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We adapt a previous model and analysis meftiloemaster stability functiopn extensively used for studying
the stability of the synchronous state of networks of identical chaotic oscillators, to the case of oscillators that
are similar but not exactly identical. We find that bubbling induced desynchronization bursts occur for some
parameter values. These bursts have spatial patterns, which can be predicted from the network connectivity
matrix and the unstable periodic orbits embedded in the attractor. We test the analysis of bursts by comparison
with numerical experiments. In the case that no bursting occurs, we discuss the deviations from the exactly
synchronous state caused by the mismatch between oscillators.

DOI: 10.1103/PhysRevE.69.066215 PACS nuner05.45.Xt, 89.75-k

I. INTRODUCTION stability of the synchronous state of networksidéntical
coupled chaotic units, and this technique has recently been
In this paper we study the synchronization of networks ofextensively applied[20,21 to study the synchronization
coupled chaotic units that are nearly, but not exactly, identiproperties of different kinds of networks of identical noise-
cal. In particular, we will be concerned with the spatial pat-less chaotic units. These networks include small w2i2]
terns of desynchronization bursts that appear when this syrand scale-free network4.3].
chronization is present but intermittent. The analysis of network synchronization by use of the
When two or more identical dynamical systems aremaster stability function technique has so far assumed all the
coupled, they can synchronize under appropriate circumdnits to be identical and noise free, so that an exact synchro-
stances. The synchronization of chaotic units has been stu@ized state is possible. In practice, however, even if one
ied extensively[1,2] and is of significance in biologj3—6],  Strives to make the oscillators the same, they are still ex-
laser physicg7-9], and other area§l0,11. At the same Pected to have a small amount of parameter mismatch, and a
time, the importance of complex networks has been recentlyMall amount of noise is also expected to be present. Under
appreciated, and progress has been made towards their (FHCI circumstances, it is known that the synchronization can
derstanding, including characteristics that might help distin- e interrupted by sporadic periods of desynchronization

: g : ; bursty. The bursts are typically caused by a periodic orbit
guish qualitatively different networl{42—14. The dynamics (burs ; ; : )
of a network of coupled oscillators, and, in particular, itsthat is embedded in the synchronized chaotic attractor and is

unstable in a direction transverse to the synchronization

synchronization, has therefore emerged as a subject of greglanifold. This phenomenon is commonly referred tdab-
interest. .

bling [23-23, and has been studied extensively for two
There are different notions of synchronization, among gl 3 y

. . . coupled oscillator$26,27).
t_hem phase synchronl_zan_o[\lﬂ, gene_rallzgd synchronlz_a- Our purpose in this paper is to study desynchronization
tion [16), lag synchronizatiorj17], andidentical synchroni- bursts in networks of coupled chaotic nonidentical units.
zation[18]. The concept of identical synchronization is use-

ful when deali ith identical led i H (Noise has a similar effect but will not be treated in this
ul when dealing with identical coupled oscillators. Here we apern We will use the master stability function approach
will consider oscillators that are nearly the same, althoug

identical. Th il b d witiear identical nd, in order to account for the possibility of bubbling, we
hot identical. Thus we will be concerned witlear identical iy 5150 extend this approach to include the stability of em-

synchronization, in which the states of the different unitsyeqqeq periodic orbits. In this case, the bursts have the added

ren;ain closedtoceachll%thr:ar as a functign of ti(;n?' q | feature of having spatial patterns on the network, and we find
ecora and CarroflL9] have proposed a model and analy- that these patterns can be predicted from the network con-

sis methodthe master stability functionfor the study of the nectivity matrix. We will show how these bursts affect dif-
ferent parts of the network in different ways. In particular,
we will see how adding connections in a ring can destabilize
*Electronic address: juanga@math.umd.edu precisely those nodes that are the most connected, leaving
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other parts of the network substantially synchronizé@tiis a  zero if oscillatori is not connected to oscillatgrand non-
somewhat counterintuitive effect related to the fact that, inzero otherwise. The nondiagonal entriesGoare determined
some cases, increasing the coupling strength destabilizes thg the connections, and the diagonal elements are the nega-
synchronous statgl9,29.) tive of the sum of the nondiagonal matrix elements in their

Arbitrarily small amounts of mismatch will eventually, row. The coupling constarg determines the global strength
through the bubbling mechanism, induce desynchronizatioof the coupling.
bursts. We will show that some of the spatial patterns of this Assume first that all the dynamical units are identical, that
possibly microscopic mismatch might get amplified to ais, w;=u. We will refer to this situation as thidealizedcase.
macroscopic size in the bursts. We will discuss how one cain this case there is an exactly synchronized solutign
use knowledge of the parameter mismatch of the dynamicatX,=---=Xy=s(t) whose time evolution is the same as the
units in the network to decrease the effective size of thaincoupled dynamics of a single urst; F(s, u). This conve-
mismatch driving the bursts, thereby improving the robustnient result arises because the Pecora-Carroll model uses the
ness of the synchronization. particular choice of coupling in Eq1) that ensures that the

If synchronization is desired, the network and the paramsummation is identically zero when all of th¢ are equal.
eters should be constructed so that the synchronous state f@fe will denote this synchronization manifolék;=X,=---
the identical oscillator system is robustly stafiléis implies =X, by M. This manifold is ad-dimensional surface within
the absence of noise or mismatch induced desynchronizatiadhe Nd-dimensional phase space of Ed).
burstg. Even then, the synchronization will not be perfect if  The stability of the synchronized state can be determined
the oscillators have parameter mismatch. We will describgrom the variational equations obtained by considering an
the characteristics of the deviations from exact synchronizainfinitesimal perturbatione; from the synchronous state,
tion in terms of the mismatch and the master stability func-x;(t) =s(t) + ¢(t),

tion.

