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We study the transition to coherence of an ensemble of globally coupled chaotic maps allowing for en-
sembles of nonidentical maps and for noise. The transition coupling strength is determined from a kind of
transfer function of the perturbation evolution. We present analytical results, and we test these results using
numerical experiments for several large systems consisting of ensembles of many coupled maps. The later
includes ensembles of identical noiseless maps, identical maps subject to noise, and ensembles of nonidentical
maps. One of our examples suggests that the validity of the perturbation theory approach can be problematic
for an ensemble of noiseless identical maps if the maps are nonhyperbolic. However, for such a case, noise
and/or parameter spread seems to have a regularizing effect restoring the validity of perturbation theory.
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I. INTRODUCTION

The onset of synchronization in large ensembles of glo-
bally coupled dynamical units is of interest in many fields
[1]. Systems of this type have been examined in biology,
where it is thought that rhythms are essential for maintaining
life. In these biological situations rhythms are typically gen-
erated by a large number of cells or groups of cells, each one
of which has a tendency to oscillate when isolated[2]. For
example, heartbeats are stimulated by the sinoatrial(SA)
node located on the right atrium, and the node consists of
thousands of coupled pacemaker cells[2,3]. Each cell in the
SA node has slightly different intrinsic frequency and,
through electrical coupling, achieves a consensus as to when
to fire [3]. Similar mechanisms are observed in networks of
neurons[4], coupled neurons in the suprachiasmatic nucleus
(the circadian center) [5], and suspensions of yeast cells[6].
Insects also exhibit synchronized behavior[7,8]. For ex-
ample, it has been observed that a large number of certain
types of fireflies flash on and off in unison. They apparently
watch each other and adjust their flashing according to their
neighbors. A small group of fireflies starts to flash synchro-
nously, and the number of synchronized participants grows
so that the whole swarm finally flashes in unison[7]. Swarms
of crickets and grasshoppers also chirp in unison through a
similar process[8]. Nonbiological examples of synchrony in
large systems of globally coupled dynamical units occur in
arrays of globally coupled chaotic electrochemical oscillators
[9], semiconductor laser arrays[10], and Josephson junction
arrays[11]. It is known that these systems experience a tran-
sition to a coherent state at some critical coupling strength.
In particular, for low coupling the individual units essentially
evolve independently(the “incoherent state”), but, as the
coupling passes a critical value, the average over all units of
an appropriate function of the unit state begins to take on a
macroscopic value, signaling the onset of coherent, synchro-

nous behavior of the system. The transition from incoherence
to synchronization with increase of the coupling has been
very extensively studied in the case where the uncoupled
dynamics is periodic [1]. In particular, the well-studied
“Kuramoto model” [1] considers many periodic oscillators
whose uncoupled dynamics is described by the simple phase
evolution equation,dusidstd /dt=vsid, for the phaseusid of os-
cillator i, which has natural frequencyvsid.

Very recently attempts to study the transition from inco-
herence to synchrony in the case where the individual units
are chaotic systems of ordinary differential equation have
been made[12–14]. Pikovskyet al. [12] numerically show
that the transition to coherent behavior in a system of glo-
bally coupled nonidentical Rössler systems is due to the syn-
chronization of phases of the individual units. They concen-
trate on the case that the individual systems have phase-
coherent attractors and think of the transition as the
synchronization transition in a system of coupled noisy limit-
cycle oscillators. However, they do not develop a theory for
the transition to synchrony. Sakaguchi[13] analyzes a large
ensemble of globally coupled identical Rössler systems by
assuming that, at the onset of coherence, the average motion
of the ensemble is sinusoidal in time. Ottet al. [14] investi-
gated the stability of the incoherent state for ensembles of
globally coupled continuous-time dynamical systems using a
perturbation method and analytic continuation. They numeri-
cally applied their theory to ensembles of globally coupled
heterogeneous Lorenz systems with the parameters uni-
formly distributed in periodic, chaotic and mixed parameter
regions. References[12–14] all treated ensembles ofnoise-
free chaotic systems.

Concerning large systems of globally coupled chaotic
maps, starting with the work of Kaneko[15], it has been
known that, depending on parameters, these systems can ex-
hibit either incoherent behavior, or coherent oscillatory(i.e.,
synchronized) behavior, and work has been done investigat-
ing the nature of these behaviors[15–18]. However, only one
paper(Topaj et al. [19]) has so far given an analytical treat-
ment of the transition from incoherence to coherence for a*Electronic address: sjbaek@glue.umd.edu
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large globally coupled map system. This paper, however,
treats only the special case of identical 2x mod 2p maps.

In the present paper, we present a general method to de-
termine the critical coupling strength and the frequency of
oscillation at the onset of coherence in a system of globally
coupled chaotic maps. Our analysis allows for arbitrary map
functions, the inclusion of noise, and the treatment of en-
sembles that are heterogeneous(i.e., it is not required that all
maps in the ensemble are the same). Also, we investigate
techniques for numerical application of the analysis. Our
analysis adapts todiscrete-time (maps) the perturbation
method which Ottet al. [14] applied to systems of globally
coupledcontinuous-timedynamical systems. The goal is to
relate the evolution of a perturbation of the individual un-
coupled elements to the evolution of a perturbation of the
globally coupled system. Thus, we represent the behavior of
coupled systems in terms of the behavior of uncoupled ele-
ments.

The system model and the analysis of the system is pre-
sented in Sec. II. One-dimensional map examples employing
and testing the analysis are given in Sec. III. One result of
the numerical experiments in Sec. III C is that there is an
apparent failure of the perturbation theory in a case of an
ensemble of identical noiseless nonhyperbolic maps(in par-
ticular, the logistic map). However, the introduction of noise
or of parameter spread appears to have a regularizing effect
which seems to restore the validity of the perturbation theory
approach. Section IV gives an example for an ensemble of
two dimensional maps. The examples in Secs. III and IV
contain ensembles of shifted Bernoulli maps, ensembles of
modified Bernoulli maps in which a parameter of the map is
uniformly distributed throughout an interval, ensembles of
identical logistic maps, ensembles of identical noisy logistic
maps, ensembles of noiseless logistic maps with a uniform
distribution of the map parameter in an interval, and en-
sembles of cat maps.

