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Using a realistic model of wide aperture, weakly astigmatic lasers we develop a framework to analyze
experimental average intensity patterns. We use the model to explain the appearance of patterns in terms of the
modes of the cavity and to show that the breaking of the symmetry of the average intensity patterns is caused
by overlaps in the frequency spectra of nonvanishing of modes with different parity. This result can be used
even in systems with very fast dynamics to detect experimentally overlaps of frequency spectra of modes.
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I. INTRODUCTION

Time averaged patterns are the most common way to
characterise the spatial complexity of large aperture lasers
operating in the multimode regime. These patterns are ge-
neric: observation on CO2 lasers[1–3] and solid state micro-
chip lasers[4] are strikingly similar despite the differences
between the physical processes involved in the emission of
light. Moreover, average patterns are “robust,” in the sense
that they are insensitive to the details of the dynamics. For
example, they may have an ordered appearance even though
the underlying dynamics is not regular. This is true for opti-
cal patterns[1–5] as well as for patterns observed in hydro-
dynamics experiments involving thermal convection[6], sur-
face waves[7–9], or electroconvection[10] where the slow
dynamics allows for easy visualization of the instantaneous
wave patterns. Arguably the appearance of average patterns
in hydrodynamics is influenced by the boundaries[10,11]
and their symmetries. An analogous situation holds for la-
sers: average intensity patterns in cavities with low Fresnel
number clearly reflect the structure of the empty cavity
modes [1,3,4]. Patterns in large Fresnel number cavities,
where the effect of the curved mirrors is weakened, have an
apparently rectangular symmetry. However, the shape and
symmetry of average patterns vary as the control parameters
are changed. A careful analysis shows that these variations
depend upon the energy and the average products of ampli-
tudes of different modes, which we call average amplitude
products in the following. Therefore, the study of average
patterns provides useful information especially in systems,
such as lasers, where the instantaneous intensity patterns are
not generally measurable due to the fast time scales of the
dynamics. In fact, instantaneous measurement of the inten-
sity pattern of a wide aperture laser are possible[12,13] as
snapshots taken at different times in different pulses. It is not
yet possible to measure the instantaneous intensity pattern of
a laser over a continuous stretch of time. Even more difficult
is to gather the phase information needed to reconstruct the
field from the intensity.

The aim of this paper is to clarify some of the issues
relating to average intensity patterns in medium Fresnel
number lasers, i.e. patterns that are generated by the coupled
dynamics of five to twenty modes away from the laser
switching on threshold(first threshold), a situation very eas-
ily obtained in experiments. The number of modes is too
high for the analytical study of the normal forms of the laser
[14] and it is too low for order parameter equations[15,16].
Furthermore, both these techniques can be applied safely
only close to first threshold, a condition that does not apply
to the experiments we are considering.

The experimental observations in a CO2 laser, detailed in
Ref. [1,3] and summarized here in Sec. II, show that as the
detuning of the cavity with respect to the atomic line is var-
ied, different average intensity patterns appear. Some of them
can be reproduced by incoherent superposition of Gauss-
Hermite modes[3] that belong to the same family, minimize
the spatial hole burning and maximize the energy extraction
from the pump. Most patterns, however, do not fit this
scheme.

The same type of patterns of Refs.[1,3] were observed in
a microchip laser in Ref.[4]. The results of both experiments
lead to many open questions which we address in this paper.
First of all, we investigate the effect of the hard apertures
present in the experiment of Ref.[3] on the modes of the
cavity and on average patterns. Then we consider what is the
most efficient modal description of the average intensity pat-
terns far away from threshold. Finally, we investigate the
role of symmetry: as a general rule, average patterns are
more symmetric than the spatiotemporal dynamics of the la-
ser from which they originate. We show how average sym-
metry can be used to analyze average amplitude products.

We address the above questions by calculating the modes
of a cavity with intracavity aperture and deriving a model of
the experimental laser from first principles. We integrate it
numerically, both using the full integral-differential equa-
tions and by using a decomposition of the field into empty
cavity modes. Both these techniques produce average pat-
terns that are in good agreement with experimental patterns
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of a CO2 laser. We then use the model to study in detail
aspects of laser patterns that extend the results of the experi-
ments of Refs.[1,3,4]. In the following paper[17] we ana-
lyze the spatiotemporal complexity of the average patterns
and its behaviour as the intensity of the pump is increased.

The rest of the paper is organized as follows. In Sec. II we
describe the experimental setup and summarise the experi-
mental observations on average patterns in CO2 lasers oper-
ated in the domain of intermediate complexity. We derive a
model of the experimental laser and analyze its modes in
Sec. III. Section IV contains a theoretical analysis of the
symmetry of the average patterns that is used in Sec. V to
analyze numerical average intensity patterns. In the conclu-
sions of this first paper we discuss briefly measures of sym-
metry and their application to experimental and numerical
patterns.

II. EXPERIMENTAL RESULTS

The experimental patterns relevant to the analysis in this
paper have been observed[1,3] at intermediate Fresnel num-
bers s1,Nf ,6d in a wide aperture, astigmatic CO2 laser
whose modes are approximately Gauss-Hermite modes[18].
The astigmatism, caused by Brewster windows, lifts the fre-
quency degeneracy of the modes that belong to the same
family by introducing an intermode frequency splittingDa
.200 kHz. Moreover, an iris present in the cavity to control
its aperture, modifies deeply the structure of the wider cavity
modes so that they can no longer be considered as Gauss-
Hermite modes(see Sec. III). The experimental control pa-
rameters are as follows.

