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We study the steady-state dynamics of sedimenting non-Brownian particles in confined geometries with full
hydrodynamic interactions at small but finite Reynolds numbers. We employ extensive computer simulations
using a method where a continuum liquid phase is coupled through Stokesian friction to a discrete particle
phase. In particular, we consider a sedimentation box which is otherwise periodic except that it is confined by
two parallel walls parallel to gravity with a spacingLx. By systematically varyingLx we explore the change in
dynamics from a quasi-two-dimensional(2D) case to a three-dimensional case. We find that in such confined
geometries there is a depletion of particle number density at the walls for small volume fractions, while for
large volume fractions there is an excess number of particles at the walls. For the average sedimentation
velocity, we find that the Richardson-Zaki law is well obeyed but the decrease of the velocity for dilute systems
is slower for smaller values ofLx. We study the anisotropy of the velocity fluctuations and find that in the
direction of gravity there is excellent agreement with the predicted scaling with respect toLx. We also find that
the behavior of the corresponding diffusion coefficients as a function ofLx is qualitatively different in the
direction parallel to gravity and perpendicular to it. In the quasi-2D limit where particles block each other, the
velocity fluctuations behave differently from the other confined systems.
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I. INTRODUCTION

The transport properties of sedimenting particles play an
important role in many natural processes and industrial ap-
plications. This problem is also an interesting example of
nonequilibrium dynamics, which is still somewhat poorly
understood in the case of a finite volume fractionF of the
particles[1]. Under appropriate boundary conditions, such as
in fluidized beds, a sedimenting system driven by gravity can
reach a steady-state distribution, with a fixed average settling
velocity VsFd;ukVlu, whereV =s1/Ndoi=1

N vi is the average
velocity of N sedimenting particles and the angular brackets
denote asteady-stateaverage. An important special case of
sedimentation is that where experiments have been carried
out in systems with confined geometries, in particular in be-
tween closely spaced glass plates where even a quasi-two-
dimensional(2D) geometry can be realized[2,3]. One of the
benefits of such a setup is that it is possible to visually de-
termine the position and velocity of each individual particle.
However, it is not presently clear how the measurements in
such a system can be quantitatively related to the corre-
sponding values measured in true 3D experiments or simu-
lations. For example, it is expected that closely placed walls
influence the behavior of the sedimenting particles by re-
stricting the particle motion due to enhanced blocking and,
on the other hand, due to the effect of the friction produced
by the no-slip boundary conditions along the walls. Also, the
role of inertial effects is an open question.

In a 3D system the behavior ofVsFd has been extensively
studied in the limit where Brownian motion can be neglected
[4–10]. Both experiments and simulations have shown that
asF increasesVsFd decreases monotonically following the
phenomenological Richardson-Zaki(RZ) law

VsFd/Vs = s1 − Fdn, s1d

whereVs denotes the terminal settling velocity(Stokes ve-
locity) of a single particle and the exponentn is around
4.5–5.5 in the low Reynolds numbersRed regime [11].
Qualitatively the monotonically decreasing behavior can be
understood as the increasing effect of the backflow. In the
low Re and F limit Batchelor [7] deduced the result
VsFd /Vs=1–6.55F for the case where the system sizeL
→`. To obtain this result, it was assumed that particles can-
not overlap but otherwise all configurations are equally prob-
able. Similarly, Geigenmüller and Mazur[12] (and later Bru-
neauet al. [13,14]) studied the effect of the side walls on the
sedimentation velocity. Assuming that particles do not over-
lap with walls, anintrinsic convectionflow is formed in the
vicinity of the walls due to depletion of particles in a dis-
tance closer to the wall than the particle radius. In the special
case where the suspension is confined between two infinite
parallel vertical walls, this convection leads to an average
settling velocity that is a function of the position relative to
the walls. Finally, we note that in the 2D limit, where only
few studies exist, the RZ law is well obeyed but with an
effective exponentn<3 [10].