II. SYSTEM MODEL AND ANALYSIS

A. System model

In this section we study systems of globally coupled, cha-
otic, one-dimensional maps similar to the system studied in
Ref. [19]. (The generalization to higher-dimensional maps is
made in Sec. IV). In our theory, we assume that there is a
mixing chaotic attractor so that almost every orbit of the
uncoupled system yields the same long-time statistical be-
havior. The general form of the system we consider is

xn+1
sid = fsxn

sid,mid + wn
sid + kgsxn

siddfkqsxndl − kqsxdl*g,

i = 1, . . . ,N

kqsxndl =
1

N
o
i=1

N

qsxn
sidd. s1d

The quantity wn
sid in Eqs. (1) is a random noise where

Efwn
sidg=0, Efwn

sidwk
s jdg=s2dnkdi j , Ef·g denotes the expectation

value,s2 is the variance of the noise, and for eachn andi the
wn

sid are identically distributed. Moreover, we assume thatxn

and wn are independent. We note that additive noise makes
the time averaged orbit probability distribution function of
an uncoupled map smooth so that the distribution has no
singularities[20], and noise may also eliminate small peri-
odic windows within the chaotic parameter region. The maps
fsx,mid are assumed to arise from a one parameter family
with parametermi, and we assume that themi are distributed
in some specified manner. For example, in our examples
(Sec. III) we will consider the case where themi are distrib-
uted uniformly in an interval, and also the case of identical
maps where all themi are the samesmi =md. Also in Eqs.(1),
N is the ensemble size,k is the coupling coefficient, and the
function gsxd and qsxd are assumed to be smooth and
bounded. The symbolk·l denotes the average over the en-
semble(the average overi) at a fixed timen, and thus de-
pends onn. The symbolk·l* denotes the infinite time mean
for a typical orbitxn of a noisy uncoupled map[k=0 in Eqs.
(1), giving xn+1

sid = fsxn
sid ,mid+wn

sid] averaged overmi; thus k·l*

is time independent. In the limitN→`, a possible solution
of Eqs.(1) is kqsxndl=kqsxdl* , in which case the coupling has
no effect. We refer to this solution as the “incoherent state.”
For large finiteN, it is expected and numerically observed
that for parameter values in the predictedN→` incoherent
statekqsxndl executes small fluctuations of orderN−1/2 about
kqsxdl* . As uku is increased, the incoherent state becomes un-
stable, and the mean fieldan=kqsxndl−kqsxdl* begins to have
a macroscopic[i.e., OsN0d rather thanOsN−1/2d] value. This
transition typically occurs at some critical nonzero coupling
coefficient kc [14,19]. In fact there can be two criticalkc
values, a positive one, at which coherence arises ask in-
creases through the critical value, and a negative one at
which coherence arises ask decreases through the critical
value. It was shown for globally coupled, noiseless,
continuous-time systems[14] that the transition from the in-
coherent state to the coherent state can be analyzed by a
perturbation method. Here, we develop this perturbation
method to analyze globally coupled, noisy, discrete-time sys-
tems(i.e., maps).

B. Stability analysis

We carry out the stability analysis for the system in the
N→` limit. Thus, for the purposes of this analysis, given a
function h, the symbolkhsxdl is now understood to mean

khsxndl = lim
N→`

1

No
i=1

N

hsxn
sidd.

We note that, whileN→` in the analysis, our numerical
experiments necessarily have finiteN, and, as we will see in
Secs. III and IV, the finiteness ofN will have a profound
effect for implementation of our theory in numerical ex-
amples, even thoughN will be very large in these examples.
For compactness of notation, where it is unlikely to create
confusion, we will henceforth drop the subscripts and super-
scriptsi denoting the individual maps.

To perform theN→` stability analysis, we assume a
small perturbation from the incoherent state and investigate
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its stability. Letdn be a perturbation toxn when there is no
coupling, and letdxn be the perturbation with coupling,

dn+1 = f8sxn,mddn, d0 = 1, s2d

dxn+1 = f8sxn,mddxn + kgsxndkq8sxnddxnl. s3d

[Note that, while the noise does not appear explicitly in Eqs.
(2) and (3), its presence is still important since it influences
the orbitxn: xn+1

sid = fsxn
sid ,mid+wn

sid.] We are interested in how
the mean field perturbationkq8sxnddxnl develops from an ini-
tial perturbationkq8sx0ddx0l. Setting

dxn = zndn, s4d

in Eq. (3), and employing Eq.(2), we obtain

zn+1 − zn = k
gsxnd
dn+1

kq8sxnddxnl,

recursive application of which yields

zn+1 = ko
p=0

n
gsxpd
dp+1

kq8sxpddxpl + z0, s5d

where z0=dx0. Using the relation (4), we can obtain
kq8sxnddxnl from Eq. (5),

kq8sxn+1ddxn+1l = kKo
p=0

n
dn+1q8sxn+1dgsxpd

dp+1
kq8sxpddxplL

+ dx0kq8sxn+1ddn+1l. s6d

Now, we assume exponential instability of the incoherent
state so that the mean of the perturbation grows exponen-
tially with n, kq8sxnddxnl=lnkq8sx0ddx0l with ulu.1. Then,
we can rewrite Eq.(6) as

ln+1 = kKo
p=0

n
dn+1q8sxn+1dgsxpd

dp+1
lpL +

dx0kq8sxn+1ddn+1l
kq8sx0ddx0l

.

