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A simple model is proposed for the flow around the apex of a meniscus of a liquid undergoing ion evapo-
ration in a vacuum under the action of a high electric field. The model includes a simplified description of the
effect of the space charge surrounding the evaporating surface, and the idealizations that ion evaporation occurs
at a constant surface field and that the electric field and viscous forces are negligible in the liquid. In agreement
with known experimental and theoretical results for liquid metal ion sources, numerical solutions of the model
problem show that the meniscus develops a protrusion and the current-voltage characteristic is linear in a range
of voltages above an extinction voltage at which evaporation switches off. An oscillatory regime and transient
evolutions ending in surface pinch-off and the emission of a drop are described, and the stabilizing effect of the
pressure variations due to the evaporation flux is discussed. Asymptotic estimates for large evaporation flow
rates are worked out.
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I. INTRODUCTION

A liquid metal ion source(LMIS) is a device in which
ions of a metal are emitted from a meniscus of the liquefied
metal held in a vacuum and stressed by a high electric field
due to a voltage applied between the meniscus and another
electrode. Away from its apex, the meniscus takes the form
of a Taylor cone[1], which is an equilibrium shape reflecting
the hydrostatic balance of surface tension and electric
stresses. Ion emission occurs by field evaporation[2] from a
small region of high field around the apex, which is sur-
rounded by a high space charge. The space charge tends to
reduce the field at the surface, but this tendency is offset by
a deformation of the meniscus, which departs from a cone in
the vicinity of the apex and develops a characteristic protru-
sion capped by the emitting region. The source emits ions
and clusters in various charge stages, accompanied by a frac-
tion of neutrals, mainly as microdroplets, which increases
when the voltage and the current increase. LMIS’s find ap-
plication in the general area of microfabrication, as well as in
microscopy and materials analysis and implantation. Work
carried out in this field prior to 1991 was summarized by
Prewett and Mair[3], and a review of the basic physics of a
LMIS has been given by Forbes[4].

More recently, ion emission from Taylor cones of dielec-
tric liquids has been investigated as a means to enlarge the
ranges of chemical composition and mass/charge of the ions,
and thus the range of applications[5]. To name two ex-
amples, values of mass/charge well above the 200 Da attain-
able with a LMIS are of interest in electrical propulsion to
reduce the energy consumed per unit thrust; and a simple and
efficient source of large and fragile ions of biomolecules
would be of much interest for mass spectrometry. The fact
that field evaporation of ions is the relevant process also for
dielectric liquid was proposed by Iribarne and Thomson[6]
and confirmed by a number of researchers[5,7]. A mixed
drops-and-ions regime, in which most of the mass is carried
by charged drops but a noticeable fraction of the electric
current is carried by ions, was found by Gamero-Castañoet
al. [5]. Further work by these authors and by Romero-Sanz

et al. [8] has shown that a pure ionic regime can be ap-
proached or reached with organic solvents such as forma-
mide or propylene carbonate, and with ionic liquids, which
are purely ionic materials in the liquid state with electric
conductivities of 1–10 S/m. Experiments with some of
these liquids have revealed narrow energy distributions of
the ions, similar to those of a LMIS.

The protrusion at the tip of the meniscus of a LMIS was
first observed by Aitken[9] in a caesium source using a
scanning electron microscope, and by Gaubiet al. [10] and
Benassayaget al. [11] in gallium sources using a transmis-
sion electron microscope. This protrusion is often termed the
cusp, probably due to its appearance in electron microscope
micrographs, though it is recognized that the actual surface
may be rounded at the end of the cusp. The length of the
cusp was seen to increase with the emission current. King-
ham and Swanson[12] introduced a model of a LMIS con-
sisting of a jetlike protrusion on the end of a cone. Using a
self-consistent evaluation of the effect of the space charge
and a simplified fluid dynamical model, these authors nu-
merically computed approximations to the current-voltage
characteristic and the length of the protrusion. Further work
along these lines was carried out by Forbes and co-workers
[13], who improved the modeling of the surface shape and
obtained lengths of the protrusion in better agreement with
transmission electron microscope experiments. Mair[14]
(see also Refs.[15,16]) theoretically determined the current-
voltage characteristic on the basis of an equilibrium of the
electric and surface tension forces acting on the whole me-
niscus. The fluxes of mass and momentum carried by the
evaporating liquid are neglected in this theoretical model; the
effect of the space charge is accounted for by means of an
approximation that gives the emission current in terms of the
difference between the actual electric force and the electric
force in the absence of space charge(see Sec. II A below);
and the latter force is computed by linearizing the voltage
about the extinction voltage at which the source switches off.
The result is a linear current-voltage relationship with a slope
which is in good agreement with experiments for viscous-
drag-free sources. Analytical approximations for the length
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of the protrusion and the curvature radius of the surface at
the apex were worked out by Mair and Forbes[17] combin-
ing these results with Vladimirov and Gorshkov’s[18] ex-
pression of the harmonic field at the apex of the protrusion,
in an analysis that takes into account the depression due to
the flow induced in the liquid by ion evaporation. Mair and
Forbes’s theory leads to a linear relationship between the
length of the protrusion and the emission current.