During sedimentation each particle produces a velocity
field around it which, in the creeping flow limit, decays as
r−1 where r is the distance from the particle center. This
velocity field influences the motion of the other particles
[15]. With random fluctuations in the particle density this
hydrodynamic interaction induces, even without Brownian
motion, fluctuations around the average velocityVsFd for
F.0, which leads todiffusivebehavior of the particles. In
the direction of gravity(negativez axis here), the fluctua-
tions are defined by
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DVz = Îkdvz
2l, s2d

wheredvz=vz+VsFd is the one-particle velocity fluctuation
where the ballistic average motion has been removed from
the velocity component parallel to gravity. The nature and
origin of these velocity fluctuations have been under intense
experimental and theoretical studies recently[1]. Of particu-
lar interest is the dependence of the velocity fluctuationsDV
on F and on the dimensions of the container. Early theoret-
ical work concerning 3D systems by Caflisch and Luke[16]
predicted that in the limit where inertial effects are negli-
gible, the velocity fluctuations would diverge with the sys-
tem size asDV/Vs,F1/2sL /ad1/2, whereL is the linear size
of the container anda is the particle radius. An intuitive way
to obtain this result is to consider that a “blob” ofNex excess
particles in a volume of linear dimensionr is sedimenting
with relative velocityVsNexa/r. If the particle distribution is
uniformly random, it can be assumed that there exists a blob
with r,L and Nex,ÎL3F producing velocity fluctuations
with the given scaling[17,38].

Such divergence has been observed in numerical simula-
tions of Ladd performed in periodic systems[9,18]. How-
ever, in experiments it has been observed that the velocity
fluctuations saturate at a certain system size beyond which
the container does not have any effect[6,19]. In particular,
Nicolai and Guazzelli used containers whose width varied
from 51a to 203a and found no systematic increase in the
velocity fluctuations[19]. Such results indicate that the size
of the region where the particle motion is correlated is some-
how reduced to a volume that is not proportional to the size
of the container. This has also been observed directly by
measuring the spatial velocity correlation length from the
sedimenting suspension[6]. This has been recently shown to
be the result of the horizontal walls of the container: there is
a particle number density gradient which reduces the spatial
size of the particle density fluctuations even if the spacing of
the side wall diverges[20–22].

Furthermore, Koch and Shaqfeh[23] have shown that if,
instead of a uniformly random particle distribution, there is a
sufficient average net depletion of other particles around
each particle that also leads to saturating velocity fluctua-
tions. Later Koch[24] showed that if Re<Os1d, the wake
behind the particle will suffer such a depletion leading to
DV2,OhFVs

2flns1/Fd+constgj.
An interesting special case is an unisotropic rectangular

container. According to Brenner[26], if the walls exert no
force on the fluid, it is the largest dimension which controls
the behavior ofDV. However, if no-slip boundary conditions
are used, the smallest dimension restricts the growth of the
fluctuations. Brenner studied a system that was confined be-
tween two vertical walls and noted that depending onF and
the spacing of the wallsL, the sedimenting particles could
either be interacting strongly with ther−1 interaction or
weakly, with an interaction decaying faster. This was based
on the results of Liron and Mochon[27], who calculated that
due to the particle-wall interaction, the velocity field around
each particle decays asr−2 or faster wheneverr @d, whered
is the distance to the closest wall. IfF andL are sufficiently
small, the particles are typically closer to the walls than to

each other and the system is said to be weakly interacting
[26]. On the other hand, increasingF or L will eventually
lead to a system where the particles are closer to each other
than to the walls and the system is strongly interacting. Bren-
ner also assumed that in a weakly interacting system, the
particles are spaced uniformly but in a strongly interacting
system they are depleted from the center of the container
since the particle diffusion is largest there due to the larger
velocity fluctuations.

In simulations, periodic boundary conditions are often
used. Even though no walls are present, additional force is
exerted on the fluid by the periodic images. The contribution
from the periodic images hinders the fluid velocity produced
by the particle motion. Koch showed that in a geometry,
where the height of the container is much larger than the
other two equal dimensions, the velocity fluctuations are
controlled by the smaller dimension[25]. Similar results
were also obtained by Ladd using a lattice Boltzmann simu-
lation technique[18].

Another important quantity which is affected by size ef-
fects of the container is the single particle(tracer) diffusion
coefficientD defined by the Green-Kubo relation[28]

D =
1

d
E

0

`

Cstddt, s3d

where d is the spatial dimension andCstd is the particle
velocity fluctuationautocorrelation function

Cstd ; kdvstd · dvs0dl. s4d

Since Cs0d=DV2, Eq. (3) is often written in the formD
=d−1DV2t wheret is the velocity autocorrelation time. It has
been found in analytical work[25] and simulations[9] that
alsot depends on the system size. In experiments the mea-
sured values oft have been found to saturate in large sys-
tems[19].