Letting n→`, assuming convergence of the summation, and
settingm=n−p, we have

1 =
k

l
Ko

m=0

`
Pm

lmL ; kQsld, s7d

where

Pm =
dn+1q8sxn+1dgsxn−md

dn−m+1
.

The ratiodn+1/dn−m+1 is

dn+1

dn−m+1
= f8sxn,mdf8sxn−1,md ¯ f8sxn−m+1,md. s8d

For largem, this quantity increases exponentially withm as
jmsx0,md, wherejsx0,md is the Lyapunov number of the map
fsx,md for the initial conditionx0. [For almost allx0, jsx0,md
is the same number(i.e., what is usually referred as “the”
Lyapunov number of the chaotic attractor), but there are spe-

cial choices ofx0 (e.g.,x0 on an unstable periodic orbit) for
which jsx0,md takes on a different value.] For Eq.(7) to have
meaning we require that the summation overm converges.
This will be so if

ulu . jmax; sup
x0,m

jsx0,md, s9d

wherex0 is in the attractor basin andm is in the range of
parameter values used in the ensemble. Ifulu,jsx0,md, the
m th term in the sum increases exponentially withm as
fjsx0,md /lgm, and Eq.(7) is meaningless. For the case where
l satisfies Eq.(9), the exponential convergence of the sum-
mation implies that we can interchange the order of the av-
erage and the summation. Thus we obtain

1 =
k

l
o
m=0

`
Qm

lm ; kQsld, s10d

whereQm=kPml or

Qm =K dn+1

dn−m+1
q8sxn+1dgsxn−mdL . s11d

Because we are dealing with chaotic situations(i.e.,
Lyapunov number greater than one), Eq. (9) implies that
Qsld, given by Eq.(10), can, so far, only be used forl
sufficiently larger than one. We now argue that Eq.(10) can
be expected to apply forulu,1. This is crucial, since it is
required in order to use the theory for studying the onset of
coherence. We heuristically argue in Appendix A that the
quantityQm can be expected to decrease exponentially with
m for typical chaotic maps(a similar argument is presented
in Ref. [14] for the case of continuous time systems). Assum-
ing this to be the case, we have

uQmu , Kj*
−m, s12d

whereK and j* are positive constants andj* ,1. Thus the
sum in Eq.(10) now converges for allulu.j* . Hence, while
Eq. (10) was derived forulu.jmax, Eq. (12) implies that we
can analytically continueQsld from the regionulu.jmax to
the regionjmaxù ul u .j* ,1.

At the transition of the incoherent state to the coherent
state(i.e., at k=kc) the system is marginally stable so that
ulu=1 or l=eiv with v real. Thus,kcQseivd=1. Taking the
imaginary part of this equation, we obtain an equation for the
frequency of oscillationv at the transition

ImhQseivdj = 0. s13d

After solving this equation forv, we obtain the critical cou-
pling strength,

kc = Qseivd−1. s14d

In addition, expanding Eq.(10) aboutk=kc and l=eiv, we
obtain the following result forl near the transition

l = eiv +
kc − k

kc
2Q8seivd

+ Ohskc − kd2j,

whereQ8sld=dQsld /dl.
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III. EXAMPLES: ONE-DIMENSIONAL MAPS

A. An ensemble of shifted Bernoulli maps

Our first example is an ensemble of Bernoulli maps,

fsxn
sid,mid = s2xn

sid + mid mod 2p, i = 1, . . . ,N

gsxd = sin 2x + sin 4x,

qsxd = cosx, s15d

wheremi is a shift which is in general different for each map
i. Because of the simplicity of this example,Qsld can be
obtained analytically. After plugging Eqs.(15) into Eq. (11),
and taking the noisew to be symmetrically distributed
aroundw=0, we obtain

Qnsld = −
1

l
o
p=0

n

ksin xn+1ssin 2xp + sin 4xpdlS2

l
Dn−p

= −
1

2l
Skcoswnlkcosml +

2

l
kcos 2wn−1lkcoswn−2l

3kcos 3mlD .

The second equality results from noting that, since
xp mod 2p has a uniform density ins0,2pd, all terms in the
summation are zero except forp=n and p=n−1. In the
above, if the ensemble of shift parametershmij is generated
from a probability densityrsmd, then

kcosMml ; E rsmdcossMmddm.

Taking the noisew to be normally distributed, we obtain

Qseivd = −
1

2
Se−s2/2

eiv kcosml +
2e−5s2/2

e2iv kcos 3mlD .

For simplicity, in what follows we takersmd=dsmd, so that
kcosml=kcos 3ml=1, which with Eqs.(13) and (14), yields
critical values

kc1 = e5s2/2, vc1 = arccosS−
e2s2

4
D ,

kc2 = − 2se−s2/2 + 2e−5s2/2d−1, vc2 = 0. s16d

For s=0, Eqs.(16) agree with the result of Ref.[19].
We present results of numerical experiments in Fig. 1 for

the case that the system has no noise and the case that the
system has normally distributed noise withs2=0.16. With-
out noise (i.e., s2=0), Eqs. (16) yield kc1

s0d=1 at vc1
s0d

=arccoss−1
4

d<0.58p and kc2
s0d=−2/3 at vc2

s0d=0. With s2

=0.16, Eqs.(16) yield the critical valueskc1<1.49 atvc1
<0.61p and kc2<−0.88 atvc2=0. In Fig. 1(a), ka2l is the
time average of the square of the mean fieldan=kqsxndl
−kqsxdl* and this average is computed over 1000 iterations in
time. We see that the mean field starts to have macroscopic

values near the predicted critical values of the coupling
strengths(the vertical dashed lines). Also, the power spectral
density of the sequence ofan, Fig. 1(b), shows that the fre-
quencies of oscillation atk=kc1

s0d andk=kc1 coincide with the
predicted valuesvc1

s0d andvc1 for each case. Here, and in the
following examples, the power spectral densities are esti-
mated using Welch’s method[21].

