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We study the steady-state dynamics of sedimenting non-Brownian particles in confined geometries with full
hydrodynamic interactions at small but finite Reynolds numbers. We employ extensive computer simulations
using a method where a continuum liquid phase is coupled through Stokesian friction to a discrete particle
phase. In particular, we consider a sedimentation box which is otherwise periodic except that it is confined by
two parallel walls parallel to gravity with a spacihg. By systematically varyindi, we explore the change in
dynamics from a quasi-two-dimension@D) case to a three-dimensional case. We find that in such confined
geometries there is a depletion of particle number density at the walls for small volume fractions, while for
large volume fractions there is an excess number of particles at the walls. For the average sedimentation
velocity, we find that the Richardson-Zaki law is well obeyed but the decrease of the velocity for dilute systems
is slower for smaller values df,. We study the anisotropy of the velocity fluctuations and find that in the
direction of gravity there is excellent agreement with the predicted scaling with resggcMie also find that
the behavior of the corresponding diffusion coefficients as a functiob, a6 qualitatively different in the
direction parallel to gravity and perpendicular to it. In the quasi-2D limit where particles block each other, the
velocity fluctuations behave differently from the other confined systems.
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I. INTRODUCTION V(P)/Vg= (1 -D)", (1)

The transport properties of sedimenting patrticles play an
important role in many natural processes and industrial apvhereVs denotes the terminal settling velocit$tokes ve-
plications. This problem is also an interesting example of0City) of a single particle and the exponentis around
nonequilibrium dynamics, which is still somewhat poorly 4-5=5-5 in the low Reynolds numbéRe) regime [11].
understood in the case of a finite volume fractibrof the ~ Qualitatively the mo_notom(?ally decreasing behavior can be
particles[1]. Under appropriate boundary conditions, such aimderstood as thg increasing effect of the backflow. In the
in fluidized beds, a sedimenting system driven by gravity carP¥ k€ and @ limit Batchelor [7] deduced the result

reach a steady-state distribution, with a fixed average settling(q))/ VS:1_§'551.) for the. case where the SySte”? size
velocity V(®) = |(V)|, whereV =(L/N)SN, vi is the average =0, To obtain this result, it was assumed that particles can-
- ) - i=1

. . . . not overlap but otherwise all configurations are equally prob-
velocity of N sedimenting partlcle§ and the angu[ar bracketsable_ Similarly, Geigenmiiller and Maz[&2] (and later Bru-
denote esteady-stat@verage. An important special case of o et 4. [13,14) studied the effect of the side walls on the

sedimentation is that where experiments have been carriegjimentation velocity. Assuming that particles do not over-
out in systems with confined geometries, in particular in be1ap with walls, anintrinsic convectiorflow is formed in the
tween closely spaced glass plates where even a quasi-tWoicinity of the walls due to depletion of particles in a dis-
dimensional2D) geometry can be realiz¢@,3]. One of the  tance closer to the wall than the particle radius. In the special
benefits of such a setup is that it is possible to visually decase where the suspension is confined between two infinite
termine the position and velocity of each individual particle.parallel vertical walls, this convection leads to an average
However, it is not presently clear how the measurements igettling velocity that is a function of the position relative to
such a system can be quantitatively related to the correthe walls. Finally, we note that in the 2D limit, where only
sponding values measured in true 3D experiments or simufew studies exist, the RZ law is well obeyed but with an
lations. For example, it is expected that closely placed walleffective exponenh~ 3 [10].
influence the behavior of the sedimenting particles by re- During sedimentation each particle produces a velocity
stricting the particle motion due to enhanced blocking andfield around it which, in the creeping flow limit, decays as
on the other hand, due to the effect of the friction produced ™ wherer is the distance from the particle center. This
by the no-slip boundary conditions along the walls. Also, thevelocity field influences the motion of the other particles
role of inertial effects is an open question. [15]. With random fluctuations in the particle density this
In a 3D system the behavior ¥{®) has been extensively hydrodynamic interaction induces, even without Brownian
studied in the limit where Brownian motion can be neglectedmotion, fluctuations around the average velocityd) for
[4-1Q. Both experiments and simulations have shown thatb >0, which leads tdiffusivebehavior of the particles. In
as® increasesd/(d) decreases monotonically following the the direction of gravity(negativez axis herg, the fluctua-
phenomenological Richardson-ZgRZz) law tions are defined by
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AV, = \<TU§> (2)  each other and the system is said to be weakly interacting
[26]. On the other hand, increasinly or L will eventually
where év,=v,+V(P) is the one-particle velocity fluctuation lead to a system where the particles are closer to each other
where the ballistic average motion has been removed frorthan to the walls and the system is strongly interacting. Bren-
the velocity component parallel to gravity. The nature andner also assumed that in a weakly interacting system, the
origin of these velocity fluctuations have been under intensg@articles are spaced uniformly but in a strongly interacting
experimental and theoretical studies receftly Of particu- system they are depleted from the center of the container
lar interest is the dependence of the velocity fluctuatié's  since the particle diffusion is largest there due to the larger
on ® and on the dimensions of the container. Early theoretvelocity fluctuations.
ical work concerning 3D systems by Caflisch and L{iké] In simulations, periodic boundary conditions are often
predicted that in the limit where inertial effects are negli- used. Even though no walls are present, additional force is
gible, the velocity fluctuations would diverge with the sys- exerted on the fluid by the periodic images. The contribution
tem size as\V/V,~ dY4(L/a)Y? wherel is the linear size from the periodic images hinders the fluid velocity produced
of the container and is the particle radius. An intuitive way by the particle motion. Koch showed that in a geometry,
to obtain this result is to consider that a “blob” 8§, excess ~where the height of the container is much larger than the
particles in a volume of linear dimensignis sedimenting other two equal dimensions, the velocity fluctuations are
with relative velocityV Nga/ p. If the particle distribution is controlled by the smaller dimensiof25]. Similar results
uniformly random, it can be assumed that there exists a blowere also obtained by Ladd using a lattice Boltzmann simu-
with p~L and Ne,~ VL3® producing velocity fluctuations lation technique{18].
with the given scaling17,38§. Another important quantity which is affected by size ef-
Such divergence has been observed in numerical simuldects of the container is the single particteacey diffusion