(1) The Fresnel numberNf =S/ spS0d, i.e., the ratio of the
cavity aperture areaS to the fundamental mode maximal area
S0. Nf is an evaluator of the maximum transverse family
index that can oscillate within the laser with small diffraction
losses.

(2) The transverse interfamily frequency spacingDnT [18]
that rules the strength of the interaction between transverse
modes belonging to different families. Since this quantity
sDnT=0–5 MHzd is always much smaller than the homoge-
neous linewidth sDnH=500–700 MHzd, multitransverse
mode operation is possible in our large area laser. However,
by keeping the pump sufficiently low it is also possible to
excite a single family of modes.

(3) The position of the different family modes with re-
spect to the center of the gain line.

The general phenomenology of the experimentally ob-
served patterns is depicted in Fig. 1. At low Fresnel numbers,
typically Nf .1, only the first two or three transverse fami-
lies may oscillate. This domain has been extensively inves-
tigated (see, e.g., Refs.[19–21]). In regions 2(3), compli-
cated patterns are observed with an intricate radio-frequency
spectrum of the intensity at any point in the transverse pro-
file. However for some particular settings of the cavity, this
spectrum simplifies into regularly spaced clusters(Fig. 4 of
Ref. [1]) associated to circular(region 2) and rectangular
(region 3) pattern lattices that we call regular patterns(see
Fig. 2 of Ref. [1] for images of regular patterns and Refs.
[1,3] for an extensive discussion of their properties). This
does not occur in region 4 where radio-frequency spectra and
transverse patterns are always complicated. Regular patterns
are classified as 0-0, 0-1, 1-0, or 1-1 according to whether
they have minima(0) or maxima(1) of the intensity on the
two symmetry axes.

In this paper we focus our attention to patterns in region 2
of Fig. 1. Here regular patterns are common, but not generic.
In Fig. 2, for example, we show how there is an entire spec-
trum of “irregular” patterns that connects regular patterns as
the cavity detuning is changed.

The relatively frequent appearance of regular patterns in
the experiment is a minimal test to validate a model of the
experiment: simulations should be able to produce regular
patterns for appropriate values of the parameters. In particu-
lar, in all regular patterns the near field and the far field
remain the same, indicating that the patterns are composed of
modes of the same transverse family. Indeed, the Gouy phase

FIG. 1. Schematic representation of the different regions of pat-
tern formation at a fixed pump value as a function of the Fresnel
numberNf and the intertransverse mode spacingDnT obtained from
the experimental results of Refs.[1,3]. See text for the characteristic
features of each region.

FIG. 2. Experimental near field images of the average intensity patterns showing a transition between a 1-0 regular pattern(far left) to
a 0-0 pattern(far right) through some irregular patterns as the cavity detuning is changed. The images are stationary patterns measured after
each change of the detuning.
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shift [22], which is different for each transverse family, in-
duces a far field different from the near field as soon as the
modes composing the pattern belong to at least two families
with indexesm of different parity.

Moreover, the number of rings varies from 1 to 6 follow-
ing a linear dependence law versusNf [1] as predicted by
Siegman[23]. In other words, the patterns obey the same
scaling laws versus the mode orderm as the Gauss-Hermite
or Gauss-Laguerre modes of the empty cavity. This is an
indication that the observed ring patterns should be well de-
scribed by the empty cavity modes, the Gauss-Hermite
modes. In fact, in Ref.[3] it was shown that the regular
patterns can be reconstructed using theintensitiesof Gauss-
Hermite modes. This result is doubly significant: firstly it
indicates that the cavity modes are, at least in the case of the
observed patterns, very similar to Gauss-Hermite modes.
Secondly, the intensity of the field is the modulus square of
the sum of the modal amplitudes. This is equal to the sum of
the squares of the moduli of the modal amplitudes only if the
average amplitude products are negligible. We comment on
these two points in Secs. III and V, respectively.

III. THE MODEL

The observation of the same type of average patterns in
microchip and CO2 lasers suggests that they are determined
mainly by the geometry of the cavity rather than the nature
of the active medium. Therefore, in order to perform our
analysis, we improve the standard mean field limit Maxwell-
Bloch laser model[24] by describing in more detail the ge-
ometry of the cavity and the propagation of the field inside it.

For simplicity we assume that the laser under study is a
ring cavity gas laser with approximate cylindrical symmetry
(see the end of Appendix A for a brief discussion of Fabry-
Pérot cavities). The final equations are(A13)–(A15) repro-
duced here for convenience:

]F

]t
= LF + P, s1d

]P

]t
= − P + xF + FN, s2d

]N

]t
= − gFN +

1

2
sFP̄ + F̄PdG , s3d

whereFsx,y,td and Psx,y,td are the slowly varying ampli-
tudes of the electric field and polarization respectively,
Nsx,y,td is the population inversion,g is the decay rate of
the population inversion andx is the pump parameter. All
spatial and temporal variables are nondimensional andsx,yd
are the coordinates in the transverse plane. The propagation
across the cavity is taken into account by the operatorL
;−cfId−PQAg, wherec is the speed of light,P is the propa-
gation operator, defined in Eq.(A4), andQAsx,yd represents
the aperture, Eq.(A3). These equations constitute the model
that we analyze in this paper.