In this work we present comprehensive numerical results
on the behavior of velocities, their fluctuations and the tracer
diffusion coefficients of non-Brownian spheres with a finite
Reynolds number in a system, where periodic boundaries are
used in the direction parallel to the gravityszd and one di-
rection perpendicular to itsyd, but in the third directionsxd
the suspension is confined between two walls with no-slip
boundary conditions(Fig. 1). While the separation of the
walls increases the system changes from a quasi-2D setup to
a 3D container. We study the influence of the wall friction
and the change in the spatial degrees of freedom here, when
crossing over from the quasi-2D limit to 3D. The periodic
boundaries in the direction of gravity make it possible to
obtain a steady-state condition here, and thus also the veloc-
ity fluctuations do not saturate in this direction. Due to the
use of a highly asymmetric simulation box, we expect that
the behavior of the velocity fluctuations and diffusion coef-
ficients are highly anisotropic.

II. MODEL

We use an immersed boundary method developed by
Schwarzer and Höfler[29] to model a 3D suspension of non-
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Brownian particles with aparticle Reynolds number of Rep
=Vsrla/h=0.5, whererl is the density of the fluid andh the
viscosity of the fluid. The model is based on continuum de-
scription of an incompressible Newtonian fluid and uses a
finite-difference method on a regular grid to find a pressurep
and a velocity fieldu of the fluid that would simultaneously
satisfy the equation of continuity

= ·u = 0, s5d

and the Navier-Stokes equation[30]

] u

] t
+ su · = du = − rl

−1 = p +
h

rl
¹2u + f . s6d

The additional force density fieldf contains the effect of
gravity and also a fictitious term to ensure that in the interior
of the domain of the particlesu coincides with the motion of
a rigid body. This force is derived by tracking explicitly the
motion of the solid particles and whenever the motion of the
fluid and the particle templates differ in certain predefined
points, a restoring force is added. The method is suitable for
modeling non-Brownian suspensions up to Rep<10, and has
been tested for a variety of different cases. More details can
be found in Ref.[29].

In the simulations the units have been chosen so that the
radius of the particles, the density of the fluid, and the Stokes
velocity are all equal to unity. In this unit system time is
measured in terms of the Stokes time, i.e., the time it takes a
particle with velocityVs to travel a distance of one radius. In
all our simulations here the density of the particles is 2.5
times the density of the fluid. The lattice spacing of the dis-
cretization of the fluid velocity and pressure field is 0.335,
and 81 markers per particle are used to model the coupling
between the fluid and the particles. Periodic boundaries used
in the direction of gravity ensure that the steady state is
reached, which takes typically several hundred Stokes times.
For the periodic dimensionsLy=Lz=Lperiodic we use values
22.76, 45.51, and 91.02, while the separation of the walls in

the confiningx direction Lx varies between 3.2 and 45.87
particle radii. The smallest separation was chosen such that
particles truly block each other when moving downward and
thus the geometry is quasi two dimensional. The volume
fraction in a simulation is given byF=3sLperiodic

2 Lxd / s4pNd.
The number of particles varies from 10 to 4536. It is impor-
tant to note that since the Stokes velocityVs is defined as the
terminal velocity of a single particle with a unit radius in an
infinite container, the terminal velocity of a single sphere in a
finite containerV0 differs from Vs and depends on the con-
tainer dimensions[31,32].

III. RESULTS

We will first study the particle density distributions rela-
tive to a test particle and in the direction between the walls.
We will analyze the average settling velocity and the average
velocity distribution between the walls. Then we will discuss
the spatial velocity correlations and analyze the velocity
fluctuations. Finally we show results for the corresponding
diffusion coefficients.