tions of Ladd performed in periodic systerf®,18. How-  coefficientD defined by the Green-Kubo relati¢@g]
ever, in experiments it has been observed that the velocity 1=
fluctuations saturate at a certain system size beyond which D= —f C(t)dt, (3)
the container does not have any effggtl9. In particular, dJo
Nicolai and Guazzelli used containers w_ho_se width .Va”edwhered is the spatial dimension ang(t) is the particle
from 51a to 203 and found no systematic increase in the : . . .
velocity fluctuationg19]. Such results indicate that the size velocity fluctuationautocorrelation function
of the region where the particle motion is correlated is some- C(t) = (8v(t) - 5v(0)). (4)
how reduced to a volume that is not proportional to the size ) ) ]
of the container. This has also been observed directly byince C(0)=AV? Eq. (3) is often written in the formD
measuring the spatial velocity correlation length from the=d “AV?7wherer is the velocity autocorrelation time. It has
sedimenting suspensig]. This has been recently shown to been found in analytical work25] and simulationg9] that
be the result of the horizontal walls of the container: there ig/S0 7 depends on the system size. In experiments the mea-
a particle number density gradient which reduces the spati@ured values of- have been found to saturate in large sys-

size of the particle density fluctuations even if the spacing of€éms[19]. _ _
the side wall diverge§20-23. In this work we present comprehensive numerical results

Furthermore, Koch and Shaqf¢23] have shown that if, ©On the behavior of velocities, their fluctuations and the tracer

instead of a uniformly random particle distribution, there is adiffusion coefficients of non-Brownian spheres with a finite
sufficient average net depletion of other particles aroundi€ynolds number in a system, where periodic boundaries are
each particle that also leads to saturating velocity fluctuatsed in the direction parallel to the gravitg) and one di-
tions. Later Koch[24] showed that if Re- O(1), the wake rection perpendicular to ity), but in the third directior(x)
behind the particle will suffer such a depletion leading tothe suspension is confined between two walls with no-slip
AV2~(’){CI>V§[In(1/<I))+consﬂ}. boundary conditiongFig. 1). While the separation of the

An interesting special case is an unisotropic rectangulayalls increases the system changes from a quasi-2D setup to
container. According to Brennd@6], if the walls exert no @ 3D container. We study '_[he influence of the wall friction
force on the fluid, it is the largest dimension which controls@nd the change in the spatial degrees of freedom here, when
the behavior of\V. However, if no-slip boundary conditions C€rossing over from the quasi-2D limit to 3D. The periodic
are used, the smallest dimension restricts the growth of theoundaries in the direction of gravity make it possible to
fluctuations. Brenner studied a system that was confined bébtain a steady-state condition here, and thus also the veloc-
tween two vertical walls and noted that dependingloand ity fluctuatl_ons do not saturate in th_ls direction. Due to the
the spacing of the wall§, the sedimenting particles could use of a highly asymmetric simulation box, we expect that
either be interacting strongly with the™! interaction or thg behavior _of the v_elocny.fluctuauons and diffusion coef-
weakly, with an interaction decaying faster. This was basedicients are highly anisotropic.
on the results of Liron and Mochd7], who calculated that
due to the particle-wall interaction, the velocity field around
each particle decays as or faster wheneversd, whered
is the distance to the closest wall.®f andL are sufficiently We use an immersed boundary method developed by
small, the particles are typically closer to the walls than toSchwarzer and Ho6flg§29] to model a 3D suspension of non-

1. MODEL
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X the confiningx direction L, varies between 3.2 and 45.87

pparticle radii. The smallest separation was chosen such that
box. The direction of gravity is along the negatizeaxis, with particles truly block each other when moving downward and

periodic boundary conditions in both tieandy directions. The ~thus the geometry is quasi two dlmen25|onal. The volume
confining walls with a variable spacint, are placed in thex  fraction in a simulation is given b =3(Ly¢/iogid)/ (47N).
direction. The number of particles varies from 10 to 4536. It is impor-
tant to note that since the Stokes velodityis defined as the
terminal velocity of a single particle with a unit radius in an
infinite container, the terminal velocity of a single sphere in a
finite containerV, differs from Vg and depends on the con-
ainer dimension$31,32.