The transient response and the instability of a LMIS are
also of much interest. The fast current oscillations that are
observed when a source is operated at high current have been
attributed to hydrodynamic instabilities of the cusp or of a
part of the cone, which may lead to the emission of micro-
droplets(Mair and Engel[19], Prewett and Mair[3]). Indi-
rect evidence of vibrations of the tip of the cone has been
given by Gaubiet al. [10], while Bar and Brown[20] and
Praprotniket al. [21] observed microdroplets emitted by the
meniscus. Mair[22] presented a simple theoretical model of
the bulk oscillations of a conical meniscus subject to surface
tension and electric stress, and Vladimirovet al. [23] dis-
cussed the capillary waves at the surface of the liquid. Pre-
liminary numerical computations of a nonstationary LMIS
have been carried out by Zheng and Linsu[24] and Forbeset
al. [16].

In this paper, numerical computations and order-of-
magnitude estimates are presented for the stationary state and
transient evolution of the surface of a liquid ion source in the
vicinity of its apex. The viscosity of the liquid is neglected,
which is an assumption often used in the analysis of LMIS’s.
The assumption is marginally valid for some dielectric liq-
uids but not for ionic liquids, which are very viscous at am-
bient temperature. The electric conductivity of the liquid is
taken to be infinitely large, which is also an approximation
more suitable for metallic liquids than for other liquids un-
dergoing ion evaporation. Attention is restricted to a region
around the apex including the protrusion and a part of the
cone. This region is assumed to be small compared with the
size of the meniscus, the distance to the extractor electrode,
and any other length of the system. Boundary conditions at
the outer boundary of this region express its matching to
more remote regions which need not be analyzed in detail.
The evolution of interest is associated to the dynamics of the
liquid, which is slow compared with the response of the
space charge around the evaporating surface. The distribu-
tion of space charge is therefore assumed to be quasisteady,
and its description is further simplified by adopting, as a
model, the results of a unidimensional analysis, as has been
done before by Mair and co-workers[14,15,17]. The sensi-
tivity of the current evaporation rate to the electric field is
taken to be infinitely high, which leads to a constant(maxi-
mum) field at the evaporating region of the surface and zero
evaporation current in the rest of the surface.

A current-voltage characteristic featuring an extinction
voltage and an ample range of linear increase of the current
with the voltage is obtained, in agreement with existing the-
oretical and experimental results. An asymptotic description
of the stationary solution for large voltages is also given. The
numerical results show the stabilizing effect of the liquid
flow induced by ion evaporation. In the absence of the de-
pression due to this flow, the surface elongates continuously

and appears to shed drops(though a complete description of
the shedding process is not attempted here). The
evaporation-induced depression stabilizes the surface, con-
fining the oscillations of the tip and the emission of drops to
large values of the voltage, and some times also to a range of
voltages immediately above extinction.

II. FORMULATION

A. Model problem for the space charge

Ion evaporation from the surface of a liquid metal[2,25]
or a liquid of high electrical permittivity[6] in a vacuum is
characterized by a density of current across the surface that is
a rapidly increasing function of the electric field. In a con-
tinuum Eulerian description, the density and velocity of the
space charge,nsc and ysc, and the negative of the electric
potential,w with E= =w, obey

¹2w =
qnsc

e0
, s1ad

= · snscyscd = 0, s1bd

ysc· = ysc=
q

m
= w, s1cd

x P Sl: w = 0, ysc= 0, j ; qnscysc·n = fsu=wud, s2d

plus additional conditions for the electric potential at other
boundaries of the system. HereSl is the surface of the liquid,
of outer normaln, m and q are the mass and charge of the
evaporated ions,e0 is the permittivity of vacuum, andj is the
density of evaporation current. The distribution of space
charge is assumed to be quasisteady, which is appropriate for
the analysis of the relatively slow response of the liquid.

The strong sensitivity of the evaporation current densityj
with the electric field often leads to a space-charge controlled
regime in which the density of space charge is high around
the high field regions of the surface, screening the surface
and preventing a further increase of the field. In these con-
ditions, the field is nearly a constant in the evaporating re-
gion of the surface, at a valueE0 that is evaluated in what
follows, and the evaporation current density is negligible
where the surface field is smaller thanE0. Let L be the char-
acteristic size of the evaporating region. The characteristic
velocity of the space charge in this region isyc

=Îsq/mdE0L, from Eq.(1c), and the space-charge density is
of the order ofnc= fsE0d /qvc, from the third condition(2).
The electric field induced by the space charge is of order
qncL /e0, from Eq. (1a), and the condition that this field
should be of the order of the field at the surface(E0) in order
for the effect of the space charge to matter, gives finally
fsE0d /E0

3/2=e0sq/md1/2/L1/2.This result depends on the char-
acteristic lengthL, but the dependence is very weak; it is
only logarithmic in the usual case in which the functionf
involves an exponential. Then, callingx=sE d ln f /dEuE0
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@1, the evaporation law can be approximated byfsEd
= fsE0dexphxsE/E0−1dj. In the asymptotic limitx→`, con-
ditions (2) become

x P Sl: 5w = 0, ysc= 0,

u=wu = E0 at the evaporating region

j = 0 at the nonevaporating regionsu=wu , E0d.

s3d

The two conditions thatw=0 and u=w u =E0 determinej in
the evaporating region.