The modes of the cavity without aperture are Gauss-
Hermite modes[18]. The presence of the aperture couples

these modes together so that the new modes of the cavity are
the eigenvectors of the propagation operatorP defined in Eq.
(A5). Note that as long as the aperture is circular and centred
on the cavity axis, it does not change the rectangular sym-
metry of the cavity. As a consequence, the eigenvectors ofP
have definite parity and are either even or odd under reflec-
tions sx andsy about the symmetry axesx andy and under
inversionsxsy with respect to the origin. To find the modes
of the cavity we have projectedP on a large set of Gauss-
Hermite modes(all the modes with 0ømø30) obtaining an
approximate matrix representation of this operator. The re-
sults of the modal analysis are summarized in Fig. 3 and
confirm the intuitive hypothesis at the basis of the analysis of
the experimental patterns used in Ref.[3]: if the modes are
significantly narrower than the diameter of the aperture they
are nearly Gauss-Hermite modes in the sense that a single
Gauss-Hermite mode dominates the decomposition of the
cavity modes on the Gauss-Hermite basis. This is confirmed
by the graphs inserted in Fig. 3 that represent the modulus of
the coefficients of the expansion of selected cavity modes on
the basis of the Gauss-Hermite modes. Narrow cavity modes
form families with almost degenerate frequencies. Similarly
to the pure Gauss-Hermite modes, we can assign a labelm
PN to each family ofm+1 cavity modes. Modes of families
with m even are even under inversionsxsy. These modes can
be further divided into two subsets that are either even or odd
undersx andsy. Similarly, modes of families withm odd are
odd under inversion. These modes form two subsets, one of
modes even undersx and odd undersy, the other of modes
odd undersx and even undersy. However, as the diameter of
the modes increases the cavity modes become more and
more different from the Gauss-Hermite modes to the point
that they are no longer grouped in nearly degenerate fami-
lies, but span the entire free spectral range in a nearly con-
tinuous manner. Of course, as the modes become wider their
losses increase so that it becomes harder and harder to excite
them. As the diameter of the modes is related to the indexm,
the aperture determines the maximum indexmM such that for
all mømM the modes are almost Gauss-Hermite modes.

IV. SYMMETRY AND AVERAGE AMPLITUDE
PRODUCTS

Before studying numerically the average patterns in the
model, we analyze the symmetry of average intensity pat-
terns in an astigmatic laser and how this can be used to detect
the presence of nonvanishing average amplitude products.
We consider here patterns whose Fourier spectra have a dis-
crete number of peaks bounded away from zero, such as the
spectra in Fig. 4 of Ref.[1] and Fig. 5 here. Except for this
requirement, the analysis presented here is general and does
not depend upon the presence of an aperture. For laser with-
out apertures, or lasers whose cavity modes are only weakly
perturbed by the aperture, the symmetry of the average in-
tensity patterns reveals also if the laser near and far fields are
self-similar.

Many of the average intensity patterns observed in astig-
matic wide aperture CO2 [1,3] lasers and in microchip[4]
lasers presenting regularities(e.g.,sx andsy symmetry) fall
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into one of the regular patterns discussed previously. More-
over, the intensity patterns observed in the CO2 laser experi-
ment can be well reproduced by superpositions of the inten-
sity of subsets of the Gauss-Hermite modes of the empty
cavity, namely those modes that are nearly degenerate in
frequency and that are closest to resonance. This last obser-
vation implies that the average over long times of the prod-
ucts of amplitudes of pairs of modes is zero. This can be
shown to be valid for generic stable cavities by writing the
electric field of the laserFsx ,td, with x=sx,yd, as a linear
combination of the modesAksxd of the empty cavity:

Fsx,td = o
k=1

M

f̄kstdAksxd, s4d

where M is the number of active modes, the overbar indi-

cates complex conjugate, andf̄ kstd is the time-dependent am-

plitude of the modek. We usef̄ kstd in this equation instead of
fkstd, the standard notation of laser physics, in order to make
the notation simpler in the accompanying paper[17]. The
average intensity of the laser field is given by

kuFu2lT = o
j ,k=1

M

kf j f̄ klTĀjsxdAksxd, s5d

wherek¯lT indicates the average in time over an intervalT
much longer than the natural time scale of the laser. The
choice ofT is based on the observation that, very roughly the

spectrum in Fig. 5 suggests that the corresponding intensity
pattern is the superposition of weakly correlated modes each
oscillating at slightly different frequencies. Therefore we can
expect the recurrence time of the dynamics to be of the order
of the longest beating period between modes. We choose the
averaging timeT to be much longer than this estimate of the
recurrence time.

The requirement that the average intensity pattern is well
approximated by a linear superposition of the intensities of
the modes implies that

kf j f̄ klT = d jkCk, s6d

whered jk is Kronecker’sd function and theCk is the average
intensity of the modek. However, we can expect situations in
which the above equation is not valid. This is the case, for
instance, when only two nearly degenerate modes are
present: the high pump solution is then a frequency locked
combination of the two modes. The frequency locking allows
a nontrivial interplay of phase invariance and spatial symme-
try that can lead to “tilted” average patterns with maxima on
an axis tilted atp /4 with respect to the symmetry axes of the
laser[14]. With more than two modes, this type of patterns
can be observed when all modes of different parity with re-
spect to inversion are frequency locked. With several active
modes, this type of pattern is expected to be quite difficult to

observe. More generally, there are two cases whenkf j f̄ klT is
negligible. In the first, the Fourier spectra of the amplitudes
do not overlap: more precisely

