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We adapt a previous model and analysis method(themaster stability function), extensively used for studying
the stability of the synchronous state of networks of identical chaotic oscillators, to the case of oscillators that
are similar but not exactly identical. We find that bubbling induced desynchronization bursts occur for some
parameter values. These bursts have spatial patterns, which can be predicted from the network connectivity
matrix and the unstable periodic orbits embedded in the attractor. We test the analysis of bursts by comparison
with numerical experiments. In the case that no bursting occurs, we discuss the deviations from the exactly
synchronous state caused by the mismatch between oscillators.

DOI: 10.1103/PhysRevE.69.066215 PACS number(s): 05.45.Xt, 89.75.2k

I. INTRODUCTION

In this paper we study the synchronization of networks of
coupled chaotic units that are nearly, but not exactly, identi-
cal. In particular, we will be concerned with the spatial pat-
terns of desynchronization bursts that appear when this syn-
chronization is present but intermittent.

When two or more identical dynamical systems are
coupled, they can synchronize under appropriate circum-
stances. The synchronization of chaotic units has been stud-
ied extensively[1,2] and is of significance in biology[3–6],
laser physics[7–9], and other areas[10,11]. At the same
time, the importance of complex networks has been recently
appreciated, and progress has been made towards their un-
derstanding, including characteristics that might help distin-
guish qualitatively different networks[12–14]. The dynamics
of a network of coupled oscillators, and, in particular, its
synchronization, has therefore emerged as a subject of great
interest.

There are different notions of synchronization, among
them phase synchronization[15], generalized synchroniza-
tion [16], lag synchronization[17], and identical synchroni-
zation [18]. The concept of identical synchronization is use-
ful when dealing with identical coupled oscillators. Here we
will consider oscillators that are nearly the same, although
not identical. Thus we will be concerned withnear identical
synchronization, in which the states of the different units
remain close to each other as a function of time.

Pecora and Carroll[19] have proposed a model and analy-
sis method(themaster stability function) for the study of the

stability of the synchronous state of networks ofidentical
coupled chaotic units, and this technique has recently been
extensively applied[20,21] to study the synchronization
properties of different kinds of networks of identical noise-
less chaotic units. These networks include small world[22]
and scale-free networks[13].

The analysis of network synchronization by use of the
master stability function technique has so far assumed all the
units to be identical and noise free, so that an exact synchro-
nized state is possible. In practice, however, even if one
strives to make the oscillators the same, they are still ex-
pected to have a small amount of parameter mismatch, and a
small amount of noise is also expected to be present. Under
such circumstances, it is known that the synchronization can
be interrupted by sporadic periods of desynchronization
(bursts). The bursts are typically caused by a periodic orbit
that is embedded in the synchronized chaotic attractor and is
unstable in a direction transverse to the synchronization
manifold. This phenomenon is commonly referred to asbub-
bling [23–25], and has been studied extensively for two
coupled oscillators[26,27].

Our purpose in this paper is to study desynchronization
bursts in networks of coupled chaotic nonidentical units.
(Noise has a similar effect but will not be treated in this
paper.) We will use the master stability function approach
and, in order to account for the possibility of bubbling, we
will also extend this approach to include the stability of em-
bedded periodic orbits. In this case, the bursts have the added
feature of having spatial patterns on the network, and we find
that these patterns can be predicted from the network con-
nectivity matrix. We will show how these bursts affect dif-
ferent parts of the network in different ways. In particular,
we will see how adding connections in a ring can destabilize
precisely those nodes that are the most connected, leaving*Electronic address: juanga@math.umd.edu
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other parts of the network substantially synchronized.(This a
somewhat counterintuitive effect related to the fact that, in
some cases, increasing the coupling strength destabilizes the
synchronous state[19,28].)

Arbitrarily small amounts of mismatch will eventually,
through the bubbling mechanism, induce desynchronization
bursts. We will show that some of the spatial patterns of this
possibly microscopic mismatch might get amplified to a
macroscopic size in the bursts. We will discuss how one can
use knowledge of the parameter mismatch of the dynamical
units in the network to decrease the effective size of the
mismatch driving the bursts, thereby improving the robust-
ness of the synchronization.

If synchronization is desired, the network and the param-
eters should be constructed so that the synchronous state for
the identical oscillator system is robustly stable(this implies
the absence of noise or mismatch induced desynchronization
bursts). Even then, the synchronization will not be perfect if
the oscillators have parameter mismatch. We will describe
the characteristics of the deviations from exact synchroniza-
tion in terms of the mismatch and the master stability func-
tion.

This paper is organized as follows. In Sec. II we review
the master stability function approach and apply it to the case
of coupled Rössler units. We also discuss the bubbling
mechanism by including the embedded periodic orbits in the
master stability function analysis. In Sec. III we numerically
consider particular networks as examples and show the re-
sulting bursts and their spatial patterns. The patterns we ob-
tain are long and short wavelength modes in a ring and lo-
calized bursts produced by strengthening of a single
connection in a ring. In Sec. IV we study the effects of the
spatial patterns of the mismatch in the development of the
bursts. In Sec. V we study the deviations from the synchro-
nous state caused by the mismatch when the synchronous
state of the identical oscillator system is stable. In Sec. VI we
summarize our conclusions.