In Fig. 2(a), we replot ka2l versusk for the above de-
scribed ensemble of noisy Bernoulli maps using a linear
scale(dots). Also, a quadratic curve fit to the numerical data
in the range 1.5økø1.8 is shown as a solid line in the same
figure. We see that the fitted line agrees well with the experi-
mental results forkø1.8. Consistent with the expectation
that the transition is a Hopf bifurcation(since the frequency
of oscillation at transition(Fig. 1) is nonzero), ka2l ap-
proaches zero linearly withsk−kc1d. (Close examination of
the numerical results in Fig. 2(a) very nearkc shows a slight
rounding of the, otherwise sharp, transition due to finiteN.)
Figure 2(b) showsan+1 versusan for two values ofk, one
slightly pastkc1 (coherent) and one slightly beforekc1 (inco-
herent). For k=1.45,kc1=1.49, we see that the orbit points
appear as a cloud centered at the origin as expected for the
incoherent state. Fork=1.53.kc1, the orbit points appear as
a loop encircling the origin. As expected, at each stepn
points in the ring, on average, advance in angle by almost

FIG. 1. Results for an ensemble ofN=105 Bernoulli maps with
and without noise:(a) showska2l versusk. The time averageka2l is
computed using 1000 iterations. The power spectral densities ofan

at the positive critical values are shown in(b) for the cases without
noise(k=kc1

s0d, solid graph) and with noise(k=kc1, dash-dot graph).
The predicted values of critical coupling strengths and frequencies
of oscillation agree with the experimental results.
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vc1 radians.(A plot similar to that in Fig. 2(b) appears in
Ref. [19] for the noiseless case,s=0.)

Figure 3 demonstrates the effect of varying the ensemble
size N. Figure 3(a) shows results for our coupled noiseless
Bernoulli map example forN=104,105,106, and 107. We
note that these graphs differ appreciably only in the range
kc2

s0d,k,kc1
s0d corresponding to the incoherent state. Figure

3(b) shows the values ofka2l averaged over the range,skc2
s0d

+0.2døkø skc1
s0d−0.2d, that is within the incoherent region

(we denote this averageka2l), versusN on a log-log plot.
Also shown in Fig. 3(b) is a straight line of slope −1. We see
that, similar to what is expected for a sum of random vari-
ables, a scaling ofka2l asN−1 is consistent with the data. The
behavior seen in Fig. 3 is also seen for all our other examples
(except for that in Sec. III C). Regarding Fig. 1(b), we also
note that, as the ensemble size is increased, the spectral
power not atvc decreases, and the spectral peak atvc be-

comes sharper, consistent with the spectrum approaching ad
function atv=vc asN→`.

Remark.In the supercritical Hopf bifurcation of a discrete
time system, the resulting stable orbit lies on a closed curve
bifurcating off the basic periodic orbit that was stable before
the bifurcation(in our case, the incoherent state, which has
period one). On this curve, the orbit can be either periodic
(consisting of a finite number of discrete points) or quasip-
eriodic [filling out the curve, as in Fig. 2(b)]. Generically,
vc/2p will be irrational, and, for most(in the Lebesgue
sense) sk−kcd values near zero, the orbit will be quasiperi-
odic, although there is an open dense set of values ofsk
−kcd for which there is an attracting periodic orbit. We note
that, in our case, due to finiteN, the bifurcation is noisy, and
this can wash out small windows of periodic behavior.

B. A heterogeneous ensemble of modified Bernoulli maps

The preceding example, coupled Bernoulli maps, is useful
because it allows an analytic solution forQsld (preceding
section and Ref.[19]). In more typical cases, analytical so-
lution for Qsld is not possible, and numerical techniques for
calculatingQsld must be formulated. Furthermore, the maps
in the ensemble may not all be identical. In order to illustrate
these points, our second example is an ensemble of noiseless
modified Bernoulli maps depending upon a map parameterm
that is uniformly distributed in the intervals1,2d,

FIG. 2. Linear scale plot ofka2l and orbits ofan for an ensemble
of 105 noisy Bernoulli maps:(a) showska2l vs k (dots) and a qua-
dratic curve fit(solid line) to the data in the range 1.5økø1.8. (b)
shows orbits ofan for k=1.53.kc1<1.49 (points in halo about
origin) and k=1.45,kc1 (points clustered near origin). ka2l ap-
proaches zero linearly and the orbits encircle the origin consistent
with a Hopf bifurcation.

FIG. 3. Results for ensembles ofN=104,105,106,107 Bernoulli
maps:(a) shows vsk. (b) showska2l vs N. Within the incoherent
stateka2l varies asN−1.
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f isxd = 2x mod 2p + mi sin x, mi , Us1,2d, i = 1, . . . ,N,

gsxd = sin 4x, qsxd = cosx,

where Us1,2d is the uniform distribution over the interval
s1,2d.

Since we do not have a closed form expression for the
natural invariant density in this case, we evaluateQseivd nu-
merically in the following way. First, we produceN=106

points,x0, uniformly distributed in the intervals0,2pd with a
random number generator, and we also produce the same
number of randomly chosen parameters uniformly distrib-
uted in the intervals1,2d. Then we evolve the uncoupled
sk=0d system forward in time for 3000 steps saving the val-
ues ofxsid for the last 31 iterations. Using these values we
construct histogram approximation to the invariant density
using bins of width 2p310−3 in x. We letx3000bexn+1 in Eq.
(11). Using the saved data, we obtaindn+1

sid /dn−m+1
sid [from Eq.

