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Average patterns and coherent phenomena in wide aperture lasers
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Using a realistic model of wide aperture, weakly astigmatic lasers we develop a framework to analyze
experimental average intensity patterns. We use the model to explain the appearance of patterns in terms of the
modes of the cavity and to show that the breaking of the symmetry of the average intensity patterns is caused
by overlaps in the frequency spectra of nonvanishing of modes with different parity. This result can be used
even in systems with very fast dynamics to detect experimentally overlaps of frequency spectra of modes.
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I. INTRODUCTION The aim of this paper is to clarify some of the issues

Time averaged patterns are the most common way tgelating to average intensity patterns in medium Fresnel
characterise the spatial complexity of large aperture laser@UmPer lasers, i.e. patterns that are generated by the coupled

Jynamics of five to twenty modes away from the laser

operating in the multimode regime. These patterns are ge=’' <" . A
neric: observation on CQlasers|1-3] and solid state micro- Switching on thresholdfirst threshold, a situation very eas-
ily obtained in experiments. The number of modes is too

chip laserg[4] are strikingly similar despite the differences !
; : - i igh for the analytical study of the normal forms of the laser
between the physical processes involved in the emission rﬁm] and it is too low for order parameter equatidas, 16,

light. Moreover, average patterns are “robust,” in the sens urthermore, both these techniques can be applied safely

that they are insensitive to the details of the dynamics. FOB ly close to first threshold, a condition that does not apply
example, they may have an ordered appearance even thou the experiments we are considering

the underlying dynamics is not regular. This is true for opti- ~ The experimental observations in a Claser, detailed in

cal patterng1-5 as well as for patterns observed in hydro- pef [1,3) and summarized here in Sec. I, show that as the
dynamics experiments involving thermal convectiéh sur-  getuning of the cavity with respect to the atomic line is var-
face waveq7-9], or electroconvectiofl0] where the slow e, different average intensity patterns appear. Some of them
dynamics allows for easy visualization of the instantaneou@an be reproduced by incoherent Superposition of Gauss-
wave patterns. Arguably the appearance of average patterpermite modeg$3] that belong to the same family, minimize

in hydrodynamics is influenced by the boundar[@9,1]  the spatial hole burning and maximize the energy extraction
and their symmetries. An analogous situation holds for lafrom the pump. Most patterns, however, do not fit this
sers: average intensity patterns in cavities with low Fresnetcheme.

number clearly reflect the structure of the empty cavity The same type of patterns of Ref$,3] were observed in
modes[1,3,4. Patterns in large Fresnel number cavities,a microchip laser in Ref4]. The results of both experiments
where the effect of the curved mirrors is weakened, have akead to many open questions which we address in this paper.
apparently rectangular symmetry. However, the shape anBirst of all, we investigate the effect of the hard apertures
symmetry of average patterns vary as the control parametepesent in the experiment of R3] on the modes of the
are changed. A careful analysis shows that these variatiorsavity and on average patterns. Then we consider what is the
depend upon the energy and the average products of ampliaost efficient modal description of the average intensity pat-
tudes of different modes, which we call average amplitudderns far away from threshold. Finally, we investigate the
products in the following. Therefore, the study of averagerole of symmetry: as a general rule, average patterns are
patterns provides useful information especially in systemsmore symmetric than the spatiotemporal dynamics of the la-
such as lasers, where the instantaneous intensity patterns aer from which they originate. We show how average sym-
not generally measurable due to the fast time scales of theetry can be used to analyze average amplitude products.
dynamics. In fact, instantaneous measurement of the inten- We address the above questions by calculating the modes
sity pattern of a wide aperture laser are possji2,13 as  of a cavity with intracavity aperture and deriving a model of
snapshots taken at different times in different pulses. It is nothe experimental laser from first principles. We integrate it
yet possible to measure the instantaneous intensity pattern afimerically, both using the full integral-differential equa-
a laser over a continuous stretch of time. Even more difficultions and by using a decomposition of the field into empty
is to gather the phase information needed to reconstruct theavity modes. Both these techniques produce average pat-
field from the intensity. terns that are in good agreement with experimental patterns
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describe the experimental setup and summarise the experi- /®
mental observations on average patterns ir, GSers oper- . - . :
ated in the domain of intermediate complexity. We derive a 2 5
model of the experimental laser and analyze its modes in Av; (MH2)
Sec. lll. Section IV contains a theoretical analysis of the
symmetry of the average patterns that is used in Sec. V to FIG. 1. Schematic representation of the different regions of pat-
analyze numerical average intensity patterns. In the concluern formation at a fixed pump value as a function of the Fresnel
sions of this first paper we discuss briefly measures of symaumberN; and the intertransverse mode spacing obtained from

metry and their application to experimental and numericathe experimental results of Refd.,3]. See text for the characteristic
patterns. features of each region.