II. MASTER STABILITY FUNCTION AND BUBBLING

We now briefly review the master stability function ap-
proach introduced in Ref.[19]. Consider a system ofN dy-
namical units, each one of which, when isolated, satisfies

Ẋi =FsXi ,mid, where i =1,2, . . . ,N, and Xi is the
d-dimensional state vector for uniti. In Ref. [19] the param-
eter vectorsmi are taken to be the same,mi =m. Here, how-
ever, the parameter vectorsmi are in general different for
each unit, but we assume the difference, ormismatch, be-
tween them to be small. Generalizing the situation treated in
Ref. [19] to the case where the individual units are not iden-
tical (i.e., themi are not all equal), the system of coupled
dynamical units is taken to be of the form

Ẋi = FsXi,mid − go
j=1

N

GijHsXjd, s1d

where the coupling functionH is independent ofi and j , and
the matrixG is a Laplacian matrixso j Gij =0d describing the
topology of network connections. Fori Þ j , the entryGij is

zero if oscillatori is not connected to oscillatorj and non-
zero otherwise. The nondiagonal entries ofG are determined
by the connections, and the diagonal elements are the nega-
tive of the sum of the nondiagonal matrix elements in their
row. The coupling constantg determines the global strength
of the coupling.

Assume first that all the dynamical units are identical, that
is, mi =m. We will refer to this situation as theidealizedcase.
In this case there is an exactly synchronized solutionX1
=X2=¯ =XN=sstd whose time evolution is the same as the
uncoupled dynamics of a single unit,ṡ=Fss,md. This conve-
nient result arises because the Pecora-Carroll model uses the
particular choice of coupling in Eq.(1) that ensures that the
summation is identically zero when all of theXj are equal.
We will denote this synchronization manifold,X1=X2=¯

=XN, by M. This manifold is ad-dimensional surface within
the Nd-dimensional phase space of Eq.(1).

The stability of the synchronized state can be determined
from the variational equations obtained by considering an
infinitesimal perturbationei from the synchronous state,
Xistd=sstd+eistd,

ėi = DFssdei − go
j=1

N

GijDHssde j . s2d

Let e=fe1,e2, . . . ,eNg be thed3N matrix representing the
deviation of the entire network from the synchronized state.
In matrix notation, Eq.(2) becomes

ė = DFssde − gDHssdeGT. s3d

While Eq. (3) allows for nonsymmetric coupling, we hence-
forth assume the coupling matrixG to be symmetric,G
=GT. We write the symmetric matrixG asG=LLLT, where
L is the diagonal matrix of real eigenvaluesl1,l2, . . . ,lN of
G and L is the orthogonal matrix whose columns are the
corresponding real orthonormal eigenvectors ofGsLTL= Id.
Define thed3N matrix h=fh1,h2, . . . ,hNg by e=hLT. Then
Eq. (3) is equivalent to

ḣ = DFssdh − gDHssdhL. s4d

Componentwise,

ḣk = fDFssd − glkDHssdghk. s5d

The quantityhk is the weight of thekth eigenvector ofG in
the perturbatione. The linear stability of each “spatial” mode
k is determined by the stability of the zero solution of Eq.
(5). As a consequence of the conditiono j Gij =0, there is a
special eigenvalue, l=0, whose eigenvector iseN
=f1,1,1, . . . ,1g, corresponding to perturbationsin the syn-
chronization manifoldM. Since these are not perturbations
from the synchronous state, the analysis is focused on the
perturbations corresponding to nonzero eigenvalues.

By introducing a scalar variablea=glk, the set of equa-
tions given by Eq.(5) can be encapsulated in the single equa-
tion,
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ḣ = fDFssd − aDHssdgh. s6d

The master stability functionCsad [19] is the largest
Lyapunov exponent for this equation for a typical trajectory
in the attractor. This function depends only on the coupling
function H and the chaotic dynamics of an individual un-
coupled element, but not on the network connectivity. The
network connectivity determines the eigenvalueslk (inde-
pendent of details of the dynamics of the chaotic units). In
the sense of typical Lyapunov exponents, the stability of the
synchronized state of the network is determined byC*
=supkCsglkd, where C* .0 indicates instability. Thus the
Pecora-Carroll model cleanly breaks the stability problem
into two components, one from the dynamics[obtaining
Csad] and one from the network(determining the eigenval-
ueslk).