This paper is organized as follows. In Sec. Il we review N
the master stability function approach and apply it to the case &=DF(s)e - g, G;jDH(9)¢;. (2)
of coupled Rd&ssler units. We also discuss the bubbling j=1

mechanism by including the embedded periodic orbits in the
master stability function analysis. In Sec. Ill we numerically Let €=[€1, €, ... ,en] be thed X N matrix representing the
consider particular networks as examples and show the rgleviation of the entire network from the synchronized state.
sulting bursts and their spatial patterns. The patterns we obh matrix notation, Eq(2) becomes
tain are long and short wavelength modes in a ring and lo-
calized bursts produced by strengthening of a single e=DF(s)e—- gDH(s)eG". (3
connection in a ring. In Sec. IV we study the effects of the
spatial patterns of the mismatch in the development of thdVhile Eq.(3) allows for nonsymmetric coupling, we hence-
bursts. In Sec. V we study the deviations from the synchroforth assume the coupling matri% to be symmetric,G
nous state caused by the mismatch when the synchronog3™. We write the symmetric matriG asG=LAL', where
state of the identical oscillator system is stable. In Sec. VI we\ is the diagonal matrix of real eigenvalugg,\,, ... Ay of
summarize our conclusions. G and L is the orthogonal matrix whose columns are the
corresponding real orthonormal eigenvectorsGit."L=1).
Define thed X N matrix 7=[7, 7, ... ,mn] by e=7LT. Then
Eq. (3) is equivalent to

We now briefly review the master stability function ap-
proach introduced in Refl19]. Consider a system adfl dy- 7=DF(s)n—gDH(s)nA. (4)
namical units, each one of which, when isolated, satisfies
Xi=F(X;, ), where i=1,2,...N, and X, is the Componentwise,
d-dimensional state vector for unitin Ref.[19] the param-
eter vectorsy; are taken to be the samg;=u. Here, how- 7= [DF(s) = g\DH(8) ] 7. (5)
ever, the parameter vectojg are in general different for
each unit, but we assume the difference,nuismatch be- ~ The quantity, is the weight of thekth eigenvector of5 in
tween them to be small. Generalizing the situation treated ithe perturbatiore. The linear stability of each “spatial” mode
Ref.[19] to the case where the individual units are not iden-K is determined by the stability of the zero solution of Eq.
tical (i.e., the u; are not all equa) the system of coupled (5). As a consequence of the conditiai G;; =0, there is a

Il. MASTER STABILITY FUNCTION AND BUBBLING

dynamical units is taken to be of the form special eigenvalue,A\=0, whose eigenvector isey
N =[1,1,1,...,]3, corresponding to perturbatioms the syn-
. chronization manifoldM. Since these are not perturbations
X =F (X, wi) _921 GijH(X)), L) from the synchronous state, the analysis is focused on the
. perturbations corresponding to nonzero eigenvalues.
where the coupling functiohl is independent off andj, and By introducing a scalar variable=g\,, the set of equa-

the matrixG is a Laplacian matriX>; G;; =0) describing the tions given by Eq(5) can be encapsulated in the single equa-
topology of network connections. Fo¥ |, the entryG;; is  tion,
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7=[DF(s) - aDH(9)]7. (6) 10 Period 1

orbit

5r
The master stability function¥(«) [19] is the largest 0
Lyapunov exponent for this equation for a typical trajectory y
in the attractor. This function depends only on the coupling 5k
function H and the chaotic dynamics of an individual un-
coupled element, but not on the network connectivity. The -0t
network connectivity determines the eigenvalugs(inde-
pendent of details of the dynamics of the chaotic ynits -10 -5 0 5 10
the sense of typical Lyapunov exponents, the stability of the X

synchronized state of the network is determined By

=supW¥(g\y), where ¥, >0 indicates instability. Thus the FIG. 1. Rossler attractaiprojection ontox-y plang and em-
Pecora-Carroll model cleanly breaks the stability problenpedded period 1 orbit, displayed as a thick white curve inside the
into two components, one from the dynamifsbtaining attractor. The parameters aaeb=0.2,c=7.

V¥ (a)] and one from the networ{determining the eigenval-

uesiy). X==(y+2),

In contrast to previous work using the master stability
function technique, in this paper we are interested in the
dynamics of systems in which a small parameter mismatch is
present.(Even though in this paper our examples are re- .
stricted to the case of mismatch, we emphasize that the same z=b+z(x-c). (7)

type of bursting phenomenon is expected for identical oscily, terms of our previous notationd=3, x=[a,b,c]", and
lators if noise is preseri23—-2§.) Although the synchroniza- X=[x,y,Z]". We choose the parameters of the idealized sys-

tion manifold M present in the dynamics of the idealized ;o\, {0 bea=b=02 c=7. For these parameters, the system
system is, in general, not invariant for the system with mis _< 2 chaotic att.ra’ctojse.e Fig. 1 '