of a CG, laser. We then use the model to study in detail

aspects of laser patterns that extend the results of the experi-

ments of Refs[1,3,4. In the following papef17] we ana-

lyze the spatiotemporal complexity of the average patterns

and its behaviour as the intensity of the pump is increased.
The rest of the paper is organized as follows. In Sec. Il we
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The general phenomenology of the experimentally ob-
Il. EXPERIMENTAL RESULTS served patterns is depicted in Fig. 1. At low Fresnel numbers,
typically Ny=1, only the first two or three transverse fami-
The experimental patterns relevant to the analysis in thifies may oscillate. This domain has been extensively inves-
paper have been_ obser\_/[EtiS] at intermed_iate F_resnel num- tigated (see, e.g., Ref§19-21). In regions 2(3), compli-
bers (1<N;<6) in a wide aperture, astigmatic GJaser  cated patterns are observed with an intricate radio-frequency
whose modes are approximately Gauss-Hermite mfitls  spectrum of the intensity at any point in the transverse pro-
The astigmatism, caused by Brewster windows, lifts the frefile. However for some particular settings of the cavity, this
quency degeneracy of the modes that belong to the samgectrum simplifies into regularly spaced clust@tig. 4 of
family by introducing an intermode frequency splittidg,  Ref. [1]) associated to circulafregion 2 and rectangular
=200 kHz. Moreover, an iris present in the cavity to Contr0|(region 3 pattern lattices that we call regular patteKsse
its aperture, modifies deeply the structure of the wider cavityrig. 2 of Ref.[1] for images of regular patterns and Refs.
modes so that they can no longer be considered as Gaugg-3] for an extensive discussion of their propertieshis
Hermite modegsee Sec. ). The experimental control pa- does not occur in region 4 where radio-frequency spectra and
rameters are as follows. transverse patterns are always complicated. Regular patterns
(1) The Fresnel numbe¥;=S/(7S), i.e., the ratio of the  gre classified as 0-0, 0-1, 1-0, or 1-1 according to whether
cavity aperture are&to the fundamental mode maximal area they have minimg0) or maxima(1) of the intensity on the
S- Nt is an evaluator of the maximum transverse familytwo symmetry axes.
index that can oscillate within the laser with small diffraction  |n this paper we focus our attention to patterns in region 2
losses. of Fig. 1. Here regular patterns are common, but not generic.
(2) The transverse interfamily frequency spacigr [18]  In Fig. 2, for example, we show how there is an entire spec-
that rules the strength of the interaction between transversgum of “irregular” patterns that connects regular patterns as
modes belonging to different families. Since this quantitythe cavity detuning is changed.
(Avr=0-5 MH2 is always much smaller than the homoge-  The relatively frequent appearance of regular patterns in
neous linewidth (A»;=500-700 MH2z, multitransverse the experiment is a minimal test to validate a model of the
mode operation is possible in our large area laser. Howeveexperiment: simulations should be able to produce regular
by keeping the pump sufficiently low it is also possible to patterns for appropriate values of the parameters. In particu-

excite a single family of modes. lar, in all regular patterns the near field and the far field
(3) The position of the different family modes with re- remain the same, indicating that the patterns are composed of
spect to the center of the gain line. modes of the same transverse family. Indeed, the Gouy phase

FIG. 2. Experimental near field images of the average intensity patterns showing a transition between a 1-0 reguléapéfyrio
a 0-0 patterrifar right) through some irregular patterns as the cavity detuning is changed. The images are stationary patterns measured after
each change of the detuning.
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shift [22], which is different for each transverse family, in- these modes together so that the new modes of the cavity are
duces a far field different from the near field as soon as théhe eigenvectors of the propagation operdatefined in Eq.
modes composing the pattern belong to at least two familieA5). Note that as long as the aperture is circular and centred
with indexesm of different parity. on the cavity axis, it does not change the rectangular sym-
Moreover, the number of rings varies from 1 to 6 follow- metry of the cavity. As a consequence, the eigenvectof® of
ing a linear dependence law vershNs [1] as predicted by have definite parity and are either even or odd under reflec-
Siegman([23]. In other words, the patterns obey the sametions o, and o, about the symmetry axesandy and under
scaling laws versus the mode orderas the Gauss-Hermite inversionoy,o, with respect to the origin. To find the modes
or Gauss-Laguerre modes of the empty cavity. This is arf the cavity we have projecte® on a large set of Gauss-
indication that the observed ring patterns should be well deHermite modegall the modes with & m= 30) obtaining an
scribed by the empty cavity modes, the Gauss-Hermit@pproximate matrix representation of this operator. The re-
modes. In fact, in Ref[3] it was shown that the regular sults of the modal analysis are summarized in Fig. 3 and
patterns can be reconstructed using ititensitiesof Gauss-  confirm the intuitive hypothesis at the basis of the analysis of
Hermite modes. This result is doubly significant: firstly it the experimental patterns used in Rgl}: if the modes are
indicates that the cavity modes are, at least in the case of thegnificantly narrower than the diameter of the aperture they
observed patterns, very similar to Gauss-Hermite modesare nearly Gauss-Hermite modes in the sense that a single
Secondly, the intensity of the field is the modulus square of5auss-Hermite mode dominates the decomposition of the
the sum of the modal amplitudes. This is equal to the sum ofavity modes on the Gauss-Hermite basis. This is confirmed
the squares of the moduli of the modal amplitudes only if theby the graphs inserted in Fig. 3 that represent the modulus of
average amplitude products are negligible. We comment othe coefficients of the expansion of selected cavity modes on

these two points in Secs. Ill and V, respectively. the basis of the Gauss-Hermite modes. Narrow cavity modes
form families with almost degenerate frequencies. Similarly
Ill. THE MODEL to the pure Gauss-Hermite modes, we can assign a tabel