In contrast to previous work using the master stability
function technique, in this paper we are interested in the
dynamics of systems in which a small parameter mismatch is
present.(Even though in this paper our examples are re-
stricted to the case of mismatch, we emphasize that the same
type of bursting phenomenon is expected for identical oscil-
lators if noise is present[23–26].) Although the synchroniza-
tion manifold M present in the dynamics of the idealized
system is, in general, not invariant for the system with mis-
match, it still may provide a useful approximation to the
dynamics in systems with small mismatch. IfM is stable for
the idealized system, and the mismatch is small enough, then
trajectories nearM will tend to stay nearM, and we regard
the vicinity of M to be the “synchronized” state. However,
stability of M in the idealized case of identical oscillators is
not sufficient to guarantee robust synchronization in a real
system where the oscillators are not identical[23–26]. While
in the vicinity of the synchronization manifoldM, a typical
trajectory will eventually follow very closely a periodic orbit
embedded in the attractor of the idealized system. Some of
these periodic orbits may be unstable in a direction trans-
verse toM. When in the vicinity of a transversally unstable
periodic orbit, mismatch(or noise) will cause the trajectory
to have a component in the direction transverse toM and
hence to leave the vicinity of the synchronization manifold
M. If there are no other attractors, the trajectory will even-
tually return to the vicinity ofM, and the process will repeat,
the result being bursts of desynchronization sporadically in-
terrupting long intervals of near synchronization. This type
of dynamics is called bubbling[23].

Thus, in the presence of mismatch(or noise), to determine
the robustness of synchronization, it is necessary to deter-
mine the transverse stability of the embedded periodic orbits
for the noiseless system of identical oscillators. For coupling
as in Eq.(1), this analysis is independent of the network, and
such analyses have been carried out before, e.g., for the
analysis of two coupled oscillators in Ref.[27]. Equation(6)
can be used as before to construct the master stability func-
tion for each periodic orbit, if the appropriate periodic tra-
jectories are inserted forsstd in Eq. (3).

As an example, in this paper we work with the Rössler
system[29]:

ẋ = − sy + zd,

ẏ = x + ay,

ż= b + zsx − cd. s7d

In terms of our previous notation,d=3, m=fa,b,cgT, and
X=fx,y,zgT. We choose the parameters of the idealized sys-
tem to bea=b=0.2, c=7. For these parameters, the system
has a chaotic attractor(see Fig. 1).

We found the periodic orbits embedded in this attractor up
to period five, and performed the analysis described above
on them. We found these orbits by looking at the Poincare
surface of sectionhy=0,x,0j. To a good approximation, in
this surface of section the dynamics is well described by a
one-dimensional mapxn+1= fsxnd, which we approximated
using a polynomial fit. From this approximation tof, we
determined periodic orbits of periodp by using Newton’s
method to find the roots ofx= fpsxd, where fp denotes thep
times composition off. We found one period 1 orbit, one
period 2 orbit, two period 3 orbits, three period 4 orbits, and
four period 5 orbits. Using coupling through thex coordi-
nate,

Hsfx,y,zgTd = fx,0,0gT, s8d

we obtained a stability functionCsad for each orbit, the
largest of which will determine if the synchronization is ro-
bust. Results are shown in Fig. 2. For all values ofa, we
found that the master stability function corresponding to the
period 1 orbit(thick dashed curve) is larger than that for a
typical chaotic orbit(thick continuous curve), as well as
those for the other periodic orbits we have found(several of
which are shown as thin curves).

Based on the discussion above, bubbling induced bursting
should occur whenever the master stability function for a
typical chaotic orbit in the attractor is negative fora=glk
and all k, while the period one orbit has positive master
stability function fora=glk for some value ofk. Denoting
the master stability function for a typical chaotic orbit by
C0sad (thick continuous curve in Fig. 2) and for the period
one orbit byC1sad (thick dashed curve in Fig. 2), the bub-
bling region of a corresponds toC0sad,0, C1sad.0. In

FIG. 1. Rössler attractor(projection ontox−y plane) and em-
bedded period 1 orbit, displayed as a thick white curve inside the
attractor. The parameters area=b=0.2, c=7.
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our example, this region corresponds to 0.16,a,0.48 or
3.8,a,4.5. The range 0.48,a,3.8 will be referred to as
the stable region, and the remaining zone will be called the
unstable region.

If a network of slightly mismatched chaotic systems
coupled according to Eq.(1) is to be robustly synchronizable
without bursts of desynchronization,glk must lie in the
stable region for allk, wherelk is thekth eigenvalue ofG. If
glk lies in the stable region for somek and in the bubbling
region for otherk, then bubbling will typically occur.

III. EXAMPLES

In this section we provide examples of spatially patterned
bursting by considering different configurations of the cha-
otic units. We will first work with the units connected in a
ring with each connection of equal strength. The Laplacian
matrix G for this arrangement is

G =1
2 − 1 0 0 ¯ 0 − 1

− 1 2 − 1 0 ¯ 0 0

0 − 1 2 − 1 ¯ 0 0

A A A A A A A
− 1 0 ¯ 0 0 − 1 2

2 , s9d

and its eigenvalues are given bylk=4 sin2spk/Nd. Since
lk=lN−k, each eigenvalue has multiplicity two, with the ex-
ception oflN=0, and, ifN is even,lN/2=4. The matrixG is
shift invariant, that is, its entries satisfy, moduloN, Gi,j
=G0,i−j. Under these conditions, the diagonalization proce-
dure described above corresponds to a discrete Fourier trans-
form [28]. For the eigenvaluelk we choose the eigenvector
wk given by wk~ fsins2p jk /Ndg j=1

N for 1øk,N/2, and by
wk~ fcoss2p jk /Ndg j=1

N for N/2økøN. (Due to the degen-
eracy of the eigenvalues in this case, there is some arbitrari-
ness in choosing the eigenvectors.) Thus, the longest wave-
length modes have the smallest eigenvalues, and vice versa.