Problem(1), (3) has a well known solution for the case of
a plane evaporating surface at a distanceL from a plane
parallel electrode kept at a voltageV relative to the surface
[26]. For small values ofsV−V0d /V0, whereV0=E0L, this
solution gives

j =
3

8
«0Î2q/m

E0L
sEh

2 − E0
2d, s4d

whereEh=V/L is the harmonic field that would exist at the
evaporating surface in the absence of space charge. Mair[27]
showed that Eq.(4) gives a reasonable approximation to the
evaporation current even when the conditionsV−V0d /V0

!1 is not satisfied and, moreover, that geometry has no par-
ticularly strong effect on the space-charge reduction of the
surface field. This means that a relation of the type(4) with
the coefficient ofsEh

2−E0
2d changed to an adjustable value

provides an approximation to the solution of Eqs.(1) and(3)
for liquid surfaces more complex than a plane. The approxi-
mation has been used in different problems[28], in particular
for an approximate determination of the current-voltage
characteristic[14–16] and the surface shape[17] of a LMIS.
It will be adopted in what follows as a simplified model of
the space charge.

To summarize, problem(1), (3) is replaced by the follow-
ing model problem:

j = maxhasEh
2 − E0

2d,0j, s5d

wherea is a model constant and the harmonic field is given
by Eh= u=whu at the surface, with

¹2wh = 0 in the vacuum, s6d

wh = 0 at the liquid surface, s7d

and additional conditions at the other boundaries, to be dis-
cussed below. Once the harmonic field is computed, the field
acting on the surface, which is required to evaluate the elec-
tric stress(equal to1

2«0En
2; see, e.g., Ref.[29]), is taken to be

En = minsEh,E0d. s8d

B. Flow of the liquid

The contributions of the surface tension and the normal
electric stress are both important in the balance of stresses at
the surface of a liquid undergoing ion evaporation. The con-
dition that these two contributions are of the same order,

namely thatg= ·n, 1
2e0En

2, whereg is the surface tension of
the liquid andEn is the electric field normal to its surface,
equal toE0 at the evaporating cap, determines the character-
istic curvature radius of the cap asR0=g /e0E0

2 (see Ref.
[30]). The velocityy of the liquid in the cap can be estimated
from this R0 and typical values of the total evaporation cur-
rent I ,sq/mdryR0

2, where r is the density of the liquid.
Thus, for a gallium LMIS (g=7.2310−1 N/m, E0
,15–20 V/nm, r=5910 kg/m3, and m/q=7.24
310−7 kg/C), R0 is of the order of a few nanometers and the
velocity of the liquid is of the order of 103 m/s when the
source is operated at an evaporation current of 20mA. The
Reynolds number of the liquid flow is then about 10 and
thus, insofar as a continuum treatment is admissible, the ef-
fect of the viscosity should not be very important and can be
neglected as a first approximation. Similar estimates for for-
mamide seeded with NaI(g=5.8310−2 N/m, E0,1 V/nm,
r=1133 kg/m3, and m/q=3310−6 kg/C) give a R0 of the
order of 10 nm, whereas the measured flow rateQ, of the
order of 10−13 m3/s when the ionic regime is approached,
requires velocities of the order of 500 m/s(from Q,vR0

2).
The Reynolds number is then about 2.

The electric field needed in the liquid to conduct the elec-
tric current to the evaporating surface is always small com-
pared withE0 in the case of liquid metals, which justifies the
assumption of an equipotential liquid surface used in Eq.(7)
to model the effect of the space charge. For formamide, this
assumption is less well justified, because the field required in
the liquid may be about one-third ofE0 when a conductivity
of 1 S/m, which is typical of some experiments[5], is as-
sumed.

Leaving out the effect of the viscosity, the flow of the
liquid will be irrotational, with a velocityy= =f and

¹2f = 0 in the liquid. s9d

The surface of the liquid,Sl, of equationf lsx ,td=0 say(with
f l ,0 in the liquid), is to be determined as part of the solu-
tion using the condition that the mass flux across the surface
due to ion evaporation issm/qd j , with j given by Eq.(5).
This condition can be written in the form

] f l

] t
+ s=f − vend · = f l = 0, where

ye = maxhãsEh
2 − E0

2d,0j, ã =
m

q

a

r
, n =

= f l

u = f lu
. s10d

The balance of stresses normal to the surface reads
g= ·n+brve

2= 1
2e0En

2+p, where the inward stresses on the
left hand side are due to the surface tension acting on the
curved surface and the recoil or momentum flux picked up
by the evaporating ions. Hereb=r /r0−1, wherer0 is the
density at the “electrical surface” of the evaporating liquid
[25], where the electric field isE0. The terms on the right
hand side of the balance of stresses are the electric stress and
the pressure of the liquid, which satisfiesp/r=−]f /]t
− 1