FIG. 1. A schematic figure of the geometry of the sedimentatio

Brownian particles with garticle Reynolds number of Re
=Vgpal n=0.5, wherep, is the density of the fluid ang the
viscosity of the fluid. The model is based on continuum de
scription of an incompressible Newtonian fluid and uses d
finite-difference method on a regular grid to find a presgure
and a velocity fieldu of the fluid that would simultaneously

satisfy the equation of continuity lll. RESULTS
- We will first study the particle density distributions rela-
V-u=0, (5) . X X S
tive to a test particle and in the direction between the walls.
and the Navier-Stokes equati$d0] We will analyze the average settling velocity and the average
velocity distribution between the walls. Then we will discuss
Ju i i i i
- v :_pl—lv p+2V2u +f, (6) the spa_ltlal ve_locr[y correlations and analyze the veloqlty
at o fluctuations. Finally we show results for the corresponding

. o , diffusion coefficients.
The additional force density fielfl contains the effect of

gravity and also a fictitious term to ensure that in the interior
of the domain of the particlaes coincides with the motion of A. Particle density distribution
a rigid body. This force is derived by tracking explicitly the o . L
motion of the solid particles and whenever the motion of the_ Ve start by considering the particle density distribution.
fluid and the particle templates differ in certain predefined’ "€ pair distribution function
points, a restoring force is added. The method is suitable for
modeling non-Brownian suspensions up tq,Rd.0, and has 1
been tested for a variety of different cases. More details can g(r) = N
be found in Ref[29].

In the simulations the units have been chosen so that the
radius of the particles, the density of the fluid, and the Stokeés computed to find out whether the approximation of uni-
velocity are all equal to unity. In this unit system time is form distribution is valid or not. Here' andr! denote the
measured in terms of the Stokes time, i.e., the time it takes gosition of the particles and j. We found that there is a
particle with velocityV; to travel a distance of one radius. In region of smaller particle density above each particle, and
all our simulations here the density of the particles is 2.5due to symmetry ofi(r) below as well, as described by Koch
times the density of the fluid. The lattice spacing of the dis-[24]. We have demonstrated this qualitative agreement in
cretization of the fluid velocity and pressure field is 0.335,Fig. 2, where we have plotte®i/(3a) gg g(r,6)dr as a func-
and 81 markers per particle are used to model the couplintion of cosé, where# is the angle between and the direc-
between the fluid and the particles. Periodic boundaries useibn of gravity. The data are presented from fully periodic
in the direction of gravity ensure that the steady state isimulations with dimensions 3264x 32 and for volume
reached, which takes typically several hundred Stokes timegractions®=0.025(dashed lingand 0.05(solid line).
For the periodic dimensionks,=L,=Lpeioqic WE USe values In Fig. 3 we present the particle number density distribu-
22.76, 45.51, and 91.02, while the separation of the walls irtion function

8 = (1! —rj))> ()

j#i
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FIG. 3. Normalized particle number density as a function of the

x coordinate measured from the middle of the systéan:wall

spacinglL,=3.2,®=0.025(dashed ling ®=0.225(solid line). () FIG. 4. The width of depletion layer as function of the volume

Lx=23.11,=0.025(dashed ling ©=0.152(solid line). The ver-  fraction ®. The data forlperioaic=22.76, 45.51, and 91.02 are pre-

tical dotted line marks the distance of one-particle radius away fron},ented using solid, striped, and open Symbo|S, respective|y_ The

the wall. Note the difference in the vertical scales betw@@rand  solid line presentg,~ ® % Note that in the quasi-2d limit;, is

(0). almost independent @b since the particles are concentrated in the
middle of the system. Error bars in this and the following figures
are smaller or equal to the size of the symbols when not explicitly

N
P(x) = ﬁz S(x=X) (8)  shown.
i=1

L)

thermore there seems to be a power-law scalipg @™,
with the fitted exponentn= 0.60.