A. Long wavelength burst

First we consider a case in which bursting of the longest
wavelength mode occurs. We considerN=12 andg=0.71.

With these values, the longest wavelength mode corresponds
to a=gl1<0.19. This value is in the bubbling region, and all
other modes are in the stable region.

To introduce heterogeneity in the dynamical units, we
imagine that we have mismatch predominantly in one of the
parameters, saya. We simulate this mismatch by adding ran-
dom perturbations to the parametera of each oscillator.
These perturbations are uniformly distributed within a ±0.5%
range; i.e., ai is chosen randomly in the interval
f0.995a,1.005ag, wherea is the parameter value of the un-
perturbed system(a=0.2). The parametersb and c were
taken to be the same for each oscillator,bi =b=0.2,ci =c=7.
How a particular choice of the mismatch affects the bubbling
process will be discussed in Sec. IV.

We solved the 12 coupled differential equations[Eq. (1)]
with the initial conditions chosen near the attractor in the
synchronization manifold. In Fig. 3 we plot the quantityx1
−x6 for 1000ø tø1600.

Most of the time, this variable is close to zero, as ex-
pected if the oscillators are synchronized. Approximately at
the timet=1380, this difference grows, reaching magnitudes
close to 3. By timet=1500, the difference has decreased and
is again close to zero.

To confirm the mediating role of the embedded unstable
periodic orbits in the development of the desynchronization
burst, we show in Fig. 4 a plot ofx1 versus y1 from t
=1372 tot=1392, which is near the start of the burst. During

FIG. 2. Master stability functionCsad for a typical trajectory in
the attractor(thick continuous curve), for the period 1 orbit(thick
dashed curve), and for periodic orbits up to period 4(thin curves).
The curves for the four period 5 orbits are similar to the latter and
were left out for clarity.

FIG. 3. x1−x6 as a function of time forN=12 Rössler systems
connected in a ring withg=0.71. Note the desynchronization burst
which starts att<1380.

FIG. 4. x1 vs y1 for 1372ø tø1392. During this period, which
corresponds approximately to the starting point of the burst in Fig.
3, the trajectory follows closely the transversally unstable period 1
orbit embedded in the attractor(see Fig. 1).
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this time, the trajectory closely follows the period 1 orbit,
which is the most transversally unstable of the periodic or-
bits. Similar observations have been previously reported for
two coupled chaotic systems[27].

Finally, in Fig. 5 we plotxj −xj−1 as a function ofj , the
oscillator index, fort=1360 (open triangles), t=1385 (open
circles), and t=1410 (open squares). The desynchronization
burst can be observed developing mainly at the longest pos-
sible wavelength.

When subsequent bursts were studied in the same way, it
was found that the phase of the long wavelength burst as-
sumed only one value. This is due to the fact that the mis-
match is “frozen,” that is, each oscillator has a given set of
parameters which differs by a given amount from the mean
values. This fixed spatial heterogeneity favors certain spatial
patterns over others. We will discuss this in more detail in
Sec. IV.

B. Short wavelength burst

Short wavelength bursting can be expected, for example,
when N=8 andg=1.09. In this case the value oflk corre-
sponding to the shortest wavelength mode yieldsglk=4.36,
which is in the bubbling region, while all the other modes are
in the stable region. In this case the observation of the bursts
is more difficult, as the transversal instability of the orbits
and the transversal stability of the attractor are less pro-
nounced[compareCs4.36d for this case vsCs0.19d for the
previous example in Fig. 2]. Accordingly, the perturbations
of the parametera were made larger, with perturbations ran-
domly chosen with uniform density within a ±6% range of
the ideal values of the parametersa=0.2d. In principle this is
not necessary, as a burst will eventually occur after long
enough time. In practice, however, it is necessary to reduce
the waiting time to a reasonable value. As before, the
coupled equations were solved with an initial condition on
the synchronization manifold. In Fig. 6 we showy1−y2 as a
function of time for one choice of initial conditions.

The differencey1−y2 is usually positive and of magnitude
close to 1. This asymmetry is not a surprise since the oscil-
lators are slightly different. For the relatively large value of
the mismatch used, this is the “synchronized state.” It is seen
in Fig. 6 that the differencey1−y2 increases rapidly at around

t<15 000, and soon reaches values close to 10. It remains
large for a longer time than in the case of the long wave-
length burst(see Fig. 3) and decays more slowly as well.
This is in qualitative agreement with the smaller absolute
values of the master stability functions for the short wave-
length mode, both for typical orbits on the attractor and for
the periodic orbits.