(8)] andgsxn−m
sid d, and employ Eq.(11) to obtain an approxi-

mation toQm for m=0, . . . ,30. Note that, in the incoherent
state,xsid for the system(1) has an invariant density resulting
from the uncoupled individual maps. Thus, if the ensemble
has an infinite number of mapssN→`d, and each orbit in the
ensemble is given an initial perturbationdx0 (as in our analy-
sis in Sec. II), then the uncoupled ensemble will eventually
settle down to the invariant density after a sufficiently large
number of iterations. It is, therefore, expected that forN
→` the mean field perturbationkq8sxnddxnl converges to
zero asn increases. HenceQm converges to zero with in-
creasingm in the large ensemble limitN→`. However, due
to the finite ensemble sizesN=106d, our computation ofQm

does not converge to zero. What happens is that asm in-
creasesQm eventually becomes small; say it assumes a small
value atm=mc. However, asm becomes larger, our com-
puted approximations toQm become inaccurate. Since
dn+1

sid /dn−m+1
sid on average increases exponentially withm

(chaos), the individual terms in the average(11) becomes
larger and larger asm increases. On the other hand, forN
→`, the average decreases withm. Thus asm increases
cancellation between terms in the average must become
more and more precise. Hence to obtain good statistics for
Qm demands exponentially larger and larger ensemble sizeN
asm increases. Thus for any finiteN we expect our numeri-
cal computation ofQm to breakdown asm increases.

We plot six numerical approximations toQm with differ-
ent randomly chosen initial conditions in Fig. 4(a). We see
that our approximations toQm become small at aroundm
=4 or 5, but increase after that and clearly become unequal.
To obtainQseivd, we setQm to be zero formù5 and take the
average over our six approximations. The real and imaginary
parts of the resulting approximation toQseivd are shown in
Fig. 4(b). [When the imaginary part ofQseivd crosses zero,
the real part has a maximum or minimum near these crossing
points.] The greatest positiveQseivd at a crossing point and
the smallest negativeQseivd at a crossing point are the recip-
rocals of the positive and negative critical coupling strengths
respectively. In this example, the imaginary part ofQseivd
crosses zero four times in the plotted range. We label three of

these zerosvc2, vc11, andvc12. The positive values ofQseivd
at vc11<0.37p and vc12<p are close to each other, al-
though the value atvc12 is larger. From the real part of
Qseivd, we obtain critical coupling strengths,kc2<−1.24 and
kc12<2.48 corresponding tovc2 andvc12.

Results from coupled ensembles of 105 and 106 noiseless
modified Bernoulli maps are shown in Fig. 5(a) along with
the critical values(vertical dashed lines) which we obtained
from our numerical approximation toQseivd. We see thatkc12

and kc2 closely agree with the experimental results. Figure
5(b) shows the power spectral density ofan for k=kc12
=2.48; we note that peaks are present both atvc11 (vertical
dashed line) and atvc12, and that the peak atvc11 is, in fact,
larger, even thoughkc12 is less than 1/Qseivc11d.

FIG. 4. Qseivd for an ensemble ofN=106 modified Bernoulli
maps with uniformly distributed parameters:(a) shows six numeri-
cal approximations toQm. The six approximations are near zero at
m=4,5, but then diverge from each other due to the combined
effect of chaotic dynamics and finite ensemble size.(b) shows
Qseivd evaluated by averaging the six results from(a) for m=0−4
and takingQm=0 for mù5. The imaginary part ofQseivd has four
zero-crossing points and we label three of them and corresponding
real parts of these three points. The real parts corresponding tovc11

andvc12 are close to each other.
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C. An ensemble of logistic maps

Our third example is a noiseless ensemble of logistic
maps withgsxd=1 andqsxd=x,

xn+1
sid = fsxn

sidd + kskxnl − kxl*d, i = 1, . . . ,N,

fsxn
sidd = mxn

sids1 − xn
sidd, s17d

where all maps have identical parameterssmi =m=3.9,i
=1, . . . ,Nd. In this case, we were not able to obtain useful
results by use of Eq.(10). We include this example mainly to
illustrate that numerical implementation of Eq.(10) can
sometimes be problematic, and to speculate on why that
might be the case.

In this example, we again do not have a closed form ex-
pression for the invariant density of an uncoupled map.
Hence, we attempted to evaluateQm numerically using Eqs.
(8) and (11) which in this case is simply

Qm =K dn+1

dn−m+1
L . s18d

In Fig. 6, usingN=109, we plot five approximations toQm
up to m=35 obtained using different random initial condi-
tions (as in Sec. III B). We see that the five approximations
stay close to each other up tom=28 without converging to
zero. Pastm=28, they diverge from each other. Our numeri-
cal approximations toQm do not converge to zero before
diverging from each other, and we thus cannot predict the

critical coupling strength from the theory. Since it is imprac-
tical for us to increaseN further we cannot proceed further.
Indeed, since Fig. 6 indicates growing oscillations ofQm
with increasingm, it is questionable that increase ofN would
solve the problem.

Note that the logistic map has dense periodic windows in
the chaotic parameter range and that the natural invariant
densityrsxd of the logistic map for typical chaotic parameter
values has a dense countable set ofx values at whichrsxd is
infinite [22]. We speculate that this could be the root of our
problem in applying Eq.(10) (see the Appendix B). In par-
ticular, both of these features call the application of the per-
turbation theory used in Sec. II into question.

In addition, we find that the behavior found for this ex-
ample is qualitatively different from the behavior found for
the examples in Secs. III A and III B. In particular, Fig. 7
shows ka2l versusk for N=104,105,106, and 107. We see
that, unlike Fig. 3(a), theN dependence is confined to a very
small region neark=0, and this confinement becomes nar-
rower asN increases. Thus, if there are critical valueskc1.0
and kc2,0, bounding an incoherent state inkc2,k,kc1,
these values have very small magnitude. Another possibility
(which we suspect might be the case) is that there may be no
incoherent state, except atk=0, and that, as soon ask is
nonzero, coherent behavior arises discontinuously. Such a

FIG. 5. Results for ensembles ofN=105,106 modified Bernoulli
maps with uniformly distributed parameters:(a) showska2l vs k, (b)
is the power spectral density ofan at k=2.48<kc1.

