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Crash test for the Copenhagen problem
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The Copenhagen problem is a simple model in celestial mechanics. It serves to investigate the behavior of
a small body under the gravitational influence of two equally heavy primary bodies. We present a partition of
orbits into classes of various kinds of regular motion, chaotic motion, escape and crash. Collisions of the small
body onto one of the primaries turn out to be unexpectedly frequent, and their probability displays a scale-free
dependence on the size of the primaries. The analysis reveals a high degree of complexity so that long term
prediction may become a formidable task. Moreover, we link the results to chaotic scattering theory and the
theory ofleaking Hamiltonian systems.
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I. INTRODUCTION tem is conserved an@ip to the factor — has been known

. . o __ _1lp2, 2
The restricted three-body problefRTBP) was first con- historically as Jacobi's integral=—2€,E=35("+y*)+V, It

; - is widely believed thaE is the only(independentintegral of
sidered by Euler1772 and Jacob{1839. Later, from 1910 his system{17]. The scaled equations of motion for the test

to 1925, the Copenhagen group around Stromgren investE dv in th ing for the C h
gated numerically the case of equal main masses of th_ié I:ret e corotating frame for the Copenhagen case

RTBP. Hence, this problem is called a Copenhagen problem:
Despite the assumption that the third mas®e test body o x+1/2 x-1/2
does not affect the primaries the problem is nonintegrable. X=2y+Xx-
Due to its simplicity and cosmological relevance this prob-

lem triggered extensive numerical investigations until today;

we mention only the works of Szebehel§] and Hénon -y:_2>-(+y_L_L (1)
[2-5. The RTBP, though much simpler than the general 2r3 2r,

three-body problem, can still serve as a paradigm for classi- . . . o
cal chaos, see, e.g., Richtés]. A big part of the work wherein the radius vquables are no Ionger e?<pI|C|tIy time
around the three-body problem deals with finding, describin hependent. The eq“%“%”_s of motict) ?re_lnva_lr_lﬁnt#r}ger
and classifying periodic orbits. But the applications are wide- € symmeltry operatio .(x,y,t)ﬂ(x', y,~0. This holds
spread and cover classical deterministic ch#®js semi- for the general casg.#1/2. A special symmetry for the

classical quantization, quantum mechanics, chemjiéd] Copenhagen'case E’:(x,y,t)a(—?(,—y,t). These are the
and astrophysical probleni§—12. From diverse astrophysi- only_ known (independent symmetries of the equations of
cal viewpoints there are many recent works; the RTBP served0tion (1).
as a model system to investigate the stability eftrgsolar
(subsystemg 13,14, (chaos assistgdasteroid captur¢lh],
and the dynamics of two massive black holes orbited by a
sun[16]. The motion is restricted to 3-dimensional surfades
=const in phase space. The position and extent of chaos is
studied in terms of Poincaré sectiofgdmplete in the sense
of Dullin et al. [18]). With polar coordinategr, ¢) in the

We consider the(planar circulay restricted three-body Ccenter of mass systef€OM) the conditionr=0 defines a
problem for the Copenhagen case. Two equal masses movedimensional surface of section in the surfe€e const,
on a circle with Kepler frequencf25] about their common with two disjoint parts¢<<0 and ¢>0. Each of these two
center of gravity assumed to be fixesee left in Fig. L In  parts has a unique projection onto they)-plane. Figure 3
the inertial system the RTBP has a time dependent potentigfisp|ays these projections fgr< 0, at three different energy
V(XY 0==u/ri(t) =(1-w)/r5(t) where u=m/(m+my),  |eyels.
andry(t), ro(t) are the distances to the respective primaries. |n contrast to common representations of Poincaré sec-
The time dependence of the potential is usually eliminatedions where the color codes indicate single orbits, fesreh
using a corotating frame wherein the primaries rest. Thengixel is given a color according to the ortitpe We call
the test body moves in th@, y)-plane with Jacobi’s potential these diagramsrbit type diagramgOTD). Roughly speak-

2r,3 2r,%

Ill. ORBIT TYPE DIAGRAMS

Il. THE MODEL

Vy=—ulry=(1-p) /1,503 +y?) where r; ,=(x+1/2)2+y%  ing, we classify the orbit types into bounded motion of a few
The quadratic term results from the centrifugal fol€g,  kinds, unbounded motion and collision orbits.
=(x,y), whereas the Coriolis forcEcy,=2(y,-X) gives no Bounded motion: Generally, for nonintegrable systems

contribution to the potential. Thenergy[26] E of this sys-  with configuration space extending to infinity it is nontrivial
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' Outside the system's disk: escape orbit . .
Y y gssumed FIG. 1. Left: A schematic picture of the re-

stricted three-body problem with equal main
masses, i.e., the Copenhagen problem. Right: A
Rsystem schematic picture of orbit type diagrams. We call
the motion bounded if the test body stays con-
\ fined for a given timét;meou) iNside the system’s
I Primaries disk with radiusRgsem If the test body leaves
(Crash possible) the disk the integration is aborted and the motion
Inside the system's disk: is called unboundedescape orbjt If during the
bounded motion assumed integration a crash with one of the main masses
occurs we call the corresponding trajectory a
crash orbit.