In Fig. 7 we plotyj −yj−1 as a function ofj , the oscillator
index, for t=15 000,t=15 200, andt=15 400. As expected,
the burst mainly affects the shortest wavelength mode.

This can be assessed properly by doing a spatial Fourier
transform. In this case, the quantitieshk [see Eq.(5)] corre-
spond to the Fourier coefficients, since the eigenvectors of
the matrix(9) are sinusoidal. The Fourier coefficientshk and
hN−k, for 1øk,N/2, correspond to the eigenvectorswk
~ fsins2p jk /Ndg j=1

N and wk~ fcoss2p jk /Ndg j=1
N , and have the

same eigenvaluelk. At this stage, we are only interested in
discriminating between modes with different eigenvalue. For
this reason, we will plot as a function of time the quantityjk

2

defined byjk=hsfhkgyd2+sfhN−kgyd2j1/2 for 1øk,N/2 and
jN/2= ufhN/2gyu, wherefhkgy is the y component of the three-
dimensional vectorhk. Thus, the quantityjk represents the
weight of the modes associated to the eigenvaluelk.

FIG. 5. xj −xj−1 vs the node indexj for t=1360(open triangles),
t=1385 (open circles), and t=1410 (open squares). Note that the
burst is absent first and grows with a long wavelength pattern.

FIG. 6. y1−y2 as a function of time for 8 Rössler systems in a
ring. The coupling strengthg was 1.09. The desynchronization burst
develops att<15 000, although it is not as sharp due in part to the
smaller magnitude of the transversal Lyapunov exponents[Cs4.36d
in Fig. 2].

FIG. 7. yj −yj−1 vs the node indexj for t=15 000 (open tri-
angles), t=15 200(open circles), andt=15 400(open squares). The
desynchronization burst has a short wavelength spatial pattern.
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In Fig. 8, we plot as a function of time the quantitiesjk
2

for k=1,2,3,4. Theshort wavelength mode(k=4, upper
curve) is dominant during the burst.

C. Localized burst

In the above examples all links had equal weights. As an
example of a case with unequal link weights we consider the
case where the previous network is modified by doubling the
strength of one of the links. Let the link whose strength is
doubled be the link that connects nodesp and p+1. For
example, forp=4, N=8, this yields the Laplacian matrix

G =1
2 − 1 0 0 0 0 0 − 1

− 1 2 − 1 0 0 0 0 0

0 − 1 2 − 1 0 0 0 0

0 0 − 1 3 − 2 0 0 0

0 0 0 − 2 3 − 1 0 0

0 0 0 0 − 1 2 − 1 0

0 0 0 0 0 − 1 2 − 1

− 1 0 0 0 0 0 − 1 2

2 .

s10d

Adopting the analysis technique of Ref.[30], we can
show that such an enhanced connection has the consequence
that the largest eigenvalue ofG corresponds to an eigenfunc-
tion that is exponentially localized to the region near the
strong connection. That is, for largeN, the components of
this eigenfunction decay exponentially as the distance be-
tween the localized region and the node corresponding to a
component increases. Using the ideas of Ref.[30], we now
provide this analysis. The equations for the eigenvectorw
and eigenvaluel are

− 2wp+1 − wp−1 + 3wp = lwp,

− wp+2 − 2wp + 3wp+1 = lwp+1,

− wj−1 − wj+1 + 2wj = lwj , s11d

for, respectively, nodesp, p+1 and j different from p or p
+1.

We consider solutions of 11 that are(anti-)symmetric,
wp+1+k= ±wp−k, and for whichwp+1+j /wp+j is constant forj
ù1, i.e.,wp+1+k~ tk for kù0 and somet. This will be a good
approximation if the mode is localized(i.e., utu,1), and the
network is big enough thatutuN/2!1. In the antisymmetric
case,wp+1+k=−wp−k, Eqs.(11) yield,

5 − t = l,

− t − t−1 + 2 =l, s12d

which gives

t = −
1

3
, l =

16

3
. s13d

Compare this eigenvalue with the largest eigenvalue for the
network in which all links have equal strength, which has a
value of 4. The symmetric solution,wp+1+k=wp−k, yields t
=1 andl=0, corresponding to the eigenvectorf1,1, . . . ,1g
of perturbations in the synchronization manifold. The small-
est nonzero eigenvalue remains unchanged.

As an example, we show the localized desynchronization
bursts produced by one of these strengthened connections for
the caseN=8, corresponding toG given by Eq.(10) and the
illustration in Fig. 9. The parameters of the idealized system
are againa=b=0.2, andc=7, with a coupling strength of
g=0.79.

It is remarkable that despite the small number of nodes,
the actual localized eigenvector and eigenvalue agree well
with Eq. (13) (l=5.334. . . andw6/w5=−0.334. . .).

In Fig. 10 we showx5−x4 as a function of time.
As in the short wavelength case, the burst is not very

sharp due to the small magnitude of the transversal
Lyapunov exponents. Nevertheless, it can be seen that the

FIG. 8. jk
2 as a function of time fork=1,2,3,4. Theshortest

wavelength component corresponds tok=4 (top curve). The curves
corresponding tok=1,2,3 areclose to the horizontal axis.