2u=fu2 (see, e.g., Ref.[31]). This equation reduces to the
Bernoulli equation when the flow is stationary. In the general
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case, the pressure can be eliminated from the balance of
stresses to obtain the following evolution equation for the
velocity potential at the surface:

rS ] f

] t
+

1

2
u=fu2D =

1

2
e0En

2 − g = ·n − brve
2

at f l = 0. s11d

This provides a boundary condition for Eq.(9).
Additional boundary conditions are needed forwh, f, and

f l far from the evaporation region. These conditions depend
on the configuration of the system where the meniscus is
formed, and bring into the problem the influences of the
liquid feeding device and the shape and position of the ex-
tractor electrode that is used to create the electric field
around the meniscus. While these are important features,
they are not intrinsic to the evaporation process going on
around the tip of the meniscus, which is the subject of this
paper. Here, in order to simplify the analysis and keep the
results reasonably general though only qualitative, advantage
will be taken of the fact that the evaporation region is typi-
cally very small compared with the size of the meniscus and
the distance to the extractor. Attention will be restricted to a
region around the tip large compared with the evaporation
region but small compared with any other length of the sys-
tem. Conditions at the outer boundary of this region stem
from the requirement that the meniscus should tend to a Tay-
lor cone far upstream of the tip, wherej =0 and the pressure
becomes negligible in the balance of stresses normal to the
surface. A Taylor cone[1] is a classical hydrostatic solution
of the problem when this balance reduces tog= ·n= 1

2e0En
2.

In this solution, the surface of the liquid is a cone of half
anglevT<49.29° and the electric potential is given bywh

=wT=AÎg /e0R
1/2P1/2scosud, whereR is the distance to the

apex of the cone,u is the angle around its axis, measured
from the prolongation of the cone,P1/2 is Legendre’s func-
tion of degree 1/2, andA<1.3459.

The velocity potential far upstream of the evaporation re-
gion is that of a sink at the apex, given byf=Q/ f2pRs1
−cosvTdg, whereQ is the evaporation flow rate. The pres-
sure variation due to this sink flow is of orderrQ2/R4. When
this is included in the balance of stresses, it leads to a cor-
rection of the angle of the cone proportional to 1/R3 and to a
correction of the electric potential proportional to 1/R5/2.

The following far field conditions are imposed at a sphere
of radiusR`@R0 to account for these asymptotic results,

wh = A
g1/2

e0
1/2R1/2P1/2scosud + B

g7/2

e0
7/2E0

6

Fsud
R5/2

for 0 ø u ø vT, s12ad

f =
Q

2ps1 − cosvTdR
with Q =E

Sl

yeds

for vT ø u ø p, s12bd

f l = p − vT − u. s12cd

HereB is a free parameter intended to reflect the effect of the
variation of the voltage applied between the meniscus and a
far electrode. The factorg7/2/e0

7/2E0
6 multiplying B is intro-

duced for convenience, to makeB dimensionless. The func-
tion Fsud should be given by an expansion in negative pow-
ers ofR`, with a leading term proportional toP−nscosud, n
<5/2, if the apparent apex of the cone were to stay at the
center of the outer spheresR=0d for any value ofB. This
condition, however, is difficult to enforce, and it would re-
quire to include small corrections also inf and f l in Eqs.
(12b) and (12c). It proves to be simpler to leave Eqs.
(12a)–(12c) as they are and allow for a shift of the apparent
apex and other small variations of the surface whenB is
changed. Taking this view, the functionFsud in Eq. (12a) can
be chosen freely; it will be set to Fsud
=maxfP−5/2scosud ,0g in what follows. The procedure can be
thought of as if the outer boundaryR=R` were a real spheri-
cal electrode of radiusR` with a nonuniform voltage equal to
wh in Eq. (12a).

This completes the formulation of the problem, which
consists of Eqs.(6)–(12). This problem can be rewritten in
nondimensional variables by scaling distances, velocities,
flow rates, and electric fields with

R0 =
g

e0E0
2, y0 = S g

rR0
D1/2

=
e0

1/2E0

r1/2 ,

Q0 = y0R0
2, and E0, s13d

respectively, and measuring the time withR0/y0. The veloc-
ity scaley0 represents the velocity that the liquid should have
in a region of sizeR0 around the apex in order for the dy-
namic pressurerv0

2/2 to be of the same order as the surface
tension and the normal electric stress in this region. The
actual velocity of the liquid depends on the model parameter
ã. The nondimensional problem coincides with(6)–(12) with
the parameterse0, r, g, andE0 set to the unity andã in Eq.
(10) replaced by

â =
ãE0

2

v0
=

m

q

aE0

e0
1/2r1/2, s14d

which, along withb and B, are the only dimensionless pa-
rameters of the problem(leaving apartR` /R0, which is an
artificial parameter whose value should not affect the solu-
tion in the evaporation region other than by setting a scale
for B, providedR` /R0 is sufficiently large).

III. RESULTS

A. Numerical method

Axisymmetric solutions of(6)–(12) have been computed
numerically. For this purpose, the surface of the liquid is
discretized using markerssxid. The equations of motion of
these markers and of the values of the velocity potential that
they carry(fi) are, from Eqs.(10) and (11),
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dxi

dt
= = f − ven,

r
dfi

dt
= rS1

2
u=fu2 − ven · = fD +

1

2
e0En

2 − g = ·n − brve
2.

s15d

The fieldswh and f are needed to evaluate the right hand
sides of these equations. They are obtained from boundary
element solutions of Eqs.(6) and (9) computed using as
nodes the markers and a set of fixed equispaced points on the
outer spherical boundary. The method is fairly standard and
the implementation used here follows that of Oguz and Pros-
peretti [32].