between the walls with two different values bf and ®. This discrepancy with the experimental results in low, Re
Herex' denotes thex coordinate of particle measured from s a direct consequence of the inertial effects. Although a
the middle of the system. The data are normalized such th%ﬁ/stematic study of the effect of Rés beyond the scope of
particle densityP(x)=1 corresponds to a particle density in this paper, we did additional studies with [R€0.5 and
an infinite system with a spatially uniform distribution with found thatP(x), and¢, strongly depend on ReFor example,
the same volume fraction. In both quasi-2Big. 3@)] and  in the case Ol periodic=45.511,L,=6.044, andP=0.05 we
L,=23.11 casesb) the particles in a dense suspension arefound that, increases from 0.95 to 1.43 when Rehanges
distributed quite evenly except for an excess density next tfrom 0.1 to 1. This behavior is reasonable since in a region
the wall. The vertical dotted line represents the valuexof of finite Re, particle sedimenting between two infinite verti-
where the partiCIe touches the wall. With wall SpaCiELg cal walls is shown by Vasseur and C[84] to migrate away
=23.11 the shape d?(x) in the vicinity of the wall closely  from the closer wall due to a repulsive particle-wall interac-
follows the particle-wall correlation function obtained by as-tion. On the other hand, as discussed in the analysis of mod-
suming a random particle configuration except for a harderate Rg by Koch[24], the particle migrates away from the
sphere potential between the particles and a similar particleyake of another particle. It would thus be reasonable to as-
wall interaction, as calculated by Bruneat al. [14].  sume that the depletion regime of the steady-state distribu-
Peysson and Guazzelli have found a similar distribution injon P(x) presents a situation where the particles interact
their non-Brownian sedimentation experiments, whereyith the wall and the other particles with equal strength.
Re,<0.001[33]. Furthermore with moderate Re particle induces™ flow

As shown for®=0.025[dashed line in Fig. @], in the  only to its wake whose width is proportional to the square

dilute limit P(x) differs from both the experiments of Peys- root of the distance from the particle center, suggesting that
son and Guazzelli and the theoretical distribution of a uni-z, ~ =172,

formly random configuration of hard spheres, in which case

the low particle density limit ofP(x) should be close to a _ _ _

step function with a zero value ¥>L,/2-a and a constant B. Average sedimentation velocity

otherwise. Instead there is a distinct depletion layer which The intrinsic convection produced by the nonuniform
extends several particle radii away from the wall. In the casep(x) is seen in

of small L,, all the particles are concentrated close to the

center of the container. Due to the wider, ahdlependent, N i : N i

depletion layer it is convenient to define affective width V(x) = 2 vjox=x) > S(x=x) (9)
Le=4fL/2 P(x)xdx With this, the width of the depletion =t =t

layer is defined as{X:1/2(LX—L§”). As can be seen from shown in Fig. 5 for the same two system widths and volume
Fig. 4, when Rgis kept constantf, is only a function of®,  fractions as in Fig. 3. Even though the average volume flow
provided that the width of the system is large enough. Furacross horizontal cross section is set to zero, a convection is
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¢ Vo= [1-0.502a/L,) + 0.0523a/L,)° + 0.0131a/L,)*

Ere - 0.008a/L,)°]V, (10)

: ] which has been derived for a sphere in the middle of a sys-
104 tem between two parallel, infinite walls, with Re0 [32].

P Our values are consistently slightly less than those predicted
: 1-06 by Eq.(10) due to the finite Reeffects[32] and the periodic

- boundaries in they and thez directions[31]. As expected,
:4-08 with all the values oL, here the average settling velocity is

a monotonically decreasing function of the volume fraction
®. All the data can be well fitted with the RZ law, but the
exponent of the power law depends orL,. In the widest
(3D) geometry the exponent is found to be 5.5 in good agree-
ng L,=32, &=0,025(dashed ng =0.225(sold ne, (b L oy 7 ) SIS S BB R (B e

=23.11,9=0.025(dashed ling ®=0.152(solid line). The vertical —3 5 which indi iderably sl d :
dotted line marks the distance of one-particle radius away from the, =" which indicates a considerably slower decay In accor-

wall. The two thin solid lines inb) are parabolic fits to the data dance with the previous StUdi{E]SO,SQ. -
(shifted for clarity. However, our results show that since in Fig. 6 the normal-

ization factorVg is that of an infinite 3D system, the effect of
the wall spacing rapidly decreases as a functiorbofand

induced to the system: in the depletion regime close to th&ven for the quasi-2D case it becomes negligible beybnd
wall the fluid is moving upwards and there is correspond-=0-2. The effect of the walls is weakened by both the intrin-
ingly a downward net flow in the center region of the con-SIiC convection, and also by the fact that with largera
tainer. In the central region of the system with=23.11 the smaller portion of the particles are strongly interacting with
velocity profile closely follows a parabola. There is a quali- the walls.
tative agreement to the theoretical predictions obtained by
assumingP(x) to be a step functiofil2] or a random con-

figuration of hard sphergd4].