FIG. 9. Arrangement of the dynamical units in a ring with the
strength of the connection between nodes 4 and 5 doubled. The
matrix G corresponding to this network is in Eq.(10).
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differencex5−x4 increases approximately att=9000 and re-
turns to a relatively small value after reaching values consid-
erably above the average.

In Fig. 11(a) we plot the difference between thex coordi-
nate of nodej and its mean over all nodes,xj − x̄, where x̄
=1/No j=1

N xj, as a function of the oscillator indexj , for t
=8750 (open triangles), t=9000 (open circles), and t=9250
(open squares). In Fig. 11(b) we show the localized eigen-
vector of the LaplacianG found numerically.

As discussed before, the desynchronization burst affects
mainly nodes 4 and 5(those which share the strengthened
connection) and the ones adjacent to them. Nodes 1, 2, 7, and
8, however, maintain approximate synchronization during
the burst.

In Fig. 12 we show the mode weights corresponding to
the x coordinate as a function of time. The top curve corre-
sponds tofh4gx

2 (for the localized mode), and the curves close

to the horizontal axis tofhkgx
2, kÞ4, for the other modes.

(The degeneracy of the eigenvalues is broken by the
strengthened connection, so we do not combinefhkgx and
fhN−kgx as before.) Confirming the qualitative similarity be-
tween the eigenvector and the spatial pattern of the desyn-
chronization burst observed in Fig. 11, the weight corre-
sponding to the localized eigenvector is seen to be dominant
during the period of time in which the burst occurs.

IV. EFFECTS OF THE MISMATCH SPATIAL PATTERNS

In this section we will discuss the effects that the mis-
match spatial patterns have on the development of the desyn-
chronization bursts. For these purposes, it will be convenient
to rewrite Eq.(1) in the form

Ẋi = F̄sXid − go
j=1

N

GijHsXjd + QisXid, s14d

where F̄sXid=FsXi ,m̄d with m̄=1/No j=1
N m j, and QisXid

=FsXi ,mid−F̄sXid. The termQi represents the effect of the
mismatch and is assumed to be small. As before, we linearize
around the synchronous state to get

ėi = DF̄ssdei − go
j=1

N

GijDHssde j + Qissd, s15d

where we have discarded terms of orderQe. With the previ-
ous notation andQ=fQ1,Q2, . . . ,QNg, we obtain after the
diagonalization

ḣk = fDF̄ssd − glkDHssdghk + sQLdk, s16d

wheresQLdk is thekth column of thed3N matrix QL. In the
ring with equal coupling along each link, the diagonalization
procedure corresponds to a Fourier transform. In this case,
we see that the mismatch affects the different modes accord-
ing to the weight,sQLdk, of this particular mode in its Fourier
expansion. In other cases, for example in the localized eigen-

FIG. 10. x5−x4 as a function of time forN=8 Rössler oscillators
in a ring with the strength of the connection between nodes 4 and 5
doubled. The coupling strength isg=0.79. A desynchronization
burst starts approximately att<9000.

FIG. 11. (a) xj − x̄ for t=8750 (open triangles), t=9000 (open
circles), andt=9250(open squares), for the configuration in Fig. 9.
The burst develops with the spatial pattern of the localized eigen-
vector in (b). (b) Localized eigenvector of matrixG in Eq. (10).

FIG. 12. fhkgx
2 as a function of time fork=4 (top curve) corre-

sponding to the localized mode, and forkÞ4 (bottom curves, close
to zero), corresponding to other modes. In the burst, the localized
mode is excited first and only after some time are the other modes
also somewhat excited. The localized mode is dominant during the
burst.
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vector, the strength of the mismatch affecting the localized
mode is proportional to the weight of the localized eigenvec-
tor in the eigenvector decomposition of the mismatch. We
will now discuss two applications of these results.

A. Amplification of mismatch patterns when modes with the
same eigenvalue burst

We have shown that the modes of the mismatch force the
corresponding modes of the deviations from the synchronous
state. When bubbling induced bursting is expected, the size
of the mismatch determines the average time between bursts
[25]. Thus, the size of the mismatch component in modek
determines the average interburst time when that mode is in
the bubbling regime.

When the spectrum of the matrixG is degenerate, the
spatial modes of the mismatch play an extra role. All the
modes sharing the same eigenvaluel have the same stability
properties, and thus, when the corresponding valuegl is in
the bubbling zone, all eigenvectors with this eigenvalue are
equally likely to appear. The only difference between these
modes is the strength with which they are forced, which is
determined by the mismatch component in that mode as
shown in Eq.(16) (or, if noise is present, by the noise com-
ponent in that mode).

An example of this situation is the ring with connections
of equal strength in the long wavelength bursting scenario.
Since the ring is invariant with respect to rotations, the phase
of the long wavelength oscillations can not be determined
only from the network and dynamics part of the problem.
The two modes with the longest wavelength(corresponding
to sinusoidal and cosinusoidal oscillations) have the same
eigenvalue. It is the mismatch that in this case determines the
phase of the long wavelength burst.