Lnatch,_ it .Sti" mtay proyti;ie a hjse.fu' atp[:r)]r](\)‘?i'ma:iobr; t? the We found the periodic orbits embedded in this attractor up
ynamics in systems with smalfl mismatc IS stablefor 4, period five, and performed the analysis described above

the_ ideal_ized system, and the mismatch is small enough, theg}, them \we found these orbits by looking at the Poincare
trajectories neaM will tend to stay neaM, and we regard surface of sectioly=0,x<0}. To a good approximation, in

the y!C|n|ty Of.M to .be the synchrom;ed .state. Howeve_r, this surface of section the dynamics is well described by a
stability of M in the idealized case of identical oscillators is |\ i ansional map,.,=f(x,), which we approximated
not sufficient to guarantee robust synchronization in a real o oantL " R

system where the oscillators are not identi@d—2§. While using a polynomial fit. From this approximation fo we
in the vicinity of the synchronization manifoldl, a typical determined periodic orbits of period by using Newton's

i =fP p
trajectory will eventually follow very closely a periodic orbit method 0 fmdlche rc;fot?Nof ff (Xc)j’ wheref . d denlotesb.tthep
embedded in the attractor of the idealized system. Some cylmeS composition off. YV€ tound one perio orbit, one

these periodic orbits may be unstable in a direction transperIOd 2. orbit, twq perloq 3 orblts,' three period 4 OI’bItS., and
verse toM. When in the vicinity of a transversally unstable four period 5 orbits. Using coupling through tecoordi-
periodic orbit, mismatclior noisg will cause the trajectory nate,
to have a component .in_ the direction trangverseMtcand H([x.y,Z]") =[x0,0]", (8)
hence to leave the vicinity of the synchronization manifold
M. If there are no other attractors, the trajectory will even-we obtained a stability functionW(a) for each orbit, the
tually return to the vicinity oM, and the process will repeat, largest of which will determine if the synchronization is ro-
the result being bursts of desynchronization sporadically inbust. Results are shown in Fig. 2. For all valuesagfwe
terrupting long intervals of near synchronization. This typefound that the master stability function corresponding to the
of dynamics is called bubblinf23]. period 1 orbit(thick dashed curveis larger than that for a
Thus, in the presence of mismat@r noise, to determine  typical chaotic orbit(thick continuous curve as well as
the robustness of synchronization, it is necessary to detethose for the other periodic orbits we have fousdveral of
mine the transverse stability of the embedded periodic orbitgvhich are shown as thin curves
for the noiseless system of identical oscillators. For coupling Based on the discussion above, bubbling induced bursting
as in Eq.(1), this analysis is independent of the network, andshould occur whenever the master stability function for a
such analyses have been carried out before, e.g., for thHgpical chaotic orbit in the attractor is negative farg\y
analysis of two coupled oscillators in R¢R7]. Equation(6)  and all k, while the period one orbit has positive master
can be used as before to construct the master stability funstability function fora=g\, for some value ok. Denoting
tion for each periodic orbit, if the appropriate periodic tra-the master stability function for a typical chaotic orbit by

y=Xx+ay,

jectories are inserted fa&(t) in Eq. (3). Wo(a) (thick continuous curve in Fig.)2and for the period
As an example, in this paper we work with the Rosslerone orbit byW,(«) (thick dashed curve in Fig.)2the bub-
system[29]: bling region of a corresponds toVy(a) <0, V() >0. In
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FIG. 2. Master stability functiot’(«) for a typical trajectory in FIG. 3. x,—Xg as a function of time foN=12 Réssler systems

the attractor(thick continuous curve for the period 1 orbitthick  connected in a ring witly=0.71. Note the desynchronization burst
dashed curve and for periodic orbits up to period @hin curves. which starts at= 1380.
The curves for the four period 5 orbits are similar to the latter and

were left out for clarity. With these values, the longest wavelength mode corresponds

to @=g\;=0.19. This value is in the bubbling region, and all

our example, this region corresponds to G16<0.48 or  other modes are in the stable region.
3.8<a<4.5. The range 0.48 «< 3.8 will be referred to as To introduce heterogeneity in the dynamical units, we
the stable region and the remaining zone will be called the imagine that we have mismatch predominantly in one of the
unstable region parameters, sag. We simulate this mismatch by adding ran-

If a network of slightly mismatched chaotic systemsdom perturbations to the parametarof each oscillator.
coupled according to E@1) is to be robustly synchronizable These perturbations are uniformly distributed within a +0.5%
without bursts of desynchronizatiogh, must lie in the range; i.e., a is chosen randomly in the interval
stable region for alk, where\, is thekth eigenvalue ofs. If [0.99%,1.00%], wherea is the parameter value of the un-
g\ lies in the stable region for sonteand in the bubbling  perturbed systenfa=0.2). The parameterd and ¢ were

region for otherk, then bubbling will typically occur. taken to be the same for each oscillatgrb=0.2,¢=c=7.
How a particular choice of the mismatch affects the bubbling
ll. EXAMPLES process will be discussed in Sec. IV.

We solved the 12 coupled differential equatiqis). (1)]

In .th's section we _provu_je examples_, of spanally patternequth the initial conditions chosen near the attractor in the
bursting by considering different configurations of the Cha’synchronization manifold. In Fig. 3 we plot the quantity
otic units. We will first work with the units connected in a X, for 1000<t<1600 ‘ '

ring with each connection of equal strength. The Laplacia

) . - " Most of the time, this variable is close to zero, as ex-
matrix G for this arrangement is

pected if the oscillators are synchronized. Approximately at
2 -1.0 0 - 0 -1 the timet=1380, this difference grows, reaching magnitudes
close to 3. By timeé=1500, the difference has decreased and

-1 2 -10- 0 0 is again close to zero.
G={ 0 -1 2 -1-- 0 0 |, 9 To confirm the mediating role of the embedded unstable
: : : TR : periodic orbits in the development of the desynchronization
10 - 0 0 -1 2 burst, we show in Fig. 4 a plot ok, versusy; from t

=1372 tot=1392, which is near the start of the burst. During

o

t=1392 t=1372

and its eigenvalues are given by=4 sir?(7k/N). Since
M=An-ie €ach eigenvalue has multiplicity two, with the ex-
ception ofAy=0, and, ifN is even,\y,»=4. The matrixG is 5}
shift invariant that is, its entries satisfy, modull, G;