A. Particle density distribution

We start by considering the particle density distribution.
The pair distribution function

gsr d =K 1

N
o
jÞi

d„r − sr i − r jd…L s7d

is computed to find out whether the approximation of uni-
form distribution is valid or not. Herer i and r j denote the
position of the particlesi and j . We found that there is a
region of smaller particle density above each particle, and
due to symmetry ofgsr d below as well, as described by Koch
[24]. We have demonstrated this qualitative agreement in
Fig. 2, where we have plottedF / s3ade3a

6a gsr ,uddr as a func-
tion of cosu, whereu is the angle betweenr and the direc-
tion of gravity. The data are presented from fully periodic
simulations with dimensions 32364332 and for volume
fractionsF=0.025(dashed line) and 0.05(solid line).

In Fig. 3 we present the particle number density distribu-
tion function

FIG. 1. A schematic figure of the geometry of the sedimentation
box. The direction of gravity is along the negativez axis, with
periodic boundary conditions in both thez and y directions. The
confining walls with a variable spacingLx are placed in thex
direction.

FIG. 2. Theu dependence of the pair correlation function. See
text for details.
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Psxd =KLx

N
o
i=1

N

dsx − xidL s8d

between the walls with two different values ofLx and F.
Herexi denotes thex coordinate of particlei measured from
the middle of the system. The data are normalized such that
particle densityPsxd=1 corresponds to a particle density in
an infinite system with a spatially uniform distribution with
the same volume fraction. In both quasi-2D[Fig. 3(a)] and
Lx=23.11 cases(b) the particles in a dense suspension are
distributed quite evenly except for an excess density next to
the wall. The vertical dotted line represents the value ofx
where the particle touches the wall. With wall spacingLx
=23.11 the shape ofPsxd in the vicinity of the wall closely
follows the particle-wall correlation function obtained by as-
suming a random particle configuration except for a hard-
sphere potential between the particles and a similar particle-
wall interaction, as calculated by Bruneauet al. [14].
Peysson and Guazzelli have found a similar distribution in
their non-Brownian sedimentation experiments, where
Rep,0.001[33].

As shown forF=0.025[dashed line in Fig. 3(a)], in the
dilute limit Psxd differs from both the experiments of Peys-
son and Guazzelli and the theoretical distribution of a uni-
formly random configuration of hard spheres, in which case
the low particle density limit ofPsxd should be close to a
step function with a zero value ifx.Lx/2−a and a constant
otherwise. Instead there is a distinct depletion layer which
extends several particle radii away from the wall. In the case
of small Lx, all the particles are concentrated close to the
center of the container. Due to the wider, andF dependent,
depletion layer it is convenient to define aneffective width
Lx

ef f=4e0
Lx/2 Psxdxdx. With this, the width of the depletion

layer is defined aszx=1/2sLx−Lx
ef fd. As can be seen from

Fig. 4, when Rep is kept constant,zx is only a function ofF,
provided that the width of the system is large enough. Fur-

thermore there seems to be a power-law scalingzx,F−m,
with the fitted exponentm<0.60.

This discrepancy with the experimental results in low Rep
is a direct consequence of the inertial effects. Although a
systematic study of the effect of Rep is beyond the scope of
this paper, we did additional studies with RepÞ0.5 and
found thatPsxd, andzx strongly depend on Rep. For example,
in the case ofLperiodic=45.511,Lx=6.044, andF=0.05 we
found thatzx increases from 0.95 to 1.43 when Rep changes
from 0.1 to 1. This behavior is reasonable since in a region
of finite Rep particle sedimenting between two infinite verti-
cal walls is shown by Vasseur and Cox[34] to migrate away
from the closer wall due to a repulsive particle-wall interac-
tion. On the other hand, as discussed in the analysis of mod-
erate Rep by Koch [24], the particle migrates away from the
wake of another particle. It would thus be reasonable to as-
sume that the depletion regime of the steady-state distribu-
tion Psxd presents a situation where the particles interact
with the wall and the other particles with equal strength.
Furthermore with moderate Rep a particle inducesr−1 flow
only to its wake whose width is proportional to the square
root of the distance from the particle center, suggesting that
zx,F−1/2.

B. Average sedimentation velocity

The intrinsic convection produced by the nonuniform
Psxd is seen in

Vsxd =Ko
i=1

N

vz
i dsx − xidLYKo

i=1

N

dsx − xidL s9d

shown in Fig. 5 for the same two system widths and volume
fractions as in Fig. 3. Even though the average volume flow
across horizontal cross section is set to zero, a convection is

FIG. 3. Normalized particle number density as a function of the
x coordinate measured from the middle of the system:(a) wall
spacingLx=3.2, F=0.025(dashed line), F=0.225(solid line). (b)
Lx=23.11,F=0.025(dashed line), F=0.152(solid line). The ver-
tical dotted line marks the distance of one-particle radius away from
the wall. Note the difference in the vertical scales between(a) and
(b).