We will show how one can determine the phase of the
long wavelength desynchronization burst in the case of
coupled Rössler systems in a ring with equal coupling along
each link. For this system, the mismatch vectorQjsXjd is
given by

Qjsfxj,yj,zjgTd = 1 0

yjdaj

dbj − zjdcj
2 , s17d

where daj =aj − ā and similarly for dbj and dcj. We define
Fksud=o j=1

N ujŵj
k, whereŵj

k is the normalizedj th component
of the k eigenvector described at the beginning of Sec. III.
With this convention, the termsQLdk in Eq. (16) is given by

sQLdk = 1 0

yFksdad

Fksdbd − zFksdcd
2 . s18d

Hereda=fda1,d2, . . . ,dNg and similarly fordb, dc, andy, z
are the trajectories around which the linearization was made.

We consider the case in which mismatch in one parameter
is dominant, for examplea. The mismatch in the parameters
b andc will be assumed negligible compared with that ina,
so thatdb, dc!da. In this case, only the second component

of Eq. (18) is of relevance. Thus modesh1 and hN−1 are
excited with a strength proportional, respectively, toF1sdad
and FN−1sdad; see Eq.(16). The magnitude ofhk will be
proportional toFksdad, and thus the excitation of the long
wavelength mode(which is the only one for which perturba-
tions grow) is proportional to

F1sdadsinS2p j

N
D + FN−1sdadcosS2p j

N
D s19d

~ sinS2p j

N
+ fD , s20d

where tanf=FN−1sdad /F1sdad.
We now show results of numerical simulations illustrating

the above. The parametersN and g will be as in the long
wavelength example in the preceding section. We use the
same random set of perturbations used in that example. As
described above, we obtained the phasef of the long wave-
length component of the vectordai. In Fig. 13 we plotyj
−yj−1 for different times during a burst(filled symbols). In
the same figure, we plot a scaled version of sinfs2p j /12d
+fg−sin(f2ps j −1d /12g+f) (open circles). The phase of the
desynchronization burst is in agreement with that of the long
wavelength component of the mismatch.

When the mismatch affects predominantly one parameter
as in this case, the phase of the bursts can be predicted as
described above. When mismatch in different parameters is
comparable, the phases of the long wavelength modes of the
different parameter mismatches compete and the bursts de-
velop with one of these phases or with a combination of
them.

It must be emphasized that this analysis is possible only
when there is a degeneracy of the eigenvalues. For example,
the location of the localized burst can not be determined in
this way, as it is fixed in the position of the strengthened link.
In this case, the mismatch component in the localized mode
would only affect the average time between bursts.

FIG. 13. yj −yj−1 for different times during a burst(filled sym-
bols), and a scaled version of sinfs2p j /12d+fg−sin(f2ps j
−1d /12g+f) with f as given in the text(open circles). The phase of
the burst spatial pattern coincides with the phase of the long wave-
length component of the mismatch.
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B. Artificial supression of unstable modes using knowledge of
the mismatch

We will now discuss another consequence of Eq.(16). We
imagine a situation where we are given a number of nearly
identical oscillators that we are to connect in a network
which we desire to be in synchronism as much as possible.
Furthermore, we imagine that, through measurements made
individually on each oscillator, we are aware of the amount
of mismatch in each oscillator. The question we address is
this: Using our knowledge of the individual mismatches,
how should we arrange the oscillators in the network so as to
best suppress the frequency of desynchronism bursts? To an-
swer this question, we note that, according to the previous
discussion, we should reduce the mismatch component in the
mode which is in the bubbling region. Since the size of the
mismatch affects the average interburst time[25], reducing
this component is desirable if one wants to improve the qual-
ity of the synchronization. This can be accomplished by ju-
diciously arranging the dynamical units so that thekth mode
of the mismatch is minimized when the corresponding value
glk is in the bubbling region. For example, to suppress long
wavelength bursts, one may arrange the units so that the
parameter errors alternate above and below the mean. To
suppress the localized bursting described in the preceding
section, one could arrange the units so that those with the
more similar parameters are the ones in the region of the
strengthened connection.

As a concrete example, we test this idea using simulations
for the case of short wavelength bursting presented in the
preceding section. We again assume for simplicity that mis-
match in the parametera is dominant. We generate random
perturbations in the parametera within a ±6% range of the
valuea=0.2, as explained in the preceding section. With this
set of parameters given, we set up the dynamical units in the
ring using two different permutations of their positions. One
of them sasd has a smaller and the othersald a larger short
wavelength componentF4sad than the original random se-
quence. The ratioF4sald /F4sasd is approximately 15. In Fig.
14 we plotx1−x2 as a function of time for configurational
(top curve) and for configurationas (bottom curve).

The differencex1−x2 is much smaller in the former case
than in the latter, roughly by a factor of 15, as can be ex-

pected from the ratioF4sald /F4sasd. This qualitative ex-
ample illustrates how one can use knowledge of the mis-
match to suppress undesired instabilities.