=Gy,-j. Under these conditions, the diagonalization proce- y 0
dure described above corresponds to a discrete Fourier trans- 1
form [28]. For the eigenvalua, we choose the eigenvector
w, given by Wko<[sin(27rjl</N)]jN:l for 1<k<N/2, and by
Wkoc[cos(Zvrjk/N)]jN:l for N/2<k=<N. (Due to the degen-
eracy of the eigenvalues in this case, there is some arbitrari- _'5 0 5 1'0
ness in choosing the eigenvectprshus, the longest wave-

length modes have the smallest eigenvalues, and vice versa. Xi

FIG. 4. x; vsy; for 1372<t=<1392. During this period, which
corresponds approximately to the starting point of the burst in Fig.

First we consider a case in which bursting of the longess, the trajectory follows closely the transversally unstable period 1
wavelength mode occurs. We considér12 andg=0.71.  orbit embedded in the attract@ee Fig. 1

A. Long wavelength burst
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VIRRZ
12}

13000 15000 t17600 19000

FIG. 6. y;—Y, as a function of time for 8 Rossler systems in a
ring. The coupling strength was 1.09. The desynchronization burst
develops at=15 000, although it is not as sharp due in part to the
smaller magnitude of the transversal Lyapunov exponghitd.36)

o ] ) _in Fig. 2.
this time, the trajectory closely follows the period 1 orbit,

which is the most transversally unstable of the periodic or-

bits. Similar observations have been previously reported fofg 15 000, and soon reaches_ values close to 10. It remains
two coupled chaotic systeni&7]. arge for a longer time than in the case of the long wave-

Finally, in Fig. 5 we plotx;-x;_; as a function of}, the length burst(see Fig. 3 and decays more slowly as well.

oscillator index, fort=1360(open triangles t=1385(open This is in qualitative agre_ement w.ith the smaller absolute
circles, andt=1410(open squargs The desynchronization values of the master stability functions for the short wave-
burst can be observed developing mainly at the longest po%ength T”OP'e’ bqth for typical orbits on the attractor and for
sible wavelength. he per_lodlc orbits. . .

When subsequent bursts were studied in the same way, .it In Fig. 7 we ploty; -y, as a function of, the oscillator

was found that the phase of the long wavelength burst adlde, fort=15000,t=15 200, and=15 400. As expected,

sumed only one value. This is due to the fact that the misghe_l_k;l.JrSt mat;nly affects (tjhe shorltesbt w;\{elength n:.ocli('a:. .
match is “frozen,” that is, each oscillator has a given set of IS Can be asSessed properly by doing a spatial Fourier

arameters which differs by a given amount from the mear ! T 4 \
P yag pond to the Fourier coefficients, since the eigenvectors of

values. This fixed spatial heterogeneity favors certain spati . _ . . OS
patterns over others. We will discuss this in more detall irile matrix(9) are sinusoidal. The Fourier cogfﬂmem;gand
In-ke fOr 1<k<N/2, correspond to the eigenvectong

sec. IV [sin2mjk/N)]Y, andw,e[cog2mjk/N)]Y,, and have the
same eigenvalug,. At this stage, we are only interested in
discriminating between modes with different eigenvalue. For
Short wavelength bursting can be expected, for examplehis reason, we will plot as a function of time the quantfy
whenN=8 andg=1.09. In this case the value af corre-  defined by&={([7d,)?+ ([ 7n-i])3"? for 1<k<N/2 and
sponding to the shortest wavelength mode yighg=4.36,  £,=|[ny.l,|, where[ 5], is they component of the three-
which is in the bubbling region, while all the other modes aredimensional vector,. Thus, the quantity, represents the

in the stable region. In this case the observation of the burstgeight of the modes associated to the eigenvalue
is more difficult, as the transversal instability of the orbits

and the transversal stability of the attractor are less pro-
nouncedcompareW(4.36 for this case vs¥(0.19 for the
previous example in Fig.]2Accordingly, the perturbations
of the parametea were made larger, with perturbations ran-
domly chosen with uniform density within a 6% range of
the ideal values of the parameta=0.2). In principle this is

not necessary, as a burst will eventually occur after long
enough time. In practice, however, it is necessary to reduce
the waiting time to a reasonable value. As before, the
coupled equations were solved with an initial condition on
the synchronization manifold. In Fig. 6 we shoy-Yy, as a
function of time for one choice of initial conditions.

The differencey; —y, is usually positive and of magnitude
close to 1. This asymmetry is not a surprise since the oscil-
lators are slightly different. For the relatively large value of  FIG. 7. y;-y;_; vs the node index for t=15 000 (open tri-
the mismatch used, this is the “synchronized state.” It is seeangles, t=15 200(open circles andt=15 400(open squargsThe
in Fig. 6 that the differencg; -y, increases rapidly at around desynchronization burst has a short wavelength spatial pattern.

FIG. 5. x;—X;-1 Vs the node index for t=1360(open trianglek
t=1385 (open circley andt=1410 (open squargs Note that the
burst is absent first and grows with a long wavelength pattern.

B. Short wavelength burst
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FIG. 8. & as a function of time fok=1,2,3,4. Theshortest
wavelength component correspondkto4 (top curve. The curves
corresponding t&k=1,2,3 areclose to the horizontal axis.

In Fig. 8, we plot as a function of time the quantiti&fs
for k=1,2,3,4. Theshort wavelength modék=4, upper
curve) is dominant during the burst.

