08} .
o 5 10 15 20 25 30 35 40

(E(2152 - 1)) ) netic field has been expelled from the regions of strong con-

R CrE 20(R%)az, (83)  vection, as shown in Fig. 1, at which point the amplitude of

- convection can be increased no further. But in the reduced

and model,B represents the perturbation to the magnetic flux and

) can become arbitrarily large and negative.
d=- {(171%E° - 2034 + 539 (84) To resolve the blowup, we recall that the model derived
25632 -1)(E+1) here is a simplified version of a more sophisticated model

[26], in which M is not assumed to be constaniCite?). The
terms retained in the present model are sufficient to capture
accurately the various stability boundaries of the rolls, but
are evidently not sufficient to prevent the blowup of modu-
lated states. To stabilize the model, we include terms from
[26] corresponding to the “slowest” variations M. Terms
involving VM are retained, but terms involvin§°M are
‘omitted. The resulting model derivation, summarized in the
Appendix, maintains the relative simplicity of the present
‘model by adding to the right-hand side of £§3) a single
additional term of the form

Thus the modulation of the pattern is governed by B8),
subject to Eqs(78) and (81).

Proctor’s equation(82) predicts that in general the
bifurcation from a uniform-amplitude state with
R=[(3E-1)/8(E+1)]*? to an amplitude-modulated state is
subcritical[27] (except in sufficiently small boxgslt is also
capable of describing the nonlinear development of this in
stability. Since the sign ofl determines whether an instabil-
ity of moderate size saturates, it is more illuminating to sub
stitute for Z, using Eqs(55), (56), and(79), to give

_arigrt+ 70272 + 55k
- 256a2(Kk? + 37°)

which reveals the terndR* to be destabilizing in Eq82)

([DZnQé';;nse)t(iren;dtg eg Otrﬁgﬁ]sogoe:g%d sf?z : t\)/l\c/)gv l#; dOfSSuOCIEtlgnsrepeat the calculation above to determine the direction of the

blowup quite generally in numerical simulations of () bifurcation, we find that the sign afis then the same as that
of
and(54).

In fact, it is to be expected that the mod&?3), (54) 4 2 o 4 2 2012
should exhibit a blowup, for the following reason. The model (171977 + 7027 *+ 55¢) + 4(31k; + 1117 )k
incorporates the physical mechanisms of expulsion of amag-  + 37 ?)a, — 12k + 37 2)%a?.
netic field from regions of stronger convectig@hrough the
a, term) and enhancement of convection in regions wheréMNe thus achieve a stabilization of the modulated state when-
the magnetic field is weakdwia the a, term). In the full  ever 1.3%<®,<9.87 (this interval yieldsd>0 for any
system, this process continues until almost all of the magk?> 7/2).

<0, (85) a,Vw- V(W2 +|Vw?). (86)

We emphasize that neither this nor any of the other omitted
terms affects the stability boundaries of roll solutions. If we
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(b)

FIG. 6. Numerical solutions to the model equat{®3) and(54) FIG. 7. Numerical solutions to the model equat{®3) and(54)
in two dimensions, showing contours wf for Q=100,L=127, { in two dimensions, showing contours wof, for Q=100L=127,¢
=1.0, with a contour interval of 0.Xa): modulated rolls at=750. =0.8.(a): transient modulated state &t 700. (b): stable modulated
(b): stable wavy rollsf=3000. wavy rolls att=3000.

Vil. NUMERICAL SOLUTIONS OF THE MODEL (53) and toR=2787; thus the most appropriate comparison

The model(53), (54) is solved numerically in a square is with the three-dimensional simulations in Fig.(dt R
periodic box O<x,y<L, wherelL is specified below. The =2800.
code is pseudospectral, with the solutions foland B ex- For Q=100, k.=3.70 and so according to E¢9) rolls
panded as Fourier series nandy. The resulting nonlinear are unstable fo£ < {.=1.30; however, the influence of the
system of ordinary differential equations for the mode am-inite domain size reduces to .~ 1.06.
plitudes is truncated at 256 modes in each direction. This According to the nonlinear analysis in Sec. VI, it is to be
system is stiff, largely due to the linear fourth derivative termexpected that solutions to the original mod&d), (54) blow
appearing in Eq(53), and time stepping is achieved using up for {< .. This is confirmed by the numerical solutions,
exponential time differencing28], which is an efficient which show that for{<({., rolls are unstable to amplitude
method for stiff systems. The initial condition is a small ran- modulation but this modulation increases without limit. To
dom perturbation to the equilibrium=B=0 that satisfies the prevent this blowup, all the numerical solutions presented
constraint(57). here incorporate the additional teegVw- V (W?+|Vw|?) on