» Test body

to prove the boundedness of motion for specific initial con-system with more disturbing bodies, the definition is physi-
ditions. Here, we give a practical definition of bounded mo-cally motivated.

tion: We call a motion bounded if the test body stays con- Collision: A collision with the first primary body of radius
fined for the timet;yeq, iNSide a disk with center at the R, . occurs when the test body intersects the border of the
COM:-origin and radiusRysiem The higher the values of gisk around(-%,0) with radius Ry,s, These points in the
timeout aNd Ryysiem the more plausible the numerical state- 9Tps are colored white. A collision with the second primary

mentbounded motiorbecomes. In the liMitymeoy— o this body [at (+%,O)] is defined analogously but colored red

definition becomes the precise description of boundedness | : . A
a finite disk of radiusRssem Unfortunately, the higher the @.:%os See the right part of Fig. 1 for a schematic picture of

values of these two parameters, the longer the numerical cal-
culation lasts. In this paper, we chooggeq~10000 and 1a
Roysten10. A lower value Oft;neoy SMoothens the fractal ... ..
border of bounded regiongl9]. We use a symbolic orbit
classification for bounded motion which is suitable for an
automatic identification of the orbit types. The new classifi-
cation differs from the standard scheme of Strémgren, Hénor
et al. (see, e.g., Hagihai20] for a detailed discussionThe
emphasis is on the distinction between regular motion
cluding small scale chapsn the one side and strongly cha-
otic motion (not hindered by KAM orbit6]) on the other.
Our classification is based on an automatic detectiox of
axis passages of the test body. Two subsequemtis pas-
sages are used to definehalf rotation with respect to the
fixed positions of the main masses. We label a half rotation
counterclockwise around orief the two centers by “L,” a
half rotation clockwise by “R” and effectively no rotation is
labeled by zero “0.” For example, a quasiperiodic clockwise
orbit solely around the first center is described by the two
symbol sequencefRRR..;000..). (cf. class b in Fig. 2

where the left slot of the bracket refers to revolutions around

. . . . 3¢ 3d
primary 1; the right to those around primary 2. In Fig. 2 ____ {2/ o Y. . N
example orbits for twelve classes that we termed la—4 are

shown. A precise description of the classes has been givel

earlier[19].

Unbounded motioriescape orbits If the test body leaves 3e 4
the central disk with radiu®semat @ timetescape< timeous - . e e
we say that the test body has left thgystemand stop the ‘. 2

integration. These points in the OTDs are colored from dark

blue (grey) (a small value oftescapd to light blue (grey) (a FIG. 2. Symbol sequences for the orbit examples: Class
high value oftecapd. Note that the Kepler problem exhibits 15.(1 1 ...:000..), 1b:(RRR...;000..), 1c:(ROLLL...:;000..).
ellipses for all starting positions in the configuration spaceg|ass 2:(000...:LLL..), 2b:(000...:RRB, 2c:(000...:
(x,y) for some energy level. Thus, our definition would be roLLL..)). Class Z:(LLL...:LLL...), 3b:(RRR...;:RRR.),
inappropriate for orbits that never enter thaerregion, say,  3c:(LOOLLOOL...;0RROORRO. ), 3d:(ROORROOR... ;
r=<1, and are only slightly disturbed Kepler ellipses. But in OLLOOLLO...), 3e:(ROLLL...:ROLLL). Class 4(000...;000..).

this paper, we focus our attention on the dynamics of theNote that the orbits need not be periodic to have the same symbol
motion in the inner region. Moreover, thinking of a real solar sequences.
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FIG. 3. (color onling Regions of bounded motiaeft column), crash orbitgmiddle column and together with regions of escape orbits
(right column) for three different energy levels. THg,y)-plane in a corotating frame of reference for the Copenhagen problem is shown.
The color of a point represents the orbit type of a test body which has been launched with the pericenter p@sjtipfoathe energy level
E (see the orbit class legend belpwop (a) Decomposition of the OTD d@=-1.375. Bounded motion is indicated by the col@sey
scaleg of classes la—4. Whitged/black points indicate a collision with mass(2). Escape orbits are colored bla@scqpe0) to blue
(grey) (tescaps 10000. Middle row (b) Decomposition for same conditions but at the energy I&rt1.425 781 25. Bottonic) Decom-

position forE=-1.730 468 75. Initial condition”.:o,¢< 0. Radii of the primariegnot shown: Ry,ss8.97X 107>,