B. Numerical results

1. Caseâ=0

The mass flux accompanying the evaporation of ions[pro-
portional tove in Eq. (10)] and the recoil term proportional
to ve

2 in Eq. (11) are suppressed whenâ=0. In this case the
dynamics are controlled by surface tension and electric
forces only. The evaporation of ions does not directly induce
a flow in the liquid, but it still affects the solution through its
influence on the electric stress1

2e0En
2 in Eq. (11). In the ab-

sence of ion evaporation, the surface fieldEn equals the har-
monic fieldEh= u=whu, given by the solution of Eq.(6), and
satisfiesEn,E0 everywhere on the surface. Evaporation be-
gins when the maximum value of the surface field attainsE0,
and it prevents any further increase of the surface field above
E0. In a solution with ion evaporation, the surface field is
equal toE0 in the evaporating region of the surface(to be
determined as part of the solution) and smaller thanE0 in the
rest of the surface.

The dynamic pressure due to the flow induced in the liq-
uid by ion evaporation has been estimated in the literature
for gallium and other LMIS’s at low emission currents(about
2 mA in Ref. [4]). The estimated pressure variation is small
compared with surface tension and electric stresses in these
conditions, which has brought much attention to the limiting
case â=0. Theoretical models of the stationary current-
voltage characteristic have been proposed in which the iner-
tia of the liquid is explicitly left out[14].

Numerical computations forâ=0 show, however, that the
solution does not tend to a stationary state with ion evapora-
tion. In these computations the meniscus either evolves to-
ward a rounded shape with no evaporation(Eh,E0 every-
where on the surface) or develops a blob that tends to
become a drop in a finite time, as illustrated in Fig. 1. Which
of these behaviors is obtained depends on the value ofB,
which gauges the applied voltage, and for a givenB it de-
pends on the initial shape of the meniscus. Some of the ini-
tial shapes are similar to the stationary menisci proposed in
Refs.[12,17], but the numerical solution still does not tend to
a stationary state with ion evaporation.

The computations always fail at a finite time when the
surface develops a blob(shortly after the last time displayed
in the case of Fig. 1). This is because the code cannot handle

the pinch-off of the surface, but there is little doubt that the
regime captured is akin to the dripping regime described by
Notz and Basaran[33] in the absence of ion evaporation.
Since the shedding of drops affects only the vicinity of the
apex, the present regime should be more properly named
microdripping, after the classification of Cloupeau and
Prunet-Foch[34].

That the numerical solution never ends in a stationary
state with ion evaporation whenâ=0 can be understood by
noticing that such state, if it exists, is unstable in the frame-
work of the present model of constant evaporation field. In
fact, the stationary evaporating surface would be a spherical
cap of radius 4g /e0E0

2 under the equilibrium of surface ten-
sion and electric stresses, and any perturbation that increases
the radius of the cap decreases the inward surface tension
stress without changing the outward electric stress, which is
always equal to1

2e0E0
2. This leads to an unbalanced outward

force that tends to increase the radius of the cap further.
Similarly, the radius of the cap would continuously decrease
in response to a perturbation that decreases it initially.

It is also apparent that the pressure variations due to the
evaporation flow, which are suppressed whenâ is set equal
to zero, could cure this instability, because when the unbal-
anced outward force mentioned above begins to elongate the
surface, the harmonic field increases at the cap, causing an
increase of the evaporation current[cf. Eq. (5)] and the
evaporation velocity of the liquid[ve in Eq. (10)] if â.0.
This leads to an increased depression at the surface and in
the bulk of the liquid, via the Bernoulli equation, which may
offset the outward force. The recoil term proportional tob in
Eq. (11) has a similar effect but, contrary to the flow-induced
depression, it acts only at the evaporating surface.

2. Stationary solutions withâ.0

The magnitude of the evaporation-induced depression is
controlled by the nondimensional parameterâ in Eq. (14). It
is not straightforward to evaluateâ because it depends ona,
which was introduced in Eq.(5) as a model parameter. An
estimation ofa can be obtained from Eq.(4) if L is identified
with R0 defined in Eq.(13). For example, for ion sources of
both gallium and formamide seeded with NaI, this identifi-
cation gives valuesâ of the order of 0.1, or somewhat larger
if the emission of clusters or the solvation of the ions, which

FIG. 1. Time evolution of the meniscus leading to pinch-off for
â=b=B=0. Displayed are the surfaces at the nondimensional times
t / sR0/v0d=20sad, 40 sbd, 60 scd, and 62sdd. The initial condition is
the stationary meniscus forâ=0.2 andb=B=0. Herex is the dis-
tance along the symmetry axis measured from the center of the
outer sphere andr is the distance to the symmetry axis.
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increase the effective mass to charge ratio, are taken into
account.

Stationary sQ/Q0d−B [or sI / I0d−B] characteristics are
given in Fig. 2 for three values ofâ and b=0. Here I
=rQ/ sm/qd is the evaporation current andI0=rQ0/ sm/qd.
The stationary solutions have been computed using values of
R` /R0 that range from 25 to 100. As can be seen, ion evapo-
ration occurs forB above a minimum extinction value. The
current increases monotonically withB above the extinction
value, and apparently becomes a linear function ofB for
large values of this parameter. The current also increases
with â at constantB. Another branch of solutions with a
rounded meniscus and no evaporation exists forB below an
ignition value which is larger than the extinction value, lead-
ing to a region of multiplicity between both values ofB.
Ignition occurs forsR0/R`d2B<4.