) _e N to each family ofm+1 cavity modes. Modes of families
The observation of the same type of average patterns ifyin m even are even under inversiofo,. These modes can

microchip and CQ lasers suggests that they are determined,q frther divided into two subsets that are either even or odd
mainly by the geometry of the cavity rather than the naturggers, ando,. Similarly, modes of families witim odd are
of the active medium. Therefore, in order to perform ourqqq ynder inversion. These modes form two subsets, one of
analysis, we improve the standard mean field limit Maxwe”'modes even under. and odd undep-. the other of modes

. . . X y
Bloch laser mode[24] by describing in more detail the ge- ,qq ynderr, and even undew,. However, as the diameter of
ometry c_)f th(_e cavity and the propagation of the field |nS|d§ it.the modes increases the cavity modes become more and
_ For simplicity we assume that the laser under study is gnqre gifferent from the Gauss-Hermite modes to the point
ring cavity gas laser with approximate cylindrical symmetry ot they are no longer grouped in nearly degenerate fami-
(see the end of Appendix A for a brief discussion of Fabry-jies put span the entire free spectral range in a nearly con-
Pérot cavities The final equations areA13)~(A15) repro-  in 05 manner. Of course, as the modes become wider their

duced here for convenience: losses increase so that it becomes harder and harder to excite
JF them. As the diameter of the modes is related to the index
—=LF+P, (1)  the aperture determines the maximum indgx such that for
xn all m=m,, the modes are almost Gauss-Hermite modes.

J
—=TPEXF+FN, 2 IV. SYMMETRY AND AVERAGE AMPLITUDE
PRODUCTS

%=—7[N+%(FE+EP)] (3)

Before studying numerically the average patterns in the
model, we analyze the symmetry of average intensity pat-
. ~ternsin an astigmatic laser and how this can be used to detect
whereF(x,y,t) and P(x,y,t) are the slowly varying ampli- the presence of nonvanishing average amplitude products.
tudes of the electric field and polarization respectively,we consider here patterns whose Fourier spectra have a dis-
N(x,y,t) is the population inversiony is the decay rate of crete number of peaks bounded away from zero, such as the
the population inversion ang is the pump parameter. All  spectra in Fig. 4 of Refl1] and Fig. 5 here. Except for this
spatial and temporal variables are nondimensional(@n  requirement, the analysis presented here is general and does
are the coordinates in the transverse plane. The propagatieiot depend upon the presence of an aperture. For laser with-
across the cavity is taken into account by the operdtor out apertures, or lasers whose cavity modes are only weakly
=-c[ld-P0,], wherec is the speed of lightP is the propa-  perturbed by the aperture, the symmetry of the average in-
gation operator, defined in EGA4), and@,(x,y) represents tensity patterns reveals also if the laser near and far fields are
the aperture, EqQA3). These equations constitute the model self-similar.
that we analyze in this paper. Many of the average intensity patterns observed in astig-

The modes of the cavity without aperture are Gaussmatic wide aperture CO[1,3] lasers and in microchip4]
Hermite modedq18]. The presence of the aperture coupleslasers presenting regularitiés.g., o, and o, symmetry fall
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m= FIG. 3. Point spectrum of the
propagation operatofA4) in the
complex plane. The circle has unit
radius: the closer the eigenvalues
are to it, the smaller the loss of
Im(z) their corresponding cavity mode.
Only the eigenvalues with modu-
lus larger than 0.7 have been plot-
ted. Modes that have beam waist
smaller than the aperture radius
are essentially Gauss-Hermite
modes and have low losses. They
are also grouped in nearly degen-
erate families, as are the Gauss-
Hermite modes. The losses in-
crease with the beam waist and
large cavity modes are not well
identified with a single Gauss-
Hermite modes. The three inserts
contain a grey scale image of the
intensity of the selected cavity
mode and a graph of the modulus
of the coefficients of its expansion
on the basis of the Gauss-Hermite
modes of the aperture-less empty
cavity. The circles in the intensity
images have radius equal to five
beam waists.

into one of the regular patterns discussed previously. Morespectrum in Fig. 5 suggests that the corresponding intensity
over, the intensity patterns observed in the, d&3er experi- pattern is the superposition of weakly correlated modes each
ment can be well reproduced by superpositions of the intenescillating at slightly different frequencies. Therefore we can
sity of subsets of the Gauss-Hermite modes of the emptgxpect the recurrence time of the dynamics to be of the order
cavity, namely those modes that are nearly degenerate iof the longest beating period between modes. We choose the
frequency and that are closest to resonance. This last obseaveraging timeZ to be much longer than this estimate of the
vation implies that the average over long times of the prodrecurrence time.

ucts of amplitudes of pairs of modes is zero. This can be The requirement that the average intensity pattern is well
shown to be valid for generic stable cavities by writing theapproximated by a linear superposition of the intensities of
electric field of the laseF(x,t), with x=(x,y), as a linear the modes implies that

combination of the mode&,(x) of the empty cavity:

(f; for=4 ikCio (6)

F(x,1) = > fl)AX), (4)  wheres, is Kronecker'sé function and theC, is the average
k=1 intensity of the modé&. However, we can expect situations in

whereM is the number of active modes, the overbar indi- which the above equation is not valid. This is the case, for
instance, when only two nearly degenerate modes are

cates complex conjugate, ahgﬂt) is the time-dependent am- present: the high pump solution is then a frequency locked

plitude of the mode. We usef,(t) in this equation instead of combination of the two modes. The frequency locking allows

f(t), the standard notation of laser physics, in order to make nontrivial interplay of phase invariance and spatial symme-
the notation simpler in the accompanying pap&r]. The try that can lead to “tilted” average patterns with maxima on
average intensity of the laser field is given by an axis tilted atr/4 with respect to the symmetry axes of the
laser[14]. With more than two modes, this type of patterns