IV. THE (x,y)-PLANE Figure 3a) shows the OTD decomposition for the fixed
energyE=-1.375. There is a main regighof bounded mo-

The pictures to the right in Fig. 3 represent OTDs withtion around mass 1 which consists of a central region, sur-
respect to the center of ma68OM) at the origin(0,0) for ~ rounded by five small and one tiny islands. Each region of
different energy levels. Théx,y)-plane (in the corotating regular motion has a resonance, i.e., a periodic orbit at its

frame of referenceis displayed. The pictures to the left in center. The regions in whitlack) represent the start posi-
Fig. 3 display the regions of bounded motion in the OTDs. Intions where the test body eventually crashes with mass 1.

the middle column the crash basins for the three energy levFhesecrash basinsvind out as spirals in the outer regions of
els are shown. The diagrams in Fig. 3 exhibit the symmetrithe diagram, due to the rotating primaries. But there appear
3’ (because it is also respected by the section condition crash basins also in the immediate neighborhood of the
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2.5
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FIG. 4. (color onling Top: Orbit type diagram for théx,E)-plane. Poincaré sectiory=x=0,y>0. Radii of the primariesRass
=8.97xX10°°. The symbold.; , srepresent the-positions of the corresponding Lagrange points ¥lj(d., ,) are the potential values of the
first two. Additionally, the three energy levels of Fig. 3 are highlighted. See Fig. 3 for a color legend. Bottom: Bounded motion of the OTD
(to the lefy and crash basingo the righy. Crash onto primary 1: black; crash onto primary 2: ¢gcky).

COM. Note that the primary body disks are several orders oflefined by the crash conditions and the escape condition re-
magnitude smaller in area than the total size of crash basinsulting in threeexit modesAs a consequence, the boundaries
In this representative Poincaré section, the phase space isnake it difficult to predict whether the test parti¢eg., an
close mix of crash basins, regions of bounded motion andsteroid hits a primary body or leaves thsolan system.
escape basins. The fixed energy lelzei—1.375 represents The OTDs differ only slightly from those obtained using a
the so-called Trojanic energy corresponding to the maximauitable defined escape velocity condition, emg=[2/(r
of Jacobi's potential. Thus, the test body has access to the1)]'2, rather than the escape condition> Roystem Used
full (x,y)-plane. here. Thus, the occurrence e§cape basingcolored solid

In Fig. 3b) the corresponding(x,y)-plane for E= dark blue(grey)] is not an artifact of the arbitrarily chosen
-1.425781 25 is shown. There are inaccessible regiongscape condition.
(grey) in the plane because the energy is smaller than the

Trojanic energy. The orange colored islar{@ belong to a V. THE (x,E)-PLANE
well-known orbit of type 4. _ ) o .
Fig. 3c) displays the(x,y)-planes for the energf= The diagrams in théx,y)-plane provide information on

-1.730 468 75. Here, the inaccessible afgmy) separates the phase space mixing for only a fixed energy. Hénon con-
two regions. In the outer region there is a ring of boundecsidered a plane which provides information about regions of
motion (rose colored; Pwhich separates regions of escapestability and regions of escape orbits using the secyier
orbits. In the inner zone the test body is confined. The re=0,y>0, i.e., the test body starts on tieaxis, parallel to
gions A and B indicate stable motion around the individual they-axis and in the positivg-direction. Thus, in contrast to
primaries. These regions are surrounded by a chaotic mix ¢he section discussed before, only orbits with pericenters on
areas of crash orbits with respect to the first and the secoritie x-axis are included. But then the energyis used as an
primary body. ordinate. Figure 4 shows an OTD decomposition for the
Interestingly, the OTDs in Fig. 3 possess both, smootHX,E)-plane. The corresponding energy levels of the
(nonfracta) and fractal regions of the boundaries which (X,y)-diagrams in Fig. 3 are also shown. Note that the energy
separate the regions of escape orbits and the crash basins.HF—C/2 increases downwards andlecreases from the left
the context ofleaking Hamiltonian systems the boundaries to the right. A comparison of the stability diagram[B] (not
are classified to be of type [R1-23. Here, the leakages are shown and Fig. 4 highlights the impressive accuracy of
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-

”

FIG. 5. (color onlinge An extension of the crash basifwhite and redgrey)] for different primary body raddii. Orbit type diagrams for

the (x,y)-plane at the energy lev&l=-0.5 for the Copenhagen problem are shown. The surface of section conditi:dmib< 0. Range:
x,y=-2.0...2.0. Radii of the primarig&rom left to righy: Ry, =Ry,:107°,103°,10%%,10°2,10°,10°". See Fig. 3 for a color legend.