C. Localized burst

In the above examples all links had equal weights. As al

PHYSICAL REVIEW B9, 066215(2004)

strengthened
link

8

FIG. 9. Arrangement of the dynamical units in a ring with the
strength of the connection between nodes 4 and 5 doubled. The
matrix G corresponding to this network is in E@LO).

_Wj—l_Wj+l+ 2WJ =)\Wj, (11)

r{or respectively, nodep, p+1 andj different fromp or p

example of a case with unequal link weights we consider the

case where the previous network is modified by doubling the
strength of one of the links. Let the link whose strength is

doubled be the link that connects nodesand p+1. For
example, forp=4, N=8, this yields the Laplacian matrix

2 -1 0 0 0 0 0 -1
-1 2 -1 0 0 0 0 O

0 -1 2 -1 0 0 0 O

|l o 0o -13-20 0 o0
1 0 0 0 -2 3 -1 0 o0
0 0 0 0 -1 2 -1 0

0O 0 0 0 0 -1 2 -1

-1 0 0 0 0O 0 -1 2

(10
Adopting the analysis technique of Rg30], we can

We consider solutions of 11 that arfanti-)symmetric,
Wp+14= +Wp, and for whichwp,q,/wy,; is constant forj
=1, ie. Wp+1+k0<t for k=0 and some. This will be a good
approximation if the mode is localizg@le., |t| <1), and the
network is big enough thdt|/N?<1. In the antisymmetric
Case Wp,14= Wy, EQs.(11) yield,

5-t=\
—t-tt+2=2, (12
which gives
1 16
t=-—, =—. 13
3 3 (13

Compare this eigenvalue with the largest eigenvalue for the
network in which all links have equal strength, which has a
value of 4. The symmetric solutiony,, ;4 =w,, yieldst
=1 and\=0, corresponding to the eigenvecfdr,1,...,1

show that such an enhanced connection has the consequerdeperturbations in the synchronization manifold. The small-
that the largest eigenvalue Gfcorresponds to an eigenfunc- est nonzero eigenvalue remains unchanged. o
tion that is exponentially localized to the region near the As an example, we show the localized desynchronization

strong connection. That is, for larde, the components of

bursts produced by one of these strengthened connections for

this eigenfunction decay exponentially as the distance bethe caseN=8, corresponding t& given by Eq.(10) and the
tween the localized region and the node corresponding to #ustration in Fig. 9. The parameters of the idealized system

component increases. Using the ideas of R&®], we now
provide this analysis. The equations for the eigenveutor
and eigenvalue. are

= 2Wpy1 = Wpg + 3W, = AW,

= Wpip =~ 2Wp + 3Wp+1 = AWps1,

are againa=b=0.2, andc=7, with a coupling strength of
g=0.79.

It is remarkable that despite the small number of nodes,
the actual localized eigenvector and eigenvalue agree well
with Eqg. (13) (\=5.334... andvg/ws=-0.334..).

In Fig. 10 we showxs—Xx, as a function of time.

As in the short wavelength case, the burst is not very
sharp due to the small magnitude of the transversal
Lyapunov exponents. Nevertheless, it can be seen that the
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8500 95t0 0 10500 8500 9500 10500
t
FIG. 10.x5—x,4 as a function of time foN=8 Rdssler oscillators
in a ring with the strength of the connection between nodes 4 and 5 FIG. 12.[7JZ as a function of time fok=4 (top curve corre-
doubled. The coupling strength $=0.79. A desynchronization sponding to the localized mode, and fo¥ 4 (bottom curves, close
burst starts approximately &t 9000. to zero, corresponding to other modes. In the burst, the localized
mode is excited first and only after some time are the other modes

. . . also somewhat excited. The localized mode is dominant during the
differencexs—x, increases approximately &t 9000 and re- burst g

turns to a relatively small value after reaching values consid-
erably above the average. , . ’

In Fig. 11(a) we plot the difference between thecoordi-  © the horizontal axis tcﬁnk]x,_kqt 4, for th_e other modes.
nate of nodej and its mean over all nodexj,—Y, wherex  (The degeneracy of_the eigenvalues is brc_)ken by the
=1/NE), x;, as a function of the oscillator indej for t ~ Strengthened connection, so we do not comiing and
=8750 (open trianglel t=9000 (open circley andt=9250 [ 7n-klx @s before. Confirming the qualitative similarity be-
(open squarés In Fig. 11b) we show the localized eigen- tween the eigenvector and the spatial pattern of the desyn-
vector of the LaplaciaiG found numerically. chronization burst observed in Fig. 11, the weight corre-

As discussed before, the desynchronization burst affectsponding to the localized eigenvector is seen to be dominant
mainly nodes 4 and %those which share the strengthenedduring the period of time in which the burst occurs.
connection and the ones adjacent to them. Nodes 1, 2, 7, and
?h ht())wetver, maintain approximate synchronization during v EEFECTS OF THE MISMATCH SPATIAL PATTERNS

e burst.