The stationary shape of the meniscus in the branch with
ion evaporation is represented by the solid curves of Fig. 3
for â=0.2, b=0, and three different values ofB. For com-
parison, the dotted curve at the left of this figure shows the
rounded meniscus of the frozen solution forB=0. (The
dashed curve at the right will be commented below.) Figure 4
shows the electric field at the surface and the evaporation

flux ye/y0 as functions of the arc length along a meridional
section (s=0 at the symmetry axis), and Fig. 5 shows the
distributions of electric stress, surface tension, and pressure.
The surface always tends to a Taylor cone far upstream,
while the tip elongates with increasingB, in agreement with
experimental transmission electron microscope observations
and theoretical models. The size of the evaporating cap and
the maximum evaporation flux, which is attained at the sym-
metry axis, increase withB. The increase of the latter quan-
tity, however, is only moderate, and it seems to tend to a
finite limiting value whenB is increased well above the val-
ues of Fig. 4. This means that the continuous increase of the
current in Fig. 2 is due to the increase of the area of the
evaporating cap(see also Sec. III C below). The magnitude
of the evaporation-induced depression also increases withB
(see Fig. 5). While surface tension is always the dominant
inward stress far upstream of the apex, in accordance with
Taylor’s solution, this needs not be the case around the apex
for large values ofB. The position of the apex is given in
Fig. 6 as a function of the flow rate, and the inverse of the

FIG. 2. Nondimensional flow rate(or current) as a function ofB
for three different values ofâ and b=0. Solutions computed with
different values ofR` /R0 lead to nearly identical results whenB is
scaled withsR` /R0d2 (see discussion in Sec. III C)

FIG. 3. The solid curves give the stationary shape of the evapo-
rating meniscus forâ=0.2, b=0, and the three valuessR0/R`d2B
=−4.16, 0, 16, increasing as indicated by the arrow. The dotted
curve is the stationary meniscus forB=0 in the frozen solution
(without ion evaporation). The dashed curve is the stationary me-
niscus forâ=0.2, b=2, andB=0.

FIG. 4. Nondimensional surface electric field(solid curves) and
nondimensional evaporation flux(dashed curves) as functions of the
nondimensional arc length measured from the apex along a meridi-
onal section of the surface, for the same values of the parameters as
in Fig. 4 (B increases as indicated by the arrows).

FIG. 5. Nondimensional surface distributions of electric stress
(solid), surface tension(dotted), and pressure(dashed, right hand
side scale) for the same values of the parameters as in Fig. 4.
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mean curvatures= ·nd of the surface at the apex, which is a
measure of the size of the cap, is given in Fig. 7.

3. Effects of the recoil and the far field boundary condition

Solutions withb.0 (not displayed) show that the effect
of the evaporation recoil is to flatten and widen the evapo-
rating cap, which may even develop a neck at its connection
to the main meniscus. A sample meniscus forâ=0.2, b=2,
B=0 is given by the dashed curve of Fig. 3. Apparently, the
recoil cannot stabilize the flow by itself: solutions computed
with b.0 but with the evaporation term proportional tove
removed from Eq.(10) end up in evaporation shutdown or
surface pinch-off, as whenâ=0. The recoil may, however,
increase the stability of solutions withâ.0.

The particular form of the functionFsud used in Eq.(12a)
(cf. paragraph following these equations) has a qualitative
effect on thesQ/Q0d–B characteristics in the vicinity of ex-
tinction. When this function is replaced byFsud
=P−5/2scosud, the characteristics change as indicated by the
dashed curves of Fig. 2. The modified characteristics have
not been displayed for positive values ofB because there the
changes are only quantitative relative to the original charac-

teristics. The values of the asymptotic slopes forB@1 de-
pend on the functionFsud.

4. Oscillatory solutions

Not all the points of Fig. 2 correspond to stable solutions.
On the lower curve(â=0.2, b=0), the transient solution of
(6)–(12) does not settle to a stationary state whensR0/R`d2B
is below the upper vertical mark of the figure. The unstable
stationary solutions discussed above have been computed by
subtracting a term proportional ton ·=f−ve from the right
hand side of Eq.(11). This term amounts to an artificial
damping force proportional to the normal speed of the sur-
face, and therefore vanishes in the stationary state. When the
artificial damping is suppressed, the solution of Eqs.(6)–(12)
becomes oscillatory for values ofsR0/R`d2B in the range
between the two vertical marks of Fig. 2, and blows out after
an oscillatory transient for values of this parameter below the
lower mark.

Figure 8 shows the instantaneous current in the oscillatory
regime as a function of time for different values of
sR0/R`d2B. As can be seen, the current is time periodic near
the upper end of the range, and the amplitude of the oscilla-
tion increases and the shape of the wave becomes more com-
plex whensR0/R`d2B approaches the lower end. The solu-
tion computed forsR0/R`d2B=1.6 is not periodic, and the
emission current switches off and on at irregular intervals.
The current has undergone a period doubling whenB=0.