— — can be observed when all modes of different parity with re-

(FP7r= E_ (fifiorA (OAX), (5 spect to inversion are frequency locked. With several active

b=t modes, this type of pattern is expected to be quite difficult to

where(- - -)rindicates the average in time over an inter¥al observe. More generally, there are two cases V\(rﬁﬁ_@T is

much longer than the natural time scale of the laser. Thaegligible. In the first, the Fourier spectra of the amplitudes
choice of7is based on the observation that, very roughly thedo not overlap: more precisely
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|gj(w)§((w’)| <1if|(w- )| <277, (7) Type |: The average intensity pattef®) is even(invari-
any under reflections and inversion if and only if all the

average productd;f,); between modes with different trans-
éormation properties are small, i.e., if

whereg;j(w) is the Fourier transform ofi(t). In the second
case, conditior{7) is not satisfied but there is a very strong
phase noise. Nonlinear oscillations of the amplitudes of th

modes produce also a broadening of their Fourier spectra. S0,G) <e, S(0y,G) <e, SR,,G)<e.
Therefore we expect that average amplitude products will
increase in strength at higher pump energies. Nonzero average amplitude products between modes with

From Eq.(5), one can see that the intensity of single the same transformation properties does not break any in-
mode solutions is even under inversion and under reflectiongariance and can be added to each of the following cases
with respect to thex andy axes. However, in general multi- Wwithout altering the result. S _ _
mode solutions are composed by modes with different trans- Type Il: The average pattern is invariant under inversion,
formation properties. From E@5) we know that in this case but not under reflection,
the average patterns are in general not symmetric. However,
the symmetry of a pattern is not an “all or nothing” property: S(0.G) > &, S0y.6) > ¢, SR,C) <,

a pattern can be “nearly” symmetric in the sense that a smajf the only average amplitude product between modes with
perturbation can make it symmetric. Moreover, the amountjfferent transformation properties that is small is between
of symmetry breaking is related to the overlap of the modemodes of the same parity with respect to inversiorodes
spectra. It is therefore important to define a measure of thgjth m of the same parityand of different parity with re-
symmetry of a pattern that can be used not only to ascertaigpect to reflections.

whether a pattern is or is not symmetric, but also how far = Type |1I: The average intensity is invariant with respect to

away from symmetry it may be. As an examplefis a  gne axis, but not with respect to inversion,
spatial transformation we can use as a measure of the sym-

metry with respect toy of a patternG(x) the function either S(oy,G) <&, Ho,,G) > ¢,

S(y,G) defined as or S0,0) <&, S0,0)> 8,} and S(R,,G) > &,

_ 2 if the only average amplitude product between modes with
L2|G(x) G(yx)[dxdy different transformation properties that is small is between
. modes of the same parity with respect to eitbgior oy, but
J |G(x)[?dxdy of different parity with respect to inversigmodes withm of
R2 different parity. The symmetry axis ix or y if the modes
(8) have the same transformation properties with respeef tr
) with respect tooy,.
If yis a symmetry of the patter@(x) then S(y,G)=0. Type IV: The average pattern does not have any symme-
Moreover, if y is “nearly” a symmetry then we can expect try,
S(v,G) to be small. In the rest of this section, when we write
that a patternG(x) has symmetryy we imply that S(0y,G) > ¢, H0y,G)>¢, SR,G)>e.
S(y,G) <&, wheree<1. What may be a reasonable choice
of the value ofe is an open question, to which we return in
the conclusions.

A very useful property oSis that it is possible to relate
the br_eakmg_ ofa symmetry with respect to reflectlmgsmd_ In general, the observation of the evolution of an average
oy or inversionsR. (rotations by with respect to the ori- pattern from the “most symmetric” caggpe I) to one of the
gin), to the magnitude of some of the produtfsfy): For  other “less symmetric” cases cannot be considered in a strict

example, if we indicate witls(x) the average intensity pat- mathematical sense an example of symmetry breaking, as the
tern defined in Eq(5), then, a pattern is symmetric with symmetry of type | patterns is in general not exact. However,

_l6x) - Gmlz _

G
9= e

if average amplitude products as in types Il and Ill are sig-
nificantly different from zero or there are at least two pairs of
non vanishing amplitude products as in type Il preserving
the invariance with respect to different axes.