Parameter values are chosen correspondin@+dl00, the right-hand side of Eq53), as discussed in Sec. VI and
with L=127, so that six pairs of rolls are contained in the derived in the Appendix. The value,=2 is found to be
domain, to allow comparison with the three-dimensionalsufficient to keep the solutions finite, so this value is used
magnetoconvection simulations of Sec. Ill. The rat®  throughout. Note that, as emphasized above, dhgerm
-R.)/R; is set to 0.05, which correspondsrte0.137 in Eq.  does not alter the value .
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tially, a pattern of rolls forms, and these rolls become un-
stable to a modulation of their amplitude. However, these
modulated rolls are unstable to a buckling mode and become
strongly kinked(Fig. 6, lef). After some further transient
behavior, the system reaches a stable state of wavy rolls
which are not amplitude modulatg#ig. 6, righy.

When (¢ is reduced to 0.8, the model exhibits a long tran-
sient phase involving highly time-dependent patches of
modulated rolls(Fig. 7), which is similar to the behavior
shown in Fig. 4 for the full system. At large however, the
model settles down to a state of wavy rolls with a slight
modulation in their amplitude.

The results of a simulation witli=0.7 are shown in Fig.

8. At t=1000 a pattern of wavy rolls is seen, modulated in
amplitude in the direction transverse to the rolls. At larger
times, some secondary structures appear along the axes of
the rolls. This is not a stationary state, but the qualitative
appearance remains the same ascreases further. In these
solutions the amplitude of in the strong regions is approxi-
mately twice that in the weak regions.

Further simulations in larger domains show a very similar
behavior, with stable wavy rolls faf near{. and modulated
wavy rolls for smaller values of. Because of the constraint
75> 0, it is not possible to investigate magnetoconvection for
£<0.64, withQ=100.

There is very good qualitative agreement between the re-
sults of the two-dimensional mod@3), (54), shown in Figs.
6-8, and the three-dimensional magnetoconvection simula-
tions shown in Fig. 4. Both systems exhibit wavy roll struc-
tures with moderate modulation of amplitude.

VIIl. CONCLUSIONS

We have developed a two-dimensional model for magne-
) toconvection valid near onset, under conditions that give rise
FIG. 8. Numerical solutions to the model equati&8) and(54) to stationary onset. The model is dgrived by _factoring out t_he
in two dimensions, showing contours uf, for Q=100 =121,7 vertical dependence of the convection, and involves a Swift-
~0.7.(a): modulated wavy rolls at=1000.(b): t=3000. Hohenberg-llke equation for the planform of the vgrtlcal ve-
locity component coupled to an equation governing large-
A stationary solution in one dimension is shown in Fig. 5,scale redistribution of the magnetic field. Although large-
for {=1, in which case the other parameters in the modekcale variations in the magnetic field are linearly damped,
take the valuesr,=0.573, a;=0.0306, @,=70.13, andas they can tend to suppress the convection in some regions,
=171.2. Herew exhibits a strong modulation in its ampli- where the local magnetic field strength is elevated, and pro-
tude, whileB (scaled up by a factor of 100 in the figyiie  mote convection where the magnetic field is correspondingly
positive wherew is weak and predominantly negative where weaker. The full magnetoconvection problem and the re-
w is strong, thus inhibiting or enhancing through the duced model provide an example of the instability to ampli-
-a,WB term in Eq.(53). For smaller values of, a more tude modulation of systems with a conserved quantity, dis-
strongly modulated, asymmetrical traveling wave packet icussed by Matthews and C¢X,13] and Proctof27].
found. The linear terms in our model are the same as for models
In two dimensions, the above one-dimensional solution®f convection with stress-free boundaries, where a Swift-
are found to be unstable, and there appears to be a preferendehenberg equation is coupled to an equation for the stream
for wavy or zigzag rolls, as was found in the full magneto-function ¢ [15,17,19. The nonlinear coupling terms, how-
convection equations in Sec. lll. Also, these wavy rolls seenever, are different, sincgs changes sign under reflection but
to be less susceptible to the amplitude-modulation instabilitythe magnetic field does not.
As is to be expected for a complicated system in a large The model captures many features of the full magneto-
domain, more than one state can be obtained for the sanmnvection equations. In particular, the linear stability
parameter values, depending on the initial conditions. boundary of the conduction state and the secondary stability
A two-dimensional simulation witli=1 (so that the pa- boundaries of the regular roll solution to modulational insta-
rameters are the same as in Fig.i$ shown in Fig. 6. Ini-  bilities are captured exactly by the model. Further compari-
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sons of the model with the full problem have been carried If we make this approximation, then EqR7) and (398)
out through numerical simulations, in order to explore theallow us to writed, andB,, in terms ofw, andM as