The shape of the oscillatory meniscus is shown in Fig. 9
at four different instants during a cycle forsR0/R`d2B
=12.8 and 0. The keys 1–4 in each panel of Fig. 9 corre-
spond to the times marked by black circles in Fig. 8, increas-
ing with increasing time. As could have been expected, high
instantaneous currents are attained when the elongation of
the meniscus, and thus the harmonic field at its surface, is
large. On the other hand, curve 2 of Fig. 9(b) (for B=0)
shows that the meniscus is everywhere concave toward the
liquid when the current is at its minimum and the evapora-
tion is nearly quenched.

Increasingâ tends to stabilize the stationary solution, in
line with the qualitative considerations of Sec. III B. The

FIG. 6. Axial position of the apex as a function of the flow rate
for b=0 and two values ofâ. The dashed straight lines have equa-
tions xapex/R0=0.07sQ/Q0d+5.1 andxapex/R0=0.03sQ/Q0d+5.2.

FIG. 7. Radius of curvature of the meniscus at the apex as a
function of the flow rate forb=0 and two values ofâ.

FIG. 8. Nondimensional evaporation flow rate(or current) as a
function of the nondimensional time forâ=0.2, b=0, and
sR0/R`d2B=12.8 (upper solid), 6.4 (dashed), 3.2 (dotted), and 0
(lower solid).
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solution forâ=0.5 (middle curve of Fig. 2) is already stable
at low sR0/R`d2B all the way to extinction. Finally, oscilla-
tions have also been found for high values ofsR0/R`d2B;
above about 32 whenâ=0.2 and 23 whenâ=0.5. These
oscillations probably herald the “spraying mode” of LMIS’s
at high currents[4].

C. Asymptotic estimates for large values ofB

The monotonous increase ofQ/Q0 with B for given
sâ ,bd=Os1d, and the monotonous evolution of the features
of the flow, suggest that the solution is approaching an
asymptotic regime for the largest values ofB attained in the
computations. An asymptotic structure of the solution can be
proposed with the guide of these results and the experimental
and theoretical results reviewed in the Introduction. The
asymptotic structure should consist of a conical meniscus
that prolongates into a narrow protrusion or neck whose
length increases with the evaporating flow rate so as to keep
a constant electric field equal toE0 at its rounded end, where
evaporation occurs. The scales of the evaporating cap and the
neck can then be found using simple order of magnitude
balances.

1. The evaporating cap

The stationary motion of the liquid leads to a depression
via the Bernoulli equation12rv2+p=0. At the surface of the
cap, this depression is augmented by the inward stresses due
to the evaporation recoil and the surface tension, and the sum
of the three must be balanced by the outward electric stress
1
2e0E0

2. This condition limits the velocity of the liquid in the
cap to values of the order ofv0=e0

1/2E0/r1/2 at most. As a
consequence, large flow rates can only be attained with large

evaporation surfaces. The characteristic size of the cap, say
Rc, should satisfy the order-of-magnitude relationv0Rc

2=Q,
whenceRc=R0sQ/Q0d1/2, where the definitions ofR0 andQ0

in Eq. (13) have been used.
On the other hand, the effect of the surface tension, which

is inversely proportional toRc and was of the order of the
electric stress when the characteristic size of the evaporating
surface wasR0 [see Eq.(13) and the discussion at the begin-
ning of Sec. II B], becomes negligible in the balance of
stresses at the cap whenQ/Q0@1. The simplified balance
reduces top+ 1

2e0E0
2=0 in the particular caseb=0, in which

the velocity of the liquid is equal tov0 at the surface.

2. The neck

The neck acts as a pipe for the liquid that evaporates at its
downstream end. Callingx the axial distance measured from
the join of the meniscus and the neck, andrssxd the slowly
varying radius of the neck, the velocity of the liquid will be
v<Q/prs

2. The order-of-magnitude balance of flow-induced
depression and electric stress discussed above also applies to
the neck, where the surface fieldEn is smaller thanE0. Using
the Bernoulli equation and the expression of the velocity in
the neck, the surface field that results from this balance can
be written as

En =
r1/2Q

pe0
1/2rs

2 . s16d

This field is essentially radial and is due to the electric
charge at the equipotential surface of the neck, which acts
therefore as a line of charge of strengthFsxd=2prse0En

when seen from a distance large compared withrs. It is not
difficult to compute the axial fieldEt1

sxd induced by this
distribution of charge at points of the neck surface. An ap-
proximation to this field which is correct only up logarithmic
factors of the form lnsrs/xd but that will be sufficient for the
present purposes isEt1

sxd=s2pe0d−1dF /dx; see, e.g., Ref.
[35]. Using the previous estimates ofF andEn, this approxi-
mation gives

Et1
sxd = OS r1/2Q

e0
1/2xrs

D s17d

in orders of magnitude.
Apart from the electric charge of the neck, there is addi-

tional surface charge at the conical meniscus. Since the sur-
face of the liquid is an equipotential, the axial fieldEt1

sxd
induced by the charge of the neck on itself has to be balanced
by the axial field induced by the charge of the meniscus at
the position of the neck, sayEt2

sxd. This field is not easy to
compute because the distribution of charge of the meniscus
is in turn affected by the presence of the neck. However,Et2
can be estimated by noticing that the meniscus should tend to
a Taylor cone at distances upstream of the neck of the order
of its length(say,n). The field that a Taylor cone induces at
distances of order,n downstream of its apex gives the esti-
mate

FIG. 9. Oscillatory tip of the meniscus at four different times
during a period of the oscillation(keyed by black circles in Fig. 8)
for â=0.2, b=0, andsR0/R`d2B=12.8 (upper panel) and 0.
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Et2
s,nd = OfETs,ndg = OS g1/2

e0
1/2,n

1/2D , s18d

whereET= =wT is the field of Taylor’s solution[1] [see also
the paragraph following Eq.(11)].