In Fig. 6 we show the normalized settling velocity  Unlike the average settling velocity, the behavior of the
V(®P)/V; averaged ovex for different values oL,. The first  velocity fluctuations is expected to be much more sensitive
data points atb=0 correspond to the size-dependent one-o changes in the size of the container, due to the dependence
particle velocityVy measured when the particle sediments inof the spatial correlation length of the velocities. Before dis-
the middle of the system. The data are well approximated bgussing the velocity fluctuations we study the spatial velocity
the expression correlation(SVC) function of the particles defined as

(LWl a(r) = W5

FIG. 5. Average particle settling velocity as function of the
coordinate measured from the middle of the syst@nwall spac-

C. Velocity fluctuations

L T R ot~z Y
=3.20, n=3.
0. 0 : L:=6‘04, n=4.7 [] wherea and 8 can denote any of the spatial directionsy,
| m & L=1173,n=53| ] or z while v!, andv’, are thea component of the velocity of
An 25N W L=2311,n=55 particlesi andj. With (-)4(r) we denote a steady-state aver-
A\" . — age over all pairs whose orientation differs less than 5 de-
“a grees from the direction g# and have a spatial distancerof

7 Excluding R,,, none of the spatial velocity correlations de-
pends strongly od. Instead they seem to scale according to
the dimensions of the container indicating that the current
simulations are not in the same limit than the sedimentation
experiments of Segrét al. [6] where the SVC correlation
- lengths saturated to values that depend onlyborgince the
saturation value was about 2@~*3 it is reasonable to as-
i iy sume that no saturation happens in Qo< 91.02 con-
0 T T T T tainers. A further reason not to expect similar scaling in the
0 005 0.1 015 02 0725 present simulations is that the saturation has been shown to
O be a result of having walls in the direction of gravity. How-
ever, the experiments of Bernard-Michet al. [35], per-
FIG. 6. The normalized average settling velocitgd)/V, for ~ formed in a long tube with smaller square cross section
different wall spacings.,. The lines are fits to the data. The data for (Width less or equal than 8@p show almost linear relation
Lperiodic=22.76, 45.51, and 91.02 are presented using solid, stripedyetween the correlation length of the SVC and the width of
and open symbols, respectively. the container with naP dependence.
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In all directions our measurel;(r) depends only o, OS———7T——T——T —1 1
provided thatl, <L pe/ogic The correlation lengths are, how- i v 2201
ever, different in each direction being smallest in #direc- L1173
tion, and largest in thg direction. The shapes &,,(r) and . L ]
R,,(r) are quite similar to the corresponding SVC'’s shown in 03k i
Ref. [35]. For they component of the particle velocities all
correlation lengths increase seemingly linearly with increas-
ing Lperiogic IN addition, there is also a much weaker, and
unsystematic increase of the correlation length with increas-
ing L,, most notably in thec direction. We performed some
simulations with a container wheig, # L, which seem to . | 1 . .
suggest that in such cases the correlation lengthR gf) 00— 005 01 0I5 02 035
and R ,(r) are defined by the smaller of these dimensions, @ ®
which is again in a good agreement with the results in Ref.
[35]. The correlation lengths oR,(r) and R,,(r) seem to 0.3 :
depend both ok, andL peiegic€vEN When the former is much : L=1173

v

o

=~

T

<

<
LR R 2L J

|

e )jHyen
»
© b éonm
1

smaller than the latter. This time simulations performed with
Ly#L, indicate that the correlation lengths depend Ign
even if L, <L, leading again to a scaling similar to that in
Ref.[35]. The scaling oR,/r), however, differs significantly
from the previous by the fact that the correlation length de-
pends also onb. With increasing® the correlation length 01F@
decreases systematically in all cases studied, except in the
system withL,<6.044 andL peiogic=22.76 Where the corre-
lation length depends on the volume fraction only dif 0.01
=0.08. This result can be understood as a direct conse- ®) ®
quence of the depletion region above the test particle and is

thus a finite Rg phenomenon. The simulations with# L,
seem to indicate that in the case Rffr) the correlation
length depends more strongly on the rdtigL, thanL periogic
in the case wheih,=L,.