respect to reflections about theaxis if the observation of a transition between different types of
_ atterns enables us to assess the presence of nonvanishin
) p p g
12 2 (fif0AA S amplitude products between modes of different parity di-
S(0G) <& = 2 <€ rectly from the average patterns. This is a very simple way to
IGI2

have experimental indication on the frequency spectra of the
where the sum is only over the modes with different paritymode dynamics in very fast systems. As an example of the
with respect tar,. We can use this property to infer from the type of information provided by this analysis, the observa-
symmetry of the average intensity patterns specific boundgon in astigmatic lasers of average patterns not invariant
on the average amplitude products. with respect to both symmetry axes provides a clear indica-
Considering the possible presence of non-vanishing amtion that the assumption that multimode laser emission is due
plitude products, but excluding the frequency locking de-to the incoherent superposition of modes is in many cases
scribed before, the following types of patterns may af&®®  wrong: the absence of symmetry is a clear indication that
Fig. 4 for a pictorial representation of all these cases modes of different parities are correlated one to the other.
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FIG. 4. Examples of intensity patterns of sums of modes with various types of symmetry. The images in the grey lines are the
Gauss-Hermite modes with indices{2,1,0,3,2,1,pandq={0,1,2,0,1,2, B(families withm=p+q={2, 3}, respectively from left to
right and top to bottom. The numbers above or to the left of each mode represent their parity with respeey,tandR , (rotations by),
respectively. The pattern at the crossing of ffoand columrk is a grey scale image of the intensity of mddplus one half of mod¢. The
letters on each intensity pattern refer to the classification given in the text. The two patterns of type IV on the right-hand side are the sum
of the modeg2,0), (1,1), and(3,0) (top: case of type Il and type Il product both significantly different from zemd(2,0), (3,0), and(0,3)
(bottom: case of two type Ill products both significantly different from zero, but with respect to different axes

Note that for the last two types of patterns there must bd-ourier transforms. The ordinary differential equations that
at least two families with different transformation propertiesrepresent the evolutions &f P, andN on the grid points are
under inversion. For modes almost unaffected by the apeintegrated using the variable-step—variable-order routive
ture, this implies that near and far field are different becausef the NETLIB library [25]. This code makes no assumptions
the difference of the Gouy phase for modes witlof differ-  on the dynamics of the laser, but is rather slow. We have
ent parity is an odd multiple ofr [22]. Furthermore, a pat- therefore used it only to check that the results of the second
tern in region 4 of Fig. 1, without any symmetry, but with the code are reliable.
far field that is just a rescaled version of the near field shows The second code is composed of two parts: the first finds
unambiguously that the the cavity does not possess any syrthe modes of the cavity, the second integrates the equations
metry. Therefore, the study of these patterns can provide #or the modal amplitudes. We have used the routieeev of
simple way to assess experimentally the presence of mighe Lapack library26] to find the cavity modes by comput-
alignments in a supposedly astigmatic cavity. It is straighting the representation of the right and left mode®p#(x),
forward to adapt this analysis to a different way of measuringand B,(x), respectively, on the basis of the Gauss-Hermite
the symmetry breaking, such, for instance, one based on thaodes.
maximum ofG(x) = G(yx). Once the modes of the cavity are known, it is possible to

project Eq.(1) onto them and obtain a set of ordinary differ-

V. SYMMETRY ANALYSIS OF AVERAGE INTENSITY ential equations for the amplitudes of the modes

PATTERNS

d

In order to validate the model described by EG9—~3) d_tfk_”kfk+ (B P)x. ©)
we have run a set of simulations to verify whether it could
reproduce the experimentally observed average patterns. We have used a Gaussian quadrature algorithm to compute
this purpose we have written two integration routines. Thethe projection integral in Eq9) and have represented the
first integrates the integro-differential equatiofis—(3) by  fields P andN on the nodes of the quadrature. The ordinary
representing the three fielés P, andN on a rectangular grid differential equations for the amplitudes of the modes and for
with periodic boundary conditions. The cavity propagationthe values of the field® and N on the nodes have been
operatorP, Eqg. (A5), has been rewritten in terms of convo- integrated using the routinepe. This program is much
lution products that can be efficiently computed using fastaster than the first one because fewer points are needed to
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FIG. 5. Gray scale image
(black high intensity of the aver-
age intensity pattern of a 0-0 pat-
tern (left) and power spectrum of
the intensity measured at the cen-
ter of the image. Cavity param-
eters as in the top center of Fig. 6.
Simulation parametersy=0.025,
R=0.94,6,=-2.76,x=1.3, super-
Gaussian pump of width 7.0,
48x 48 grid points, integration
time was 60 000 time units. The
average intensity was computed
using only the last 30 000 time
{_J__\_ units of the simulation data.
Frequency (arb.units)

Power Spectrum (arb.units)

compute accurately the projection integral in E9).than the  simulations we have set the decay rate of the population
propagation operator in Eql). Moreover, the number of inversion to 0.2=y=0.001 in units of the polarisation decay
relevant modes can be very small, as only the active moddime, the cavity round-trip time td.=1 in the same units
need to be considered. and the mirror reflectivity tdR=94%.