FIG. 3. Point spectrum of the
propagation operator(A4) in the
complex plane. The circle has unit
radius: the closer the eigenvalues
are to it, the smaller the loss of
their corresponding cavity mode.
Only the eigenvalues with modu-
lus larger than 0.7 have been plot-
ted. Modes that have beam waist
smaller than the aperture radius
are essentially Gauss-Hermite
modes and have low losses. They
are also grouped in nearly degen-
erate families, as are the Gauss-
Hermite modes. The losses in-
crease with the beam waist and
large cavity modes are not well
identified with a single Gauss-
Hermite modes. The three inserts
contain a grey scale image of the
intensity of the selected cavity
mode and a graph of the modulus
of the coefficients of its expansion
on the basis of the Gauss-Hermite
modes of the aperture-less empty
cavity. The circles in the intensity
images have radius equal to five
beam waists.
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ugjsvdḡksv8du ! 1 if usv − v8du , 2p/T, s7d

wheregjsvd is the Fourier transform off jstd. In the second
case, condition(7) is not satisfied but there is a very strong
phase noise. Nonlinear oscillations of the amplitudes of the
modes produce also a broadening of their Fourier spectra.
Therefore we expect that average amplitude products will
increase in strength at higher pump energies.

From Eq. (5), one can see that the intensity of single
mode solutions is even under inversion and under reflections
with respect to thex andy axes. However, in general multi-
mode solutions are composed by modes with different trans-
formation properties. From Eq.(5) we know that in this case
the average patterns are in general not symmetric. However,
the symmetry of a pattern is not an “all or nothing” property:
a pattern can be “nearly” symmetric in the sense that a small
perturbation can make it symmetric. Moreover, the amount
of symmetry breaking is related to the overlap of the mode
spectra. It is therefore important to define a measure of the
symmetry of a pattern that can be used not only to ascertain
whether a pattern is or is not symmetric, but also how far
away from symmetry it may be. As an example, ifg is a
spatial transformation we can use as a measure of the sym-
metry with respect tog of a patternGsxd the function
Ssg ,Gd defined as

Ssg,Gd =
iGsxd − Gsgxdi2

2

iGsxdi2
2 ;

E
R2

uGsxd − Gsgxdu2dxdy

E
R2

uGsxdu2dxdy

.

s8d

If g is a symmetry of the patternGsxd then Ssg ,Gd=0.
Moreover, if g is “nearly” a symmetry then we can expect
Ssg ,Gd to be small. In the rest of this section, when we write
that a pattern Gsxd has symmetry g we imply that
Ssg ,Gd,«, where«!1. What may be a reasonable choice
of the value of« is an open question, to which we return in
the conclusions.

A very useful property ofS is that it is possible to relate
the breaking of a symmetry with respect to reflectionssx and
sy or inversionsRp (rotations byp with respect to the ori-

gin), to the magnitude of some of the productskf j f̄ klT. For
example, if we indicate withGsxd the average intensity pat-
tern defined in Eq.(5), then, a pattern is symmetric with
respect to reflections about thex axis if

Sssx,Gd , « ⇔
i2o kf j f̄ klTĀkAji2

2

iGi2
2 , e,

where the sum is only over the modes with different parity
with respect tosx. We can use this property to infer from the
symmetry of the average intensity patterns specific bounds
on the average amplitude products.

Considering the possible presence of non-vanishing am-
plitude products, but excluding the frequency locking de-
scribed before, the following types of patterns may arise(see
Fig. 4 for a pictorial representation of all these cases).

Type I: The average intensity pattern(5) is even(invari-
ant) under reflections and inversion if and only if all the

average productskf j f̄ klT between modes with different trans-
formation properties are small, i.e., if

Sssx,Gd , «, Sssy,Gd , «, SsRp,Gd , «.

Nonzero average amplitude products between modes with
the same transformation properties does not break any in-
variance and can be added to each of the following cases
without altering the result.

Type II: The average pattern is invariant under inversion,
but not under reflection,

Sssx,Gd . «, Sssy,Gd . «, SsRp,Gd , «,

if the only average amplitude product between modes with
different transformation properties that is small is between
modes of the same parity with respect to inversion(modes
with m of the same parity) and of different parity with re-
spect to reflections.

Type III: The average intensity is invariant with respect to
one axis, but not with respect to inversion,

Heither Sssx,Gd , «, Sssy,Gd . «,

or Sssy,Gd , «, Sssx,Gd . «,
J and SsRp,Gd . «,

if the only average amplitude product between modes with
different transformation properties that is small is between
modes of the same parity with respect to eithersx or sy, but
of different parity with respect to inversion(modes withm of
different parity). The symmetry axis isx or y if the modes
have the same transformation properties with respect tosx or
with respect tosy.

Type IV: The average pattern does not have any symme-
try,

Sssx,Gd . «, Sssy,Gd . «, SsRp,Gd . «.

if average amplitude products as in types II and III are sig-
nificantly different from zero or there are at least two pairs of
non vanishing amplitude products as in type III preserving
the invariance with respect to different axes.