FIG. 6. Qm for an ensemble ofN=109 logistic maps with pa-
rameterm=3.9: (a) showsQm up to m=17 and(b) showsQm plot-
ted up tom=35. We see that our approximations do not converge to
small values before diverging from each other.
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situation would be outside the scope of our perturbation
theory.

D. An ensemble of logistic maps with noise

In our forth example, we consider the case studied in the
preceding section, but with noise added. As mentioned in
Sec. II, adding noise makes the orbit density smooth and
may eliminate small periodic windows[20]. Hence, we can
expect that the confinement ofN dependence ofka2l shown
in Fig. 7 will be widen and we confirmed this dependence by
numerical experiments. Also, we find that the noise promotes
convergence ofQm, and that application of Eq.(10) now
yields accurate and useful results. We consider Eqs.(1) with
fsxd=3.9xs1−xd, gsxd=1, qsxd=x, andwn

sid normally distrib-
uted with variances2=10−4 (see Sec. II). Note thatxn+1

sid in
Eqs.(1) could fall outside the basin of attraction of the map
s0,x,1d because of the noisewn+1

sid (the coupling term is on
the order of 10−4 near the incoherent state withN=105 noisy
logistic maps). To prevent any variable from escaping the
basin, we replacexn+1

sid by xn+1
sid mod 1, if it falls outside the

basin.

Again we do not have a closed form expression for the
orbit density, and hence we rely on a numerical approxima-
tion to Qm to obtainQseivd. Three approximations toQm for
different random number seeds are shown in Fig. 8(a). These
three plots show good agreement with each other up tom
=9, where they assume small values.Qseivd derived from
one of these approximations withQm set to zero formù9 is
shown in Fig. 8(b). Using the data in Fig. 8(b), we predict
that the critical values of the coupling coefficient will be
kc1<0.29 andkc2<−0.39, and that the corresponding fre-
quencies of oscillation at the onset of coherence will be
vc1<0.34p andvc2<0.64p.

In Fig. 9(a) we plot the time average of the square of the
mean fieldan for ensembles of 104 and 105 noisy logistic
maps,ka2l, and the predicted values of the critical coupling
strengths(vertical dashed lines), kc1 andkc2. We replotka2l
using a linear scale in Fig. 9(b) (dots). Also shown in Fig.
9(b) as a solid line is a quadratic curve fit to the numerical

FIG. 7. ka2l vs k for ensembles of logistic maps: Data for en-
sembles of sizesN=104,105,106 are shown in(a). We plot ka2l for
ensembles ofN=105,106,107 logistic maps versusk in a narrower
range ofk in (b). We see that theN dependence is confined to a very
small region neark=0 and that, asN increases, the confined region
becomes narrower.

FIG. 8. Qseivd for an ensemble ofN=106 noisy logistic maps
with parameterm=3.9 and normally distributed noise:(a) shows
three numerical approximations toQm. The three approximations
are near zero atm=8,9, butthen diverge from each other.(b) shows
Qseivd evaluated from(a) assuming thatQm=0 afterm=8.
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data in the range 0.29økø0.44 which agrees well with the
experimental results forkø0.51. Extrapolating the fitted
quadratic curve toka2l=0, we obtain an accurate estimate of
the critical value of the coupling strength,k<0.29, confirm-
ing the theoretical prediction. From Fig. 9(b) we see thatka2l
approaches zero linearly withsk−kc1d consistent with a Hopf
bifurcation svc1Þ0d.

The frequency of oscillation atk=kc1 obtained from
Qseivd is shown in Fig. 10(a) as a vertical dashed line, along
with the power spectral density ofan. The dominant fre-
quency of the spectrum agrees with the frequency predicted
by our analysis. Figures 10(b) showsan+1 versusan for two
values ofk, one just pastkc1 (coherent) and one just before
kc1 (incoherent). For k=0.28,kc1=0.29, we see that the or-
bit points appear as a cloud centered at the origin. Fork
=0.30.kc1, the orbit points appear as a loop encircling the
origin (at the frequencyvc1).

E. A heterogeneous ensemble of logistic maps

In our fifth example, as in Sec. III C, we again consider a
noiseless ensemble of logistic maps(17), but now with the
map parameter,m, uniformly distributed in the interval
s3.88,3.96d. We find that the introduction of parameter
spread appears to have a regularizing effect and, for this
noiseless case, we now obtain results in agreement with our

perturbation theory. A similar regularizing effect has been
observed by Shibata and Kaneko[17].

Figure 11(a) shows six approximations toQm for different
random number seeds. They agree well with each other up to
m=12, where they assume small values.Qseivd shown in
Fig. 11(b) is derived from one of these approximations with
Qm set to zero formù12. From Fig. 11(b) we predict that the
critical coupling strengths will bekc1<0.24 and kc2
<−0.13, and that the corresponding frequencies of oscilla-
tion at the onset of coherence will bevc1<0.37p and vc2
<0.60p.

In Fig. 12(a) we plot the time average of the square of the
mean field for noiseless ensembles of 104,105, and 106 lo-
gistic maps with the parameter,m, uniformly distributed in
the intervals3.88,3.96d. The power spectral density ofan at
k<kc1 is shown in Fig. 12(b). We see that the predicted
values agree well with the numerical experiments. Note that
the peak aroundv=0.74p is also expected from the data in
Fig. 11(b). The real part ofQseivd at v<0.74p, where the
imaginary part crosses zero, has a value comparable with that
at k=kc1.