We have analyzed numerical simulations from five to We have run hundreds of simulations and have recorded
roughly fifty active modes for a ring laser where the propa-the average intensity patterns of each of them. As in the
gation from the aperture to the active medium is representeexperiments, we concentrate initially on regular patterns. We
by the sameABCD matrices of the Fabry-Pérot cavities usedhave reproduced the patterns of type 1-1, 1-0, and 0-0 of
in Refs.[1,3]. As our working hypothesis is that the averageRefs.[1,3] (see Fig. 5 for a 0-0 pattern and the top left and
intensity patterns are independent of the nature of the activeenter images in Fig. 6 for a 1-1 and 1-0 pattern, respec-
medium, we have chosen the medium parameters in thevely) in some range of parameters.
simulations to be relevant to the experiments of REES3], These patterns have two orthogonal symmetry axes and,
but with no claim to give a faithful representation of the in terms of symmetry and average amplitude products, are
active medium used in the experiment. Therefore, in allpart of the larger family of patterns of type I, according to
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FIG. 6. Average patterns and their average amplitude products. Gray scale ifbgishigh intensity of average intensity patterns
(top) and of the corresponding average amplitude products between rtimtasm). The names of the groupings, e.g., “even-odd,” refer to
the symmetry of the modes with respectdpand ay. See text for more details. The highest values of the product{@89,0.06,0.93
Cavity parameters. Left and right image§;=D,=0.931 5554 ,B,=0.037 6978 A,=D,=0.929 3088 ,B,=0.038 889 879, on axis circular
aperture with radiuR,=3.0. Center imageA,=D,=0.924 696 B,=0.025 300A,=D,=0.921 026 B,=0.026 482 76, on axis circular aper-
ture with radiusR,=3.5. In both cases 256256 grid and 496 Gauss-Hermite modes were used to obtain the cavity modes. Simulation
parametersR=0.94, 5,={1.876,3.12,1.876 pump either flat(left and center or Gaussian of width 3.2%right) with amplitude y
={1.55,1.15,2.8 48X 48 grid points, integration time was 80 000 time units. The average intensity and the products were computed using
only the last 40 000 time units of the simulation data.
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the classification in Sec. IV. More specifically, they are madecertainly a valid tool for the analysis of average intensity
up by modes of a single family which are only weakly per- patterns in lasers. In particular, the model described by Egs.
turbed by the aperture: each mode is composed by a strongl{)—(3) is ideally suited to analyse in detail the connection
dominant Gauss-Hermite mode with a small contributionpetween symmetry and average amplitude products predicted

from the other Gauss-Hermite modes. As a rule of thumbin the previous section because of its faithfulness to the ex-
two conditions for the numerical observation of these patperiment and its computational efficiency.

terns are that the fraction of gain line above threshold is not A first result is shown in Fig. 6 where the average ampli-

larger than the frequency separatidm; between consecu- ,de product between modes are shown underneath the cor-
tive families of modes and that the index of the reso”a”Pesponding average intensity patterns. The shading of the
square in rowi and columnj in the product checker-boards

r(10rresp0nds to the average product between the cavity

the experimental section. The structural changes of avera X S NN .
patterns for fixed detuning and increasing pump are as fo%%OdeS' andj, with black (white) indicating highestzerg

lows. If the laser is resonant with a family of index then, average pf"d“?t- In all three cases the modes all belong to a
increasing the pump, the laser goes from a single mode sc?—'ngle family with number of modesi={4,7,4 from left to

lution, with a very small region of stability, to a “target pat- n_ght. The average intensity of each mode has been <’_:1I"[If|-
tern” with almost cylindrical rings in which all modes of the Cially set to zero. The modes have been grouped according to
resonant family have similar energy. In between these twdheir parity with respect tar, and oy. In the case of the
regimes, one can observe tilted average patterns due to moBatterns on the left and at the center of Fig. 6, symmetric
locking, but their window of stability is quite small. Further With respect too, and oy, the average amplitude products
increasing the pump, one can observe a regular pattern &etween modes of the same parity are much stronger than
type 0-0 or 1-1 ifm is even and regular patterns of type 1-0 between modes of different parity. In the case of the right-
or 0-1 if mis odd. For target patterns and regular patternsmost pattern the products between modes of opposite parity
nonvanishing average amplitude products are observed onff€ particularly strong and the only symmetry of the average
between modes with the same transformation properties. THeattern is the inversion with respect to the origin. _
regular structure is lost at higher values of the pump, either The simulations confirm the importance of including
through a change in the distribution of energy among thedstigmatism and symmetry breaking in the model. Average
family modes, or through the appearance of modes of a difPatterns in an astigmatic las¢top left of Fig. § differ sub-
ferent index. Due to the broadening of the modes’ spectra atantially from average patterns in a laser with cylindrical
higher pump, it is often possible to observe nonvanishinggymmetry(Fig. 7) even for values of the pump for which the
products that lead to breaking of the average symmetrygOlutions are no longer symmetric. This is due to the fact that
Starting instead from a regular pattern made up by modes dhe; spatial structure of the cavity modes and their losses or
the family with indexm and changing detuning with fixed 9ains are affected by the overall symmetry of the system,
pump, we observe loss of regu'arity due to some modes g@Ven when the Symmetry in the SpatiO-tempOI‘al solutions is
ing off resonance and others getting into resonance. Thedglly broken.
results allow us to provide a qualitative explanation of the
features of Fig. 1. No regular patterns can be observed for
detuningAv;~ Av,, as in this case families of different in-
dexm are not separated in frequency from one another. In- Average intensity patterns are fundamental to the study of
cidentally, we note that this is the region where it is mostmultimode dynamics in intermediate Fresnel number lasers
likely to observe patterns of types Il and IV with average because they are essentially the only patterns that can be
amplitude products between modes with different inderes studied experimentally. The temporal behaviour of the inten-
Beyond this very narrow regiofnot shown in Fig. 1, there  sity can be measured only at a few points in the transverse
is a boundary between the zone where regular patterns asection of the beam. It is even harder to measure the phase of
observed and the zone where they are not observed. Thke field.
presence of this boundary and its quadratic dependence on In this paper we have highlighted some of the intriguing
Avg can be explained as follows. A¥; increases, the num- features of these patterns and have shown what information
ber of families with very similar losses increases. It is thencan and cannot be gleamed from them. The laser dynamics in
necessary to have larger values of; to be able to have the parameter regions studied here is often irregular. More-
only one active family. The quadratic dependence of theover, simulations with the same parameter values but differ-
boundary fromA v+ is due to the quadratic dependence of theent initial conditions may evolve in different regions of
gain from Av. The observation for the same value of the phase spacéeven though it is not possible to exclude that
pump of a different regular pattern made up by modes of thé¢he full exploration of the available phase space takes a time
family with index m’ # m is possible if the losses of the much longer than the ones we used in the numerical integra-
modes of the two families are similar anchif <m,,. Due to  tions).
the dependence of losses from the aperture, the likelihood of Yet, we have shown that when specific conditions on the
this event increases with;. dynamics and the average time are satisfied, average inten-
The comparison between regular patterns in numericasity patterns are almost stationary and do not depend much
simulations of Egs(1)—(3) and in the experimental results of on the details of the dynamics or to the parameters of the
Refs.[1,3] shows that the model proposed in this paper islasers. In other words, there are conditions under which av-