In general, the observation of the evolution of an average
pattern from the “most symmetric” case(type I) to one of the
other “less symmetric” cases cannot be considered in a strict
mathematical sense an example of symmetry breaking, as the
symmetry of type I patterns is in general not exact. However,
the observation of a transition between different types of
patterns enables us to assess the presence of nonvanishing
amplitude products between modes of different parity di-
rectly from the average patterns. This is a very simple way to
have experimental indication on the frequency spectra of the
mode dynamics in very fast systems. As an example of the
type of information provided by this analysis, the observa-
tion in astigmatic lasers of average patterns not invariant
with respect to both symmetry axes provides a clear indica-
tion that the assumption that multimode laser emission is due
to the incoherent superposition of modes is in many cases
wrong: the absence of symmetry is a clear indication that
modes of different parities are correlated one to the other.
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Note that for the last two types of patterns there must be
at least two families with different transformation properties
under inversion. For modes almost unaffected by the aper-
ture, this implies that near and far field are different because
the difference of the Gouy phase for modes withm of differ-
ent parity is an odd multiple ofp [22]. Furthermore, a pat-
tern in region 4 of Fig. 1, without any symmetry, but with the
far field that is just a rescaled version of the near field shows
unambiguously that the the cavity does not possess any sym-
metry. Therefore, the study of these patterns can provide a
simple way to assess experimentally the presence of mis-
alignments in a supposedly astigmatic cavity. It is straight-
forward to adapt this analysis to a different way of measuring
the symmetry breaking, such, for instance, one based on the
maximum ofGsxd−Gsgxd.

V. SYMMETRY ANALYSIS OF AVERAGE INTENSITY
PATTERNS

In order to validate the model described by Eqs.(1)–(3)
we have run a set of simulations to verify whether it could
reproduce the experimentally observed average patterns. To
this purpose we have written two integration routines. The
first integrates the integro-differential equations(1)–(3) by
representing the three fieldsF, P, andN on a rectangular grid
with periodic boundary conditions. The cavity propagation
operatorP, Eq. (A5), has been rewritten in terms of convo-
lution products that can be efficiently computed using fast

Fourier transforms. The ordinary differential equations that
represent the evolutions ofF, P, andN on the grid points are
integrated using the variable-step–variable-order routineODE

of the NETLIB library [25]. This code makes no assumptions
on the dynamics of the laser, but is rather slow. We have
therefore used it only to check that the results of the second
code are reliable.

The second code is composed of two parts: the first finds
the modes of the cavity, the second integrates the equations
for the modal amplitudes. We have used the routineZGEEV of
the Lapack library[26] to find the cavity modes by comput-
ing the representation of the right and left modes ofP, Aksxd,
and Bksxd, respectively, on the basis of the Gauss-Hermite
modes.

Once the modes of the cavity are known, it is possible to
project Eq.(1) onto them and obtain a set of ordinary differ-
ential equations for the amplitudes of the modes

d

dt
fk = mkfk + sBk,PdX. s9d

We have used a Gaussian quadrature algorithm to compute
the projection integral in Eq.(9) and have represented the
fields P andN on the nodes of the quadrature. The ordinary
differential equations for the amplitudes of the modes and for
the values of the fieldsP and N on the nodes have been
integrated using the routineODE. This program is much
faster than the first one because fewer points are needed to

FIG. 4. Examples of intensity patterns of sums of modes with various types of symmetry. The images in the grey lines are the
Gauss-Hermite modes with indicesp=h2,1,0,3,2,1,0j andq=h0,1,2,0,1,2,3j (families withm;p+q=h2,3j, respectively) from left to
right and top to bottom. The numbers above or to the left of each mode represent their parity with respect tosx, sy, andRp (rotations byp),
respectively. The pattern at the crossing of rowj and columnk is a grey scale image of the intensity of modek plus one half of modej . The
letters on each intensity pattern refer to the classification given in the text. The two patterns of type IV on the right-hand side are the sum
of the modes(2,0), (1,1), and(3,0) (top: case of type II and type III product both significantly different from zero) and(2,0), (3,0), and(0,3)
(bottom: case of two type III products both significantly different from zero, but with respect to different axes).
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compute accurately the projection integral in Eq.(9) than the
propagation operator in Eq.(1). Moreover, the number of
relevant modes can be very small, as only the active modes
need to be considered.

We have analyzed numerical simulations from five to
roughly fifty active modes for a ring laser where the propa-
gation from the aperture to the active medium is represented
by the sameABCDmatrices of the Fabry-Pérot cavities used
in Refs.[1,3]. As our working hypothesis is that the average
intensity patterns are independent of the nature of the active
medium, we have chosen the medium parameters in the
simulations to be relevant to the experiments of Refs.[1,3],
but with no claim to give a faithful representation of the
active medium used in the experiment. Therefore, in all

simulations we have set the decay rate of the population
inversion to 0.1ùgù0.001 in units of the polarisation decay
time, the cavity round-trip time toTc=1 in the same units
and the mirror reflectivity toR=94%.

We have run hundreds of simulations and have recorded
the average intensity patterns of each of them. As in the
experiments, we concentrate initially on regular patterns. We
have reproduced the patterns of type 1-1, 1-0, and 0-0 of
Refs.[1,3] (see Fig. 5 for a 0-0 pattern and the top left and
center images in Fig. 6 for a 1-1 and 1-0 pattern, respec-
tively) in some range of parameters.

These patterns have two orthogonal symmetry axes and,
in terms of symmetry and average amplitude products, are
part of the larger family of patterns of type I, according to

FIG. 5. Gray scale image
(black high intensity) of the aver-
age intensity pattern of a 0-0 pat-
tern (left) and power spectrum of
the intensity measured at the cen-
ter of the image. Cavity param-
eters as in the top center of Fig. 6.
Simulation parametersg=0.025,
R=0.94,dA=−2.76,x=1.3, super-
Gaussian pump of width 7.0,
48348 grid points, integration
time was 60 000 time units. The
average intensity was computed
using only the last 30 000 time
units of the simulation data.