IV. EXAMPLES: TWO-DIMENSIONAL MAPS

In this section we examine globally coupled multidimen-
sional systems for which, analogous to the system(1), the
considered system is

FIG. 9. Experimental results for an ensemble ofN=104,105

noisy logistic maps with parameterm=3.9 and normally distributed
noise:(a) shows a semilogarithmic plot ofka2l vs k, and(b) shows
ka2l (dots) and a quadratic curve fit to the numerical data in the
range 0.29økø0.44 (solid line) for N=105.

FIG. 10. Power spectral density and orbits ofan for N=104: The
frequency of oscillation and the power spectral density ofan at k
=kc1 are plotted in(a). (b) shows orbits ofan for k=0.30.kc1

<0.29 (points in halo about origin) andk=0.28,kc1 (points clus-
tered near origin).
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xn+1
sid = fsxn

sidd + wn
sid + GsxndKskqsxndl − kqsxdl*d,

i = 1, . . . ,N,

wherexn=fx1,nx2,n. . .xr,ngT, r is the dimension of a map,K is
the coupling matrix,Gsxnd is a matrix function, andqsxnd is
a vector function ofxn. Here, wn

sid is random noise where
Efwn

sidg=0, Efwn
sidwk

s jdTg=Sdi jdnk, S is the covariance matrix,
and we assume that the noise at each iterate is identically
distributed and thatxn andwn are independent.

Let Dfsxd=]fsxd /]x and

Msn,pd = HDfsxn−1dDfsxn−2d ¯ Dfsxpd, n ù p + 1,

I, n = p

whereI is the identity matrix. Then proceeding as in Sec. II,
we assume that the mean of the perturbationdx grows expo-
nentially with n, kDqsxnddxnl=vln, wherev=kDqsx0ddx0l.
Letting n→`, assuming convergence of the summation, and
settingm=n−p, we obtain

sI − QsldKdv = 0.

where

Qsld = o
m=1

`

Qm/lm,

Qm = kDqsxndMsn,n − m+ 1dGsxn−mdl, s19d

which yields

detsI − QsldKd = 0. s20d

By settingl=eiv in Eq. (20), we can determine the critical
coupling strength and the frequency of oscillation(see Sec.
II ).

We now illustrate Eq.(20) by application to an ensemble
of globally coupled two-dimensional maps. In particular, we
take fsxd to be the cat map,

FIG. 11. Qseivd for a noiseless ensemble ofN=109 logistic
maps with parameterm uniformly distributed in the interval
s3.88,3.96d: (a) shows three numerical approximations toQm. The
three approximations are near zero atm=12, but then diverge from
each other.(b) showsQseivd evaluated from(a) assuming thatQm

=0 afterm=12.

FIG. 12. Experimental results for a noiseless ensemble ofN
=104,105,106 logistic maps with parameterm uniformly distributed
in the intervals3.88,3.96d: (a) showska2l vs k, and(b) shows the
power spectral density ofan at k=0.24<kc1 for N=106.
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fsxd = F x + y

x + 2y
G mod 2p, qsxd = Fcosx

0
G ,

Gsxd = Fsins2x + 3yd 0

0 0
G, K = Fk 0

0 0
G , s21d

wherexn=fxnyngT. For the noise, we choose

Efwn
sidg = 0, Efwn

sidwk
s jdTg = Fs2 0

0 s2Gdi jdnk,

wherewn
sid=fwx,n

sid wy,n
sid gT. We denote the element at thekth row

and thelth column of a matrixA by fAgkl. Then, after plug-
ging Eqs.(21) into Eqs.(19), we obtain

fQnsldg11 = − o
p=0

n−1

ksin xnsins2xp + 3ypdl
fMsn,p + 1dg11

ln−p

= −
1

2l2kcosswx,n + wx,n−1 + wy,n−1dl.

The second equality results from noting that, since the mea-
sure generated by orbits of the uncoupled noisy cat maps is
uniform in 0øxø2p ,0øyø2p, all terms in the summa-
tion are zero except forp=n−2. For normally distributed
noise,fQnsldg11=−s2l2d−1exps−3s2/2d. From the condition
(20), we obtain

1

k
= −

e−3s2/2

2e2iv ,

which yields the critical valueskc1=2e3s2/2 at vc1=p /2 and
kc2=−2e3s2/2 at vc2=0.

Figure 13 shows results of numerical experiments for this
system without noise and with noisess2=0.16d. Without
noise, the critical values arekc1

s0d=2 at vc1
s0d=p /2 and kc2

s0d

=−2 atvc2
s0d=0. With noise, the critical values arekc1<2.54

at vc2=p /2 andkc2<−2.54 atvc2=0. In Fig. 13(a), we see
that the transition occurs near the predicted critical values for
each case. Also, Fig. 13(b) shows that the predicted frequen-
cies of oscillation atk=kc1

s0d andk=kc1 (which isp /2 in both
cases) match the peaks of the power spectral densities ofan
for eachk.

V. CONCLUSION

A large class of globally coupled systems of chaotic maps
experience a transition from incoherence to coherence at
critical values of a coupling coefficient. We have shown that
these critical values can be determined from a perturbation
method, and we apply our method to ensembles of homoge-
neous chaotic maps, ensembles of chaotic maps with distrib-
uted parameters, and ensembles of chaotic maps with noise.
We have shown that numerical approximations toQseivd can
be sufficiently accurate to yield good predictions for the tran-
sition, provided that a large enough number of elements is
used in obtaining the approximations.