VI. CONCLUSION
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0 /2 6 n
. FIG. 8. Plots of(y,G), wherevy is the reflection with respect to
an axis at an anglé with the horizontal. The patter@ used for the

left graph is the average intensity pattern shown in the top center of
Fig. 6. The one used for the right graph is the experimental pattern
furthest to the left in Fig. 2

Fig. 2: we can see that the illumination of the beam is not
uniform, probably due to some residual misalignment that is
small enough not to affect the geometry of the pattern. The
image looks similar to having two axes of symmetry slightly

tited with respect to the horizontal and the vertical. This

impression is confirmed by the graph 8fshown on the

FIG. 7. Gray scale imagéblack high intensity of the average . ; . oo .
intensity pattern of an axially symmetric laser. This figure should be”gh'['hand side of Fig. 8, but it is an open question how

compared with the pattern on the left of Fig. 6 obtained for ansignificant a measure of symmetry the troughs and peaks of

astigmatic cavity. The parameters are the same as in the left pa\ttemis graph are vv_h_en compared to _the average valus. of
of with the exception that the cavity parameters in thandy  Moreover, the minimum ag=3/4 is much smaller than

directions are the same. the minimum at=7/20 even though the latter corresponds
to a “real” symmetry of the pattern while the former is an
erage patterns have universal features. This is confirmed ertifact of the nonuniform illumination. Definite answers to
perimentally by the fact that the same type of patterns havehese problems can only be obtained by new experiments
been observed in very different types of lasers. Indeed Weargeted at measuring the intrinsic symmetries of the patterns
have shown in Sec. V that the amount of symmetry breakingyng by further refining theoretical tools to measure symme-

of average patterns of an astigmatic laser, assuming perfegl;, of which Eq.(8) is just a first example.
D, symmetry, is a good indication of the overlapping of fre-

quency spectra between different families of modes. For ex-
ample, even though the dynamics may be irregular, from the APPENDIX: DERIVATION OF THE MODEL
average symmetry we can infer features of the spectra of the

cavity modes. For simplicity we assume that the laser under study is a

The importance of the symmetry of the pattern begs th ing cavity gas laser with approximate cylindrical symmetry.

question of how this can be measured and how sensitive th& deriving the ondeI we follow Ref$24,27. We represent
measure is to experimental artifacts. In this paper we havéhe electric fieldF with a scalar slowly varying amplitude
introduced the functiors(y,G) defined in Eq.(8), to mea- [28] F,

sure the symmetry of a pattef®(x) with respect to a sym- R 1

metry y. However, the interpretation of its valugand, F(x,y,zt) = =[F(x,y,zH)e®a e + cc]. (A1)
hence, the choice of the parametein the analysis in Sec. 2

IV) is not straightforward and requires a precise knowledgeye adopt a Maxwell-Bloch model for the active medium,

of the cavity mode;. Consid_er the numerical pattern shown Aescribed a polarizatiorr?’ and a population inversioi,
the top center of Fig. 6. This pattern appears to have reflec- ~

tion symmetry with respect to the horizontal and the verticalMOreover, the amplitud® of the polarization is also slowly
We have therefore computediy,G) for this pattern where Varying:

v=v(0) is the reflection with respect to an axis that forms an . 1r~ )

angle # with the horizontal. Its graph as a function 6fis P(x,y,zt) = E[P(X,y,zyt)e'(k’*z_“”*t) + C-C-]- (A2)
shown on the left-hand side of Fig. 8. The function is zero at

0={0,7/2} as expected. However, its value is always veryln Egs.(Al), (A2) wp=ck, is the frequency of the atomic
small, a consequence of the fact that the modulation of théransition, withc the speed of light ankl, the corresponding
intensity on the rings is very small: in other words, accordingwave number. All the coordinates in these equations are non-
to this measure the pattern has “nearly” cylindrical symmetrydimensional: the longitudinal coordinatehat runs along the
because the depth of the modulation of the rings is relativelyxis of the cavity is scaled with the cavity lendth so that
small. As another example, consider the leftmost image irthe dependence of any field ais periodic of period 1. Time
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t is scaled to the polarisation decay time. The transverse OF 1 F ~ )
coordinatex andy are scaled to the minimum beam waist in 7 ol - @PtOuR 0z’ <L. (A7)
their respective directions, andw,. The amplitudes- and