FIG. 4. The width of depletion layer as function of the volume
fraction F. The data forLperiodic=22.76, 45.51, and 91.02 are pre-
sented using solid, striped, and open symbols, respectively. The
solid line presentszx,F−0.60. Note that in the quasi-2d limit,zx is
almost independent ofF since the particles are concentrated in the
middle of the system. Error bars in this and the following figures
are smaller or equal to the size of the symbols when not explicitly
shown.
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induced to the system: in the depletion regime close to the
wall the fluid is moving upwards and there is correspond-
ingly a downward net flow in the center region of the con-
tainer. In the central region of the system withLx=23.11 the
velocity profile closely follows a parabola. There is a quali-
tative agreement to the theoretical predictions obtained by
assumingPsxd to be a step function[12] or a random con-
figuration of hard spheres[14].

In Fig. 6 we show the normalized settling velocity
VsFd /Vs averaged overx for different values ofLx. The first
data points atF=0 correspond to the size-dependent one-
particle velocityV0 measured when the particle sediments in
the middle of the system. The data are well approximated by
the expression

V0 < f1 – 0.502sa/Lxd + 0.0523sa/Lxd3 + 0.0131sa/Lxd4

− 0.005sa/Lxd5gVs s10d

which has been derived for a sphere in the middle of a sys-
tem between two parallel, infinite walls, with Rep=0 [32].
Our values are consistently slightly less than those predicted
by Eq.(10) due to the finite Rep effects[32] and the periodic
boundaries in they and thez directions[31]. As expected,
with all the values ofLx here the average settling velocity is
a monotonically decreasing function of the volume fraction
F. All the data can be well fitted with the RZ law, but the
exponent of the power lawn depends onLx. In the widest
(3D) geometry the exponent is found to be 5.5 in good agree-
ment with 3D experiments[19]. On the other hand, for the
most narrow case where particle blocking is in effect,n
=3.5 which indicates a considerably slower decay in accor-
dance with the previous studies[10,36].

However, our results show that since in Fig. 6 the normal-
ization factorVs is that of an infinite 3D system, the effect of
the wall spacing rapidly decreases as a function ofF, and
even for the quasi-2D case it becomes negligible beyondF
<0.2. The effect of the walls is weakened by both the intrin-
sic convection, and also by the fact that with largerF a
smaller portion of the particles are strongly interacting with
the walls.

C. Velocity fluctuations

Unlike the average settling velocity, the behavior of the
velocity fluctuations is expected to be much more sensitive
to changes in the size of the container, due to the dependence
of the spatial correlation length of the velocities. Before dis-
cussing the velocity fluctuations we study the spatial velocity
correlation(SVC) function of the particles defined as

Rabsrd =
kva

i va
j lbsrd − kva

i lb
2srd

ksva
i d2lbsrd − kva

i lb
2srd

, s11d

wherea andb can denote any of the spatial directionsx, y,
or z while va

i andva
j are thea component of the velocity of

particlesi and j . With k·lbsrd we denote a steady-state aver-
age over all pairs whose orientation differs less than 5 de-
grees from the direction ofb and have a spatial distance ofr.
Excluding Rzz, none of the spatial velocity correlations de-
pends strongly onF. Instead they seem to scale according to
the dimensions of the container indicating that the current
simulations are not in the same limit than the sedimentation
experiments of Segréet al. [6] where the SVC correlation
lengths saturated to values that depend only onF. Since the
saturation value was about 20aF−1/3 it is reasonable to as-
sume that no saturation happens in ourLperiodicø91.02 con-
tainers. A further reason not to expect similar scaling in the
present simulations is that the saturation has been shown to
be a result of having walls in the direction of gravity. How-
ever, the experiments of Bernard-Michelet al. [35], per-
formed in a long tube with smaller square cross section
(width less or equal than 800a) show almost linear relation
between the correlation length of the SVC and the width of
the container with noF dependence.