phenomenon of flux separatigh,10. In one horizontal di- 1 M W
mension, both systems exhibit stationary, strongly modulated 0, = —2<w2 - —2> = —Z (A1)
states. In two horizontal dimensions, the behavior is more 4 2k§ac 2m{

complex and the one-dimensional modulated rolls appear tgypstituting these expressions into E2p) and again replac-
be unstable to a buckling mode. This can lead to stable, wavihg V2- 472 with 472 in all cases, we obtain the following

unmodulated rolls, to stable, wavy modulated rolls, or toequation relatingv,, V2w,, andM:
time-dependent modulated states. The behavior of the model (

shows good agreement with the simulations of the full equa-_2V2W2 + 41 2Qw, + 167w, =
tions at large Prandtl number. am

This work raises several questions for future research. Iti
of interest to determine whether similar modulated states o

+
20k 8mkiag
Before we can findv,, we need to make some further sim-

; . => "lification. As in the earlier approximations, we neglect the
cur in the parameter regime where magnetoconvection is o

5 X .
. w, term compared withw, term, corresponding to the as-
cillatory at onset and whether a reduced model can be des— ; 23 ; ;
4 . . ) . umption thaR.< (4 which, whenQ is small, amounts

rived for this case. Other possible extensions include the ca P Ro< (47 )" ( nQ

. > .
of finite Prandtl number, where there is an additional large- the reasonable assumption tha 6 %). We then find

scale mode to be includef5], and the inclusion of the _ aﬁ 2Qm® )
effects of compressibility. W2 = 161 5k§(Q+ 47?) g“kﬁag VM.

The next stage is to obtaif, andB,, from Eq.(Al); addi-
tionally, in computing the former we make the approxima-
tion, consistent with our argument above, that we should
At O(€2) in the derivation of the model equation fay we ~ neglectV2M compared withM, so thaté, remains as in Eq.
simplified matters by takindy! to be independent ofandy.  (41). The final step at this order is to fintl,,v;) and
By making this assumption, we were then able straight{Byx2,By). Equations exactly analogous to E¢35) and(36)
forwardly to solve the equations fav,, 6,, andB,,. If we  hold at second order, and from these it can be deduced that
remove this restriction oM and admit that it will in fact (u,vp)* VM, and similarly for(B,,B,,).
vary with x andy, then further analytical progress is not in ~ Having calculated these additional terms @te?), we
general possible. One circumstance, however, in whicmay then compute the corresponding term€é¢) in the
progress can be made is if we adopt the approximdtﬁ)n equation forw,. The details are rather algebraically cumber-
<472, so that we may neglect thé? terms on the left-hand some and unenlightening, but the principal change of interest
sides of Eqs(37)«39) in comparison with the —#2 terms  is the introduction into the right-hand side of E@5) of
[15,17. Such an approximation cannot be justified in gen-terms proportional toVw,-VM and w,V°M. The latter is
eral, but it might be acceptable whénis not too large, since neglected, on the basis described above, as being much
then k.~ 7/12 (so that this approximation corresponds to smaller than the retained term proportionahigM, leaving
taking 1< 8). We note that some restriction on the magnitudethe former term. Although a formula can be found for the
of Q is in keeping with our expectation that the model will coefficient o, of the Vw;-VM term, in view of the large
become inappropriate whe is large enough for the oscil- number of approximations required in this derivation we re-
latory bifurcation to precede the stationary bifurcation fromgarda, as a free parameter and have used the value? in
the conduction state. the simulations of Sec. VII.

3
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APPENDIX: DERIVATION OF ADDITIONAL STABILIZING
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