In Fig. 12 we show the mode weights corresponding to In this section we will discuss the effects that the mis-
the x coordinate as a function of time. The top curve corre-match spatial patterns have on the development of the desyn-
sponds tq 774]5 (for the localized modg and the curves close chronization bursts. For these purposes, it will be convenient

to rewrite Eq.(1) in the form

N
X, =F(X) - g2 GjjH(X)) + Qi(X)), (14
j=1

where F(X)=F(X,%) with z=1/NZN; 4, and Q(X)
=F(X;, wi)—F(X)). The termQ, represents the effect of the

mismatch and is assumed to be small. As before, we linearize
around the synchronous state to get

.j B \

1 /\ b) &=DF(s)& - 9>, G;DH(9)¢; + Qi(s), (15)
L i=1

0 /\ PG l

7 \/ where we have discarded terms of or@g. With the previ-
r \/ ous notation and=[Q;,Qy, ...,Qu], we obtain after the
1 2 3 4 5 6 7

diagonalization

5 7= [DF(s) = \DH(9) 7+ (QL), (16)

j where(QL), is thekth column of thed X N matrix QL. In the
ring with equal coupling along each link, the diagonalization
FIG. 11. () x,—X for t=8750 (open triangle} t=9000 (open procedure corresponds to a Fourier transform. In this case,
circles, andt=9250(open squargsfor the configuration in Fig. 9. we see that the mismatch affects the different modes accord-
The burst develops with the spatial pattern of the localized eigening to the weight(QL),, of this particular mode in its Fourier
vector in(b). (b) Localized eigenvector of matrig in Eq. (10). expansion. In other cases, for example in the localized eigen-
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vector, the strength of the mismatch affecting the localized
mode is proportional to the weight of the localized eigenvec-
tor in the eigenvector decomposition of the mismatch. We
will now discuss two applications of these results.

A. Amplification of mismatch patterns when modes with the
same eigenvalue burst

We have shown that the modes of the mismatch force the
corresponding modes of the deviations from the synchronous
state. When bubbling induced bursting is expected, the size
of the mismatch determines the average time between bursts
[25]. Thus, the size of the mismatch component in m&de
determines the average interburst time when that mode is iB‘ol

the bubbling regime. -1)/12]+ ¢) with ¢ as given in the textopen circles The phase of

When the spectrum ,Of the matri® is degenerate, the the burst spatial pattern coincides with the phase of the long wave-
spatial modes of the mismatch play an extra role. All thejengih component of the mismatch.

modes sharing the same eigenvaluleave the same stability
roperties, and thus, when the corresponding vglués in .
brop p gve é)f Eqg. (18) is of relevance. Thus modes, and ny-, are

the bubbling zone, all eigenvectors with this eigenvalue ar “xcited with a strength proportional, respectively,Aig da)

equally likely to appear. The only difference between these d Fo(52): Eg 1p6 pTh ’ 't% ¢ Y il b

modes is the strength with which they are forced, which is2"d /n-1(82); see Eq.(16). The magnitude ofp will be
roportional toF(da), and thus the excitation of the long

determined by the mismatch component in that mode aB S ,
shown in Eq.(16) (or, if noise is present, by the noise com- wavelength modéwhich is the only one for which perturba-

ponent in that mode tions grow is proportional to

An example of this situation is the ring with connections
of equal strength in the long wavelength bursting scenario. [ 2] 2]
Since the ring is invariant with respect to rotations, the phase Fa(da)sin N + Fn-1(6a)co N (19
of the long wavelength oscillations can not be determined
only from the network and dynamics part of the problem.
The two modes with the longest wavelengtiorresponding 27
to sinusoidal and cosinusoidal oscillatigrisave the same “Siﬂ<w + ¢),
eigenvalue. It is the mismatch that in this case determines the
phase of the long wavelength burst.

We will show how one can determine the phase of thewhere tang=Fy_,(da)/ F,(5a).
long wavelength desynchronization burst in the case of We now show results of numerical simulations illustrating
coupled Rossler systems in a ring with equal coupling alonghe above. The parametelks and g will be as in the long
each link. For this system, the mismatch vec@®(X;) is wavelength example in the preceding section. We use the

FIG. 13. yj—y;j-, for different times during a burgfilled sym-
s, and a scaled version of $§i@wj/12)+ p]|—sin([27(]

(20)

given by same random set of perturbations used in that example. As
described above, we obtained the phésef the long wave-
0 length component of the vectaia;. In Fig. 13 we ploty;
Qj([xj,yj,zj]T) = y;jday , (17 —Yj- for different times during a burgfilled symbols. In
;- 7,6, the same figure, we plot a scaled version of (&#rj/12)

o +¢]-sin[27(j—1)/12]+ ¢) (open circles The phase of the
where da;=a;—a and similarly for éb; and éc;. We define  desynchronization burst is in agreement with that of the long
Flu)==L; upWl, where@) is the normalizeqth component  wavelength component of the mismatch.
of the k eigenvector described at the beginning of Sec. Ill.  When the mismatch affects predominantly one parameter
With this convention, the terrtQL), in Eq. (16) is given by  as in this case, the phase of the bursts can be predicted as
described above. When mismatch in different parameters is

0 comparable, the phases of the long wavelength modes of the
(QL)= yF(5) . (18 different parameter mismatches compete and the bursts de-
Fi(8b) - 2F(8¢) velop with one of these phases or with a combination of
them.
Here da=[da,, &, ...,6y] and similarly fordb, oc, andy, z It must be emphasized that this analysis is possible only

are the trajectories around which the linearization was madeavhen there is a degeneracy of the eigenvalues. For example,

We consider the case in which mismatch in one parametehe location of the localized burst can not be determined in
is dominant, for exampla. The mismatch in the parameters this way, as it is fixed in the position of the strengthened link.
b andc will be assumed negligible compared with thatain  In this case, the mismatch component in the localized mode
so thatédb, éc<< da. In this case, only the second componentwould only affect the average time between bursts.
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X=Xy pected from the ratiaF,(a)/ Fa(as). This qualitative ex-

oL ample illustrates how one can use knowledge of the mis-
match to suppress undesired instabilities.