Carrying the estimates(17) and (18) to the conditionEt1
=Et2

, applied now forx=Os,nd, and imposing, in addition,
that En in Eq. (16) should satisfyEns,nd=OsE0d in order to
match with the evaporating cap, we find

,n = OSr1/2e0
1/2E0Q

g
D = OSR0

Q

Q0
D ,

rss,nd = OSr1/4Q1/2

e0
1/4E0

1/2D = OFR0S Q

Q0
D1/2G .

Notice thatrss,nd coincides with the estimate of the size of
the capRc obtained in Sec. III C 1. The square root depen-
dence of this magnitude on the flow rate is in line with the
numerical results of Fig. 7 for large values ofQ/Q0.

The surface of the liquid ceases to be slender at the up-
stream end of the necksrs,xd, and the condition that the
surface tension should come back into play to match with the
meniscus[g / rs,e0En

2 with En given by Eq. (16)] gives
sx,rsd=OfR0sQ/Q0d2/3g andE=OfE0/ sQ/Q0d1/3g.

3. „Q/Q0…−B relationship

The order of the voltage(as gauged byB) required to
achieve a certain flow rate large compared withQ0 can now
be estimated. The electric potential at distances from the ap-
parent apex of the Taylor cone large compared with,n
should be of the form

whsR8,u8d = Asg/e0d1/2R81/2P1/2scosu8d

+ B8P−nscosu8d/R8n + ¯ . s19d

HereR8 andu8 are spherical coordinates centered at the ap-
parent apex, which needs not coincide with the center of the
outer spherical electrodesR=0d but will be displaced a cer-
tain distancedR from it. The leading term of Eq.(19) is the
potential of Taylor’s solution and the second term, withn an
eigenvalue numerically close to 5/2, comes from a straight-
forward linear analysis of the far field. The parameterB de-
fined in Eq.(12a) appears when thiswhsR8 ,u8d is rewritten in
terms of the original coordinatesR and u and the result is
extrapolated to the outer electrodesR=R`@dRd. The first
two terms of an expansion ofwhsR,ud in powers ofdR/R`

are Asg /e0d1/2R`
1/2hP1/2scosud− 1

2sdR/R`dP−1/2scosudj,
where the first term coincides with the first term ofwh in Eq.
(12a) while the second term, along with higher order contri-
butions from Eq.(19), should give the second term ofwh in
Eq. (12a). In orders of magnitude, this requiresdR
=OfR0sR0/R`d2Bg. If dR is assumed to be proportional to,n

and the estimate of this magnitude worked out above is used,
thenQ/Q0=OfsR0/R`d2Bg, in qualitative agreement with the
approximately linear relation betweenQ/Q0 andB displayed
by the numerical results of Fig. 2 forQ/Q0@1.

4. Additional comment

According to the estimates of this section, the effect of the
surface tension is negligible around the tip whenQ/Q0→`.
The results of Fig. 5 show that this is still not the case for the
values ofB used in the numerical computations(notice the
tenfold magnification of the scale of the pressure in this fig-
ure), but they also suggest that the trend is for the depression
to increase and eventually take over surface tension. Without
an effect of the surface tension, the asymptotic solution is
probably unstable, and the actual solution should not be ex-
pected to be stationary above a certainQ/Q0 that may de-
pend onâ. All this is confirmed by the numerical results, but
the asymptotic estimates are still useful because they reveal
qualitative features of the stationary solution before it be-
comes unstable.

IV. CONCLUSIONS

Numerical computations and order-of-magnitude esti-
mates have been used to describe the flow and the meniscus
of a liquid ion source in a small region around its apex. The
results rely on a simplified treatment of the space charge and
the assumptions that the viscosity of the liquid and the elec-
tric field in the liquid are negligible. The model problem
contains three nondimensional parameters that measure the
strength of the flow and pressure variations induced in the
liquid by ion evaporation, the recoil due to the momentum
picked up by the evaporating flux of ions, and the voltage
applied to the meniscus. In agreement with existing experi-
mental and theoretical results, ion evaporation is seen to oc-
cur when the parameter that gauges the voltage is above a
certain extinction value, and the evaporating surface is a cap
at the end of a jetlike protrusion that the meniscus develops
around its apex. The ionic current and the length of the pro-
trusion increase linearly with the voltage. The size of the cap
and the evaporation-induced depression also increase with
the voltage. The effect of this depression is stabilizing; in its
absence, the surface of the liquid either recedes until ion
evaporation ceases or advances until a drop is shed. A time-
dependent current is obtained in a certain range of voltages
when the stabilizing effect of the depression is weak.
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