P are assumed to be varying mandt much more slowly h ffici . i b he electri
thank, and w, (slowly varying approximationso that the T e coefficienta IS a coupling constant between the e gctrlc
A A ~ ) field and the medium and ultimately represents the gain seen
second derivatives oF and P with respect toz andt in  py the field. The linear operatad,, represents the effect of
Maxwell's wave equation can be neglected with respect tqne propagation inside the medium. We assume that it is in-
their first derivativeq28]. , dependent of the longitudinal coordinatgi.e., we assume
We set the origin of the coordinate at the entrance of the tnat the active medium is optically homogeneous in the lon-
active medium. This therefore occupies the regieaz3<L. gitudinal direction.
The aperture is located at the exit of the active mediam In the coordinate€A6) the boundary conditioiA4) on

:L) and is assumed to be |nf|n|te|y thil’l, perfecﬂy absorbingEq_ (A?) becomes an equa' time boundary condition
and with negligible edge effects. It is represented in this

model as & function F(x,Y,0,t') = POF(XY,L,t). (A8)
0,(xy) = 1 if (x,y) is inside the aperture, (A3 (i ) The mean field limitThe only essential hypothesis
A 0 otherwise. underlying Eq(A7) and its boundary condition is the slowly

i _ varying amplitude approximation. In order to simplify them
Finally, for convenience sake we assume that the plane of th th introd the fields’ andP’ defined
aperture is a symmetry plane of the cavity. This assumptio Hrther we introduce the fie an elined as averages

is not essential for the validity of the following steps, but of F andP, respectively, ovees att/ fixed:
makes the algebra a little simpler. The derivation of the
model consists of four parts. ) ,

(i) Propagation outside the active mediuffhe propaga- Frixyt)= Efo
tion of the slowly varying amplitude of the electric field in
the part of the cavity outside the active medium is repre-
sented by a propagation operatBrthat relates the field at - 1t~
the entrance of the active medium to that immediately after P'(xyt') = Ef P(x,y,z',t")dz . (A9)
the aperture 0

L
F(x,y,z',t")dZ,

Note that this average corresponds to an average bver
(unprimed coordinabdealong the active medium and an aver-

. o age ovelt over one cavity round trip. We ultimately want to
In terms of theABCD matrices[18] of the cavity in the(x,2)  yse these average fields to represent the exact fietasl P.
plane(Ay, By, Cx,Dy) and the(y, z) plane(Ay,By,Cy,Dy), the  For this to be a valid approximation, we must therefore as-
propagation equatio®4) can be written as sume that the space-time variationsFofand, eventuallyP)

are on a length scale longer than the length of the active

1-L
F(x,y,1,t) :PG)AF[x,y,L,t— T} (A4)

Fxy, 1.0 _ medium and on a time scale longer than the cavity round trip
- R (1B, (A2 216+D, )18, (A =267 D ) (i.e., low gain and mirror reflectivity close t0).1This ap-
= BB L ) Y Y proximation holds in the C®laser described in Sec. Il
/B.By

where the ratio of the saturated gain to the loss coefficients is
1-L of the order of 10.
X F[g’ mb.t- T}dgd”’ (AS) We average EqA7) according to EqS(A9) use(A8) and
take the limit of infinitely short active mediur(L —0) to
where dy=k, mod,, is the phase shift accumulated by the gptain
reference frequency per round trip. We have included the
effect of the aperture by restricting the integration domain to JE’ 5
its area, as indicated by the symbgl. The coefficientR is — ==c[ld = POAIF'(x,y,L,t') +xP',  (A10)
the total reflectance of the mirrors in the cavity and measures
the amplitude loss during propagation. This equation or,
equivalently, Eq(A4) express the boundary conditions for whereP is the propagator across the entire cavity starting at

the evolution of the field inside the active medium. z=0 andy=alL, is the gain per unit pagpump parametgr
(i) Propagation in the active mediurithe equation for (iv) The material equation€Equation(A10) for the elec-
the propagation of the electric field in the active medium istric field must be coupled to the equations for the polariza-
most conveniently written in terms of the variab[es]] tion and the population inversion. For a standard Maxwell-
Bloch model of a two-level system these can be written as
’=t+¥z, 7=z (AB)
L c =

P BiF+NF (A11)
and reads o ’
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N 1 P
%:-7[N+%(FP+C.C)] (A12) oo PHXFAEN, (A14)

where y is the population inversion decay rate. We apply to

these_eq_uations exa_lctly the same proced_ure followed _for the N - _ y{N + }(FE+ EP)} , (A15)

electric field. In particular, we change variables according to ot 2

Eqg. (A6) and average as in E¢A9). In doing so we assume

that the material is homogeneous along the cavity axis andhere we have dropped all the primes and whéefe

that the variations of the two fields with are sufficiently =-c[Id-P6,]. These equations constitute the model that

small that we can approximate the average of the produake analyze in this paper.

with the product of the averages. As a final step, we scale the Before concluding this section we remark that it is pos-

polarization and the population inversion with the pump pasible to derive equations similar to Eq#13)«A15) for a

rameterP’=X5 and N’=XN, so that Eq.(A10)«A12) be-  Fabry-Pérot cavity provided that the population inversion

come grating induced by the standing wave nature of the electric
field can be neglectef®9]. The main obstacle in the deriva-

(A13) tion is the expression of the boundary conditions in terms of

JF
— =LF+P, .
ot the propagation operator.
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