1¢k
0 ‘ 2 ' 'IrTn ‘ wr “] e |”W V. SPATIAL PATTERNS OF DEVIATIONS FROM THE

-1k N STABLE SYNCHRONOUS STATE

-24% a, So far, we have concentrated in the case in which the

5 5000 73000 value ofg\y is in the bubbling regime for one modteand in

the stable regime for the other modes, so that desynchroni-
t zation bursts occur sporadically. As we have seen, these

FIG. 14. x,—X, as a function of time for a configuration of bursts present spatial patterns on the network.

oscillators with a largétop curveg and with a smal(curve closer to If synchronization is desired, one might try to avoid the

zero short wavelength component of the mismatch. The quality obebbll.'ng reglmehby d(;SIinnghthe ngt\Ntl).rk.an(r:l] adjuzflng the
the synchronization is much better in the second case. coupling strength so that all the modes lie in the stable zone.

One would also strive to reduce the mismatch, but as men-
B. Artificial supression of unstable modes using knowledge of ~ tioned before, there are practical limitations on how much
the mismatch one can make the oscillators exactly the same.

We will now discuss another consequence of @6). We ¢ ka)i;ip(g}}")ﬂl]s negnatrll\:er:‘or all ??d:endlga;m\? trznsvenrjizill
imagine a situation where we are given a number of nearl? ability of the synchronous statene can have, depe 9

identical oscillators that we are to connect in a network®” the degree of transversal stability, fair synchronization

which we desire to be in synchronism as much as possibleeven with relatively large amounts of mismatch. If one is to

Furthermore, we imagine that, through measurements ma(f erart]erun?erri S,[EJCh cfo?r(]:hnzn?/,i |ttimr|]gh¥rb(ren|r?k?ortarr1]t thor krr:ow
individually on each oscillator, we are aware of the amoun € characteristics of the deviations 1ro € synchronous

of mismatch in each oscillator. The question we address igtate. N - .
Thus we ask in this scenario: How large are the spatial

this: Using our knowledge of the individual mismatches, I

how should we arrange the oscillators in the network so as tagaeégsésoihtize dge(\a/f:jtlzzstrf:aomi;&eati%ngg(rjoggutﬁesgge’re?angf
best suppress the frequency of desynchronism bursts? To a&rénsversal stabiIiFt) 5 9
swer this question, we note that, according to the previou The spatial mogj/és of these deviations obey @). In
discussion, we should reduce the mismatch component in t . :

mode which is in the bubbling region. Since the size of th(:t%e. ablsenc$ o;trtl_e ter(thL)k, tﬁe éero SO'EUO.” Is stable, a?d
mismatch affects the average interburst ti[28], reducing ~ YP'C& perturbations from it decay, having a negalive

this component is desirable if one wants to improve the qua|1_yapunov exponent given bl =" (ghy). The first term in

ity of the synchronization. This can be accomplished by ju-_the right hand side of Eq16) can be thought of as a damp-
ing term with a damping rate given Hy,, and the second

diciously arranging the dynamical units so that kie mode ! . O
of the mismatch is minimized when the corresponding valud®™: (QL)y, as a forcing term. Since we are considering the
g\, is in the bubbling region. For example, to suppress lon table case, these two factors, on average, cancel each other.

wavelength bursts, one may arrange the units so that thay definition, the Lyapunov exponent for the system without
parameter errors alternate above and below the mean. Toismatch is given b)hk=(771(DF—g7\kDH)nk/|77k|2), where
suppress the localized bursting described in the precedingpe angle brackets indicate time average. Assuming a solu-
section, one could arrange the units so that those with théon 7, of the system with mismatch to yield the same value
more similar parameters are the ones in the region of thef this time average, we left multiply Eq16) by 7|72

strengthened connection. and average to obtain

As a concrete example, we test this idea using simulations -
for the case of short wavelength bursting presented in the I ~ QL \ /[ I(QLK (21)
preceding section. We again assume for simplicity that mis- « |7d? lnd /'

match in the parametex is dominant. We generate random
perturbations in the parametarwithin a +6% range of the
valuea=0.2, as explained in the preceding section. With thi
set of parameters given, we set up the dynamical units in the QLW
ring using two different permutations of their positions. One () ~ Y
of them (ag) has a smaller and the othésy) a larger short I
wavelength componenf,(a) than the original random se- (This is analogous to the result obtained for a linearly
guence. The ratidF,(a)/ F4(as) is approximately 15. In Fig. damped equation with constant forcing in one dimension,
14 we plotx;—X, as a function of time for configuratioa n=-hn+q. In this case one has asymptoticatjy—q/h.)

(top curve and for configuratiorag (bottom curve. As an example we consider Rgssler units in a ring with all

The differencex;—x, is much smaller in the former case connections of equal strength. We choosSe8, g=0.6

than in the latter, roughly by a factor of 15, as can be ex{W(g\,) <O for all values ofk]. Furthermore, we add a ran-

where the angle brackets indicate time average. This leads to
Sthe following rough estimate,

(22)
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Oim, >, A (QL)k > Ox<@QL), n; > by large infrequent desynchronization bursts for some values

1028 of the parameters. The range of the parameters for which this
phenomenon is expected can be obtained by performing a
master stability function analysis of the chaotic attractor and
10%° of the periodic orbits embedded in it.