FIG. 5. Average particle settling velocity as function of thex
coordinate measured from the middle of the system:(a) wall spac-
ing Lx=3.2, F=0.025 (dashed line), F=0.225 (solid line). (b) Lx

=23.11,F=0.025(dashed line), F=0.152(solid line). The vertical
dotted line marks the distance of one-particle radius away from the
wall. The two thin solid lines in(b) are parabolic fits to the data
(shifted for clarity).

FIG. 6. The normalized average settling velocityVsFd /Vs for
different wall spacingsLx. The lines are fits to the data. The data for
Lperiodic=22.76, 45.51, and 91.02 are presented using solid, striped,
and open symbols, respectively.
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In all directions our measuredRxbsrd depends only onLx
provided thatLx,Lperiodic. The correlation lengths are, how-
ever, different in each direction being smallest in thez direc-
tion, and largest in they direction. The shapes ofRxxsrd and
Rxzsrd are quite similar to the corresponding SVC’s shown in
Ref. [35]. For they component of the particle velocities all
correlation lengths increase seemingly linearly with increas-
ing Lperiodic. In addition, there is also a much weaker, and
unsystematic increase of the correlation length with increas-
ing Lx, most notably in thex direction. We performed some
simulations with a container whereLyÞLz which seem to
suggest that in such cases the correlation lengths ofRyysrd
and Ryzsrd are defined by the smaller of these dimensions,
which is again in a good agreement with the results in Ref.
[35]. The correlation lengths ofRzxsrd and Rzysrd seem to
depend both onLx andLperiodiceven when the former is much
smaller than the latter. This time simulations performed with
LyÞLz indicate that the correlation lengths depend onLy
even if Ly,Lz leading again to a scaling similar to that in
Ref. [35]. The scaling ofRzzsrd, however, differs significantly
from the previous by the fact that the correlation length de-
pends also onF. With increasingF the correlation length
decreases systematically in all cases studied, except in the
system withLxø6.044 andLperiodic=22.76 where the corre-
lation length depends on the volume fraction only ifF
ù0.08. This result can be understood as a direct conse-
quence of the depletion region above the test particle and is
thus a finite Rep phenomenon. The simulations withLyÞLz
seem to indicate that in the case ofRzzsrd the correlation
length depends more strongly on the ratioLy/Lz thanLperiodic
in the case whenLy=Lz.

In Figs. 7(a), 8(a), and 9 we present the normalized ve-
locity fluctuationsDVsFd /Vs in the z, x, and y directions,
respectively. In each figure we have presented the data ob-
tained by using differentLperiodic and three different lengths
in the periodic dimensions: 22.76, 45.51, 91.02, presented by
solid, striped, and open symbols respectively. First, it can be
seen that the qualitative behavior as a function of the volume
fractionF is the same in all directions and with all values of
Lx, except in the quasi-2D limit in thex direction, namely,
the fluctuations increase initially withF due to the increas-
ing effective particle interactions, but for larger values ofF
mutual blocking effects renderDV/Vs a decreasing function
of F as seen in numerous previous experiments[37,38]. The
absolute values of the velocity fluctuations are quite close to
those obtained by Ladd using lattice Boltzmann simulation
technique with periodic boundaries in all directions[9,18].
With increasing system size the velocity fluctuations ob-
tained by Ladd, however, increase faster than our results.
Likewise, in thez direction withF=0.05 the absolute values
of the velocity fluctuations are of the same order of magni-
tude as in the experiments of Nicolai and Guazzelli[19],
which were performed in containers that have a width of 51
particle radii, or larger, and other dimensions much larger
than the systems studied here.

In the direction parallel to gravity the size of the velocity
fluctuations depends strongly onLx and only weakly on the
other dimensions, especially when the container aspect ratio
Lx/Lperiodic is small. The finite-size scaling followsDVz/Vs

,Lx
1/3 with good accuracy, except in the quasi-2D limit, as

shown in the inset of Fig. 7(b). This is in an apparent con-
tradiction with the prediction of Caflisch and Luke[16] that
DVz/Vs,L1/2. The weak but systematic increase of the
scaled velocity fluctuations with increasingLperiodic suggests
that systems with the same ratioLx/Lperiodic could have a
somewhat different scaling. We found that when comparing
the pairs of systems with approximately the sameLx/Lperiodic,
the increase of velocity fluctuations with the increasing con-
tainer size does not contradict the prediction of Caflisch and
Luke [16] provided that Lx/Lperiodic.1/8. The quasi-2D
limit is also different from the rest of the data in that it does
not obey the finite-size scaling law, with values about 40%
less than expected from theLx