In Figs. 1a), 8a), and 9 we present the normalized ve- ~L;’> with good accuracy, except in the quasi-2D limit, as
locity fluctuationsAV(®)/V in the z, x, andy directions, shown in the inset of Fig.(®). This is in an apparent con-
respectively. In each figure we have presented the data offadiction with the prediction of Caflisch and Luk#6] that
tained by using different ye,ioqic and three different lengths  AVz/Vs~ LY2 The weak but systematic increase of the
in the periodic dimensions: 22.76, 45.51, 91.02, presented bgcaled velocity fluctuations with increasiigeyiogic suggests
solid, striped, and open symbols respectively. First, it can bé&hat systems with the same ratig/Leiogic COUld have a
seen that the qualitative behavior as a function of the volum&omewhat different scaling. We found that when comparing
fraction® is the same in all directions and with all values of the pairs of systems with approximately the sam#. peiodgio
L,, except in the quasi-2D limit in the direction, namely, the increase of velocity fluctuations with the increasing con-
the fluctuations increase initially with due to the increas- tainer size does not contradict the prediction of Caflisch and
ing effective particle interactions, but for larger valuesiof ~Luke [16] provided thatl,/Lperodic>1/8. The quasi-2D
mutual blocking effects rendexV/V; a decreasing function limit is also different from the rest of the data in that it does
of ® as seen in numerous previous experim¢8#3g. The  not obey the finite-size scaling law, with values about 40%
absolute values of the velocity fluctuations are quite close téess than expected from the'® scaling.
those obtained by Ladd using lattice Boltzmann simulation In order to find out thed and L, scaling ofAV,, it is
technique with periodic boundaries in all directiofgs18.  necessary to normalize the velocity fluctuations wittb)
With increasing system size the velocity fluctuations ob-rather thanVs [6,35. In the main plot of Fig. {) we show
tained by Ladd, however, increase faster than our results\V,/V(®)~ L} We find that in dilute systems, these fluc-
Likewise, in thez direction withd®=0.05 the absolute values tuations obey a power lad&V,/V~ ®¢, with £=0.41+0.01
of the velocity fluctuations are of the same order of magni-instead ofé=1/2 aspredicted by Caflisch and Lukgl6].
tude as in the experiments of Nicolai and Guazzgl®], = The weaker scaling may be an effect of thedependence in
which were performed in containers that have a width of 51the correlation length oR,r). This value of¢ is, however,
particle radii, or larger, and other dimensions much largevery close to what has been seen in the experiments
than the systems studied here. [6,22,35 even though some of these systems are thought to

In the direction parallel to gravity the size of the velocity have different kind of scaling due to the volume fraction
fluctuations depends strongly @) and only weakly on the gradient which is not present in our system. Also in agree-
other dimensions, especially when the container aspect ratiment with experimentg38], AV,/V does not follow a power
Lx/Lperiodgic is small. The finite-size scaling followAV,/Vs  law behavior for larger volume fractions.
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FIG. 7. Velocity fluctuations in the direction parallel to gravity.
In Figs. 7-9, the solid, striped, and open symbols dehgtgoqic
=22.76, 45.51, and 91.02, respectively.
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FIG. 10. The tracer diffusion coefficient in the horizonyadli-
rection parallel to the walls.

can be interpreted as.’2(®¢")2, where ®¢f'=dL"/L, is

the average volume fraction in the volume occupied by the
particles. Again, by only considering containers with ap-
proximately the same aspect ratio we note that with fixed
L/ Lperiogic the scaling oAV, /Vg does not contradict the pre-
dictions of Caflisch and Luke[16] provided that
Lx/ Lperiodic> 1/4.

The behavior oAV, /V; in the periodicy direction is less
clear as shown in Fig. 9. We were not able to find any clear
scaling law. It seems, however, that in a dilute suspension the
wall spacing limits the velocity fluctuations only if

Quite similar to the fluctuations in the direction of gravity, L,/Lpeioqic=1/4. At this pointAV, has values of the same

y

AV, does not scale at all with the periodic dimensions, pro-order asAV, in a container with equal dimensions and any
vided thatL, is smaller than the other dimensions. Such afurther increase of, does not affect these values signifi-

result is reasonable since the correlation length ofktbem-
ponent of the particle velocities depends only lop The

cantly. In a more dense suspension witlr0.15 there is a
systematic increase @V, with increasingL,.

scaling with the wall spacing is, however, somewhat differ-  Finally, we note that the ratiaV,/ AV, increases witli,.

ent. Instead ot scaling, we find that\V,/V scales reason-
ably well with LS. In Fig. §b), in which normalization with
V(®) rather than with V, was used, we show that
AV, /V(D)/(LEMY2 scales aghé with é=0.47+0.03. Since
the scaling exponent ab andLﬁ“f is essentially the same this

v T T 1
® L32
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0zF 5 v & L=1173|7]
m W L2311 |
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>0.15r ﬁ A p ®
o o W
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FIG. 9. Velocity fluctuations in the horizontgldirection paral-

lel to the walls.

In the quasi-2D case this ratio exceeds one only slightly in
accordance with the experiments of Rougeml. [2].

D. Diffusion coefficients

We also studied the behavior of the partidiecep diffu-
sion coefficientD defined by Eq(3) using the memory ex-
pansion method39]. We presentD as a function of the
volume fraction® in Figs. 10 and 11 in the periodicandz
directions, respectively. We have restricted to consider the
system withL ,yjgic=22.76 and,<23.11 in order to main-
tain reasonable accuracy to the results. In a dilute suspen-
sion, the qualitative behavior oD is different in the
quasi-2D and 3D limits. While in the 3D limiD first in-
creases due to increasing velocity fluctuations, in the
quasi-2D geometry it is monotonically decreasing function
over the whole range ob here. This result is expected due
to the enhanced blocking in analogy to true 2D Brownian
diffusion [40,41].