The desynchronization bursts are induced by the bubbling
phenomenon, and have spatial patterns on the network.
105 These spatial patterns can be predicted from the eigenvectors

. . of the Laplacian matrixG and the master stability functions
mentioned above. We showed examples illustrating the de-
velopment of bursts with spatial patterns. One of our ex-

FIG. 15. (|7 ) (open squares(|(QL)) (open triangles and amples showgd that the strengthen_ing ofa sil_”ngle connection
(|(QL))/hy (open circlesfor N=8,g=0.6,k=1, ...,7. The forcing  Might destabilize the nodes near this connection, while leav-
term (open triangles roughly determines the respongepen  iNg the rest of the network approximately synchronized.
squares The corrected forcing terfopen circlegmatches well the Direct measurement of the parameter mismatch in the el-
respons€open squares ements of a network might prove useful. We discussed how
this knowledge could be used to reduce the frequency of
bursts and to predict the relative weights of different spatial
patterns in a burst. We also discussed how one could, from
knowledge of the mismatch and of the master stability func-
tion, describe the spatial patterns and magnitude of the de-
viations from the synchronized state when the synchroniza-

i tion of the corresponding identical unit system is robust.
modes[(|(QL)])] span roughly two orders of magnitude, and We emphasize that although we did not discuss the effects

the magnitude of the responégz)) looks roughly propor-  of noise. the phenomenon described in this paper also occurs

tional to the latter. When the forcing term is corrected byfor noisy identical oscillators. Desynchronization bursts with
dividing it by the magnitude of the corresponding Lyapunovspatial patterns are expected for noisy, identical oscillators if
vector |hy, the resulting quantity(|(QL)|)/|h] matches  one has them for noiseless, nonidentical oscillators. The dif-

-
N
w
N

(3,1
o
~

dom perturbation to the parameteof each oscillator chosen
uniformly from within a £0.1% range 04=0.2.

In Fig. 15 we show, fok=1,...,7, the quantitie§ )
(squares (|(QL),J) (triangleg, and(|(QL))/[h (circles.

The magnitudes of the forcing term for the different

very well the observed response. ference is that the parameter mismatch is always “frozen,” in
the sense that the mismatch is always the same for each
VI. CONCLUSIONS oscillator, whereas for noise this is not the case.

We have studied the stability properties of the synchro-
nized state in a network of coupled c_haotlc dynamical units ACKNOWLEDGMENTS
when these have a small heterogeneity. We have shown that
when the dynamical units that are coupled in a network are This work was sponsored by ONfRhysic$ and by NSF
slightly different, the synchronized state can be interruptedContract Nos. PHYS 0098632 and DMS 0104087

[1] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. [9] A. Uchida, S. Kinugawa, T. Matsuura, and S. Yoshimori, Phys.
Heagy, Chaos7, 520(1997%). Rev. E 67, 026220(2003.

[2] A. Pikovsky, M. G. Rosenblum, and J. KurtiSynchroniza-  [10] W. Wang, I. Z. Kiss, and J. L. Hudson, Cha&§, 248(2000.
tion: A universal concept in Nonlinear Sciencgambridge [11] K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Leftl, 65
University Press, Cambridge, 2001 (1993.

[3] R. C. Elson, A. I. Selverston, R. Huerta, N. F. Rulkov, M. I. [12] M. E.J. Newman, SIAM Rev45, 167 (2003.

Rabinovich, and H. D.I. Abarbanel, Phys. Rev. L&, 5692 [13] A.-L. Barabasi and R. Albert, Scienc286, 509 (1999.

(1998. [14] M. E.J. Newman and J. Park, Phys. Rev68 036122(2003.
[4] J. Jalife, J. PhysiokLondon) 356, 221 (1984). [15] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
[5] R. E. Mirollo and S. H. Strogatz, SIAMSoc. Ind. Appl. Lett. 76, 1804(1996.

Math. J. Appl. Math. 50, 1645(1990. [16] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D.I.
[6] E. Mosekilde, Y. Maistrenko, and D. Postno@haotic Syn- Abarbanel, Phys. Rev. 51, 980(1995.

chronization: Applications to Living SysteWorld Scientific,  [17] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.

Singapore, 2002 Lett. 78, 4193(1997.

[7] R. Roy and K. S. Thornburg, Phys. Rev. Let2, 2009(1994). [18] L. M. Pecora and T. L. Carroll, Phys. Rev. Let64, 821
[8] J. Garcia-Ojalvo, J. Casademont, C. R. Mirasso, M. C. Torrent,  (1990.
and J. M. Sancho, Int. J. Bifurcation Chaos Appl. Sci. EAg. [19] L. M. Pecora and T. L. Carroll, Phys. Rev. Let80, 2109
2225(1999. (1998.

066215-10



SPATIAL PATTERNS OF DESYNCHRONIZATION. PHYSICAL REVIEW E 69, 066215(2004)

[20] M. Barahona and L. M. Pecora, Phys. Rev. L&9, 054101 (2003.
(2002. [26] N. F. Rulkov and M. M. Sushchik, Int. J. Bifurcation Chaos
[21] T. Nishikawa, A. E. Motter, Y.-C. Lai, and F. C. Hoppensteadt, Appl. Sci. Eng. 7, 625(1997).
X Phys. Rev. '—e“j)lé 0141g1(2003)- don 393 440 [27] J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Re\6E
[22] (Dl.gg.&Watts an . H. Strogatz, Natugieondon 3 44 R1253(1995.
(23 P AsHWin 3. Buescu, and I. Stewart, Phys. Lett183 126 [28] J. F. Heagy, L. M. Pecora, and T. L. Carroll, Phys. Rev. Lett.
(1'994) Y ' ' ' ' 74, 4185(1995.
[24] S. C. Venkataramani, B. R. Hunt, and E. Ott, Phys. Re®4E [29] O. E Rossler, Phys. Letb?, 397(1976)'_
1346(2003. [30] X. Liu, G. Strang, and S. Ott, SIAM J. Discrete Math6, 479
[25] A. V. Zimin, B. R. Hunt, and E. Ott, Phys. Rev. &7, 016204 (2003.

066215-11