FIG. 6. Average patterns and their average amplitude products. Gray scale images(black high intensity) of average intensity patterns
(top) and of the corresponding average amplitude products between modes(bottom). The names of the groupings, e.g., “even-odd,” refer to
the symmetry of the modes with respect tosx and sy. See text for more details. The highest values of the product are{0.30,0.06,0.93}.
Cavity parameters. Left and right images:Ax=Dx=0.931 5554,Bx=0.037 6978,Ay=Dy=0.929 3088,By=0.038 889 879, on axis circular
aperture with radiusRA=3.0. Center image:Ax=Dx=0.924 696,Bx=0.025 300,Ay=Dy=0.921 026,By=0.026 482 76, on axis circular aper-
ture with radiusRA=3.5. In both cases 2563256 grid and 496 Gauss-Hermite modes were used to obtain the cavity modes. Simulation
parametersR=0.94, dA=h1.876,3.12,1.876j, pump either flat(left and center) or Gaussian of width 3.25(right) with amplitude x
=h1.55,1.15,2.8j, 48348 grid points, integration time was 80 000 time units. The average intensity and the products were computed using
only the last 40 000 time units of the simulation data.
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the classification in Sec. IV. More specifically, they are made
up by modes of a single family which are only weakly per-
turbed by the aperture: each mode is composed by a strongly
dominant Gauss-Hermite mode with a small contribution
from the other Gauss-Hermite modes. As a rule of thumb,
two conditions for the numerical observation of these pat-
terns are that the fraction of gain line above threshold is not
larger than the frequency separationDnT between consecu-
tive families of modes and that the index of the resonant
family is m,mM. The energy distribution among the modes
of these patterns is in agreement with what is described in
the experimental section. The structural changes of average
patterns for fixed detuning and increasing pump are as fol-
lows. If the laser is resonant with a family of indexm, then,
increasing the pump, the laser goes from a single mode so-
lution, with a very small region of stability, to a “target pat-
tern” with almost cylindrical rings in which all modes of the
resonant family have similar energy. In between these two
regimes, one can observe tilted average patterns due to mode
locking, but their window of stability is quite small. Further
increasing the pump, one can observe a regular pattern of
type 0-0 or 1-1 ifm is even and regular patterns of type 1-0
or 0-1 if m is odd. For target patterns and regular patterns,
nonvanishing average amplitude products are observed only
between modes with the same transformation properties. The
regular structure is lost at higher values of the pump, either
through a change in the distribution of energy among the
family modes, or through the appearance of modes of a dif-
ferent index. Due to the broadening of the modes’ spectra at
higher pump, it is often possible to observe nonvanishing
products that lead to breaking of the average symmetry.
Starting instead from a regular pattern made up by modes of
the family with indexm and changing detuning with fixed
pump, we observe loss of regularity due to some modes go-
ing off resonance and others getting into resonance. These
results allow us to provide a qualitative explanation of the
features of Fig. 1. No regular patterns can be observed for
detuningDnT,Dna, as in this case families of different in-
dex m are not separated in frequency from one another. In-
cidentally, we note that this is the region where it is most
likely to observe patterns of types III and IV with average
amplitude products between modes with different indexesm.
Beyond this very narrow region(not shown in Fig. 1), there
is a boundary between the zone where regular patterns are
observed and the zone where they are not observed. The
presence of this boundary and its quadratic dependence on
DnT can be explained as follows. AsNf increases, the num-
ber of families with very similar losses increases. It is then
necessary to have larger values ofDnT to be able to have
only one active family. The quadratic dependence of the
boundary fromDnT is due to the quadratic dependence of the
gain from DnT. The observation for the same value of the
pump of a different regular pattern made up by modes of the
family with index m8Þm is possible if the losses of the
modes of the two families are similar and ifm8,mM. Due to
the dependence of losses from the aperture, the likelihood of
this event increases withNf.

The comparison between regular patterns in numerical
simulations of Eqs.(1)–(3) and in the experimental results of
Refs. [1,3] shows that the model proposed in this paper is

certainly a valid tool for the analysis of average intensity
patterns in lasers. In particular, the model described by Eqs.
(1)–(3) is ideally suited to analyse in detail the connection
between symmetry and average amplitude products predicted
in the previous section because of its faithfulness to the ex-
periment and its computational efficiency.

A first result is shown in Fig. 6 where the average ampli-
tude product between modes are shown underneath the cor-
responding average intensity patterns. The shading of the
square in rowi and columnj in the product checker-boards
corresponds to the average product between the cavity
modesi and j , with black (white) indicating highest(zero)
average product. In all three cases the modes all belong to a
single family with number of modesm=h4,7,4j from left to
right. The average intensity of each mode has been artifi-
cially set to zero. The modes have been grouped according to
their parity with respect tosx and sy. In the case of the
patterns on the left and at the center of Fig. 6, symmetric
with respect tosx and sy, the average amplitude products
between modes of the same parity are much stronger than
between modes of different parity. In the case of the right-
most pattern the products between modes of opposite parity
are particularly strong and the only symmetry of the average
pattern is the inversion with respect to the origin.

The simulations confirm the importance of including
astigmatism and symmetry breaking in the model. Average
patterns in an astigmatic laser(top left of Fig. 6) differ sub-
stantially from average patterns in a laser with cylindrical
symmetry(Fig. 7) even for values of the pump for which the
solutions are no longer symmetric. This is due to the fact that
the spatial structure of the cavity modes and their losses or
gains are affected by the overall symmetry of the system,
even when the symmetry in the spatio-temporal solutions is
fully broken.