The different scaling of the velocity fluctuations withis
reflected in the size dependencegfandD,, as can be seen
in Figs. 10 and 11. While it is expected thagincreases with
Ly due to increasin@\V,, we find thatD, slightly decreases
for larger values of,. To explain this behavior, it is useful to
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2

— T T T T T oncel,=6.04 indicating that the increase in the single par-
| § o) % e L=32 | | ticle velocity does not play any significant role in the veloc-
x L=604 ity fluctuations. The spatial asymmetry of the sedimentation
1.5 o LAIB box reveals the complicated interplay between the velocity
fluctuations and the system size. In the direction parallel to
the walls and perpendicular to the gravigy it is eitherL, or

“ 1—£% X 1 % - L, that controls the size of the velocity fluctuations, although
3

D,(®)

we found no evidence of a finite-size scaling law. In the
£ 1 direction perpendicular to the wallx), the controlling di-
0.5k - mension id, until the spacing of the walls grows larger than
L JEPU 3 the other dimensionk, or L,. Finally, in the direction paral-
® o o o 1 lel to gravity, AV, is governed by, in all cases, with much
AT SR weaker scaling witi, andL,. We also found that it is
1015 02 025 much less than the periodic dimensions the velocity fluctua-
D tions scale with the system size, with fixed/L periogio dif-
ferently from the prediction of Caflisch and Luk&6]. The
probable cause for this difference is the fixed particle Rey-
nolds number changing the particle distributions as described
below.
distinguish between the scaling av and the autocorrela-  Finally, we have also studied the behavior of the tracer
tion time 7 by using the relatioD=AV?7. Our data forDy giffusion coefficients. Their dependence on the system size is
thus suggest that, decreases with.,. Similar result has |ess clear. The reason for this seems to be thahd the
been obtained by Kocf25], who found that the autocorre- corresponding velocity fluctuation scale different with sys-
lation time of the parallel component of the particle velocity tem dimensions. Systematic study of the scaling was not fea-
decreases with the decreasing height to width ratio of a reckijple since it is computationally too demanding a task to try
22.76.

IV. SUMMARY AND CONCLUSIONS The inertial effects provided two clear difference to the
<1 case. First, wide depletion layers were formed in the
nity of the walls, presumably increasing the effect of the
intrinsic convection. Second, above each particle a region of
educed volume fraction is formed, which leads to a reduced

patial correlation lengtR,(r).
In this work we systematically studied only one value of

L 1 L 1
%005 0,

FIG. 11. The tracer diffusion coefficient in ttzedirection par-
allel to gravity.

R
To conclude, we have studied steady-state sedimentatiqﬂg‘iJ
with a fixed finite particle Reynolds number in a system
periodic along the direction of gravity, but confined between,
two walls perpendicular to gravity. We have first considere
the spatial distribution of particle number density in the con-

tainer and found that a deplepon region appears close to thg o particle Reynolds number. While the chosen-Re5 is

\;I)v:rltli:lgo\zvaslﬂﬁyer\;ocltlijg:]e dérriicr?gtr:ass- a-:;t]jlsth:Jnsdg::rtt?;etshi?:t(—:‘trh;:%arge enough to ensure that inertial effects are visible, a sys-
- ematic study of the strength of these effects is beyond the
weakly with each other. On the other hand, for ladg¢here y ¢ y

. . X . scope of the present work. With the data presented here, it is
is an excess number of strongly interacting particles at th?31Iso unclear what the role of the container based Reynolds

walls. The effect i$ most drastic in the dilute qua_si-ZD SYS"humber is. According to the few cases studied we can, how-
temtvyhere_ "‘t‘" pa;ﬂclest are T:onqt(er]n:;]ated tl(l) the middle of th%ver, claim that the width of the depletion layer is a function
contaner interacting strongly wi e walls. of the Re rather than of the container based Reynolds num-

Furthermore, we have ?hOW” that in a confined geomet%er, although the exact form remains unclear. Most impor-
the average settling velocity obeys the RZ law but the eXpofantly, according to our additional simulations with Rery-

nentn changes as a function of the system width. In theing between 0.1 and 1.0, we found that the spatial

quasi-2D system, the exponent has a valuss8.5 while correlations of the particle velocities remain unchanged.
when the width increases increases gradually to the 3D

yalue an:ES_.S. A qualitative exp!anatlon for the @ffgrence ACKNOWLEDGMENTS

is that in a dilute system the particle-wall interaction is more

prominent leading to a strong, dependence of the single  This work has been supported in part by the Academy of

particle velocities. Finland through its Center of Excellence Program. In addi-
The velocity fluctuations in the quasi-2D system differ tion, E.K. would like to thank the Finnish Cultural Founda-

somewhat from the 3D case, which is most notably seen ition for support and J.M.L. gratefully acknowledges the sup-

the fact that the system size scaling cannot be extended to tipert of the Vaisala Foundation. The code used for the

case wherd ,=3.20. The effect is most dramatic in tye  numerical work has been developed at the Institute of Com-

direction, whereAV, does not depend on the wall spacing puter Applications, University of Stuttgart, Germany.