1/3 scaling.
In order to find out theF and Lx scaling of DVz, it is

necessary to normalize the velocity fluctuations withVsFd
rather thanVs [6,35]. In the main plot of Fig. 7(b) we show
DVz/VsFd,Lx

1/3. We find that in dilute systems, these fluc-
tuations obey a power lawDVz/V,Fj, with j=0.41±0.01
instead ofj=1/2 aspredicted by Caflisch and Luke[16].
The weaker scaling may be an effect of theF dependence in
the correlation length ofRzzsrd. This value ofj is, however,
very close to what has been seen in the experiments
[6,22,35] even though some of these systems are thought to
have different kind of scaling due to the volume fraction
gradient which is not present in our system. Also in agree-
ment with experiments[38], DVz/V does not follow a power
law behavior for larger volume fractions.

FIG. 7. Velocity fluctuations in thez direction parallel to gravity.
In Figs. 7–9, the solid, striped, and open symbols denoteLperiodic

=22.76, 45.51, and 91.02, respectively.
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Quite similar to the fluctuations in the direction of gravity,
DVx does not scale at all with the periodic dimensions, pro-
vided thatLx is smaller than the other dimensions. Such a
result is reasonable since the correlation length of thex com-
ponent of the particle velocities depends only onLx. The
scaling with the wall spacing is, however, somewhat differ-
ent. Instead ofLx scaling, we find thatDVx/V scales reason-
ably well with Lx

ef f. In Fig. 8(b), in which normalization with
VsFd rather than with Vs was used, we show that
DVx/VsFd / sLx

ef fd1/2 scales asFj with j=0.47±0.03. Since
the scaling exponent ofF andLx

ef f is essentially the same this

can be interpreted asLx
1/2sFef fd1/2, whereFef f=FLx

ef f/Lx is
the average volume fraction in the volume occupied by the
particles. Again, by only considering containers with ap-
proximately the same aspect ratio we note that with fixed
Lx/Lperiodic the scaling ofDVx/Vs does not contradict the pre-
dictions of Caflisch and Luke [16] provided that
Lx/Lperiodic.1/4.

The behavior ofDVy/Vs in the periodicy direction is less
clear as shown in Fig. 9. We were not able to find any clear
scaling law. It seems, however, that in a dilute suspension the
wall spacing limits the velocity fluctuations only if
Lx/Lperiodic&1/4. At this pointDVy has values of the same
order asDVx in a container with equal dimensions and any
further increase ofLx does not affect these values signifi-
cantly. In a more dense suspension withF=0.15 there is a
systematic increase ofDVx with increasingLx.

Finally, we note that the ratioDVz/DVy increases withLx.
In the quasi-2D case this ratio exceeds one only slightly in
accordance with the experiments of Rouyeret al. [2].

D. Diffusion coefficients

We also studied the behavior of the particle(tracer) diffu-
sion coefficientD defined by Eq.(3) using the memory ex-
pansion method[39]. We presentD as a function of the
volume fractionF in Figs. 10 and 11 in the periodicy andz
directions, respectively. We have restricted to consider the
system withLperiodic=22.76 andLxø23.11 in order to main-
tain reasonable accuracy to the results. In a dilute suspen-
sion, the qualitative behavior ofD is different in the
quasi-2D and 3D limits. While in the 3D limitD first in-
creases due to increasing velocity fluctuations, in the
quasi-2D geometry it is monotonically decreasing function
over the whole range ofF here. This result is expected due
to the enhanced blocking in analogy to true 2D Brownian
diffusion [40,41].

The different scaling of the velocity fluctuations withLx is
reflected in the size dependence ofDy andDz, as can be seen
in Figs. 10 and 11. While it is expected thatDz increases with
Lx due to increasingDVz, we find thatDy slightly decreases
for larger values ofLx. To explain this behavior, it is useful to

FIG. 8. Velocity fluctuations in thex direction perpendicular to
the walls.