In our numerical experiments we obtained good agree-
ment with our theory for ensembles of a large number of

noisy Bernoulli maps, for a noiseless system of modified
Bernoulli maps with distributed parameters, for noisy logis-
tic maps, and for a noisy system of cat maps(a two-
dimensional example). However, we did not obtain useful
results from our analysis when we attempted to apply it to an
ensemble of identical noise-free logistic maps. We speculate
that this may be due to the facts that the natural invariant
densityrsxd of the logistic map, in common with other ge-
neric nonhyperbolic maps, has a dense countable set ofx
values at whichrsxd is infinite and that the map is structur-
ally unstable(it has a dense set of periodic windows in its
chaotic parameter range). Structural instability, for example,
implies that a small perturbation can result in totally different
dynamics, and hence application of a perturbation method
may be questionable. On the other hand, we have found that
either noise or parameter spread appears to restore the valid-
ity of the perturbation theory approach. It would be worth-
while to further investigate noiseless ensembles of smooth
maps that have a dense set of periodic windows.
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FIG. 13. Experimental results for an ensemble ofN=105 cat
maps with and without noise:(a) showsk vs ka2l for the cases with
noise and without noise.(b) show the power spectral densities ofan

at the positive critical values for the cases without noise(k=kc1
s0d,

solid graph) and with noise(k=kc1, dash-dot graph).
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APPENDIX A: DECAY OF Qm WITH INCREASING m

In this appendix we give a heuristic argument suggesting
that, in typical cases, it is reasonable to hypothesize that, for
large m, Qm decays exponentially with increasingm. For
definiteness, we consider the case of a mapxn+1= fsxnd of the
real line, −̀ øxø +`, which has a single chaotic attractor
in some bounded region ofx, and we also assume that this
attractor has a natural invariant measure[also called a Sinai-
Ruelle-Bowen measure]. By definition the natural measure is
the unique invariant measure,n, such that, for any smooth
function ssxd, the time average ofssxnd over an orbit is
essxddn for orbits generated by Lebesgue almost every initial
conditionx0 in the basin of attractor. Recalling thatgsxd and
qsxd are smooth bounded functions, we anticipate that the
decay ofQm does not depend critically on details of these
functions. Thus we consider the illustrative example of Eq.
(18). Using Eq.(8) we express Eq.(18) as

Qm = kf8sxndf8sxn−1d ¯ f8sxn−m+1dl.

The average,k¯l, is over an infinite number of initial con-
ditionsx0

sid which are distributed on the attractor according to
the natural invariant measure. Since the natural measure is
invariant,

Qm = kf8sxm−1df8sxm−2d ¯ f8sx0dl = kdml.

The quantity kdml has a simple geometric interpretation.
Imagine that, at timem=0, we displace all the initial condi-
tion by the same amountdx0. That is, we rigidly translate the
natural invariant measure by an amountdx0. Thus, at any
subsequent timem, kdmldx0 is the displacement of the
evolved orbits averaged over all orbits. In other words,
kdmldx0 is the displacement of the centroid of the evolved
measure from the centroid of the natural invariant measure.
Since, by definition, the natural invariant measure is gener-
ated by the time average of Lebesgue almost any initial con-
dition in the basin of the attractor,kdml should relax to zero
as m increases. Thus, for the example(18), our hypothesis
thatQm decays exponentially, is equivalent to the hypothesis
that the displaced centroid of a cloud of orbits relaxes expo-
nentially to its equilibrium value. This is rigorously true for
the case of hyperbolic attractors[23], and we also adopt it as
a useful working hypothesis for the general case. We caution,
however, that this hypothesis may not always be valid(see
Sec. III C and Appendix B).

APPENDIX B: ORBIT DENSITIES FOR ENSEMBLES
OF LOGISTIC MAPS

In this appendix, we attempt to gain understanding con-
cerning the observed lack of convergence found for the ex-
ample in Sec. III C. To do this we numerically examine how
the orbit density evolves after a small perturbation from the
natural time asymptotic invariant density. We evolve a large
number of orbits(107 with m=3.9), initially uniformly dis-
tributed, forward in time for many iterates,(to approximately
reach the invariant orbit density), and, by duplicating, two
identical orbit distributions are created. Then, one of the or-

bit distributions is perturbed by adding the same small per-
turbation dx0=10−3 to every orbit points. We then evolve
both sets of orbits forward in time and observe the orbit
densities to see how the perturbed density relates to the un-
perturbed invariant density. We divide the intervals0,1d into
1000 subintervals, count the number of orbits in each sub-
interval, normalize the numbers, and plot these numbers for
each subinterval. This histogram procedure yields an ap-
proximation to the density with resolution 10−3.

In Fig. 14, we plot our histogram approximation of the
orbit densities for the perturbed case(gray) and for the un-
perturbed case(black) in a small interval 0.35øxø0.55.
The perturbationdx0=10−3 rigidly shifts the original invari-
ant density slightly to the right. Settingt to 0 at this moment,
Figs. 14(a) and 14(b) show the orbit densities att=4 andt
=10, respectively. We find that the perturbed density is dis-
torted significantly by aroundt=8 so that the outstanding
peaks in the perturbed density do not match those in the

FIG. 14. The histogram approximated orbit densities in the in-
terval f0.35,0.55g for ensembles of 107 identical logistic maps with
parameterm=3.9 with the initial perturbationdx0=10−3 (gray) and
without perturbation(black): We set timet to 0 at which the per-
turbation is applied.(a) and (b) show the densities att=4 and t
=10, respectively.
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unperturbed(i.e., invariant) density. Thus the small perturba-
tion dx0 in the orbit location points leads to large perturba-
tions in the absolute value of the histogram approximation of
orbit density near points where the histogram approximated
density has strong narrow peaks. Aftert=8, the histogram
approximated perturbed density becomes closer to the histo-

gram approximated invariant density. However, it is to be
expected that as the resolution of the histogram is increased,
large differences in the approximated densities would be ob-
served out to later and later times. This is a reflection of the
singular nature of the density and suggests that the perturba-
tion theory approach is not valid.
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