Hénons work of the sixties where the speed of computatior \ﬁz—rp/EZ. Hence, we obtain a power lafy, o R) ~ R? with
was several orders of magnitude lower than today and term#e exponen=1/2. Thepower law has been approximately
like deterministic chaos or fractal boundaries were only beconfirmed by simulations of the RTBP for different values of
ginning to emerge. the mass ratiou, and for different energy levelg (from
The boundaries between bounded and unbounded motionl.375 up to 0.5
are now seen to be more jagged than shown in the stability
diagram. Moreover, we found in the blow-ups of the diagram
many tiny islands of stabilitfyand resonances in their cen- VIl. CONCLUSIONS
ters). From chaos theory we expect indeed an infinite number To conclude, the orbit type diagrams that we introduced
of islands of(stablg quasiperiodic(or small scale chaotjc  display the phase space mixing of bounded, unbounded and
motion. The region between the potential values of the firstrash orbits in a new kind of Poincaré section representation.
two Lagrange pointsv(L; ) shows many tiny islands of The diagrams extend known behavior in the RTBP. More-
regular motion plus a chaotic mix of areas of crash orfaits  over, they provide detailed information about extent and po-
OTD for E=-1.73 in Fig. 3. sition of the different regions and display the complex
boundaries between them.
From the theory ofleaking Hamiltonian system$23] it
follows that the boundaries, between the crash basins and the
So far the radii of the primaries were arbitrarily assumedregions of escape orbits represent thaotic saddi€i.e., the
to be fixed aRy ,=8.97X 1075, Figure 5 displays OTDs for invariant manifold$ plus existing KAM tori better the
the fixed energyE —0.5 with radii RM mcreasmg from smaller the primary disks. This links the crash basins to the
105 to 10°%. The area of crash orbits with respect to the firstfoliation of the phase space. Blehet al. [21] proposed the
primary body follows a power law over several orders of

VI. SCALING LAW FOR THE CRASH BASINS

magnitude:A; s~ R* with «=0.462). Figure 6 shows the
corresponding log—log plot for the energy le¥st—0.5. Due sl
to the nonintegrability of the RTBP it seems nontrivial to ‘
calculate exactly the power law behavior. Thus, we derive a ]
rough approximation forA,s{R). First, we consider the " 4.2
RTBP when the test body is close to one primary bgdgt =
before a crash occuxsSecond, we neglect the rotation of the S
primaries. Then, the situation can @geughly) approximated o 18]
by the Kepler problem. Using the relatiéE;,— L between g '
the energy in the inertial systeH, and the angular momen- =
tum L from Kepler’s ellipse formula it follows that g 48
©
E 34l
E=-—1 5 /202 @ g
ra+rp fp+ra 3]
wherer , denotes the perihelion amg the aphelion distance.
Solving Eq.(2) for r, yields 3]
E+r Iy + 2Er? +2rp 281
"allp) == 1 E2—2rp E?-2r, & , ‘
-5 -4 -3 -2 -1
Note thatr,>r,>0 implies firstE<-1/2r,, and second the log(radius)
negative root in Eq(3). A collision occurs when the test
body intersects the disk with radiu8 around the Kepler FIG. 6. (color onling Log-log plot of the crash basin size in the

singularity: rp$R. Thus, forR<1 the area of crash orbits (x,y)-plane(x,y=-2+2) at fixed energyE=-0.5 in arbitrary units
can be approximated by;,s{R)~27r,(0)[ro(0)-r,(R)].  versus the primary body radi=1075...10°L. Black line: Numeri-
But for r,<1, Eq. (3) is approximated byr,(r,)=-1/E  cal result. Redgrey) line: Fit curveAg s R™.
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RTBP as an interesting application for a leaking Hamiltonianwhich (to our knowledgg has not been investigated in
system. Here we discuss this application, resulting in thesimple celestial models as the RTBP. The size of the crash
so-called type Il boundaries between regions of crash anbdasins follows a power law that is close to the result of a
escape orbits. Moreover, the type Il boundaries confirm thealculation based on Kepler’s ellipse formula.
results of de Mourat al.[22]. Due to the extended primaries  In a companion papef24] we investigate bifurcation
the model is more applicable to realistic situations of celesschemes of periodic orbits and link the results to the under-
tial body problems than the pure RTBP. The analysis reveallying invariant manifolds. Furthermore, we consider the gen-
a high degree of complexity so that the long term predictioreral u# 1/2-case of the RTBP.
in comparable celestial systems may become a formidable
task.

Finally, the crash basins as part of the diagrams are widely
more extended than expected. The results show how com- | warmly acknowledge P. H. Richter, T. Tél and H. R.
paratively small primaries affect regions of crash orbitsDullin for fruitful discussions and helpful comments.
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