FIG. 9. Velocity fluctuations in the horizontaly direction paral-
lel to the walls.

FIG. 10. The tracer diffusion coefficient in the horizontaly di-
rection parallel to the walls.
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distinguish between the scaling ofDV and the autocorrela-
tion time t by using the relationD=DV2t. Our data forDy
thus suggest thatty decreases withLx. Similar result has
been obtained by Koch[25], who found that the autocorre-
lation time of the parallel component of the particle velocity
decreases with the decreasing height to width ratio of a rect-
angular simulation box with periodic boundary conditions.

IV. SUMMARY AND CONCLUSIONS

To conclude, we have studied steady-state sedimentation
with a fixed finite particle Reynolds number in a system
periodic along the direction of gravity, but confined between
two walls perpendicular to gravity. We have first considered
the spatial distribution of particle number density in the con-
tainer and found that a depletion region appears close to the
walls for small volume fractions. This indicates that the
particle-wall interaction dominates and thus particles interact
weakly with each other. On the other hand, for largeF there
is an excess number of strongly interacting particles at the
walls. The effect is most drastic in the dilute quasi-2D sys-
tem where all particles are concentrated to the middle of the
container interacting strongly with the walls.

Furthermore, we have shown that in a confined geometry,
the average settling velocity obeys the RZ law but the expo-
nent n changes as a function of the system width. In the
quasi-2D system, the exponent has a value ofn=3.5 while
when the width increasesn increases gradually to the 3D
value ofn=5.5. A qualitative explanation for the difference
is that in a dilute system the particle-wall interaction is more
prominent leading to a strongLx dependence of the single
particle velocities.

The velocity fluctuations in the quasi-2D system differ
somewhat from the 3D case, which is most notably seen in
the fact that the system size scaling cannot be extended to the
case whereLx=3.20. The effect is most dramatic in they
direction, whereDVy does not depend on the wall spacing

onceLxù6.04 indicating that the increase in the single par-
ticle velocity does not play any significant role in the veloc-
ity fluctuations. The spatial asymmetry of the sedimentation
box reveals the complicated interplay between the velocity
fluctuations and the system size. In the direction parallel to
the walls and perpendicular to the gravitysyd it is eitherLy or
Lz that controls the size of the velocity fluctuations, although
we found no evidence of a finite-size scaling law. In the
direction perpendicular to the wallssxd, the controlling di-
mension isLx until the spacing of the walls grows larger than
the other dimensionsLy or Lz. Finally, in the direction paral-
lel to gravity,DVz is governed byLx in all cases, with much
weaker scaling withLy and Lz. We also found that ifLx is
much less than the periodic dimensions the velocity fluctua-
tions scale with the system size, with fixedLx/Lperiodic, dif-
ferently from the prediction of Caflisch and Luke[16]. The
probable cause for this difference is the fixed particle Rey-
nolds number changing the particle distributions as described
below.

Finally, we have also studied the behavior of the tracer
diffusion coefficients. Their dependence on the system size is
less clear. The reason for this seems to be thatt and the
corresponding velocity fluctuation scale different with sys-
tem dimensions. Systematic study of the scaling was not fea-
sible since it is computationally too demanding a task to try
to calculate the diffusion coefficients forLperiodic larger than
22.76.

The inertial effects provided two clear difference to the
Rep!1 case. First, wide depletion layers were formed in the
vicinity of the walls, presumably increasing the effect of the
intrinsic convection. Second, above each particle a region of
reduced volume fraction is formed, which leads to a reduced
spatial correlation lengthRzzsrd.

In this work we systematically studied only one value of
the particle Reynolds number. While the chosen Rep=0.5 is
large enough to ensure that inertial effects are visible, a sys-
tematic study of the strength of these effects is beyond the
scope of the present work. With the data presented here, it is
also unclear what the role of the container based Reynolds
number is. According to the few cases studied we can, how-
ever, claim that the width of the depletion layer is a function
of the Rep rather than of the container based Reynolds num-
ber, although the exact form remains unclear. Most impor-
tantly, according to our additional simulations with Rep vary-
ing between 0.1 and 1.0, we found that the spatial
correlations of the particle velocities remain unchanged.
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FIG. 11. The tracer diffusion coefficient in thez direction par-
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