VI. CONCLUSION

Average intensity patterns are fundamental to the study of
multimode dynamics in intermediate Fresnel number lasers
because they are essentially the only patterns that can be
studied experimentally. The temporal behaviour of the inten-
sity can be measured only at a few points in the transverse
section of the beam. It is even harder to measure the phase of
the field.

In this paper we have highlighted some of the intriguing
features of these patterns and have shown what information
can and cannot be gleamed from them. The laser dynamics in
the parameter regions studied here is often irregular. More-
over, simulations with the same parameter values but differ-
ent initial conditions may evolve in different regions of
phase space(even though it is not possible to exclude that
the full exploration of the available phase space takes a time
much longer than the ones we used in the numerical integra-
tions).

Yet, we have shown that when specific conditions on the
dynamics and the average time are satisfied, average inten-
sity patterns are almost stationary and do not depend much
on the details of the dynamics or to the parameters of the
lasers. In other words, there are conditions under which av-
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erage patterns have universal features. This is confirmed ex-
perimentally by the fact that the same type of patterns have
been observed in very different types of lasers. Indeed we
have shown in Sec. V that the amount of symmetry breaking
of average patterns of an astigmatic laser, assuming perfect
D2 symmetry, is a good indication of the overlapping of fre-
quency spectra between different families of modes. For ex-
ample, even though the dynamics may be irregular, from the
average symmetry we can infer features of the spectra of the
cavity modes.

The importance of the symmetry of the pattern begs the
question of how this can be measured and how sensitive the
measure is to experimental artifacts. In this paper we have
introduced the functionSsg ,Gd defined in Eq.(8), to mea-
sure the symmetry of a patternGsxd with respect to a sym-
metry g. However, the interpretation of its values(and,
hence, the choice of the parameter« in the analysis in Sec.
IV ) is not straightforward and requires a precise knowledge
of the cavity modes. Consider the numerical pattern shown at
the top center of Fig. 6. This pattern appears to have reflec-
tion symmetry with respect to the horizontal and the vertical.
We have therefore computedSsg ,Gd for this pattern where
g;gsud is the reflection with respect to an axis that forms an
angleu with the horizontal. Its graph as a function ofu is
shown on the left-hand side of Fig. 8. The function is zero at
u=h0,p /2j as expected. However, its value is always very
small, a consequence of the fact that the modulation of the
intensity on the rings is very small: in other words, according
to this measure the pattern has “nearly” cylindrical symmetry
because the depth of the modulation of the rings is relatively
small. As another example, consider the leftmost image in

Fig. 2: we can see that the illumination of the beam is not
uniform, probably due to some residual misalignment that is
small enough not to affect the geometry of the pattern. The
image looks similar to having two axes of symmetry slightly
tilted with respect to the horizontal and the vertical. This
impression is confirmed by the graph ofS shown on the
right-hand side of Fig. 8, but it is an open question how
significant a measure of symmetry the troughs and peaks of
this graph are when compared to the average value ofS.
Moreover, the minimum atu.3/4p is much smaller than
the minimum atu.p /20 even though the latter corresponds
to a “real” symmetry of the pattern while the former is an
artifact of the nonuniform illumination. Definite answers to
these problems can only be obtained by new experiments
targeted at measuring the intrinsic symmetries of the patterns
and by further refining theoretical tools to measure symme-
try, of which Eq.(8) is just a first example.

APPENDIX: DERIVATION OF THE MODEL

For simplicity we assume that the laser under study is a
ring cavity gas laser with approximate cylindrical symmetry.
In deriving the model we follow Refs.[24,27]. We represent

the electric fieldF̂ with a scalar slowly varying amplitude
[28] F,

F̂sx,y,z,td =
1

2
fFsx,y,z,tdeiskAz−vAtd + c.c.g. sA1d

We adopt a Maxwell-Bloch model for the active medium,

described a polarizationP̂ and a population inversionN.

Moreover, the amplitudeP̃ of the polarization is also slowly
varying:

P̂sx,y,z,td =
1

2
fP̃sx,y,z,tdeiskAz−vAtd + c.c.g . sA2d

In Eqs. (A1), (A2) vA=ckA is the frequency of the atomic
transition, withc the speed of light andkA the corresponding
wave number. All the coordinates in these equations are non-
dimensional: the longitudinal coordinatez that runs along the
axis of the cavity is scaled with the cavity lengthLC so that
the dependence of any field onz is periodic of period 1. Time

FIG. 7. Gray scale image(black high intensity) of the average
intensity pattern of an axially symmetric laser. This figure should be
compared with the pattern on the left of Fig. 6 obtained for an
astigmatic cavity. The parameters are the same as in the left pattern
of with the exception that the cavity parameters in thex and y
directions are the same.

FIG. 8. Plots ofSsg ,Gd, whereg is the reflection with respect to
an axis at an angleu with the horizontal. The patternG used for the
left graph is the average intensity pattern shown in the top center of
Fig. 6. The one used for the right graph is the experimental pattern
furthest to the left in Fig. 2
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t is scaled to the polarisation decay time. The transverse
coordinatesx andy are scaled to the minimum beam waist in
their respective directionswx andwy. The amplitudesF and
P are assumed to be varying inz and t much more slowly
than kA and vA (slowly varying approximation) so that the

second derivatives ofF and P̃ with respect toz and t in
Maxwell’s wave equation can be neglected with respect to
their first derivatives[28].