V. SPATIAL PATTERNS OF DEVIATIONS FROM THE
STABLE SYNCHRONOUS STATE

So far, we have concentrated in the case in which the
value ofglk is in the bubbling regime for one modek and in
the stable regime for the other modes, so that desynchroni-
zation bursts occur sporadically. As we have seen, these
bursts present spatial patterns on the network.

If synchronization is desired, one might try to avoid the
bubbling regime by designing the network and adjusting the
coupling strength so that all the modes lie in the stable zone.
One would also strive to reduce the mismatch, but as men-
tioned before, there are practical limitations on how much
one can make the oscillators exactly the same.

If Csglkd is negative for all modes(indicating transversal
stability of the synchronous state) one can have, depending
on the degree of transversal stability, fair synchronization
even with relatively large amounts of mismatch. If one is to
operate under such conditions, it might be important to know
the characteristics of the deviations from the synchronous
state.

Thus we ask in this scenario: How large are the spatial
patterns of the deviations from the synchronous state, and
how does this depend on the mismatch and on the degree of
transversal stability?

The spatial modes of these deviations obey Eq.(16). In
the absence of the termsQLdk, the zero solution is stable, and
typical perturbations from it decay, having a negative
Lyapunov exponent given byhk;Csglkd. The first term in
the right hand side of Eq.(16) can be thought of as a damp-
ing term with a damping rate given byhk, and the second
term, sQLdk, as a forcing term. Since we are considering the
stable case, these two factors, on average, cancel each other.
By definition, the Lyapunov exponent for the system without

mismatch is given byhk=khk
TsDF̄−glkDHdhk/ uhku2l, where

the angle brackets indicate time average. Assuming a solu-
tion hk of the system with mismatch to yield the same value
of this time average, we left multiply Eq.(16) by hk

Tuhku−2

and average to obtain

uhku < Khk
TsQLdk

uhku2
L ,K usQLdku

uhku
L , s21d

where the angle brackets indicate time average. This leads to
the following rough estimate,

kuhkul ,
kusQLdkul

uhku
. s22d

(This is analogous to the result obtained for a linearly
damped equation with constant forcing in one dimension,
ḣ=−hh+q. In this case one has asymptoticallyh→q/h.)

As an example we consider Rössler units in a ring with all
connections of equal strength. We chooseN=8, g=0.6
[Csglkd,0 for all values ofk]. Furthermore, we add a ran-

FIG. 14. x1−x2 as a function of time for a configuration of
oscillators with a large(top curve) and with a small(curve closer to
zero) short wavelength component of the mismatch. The quality of
the synchronization is much better in the second case.
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dom perturbation to the parametera of each oscillator chosen
uniformly from within a ±0.1% range ofa=0.2.

In Fig. 15 we show, fork=1, . . . ,7, the quantitieskuhkul
(squares), kusQLdkul (triangles), andkusQLdkul / uhku (circles).

The magnitudes of the forcing term for the different
modesfkusQLdkulg span roughly two orders of magnitude, and
the magnitude of the responseskuhkuld looks roughly propor-
tional to the latter. When the forcing term is corrected by
dividing it by the magnitude of the corresponding Lyapunov
vector uhku, the resulting quantityfkusQLdku l / uhkug matches
very well the observed response.

VI. CONCLUSIONS

We have studied the stability properties of the synchro-
nized state in a network of coupled chaotic dynamical units
when these have a small heterogeneity. We have shown that
when the dynamical units that are coupled in a network are
slightly different, the synchronized state can be interrupted

by large infrequent desynchronization bursts for some values
of the parameters. The range of the parameters for which this
phenomenon is expected can be obtained by performing a
master stability function analysis of the chaotic attractor and
of the periodic orbits embedded in it.

The desynchronization bursts are induced by the bubbling
phenomenon, and have spatial patterns on the network.
These spatial patterns can be predicted from the eigenvectors
of the Laplacian matrixG and the master stability functions
mentioned above. We showed examples illustrating the de-
velopment of bursts with spatial patterns. One of our ex-
amples showed that the strengthening of a single connection
might destabilize the nodes near this connection, while leav-
ing the rest of the network approximately synchronized.

Direct measurement of the parameter mismatch in the el-
ements of a network might prove useful. We discussed how
this knowledge could be used to reduce the frequency of
bursts and to predict the relative weights of different spatial
patterns in a burst. We also discussed how one could, from
knowledge of the mismatch and of the master stability func-
tion, describe the spatial patterns and magnitude of the de-
viations from the synchronized state when the synchroniza-
tion of the corresponding identical unit system is robust.

We emphasize that although we did not discuss the effects
of noise, the phenomenon described in this paper also occurs
for noisy identical oscillators. Desynchronization bursts with
spatial patterns are expected for noisy, identical oscillators if
one has them for noiseless, nonidentical oscillators. The dif-
ference is that the parameter mismatch is always “frozen,” in
the sense that the mismatch is always the same for each
oscillator, whereas for noise this is not the case.
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