066310-8



SEDIMENTATION DYNAMICS OF SPHERICAL.. PHYSICAL REVIEW E 69, 066310(2004)

[1] S. Ramaswamy, Adv. Phy®1, 297 (2001). P. N. Segre, and D. A. Weitz, Phys. Rev. Le&9, 054501
[2] F. Rouyer, J. Martin, and D. Salin, Phys. Rev. L8, 1058 (2002.
(1999. [23] D. L. Koch and E. S. G. Shagfeh, J. Fluid Meck24, 275
[3] M. L. Kurnaz and J. V. Maher, Phys. Rev. &3, 978(1996. (1991
[4] R. Barnea and J. Mizrahi, Chem. Eng.5].171(1973. [24] D. L. Koch, Phys. Fluids A5, 1141(1993.
[5] H. Nicolai, B. Herzhaft, E. J. Hinch, L. Oger, and E. Guazzelli, [25] D. L. Koch, Phys. Fluids6, 2894 (1994).
Phys. Fluids7, 12 (1995. [26] M. P. Brenner, Phys. Fluid41, 754(1999.
[6] P. N. Segre, E. Herbolzheimer, and P. M. Chaikin, Phys. Rev[27] N. Liron and S. Mochon, J. Eng. Matt0, 287 (1975.
Lett. 79, 2574(1997). [28] R. Gomer, Rep. Prog. Phy&3, 917 (1990.
[7] G. K. Batchelor, J. Fluid Mech52, 245 (1972. [29] K. Hofler and S. Schwarzer, Phys. Rev.6d, 7146(2000.
[8] H. Hayakawa and K. Ichiki, Phys. Rev. &1, R3815(1995. [30] L. D. Landau and E. M. LifshitzFluid Mechanics 1st ed.
[9] A. J. C. Ladd, Phys. Fluid®, 491 (1997). (Pergamon Press, Oxford, 1984
[10] S. Schwarzer, Phys. Rev. B2, 6461(1995. [31] H. Hasimoto, J. Fluid Mech5, 317 (1959.
[11] J. F. Richardson and W. N. Zaki, Trans. Inst. Chem. EB®.  [32] J. Happel and H. Brennetow Reynolds Number Hydrody-
35 (1954). namics(Englewood Cliffs, New Jersey, 1985

[12] U. Geigenmiller and P. Mazur, J. Stat. Phg8, 137(1988. [33] Y. Peysson and E. Guazzelli, Phys. Fluit§, 44 (1998.
[13] D. Bruneau, F. Feuillebois, R. Anthore, and E. J. Hinch, Phys[34] P. Vasseur and R. G. Cox, J. Fluid Med0, 561 (1977).

Fluids 8, 2236(1996. [35] G. Bernard-Michel, A. Monavon, D. Lhuillier, D. Abdo, and
[14] D. Bruneau, F. Feuillebois, J. Btawzdziewicz, and R. Anthore, H. Simon, Phys. Fluidsl4, 2339(2002.

Phys. Fluids10, 55 (1998. [36] E. Kuusela and T. Ala-Nissila, Phys. Rev. &3, 061505
[15] S. Kim and S. J. KarrilaMicrohydrodynamics: Principles and (2001).

Selected Applications (Butterworth-Heinemann, Boston, [37] J.-Z. Xue, E. Herbolzheimer, M. A. Rutgers, W. B. Russel, and

1991). P. M. Chaikin, Phys. Rev. Lett69, 1715(1992.
[16] R. E. Caflisch and J. H. C. Luke, Phys. Fluid8, 759(1985. [38] P. N. Segre, F. Liu, P. Umbanhower, and D. A. Weitz, Nature
[17] E. J. Hinch, inDisorder and Mixing edited by E. Guyon, J.-P. (London 409, 594 (2001.

Nadal, and Y. Pomea(Kluwer Academic, Dordrecht, 1988 [39] S. C. Ying, |. Vattulainen, J. Merikoski, T. Hjelt, and T. Ala-
[18] A. J. C. Ladd, Phys. Rev. Let76, 1392(1996. Nissila, Phys. Rev. B568, 2170(1998.
[19] H. Nicolai and E. Guazzelli, Phys. Fluidg 3 (1995. [40] J. M. Lahtinen, T. Hjelt, T. Ala-Nissila, and Z. Chvoj, Phys.
[20] J. H. C. Luke, Phys. Fluid42, 1619(2000. Rev. E 64, 021204(2001).
[21] A. J. C. Ladd, Phys. Rev. Let88, 048301(2002. [41] J. M. Lahtinen, M. MaSin, T. Laurila, T. Ala-Nissila, and Z.
[22] S. Y. Tee, P. J. Mucha, L. Cipelletti, S. Manley, M. P. Brenner, Chvoj, J. Chem. Physl116 7666(2002.

066310-9