We set the origin of thez coordinate at the entrance of the
active medium. This therefore occupies the region 0øzøL.
The aperture is located at the exit of the active mediumsz
=Ld and is assumed to be infinitely thin, perfectly absorbing
and with negligible edge effects. It is represented in this
model as aQ function

QAsx,yd = H1 if sx,yd is inside the aperture,

0 otherwise.
sA3d

Finally, for convenience sake we assume that the plane of the
aperture is a symmetry plane of the cavity. This assumption
is not essential for the validity of the following steps, but
makes the algebra a little simpler. The derivation of the
model consists of four parts.

(i) Propagation outside the active medium. The propaga-
tion of the slowly varying amplitude of the electric field in
the part of the cavity outside the active medium is repre-
sented by a propagation operatorP that relates the field at
the entrance of the active medium to that immediately after
the aperture

Fsx,y,1,td = PQAFFx,y,L,t −
1 − L

c
G . sA4d

In terms of theABCDmatrices[18] of the cavity in thesx,zd
planesAx,Bx,Cx,Dxd and thesy,zd planesAy,By,Cy,Dyd, the
propagation equation(A4) can be written as

Fsx,y,1,td

=
− ReidA

pÎBxBy

E
A

e−si/BxdsAxj2−2xj+Dxx
2d−si/BydsAyh2−2xh+Dyy2d

3FFj,h,L,t −
1 − L

c
Gdjdh, sA5d

where dA=kA mod2p is the phase shift accumulated by the
reference frequency per round trip. We have included the
effect of the aperture by restricting the integration domain to
its area, as indicated by the symboleA. The coefficientR is
the total reflectance of the mirrors in the cavity and measures
the amplitude loss during propagation. This equation or,
equivalently, Eq.(A4) express the boundary conditions for
the evolution of the field inside the active medium.

(ii ) Propagation in the active medium. The equation for
the propagation of the electric field in the active medium is
most conveniently written in terms of the variables[24]

t8 = t +
1 − L

L

z

c
, z8 = z sA6d

and reads

]F

]z8
+

1

cL

]F

]t8
= aP̃ + QMF, 0 ø z8 ø L. sA7d

The coefficienta is a coupling constant between the electric
field and the medium and ultimately represents the gain seen
by the field. The linear operatorQM represents the effect of
the propagation inside the medium. We assume that it is in-
dependent of the longitudinal coordinatez, i.e., we assume
that the active medium is optically homogeneous in the lon-
gitudinal direction.

In the coordinates(A6) the boundary condition(A4) on
Eq. (A7) becomes an equal time boundary condition

Fsx,y,0,t8d = PQAFsx,y,L,t8d. sA8d

(iii ) The mean field limit. The only essential hypothesis
underlying Eq.(A7) and its boundary condition is the slowly
varying amplitude approximation. In order to simplify them

further we introduce the fieldsF8 andP̃8 defined as averages

of F and P̃, respectively, overz8 at t8 fixed:

F8sx,y,t8d ;
1

L
E

0

L

Fsx,y,z8,t8ddz8,

P̃8sx,y,t8d ;
1

L
E

0

L

P̃sx,y,z8,t8ddz8. sA9d

Note that this average corresponds to an average overz
(unprimed coordinate) along the active medium and an aver-
age overt over one cavity round trip. We ultimately want to
use these average fields to represent the exact fieldsF andP.
For this to be a valid approximation, we must therefore as-
sume that the space-time variations ofF (and, eventually,P)
are on a length scale longer than the length of the active
medium and on a time scale longer than the cavity round trip
(i.e., low gain and mirror reflectivity close to 1). This ap-
proximation holds in the CO2 laser described in Sec. II
where the ratio of the saturated gain to the loss coefficients is
of the order of 10.

We average Eq.(A7) according to Eqs.(A9) use(A8) and
take the limit of infinitely short active mediumsL→0d to
obtain

]F8

]t8
= − cfId − PQAgF8sx,y,L,t8d + xP̃8, sA10d

whereP is the propagator across the entire cavity starting at
z=0 andx;aL, is the gain per unit pass(pump parameter).

(iv) The material equations.Equation(A10) for the elec-
tric field must be coupled to the equations for the polariza-
tion and the population inversion. For a standard Maxwell-
Bloch model of a two-level system these can be written as

]P̃

]t
= − P̃ + F + ÑF, sA11d
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]Ñ

]t
= − gFÑ +

1

2
sF̄P̃ + c.c.dG , sA12d

whereg is the population inversion decay rate. We apply to
these equations exactly the same procedure followed for the
electric field. In particular, we change variables according to
Eq. (A6) and average as in Eq.(A9). In doing so we assume
that the material is homogeneous along the cavity axis and
that the variations of the two fields withz are sufficiently
small that we can approximate the average of the product
with the product of the averages. As a final step, we scale the
polarization and the population inversion with the pump pa-

rameterP8=xP̃ and N8=xÑ, so that Eq.(A10)–(A12) be-
come

]F

]t
= LF + P, sA13d

]P

]t
= − P + xF + FN, sA14d

]N

]t
= − gFN +

1

2
sFP̄ + F̄PdG , sA15d

where we have dropped all the primes and whereL
;−cfId−PUAg. These equations constitute the model that
we analyze in this paper.

Before concluding this section we remark that it is pos-
sible to derive equations similar to Eqs.(A13)–(A15) for a
Fabry-Pérot cavity provided that the population inversion
grating induced by the standing wave nature of the electric
field can be neglected[29]. The main obstacle in the deriva-
tion is the expression of the boundary conditions in terms of
the propagation operator.
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