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Onset of synchronization in systems of globally coupled chaotic maps

Seung-Jong Baék and Edward Oft
lDepartment of Electrical and Computer Engineering, Institute for Research in Electronics and Applied Physics, University of Maryland,
College Park, Maryland 20742, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 2 March 2004; published 11 June 2004

We study the transition to coherence of an ensemble of globally coupled chaotic maps allowing for en-
sembles of nonidentical maps and for noise. The transition coupling strength is determined from a kind of
transfer function of the perturbation evolution. We present analytical results, and we test these results using
numerical experiments for several large systems consisting of ensembles of many coupled maps. The later
includes ensembles of identical noiseless maps, identical maps subject to noise, and ensembles of nonidentical
maps. One of our examples suggests that the validity of the perturbation theory approach can be problematic
for an ensemble of noiseless identical maps if the maps are nonhyperbolic. However, for such a case, noise
and/or parameter spread seems to have a regularizing effect restoring the validity of perturbation theory.
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I. INTRODUCTION nous behavior of the system. The transition from incoherence

o to synchronization with increase of the coupling has been

The onset of synchronization in large ensembles of gloyery extensively studied in the case where the uncoupled
bally coupled dynqmlcal units is of interest in many .f'eldsdynamics is periodic [1]. In particular, the well-studied
[1]. Systems of this type have been examined in biologyskyramoto model’[1] considers many periodic oscillators

where it is thought that rhythms are essential for maintaining,pose uncoupled dynamics is described by the simple phase

life. In these biological situations rhythms are typically gen-gyolution equationdd?(t)/dt=w®, for the phased" of os-
erated by a large number of cells or groups of cells, each ongjiator i which has natural frequenay’.

of which has a tendency to oscillate when isolafgfd For
example, heartbeats are stimulated by the sinoa(8&)
node located on the right atrium, and the node consists

thousands of coupled pacemaker célis3]. Each cell inthe paan madd12-14. Pikovskyet al. [12] numerically show

SA node has slightly different intrinsic frequency and, y4¢ the transition to coherent behavior in a system of glo-

through electrical coupling, achieves a consensus as to Whehy coupled nonidentical Rossler systems is due to the syn-

to fire [3]. Similar mechanisms are observed in networks oo nization of phases of the individual units. They concen-

neurong4], coupled neurons in the suprachiasmatic nucleUgate on the case that the individual systems have phase-
(the circadian centg(5], and suspensions of yeast Cqll.  gnerent attractors and think of the transition as the

Insects also exhibit synchronized behaviai8]. For ex-  qynchronization transition in a system of coupled noisy limit-
ample, it has been observed that a large number of certa@//de oscillators. However, they do not develop a theory for

types of fireflies flash on gnd off'in unispn. They e}pparentlythe transition to synchrony. SakagughB] analyzes a large
watch each other and adjust their flashing according to theigcample of globally coupled identical Réssler systems by

neighbors. A small group of fireflies starts to flash Sy”ChrO'assuming that, at the onset of coherence, the average motion

nously, and the number of synchronized participants growgy ihe ensemble is sinusoidal in time. @ttal. [14] investi-
so that the whole swarm finally flashes in unig@h Swarms o404 the stability of the incoherent state for ensembles of

of crickets and grasshoppers also chirp in unison through gi,h4)ly coupled continuous-time dynamical systems using a
similar proces¢8]. Nonbiological examples of synchrony in perturbation method and analytic continuation. They numeri-

large systems of globally coupled dynamical units occur inga)iy applied their theory to ensembles of globally coupled

arrays of globally coupled chaotic electrochemical oscmator%eterogeneous Lorenz systems with the parameters uni-

[9], semiconductor laser array%0], and Josephson junction ¢,y ‘distributed in periodic, chaotic and mixed parameter

a.rrays[ll]. It is known that these systgms experi.ence a tra”'regions. Referenceid2—14 all treated ensembles oioise-
sition to a coherent state at some critical coupling strengthfree chaotic systems.

In particular, for low coupling the individual units essentially
evolve independentlythe “incoherent statg; but, as the aps starting with the work of Kanekd15], it has been
coupling passes a critical value, the average over all units of,5\vn that, depending on parameters, these systems can ex-
an appropriate function of the unit state begins to take on @it ejther incoherent behavior, or coherent oscillat6rs.,
macroscopic value, signaling the onset of coherent, Sy”Cths'ynchronizeyj behavior, and work has been done investigat-
ing the nature of these behavigdH-1g. However, only one
paper(Topajet al.[19]) has so far given an analytical treat-
*Electronic address: sjpbaek@glue.umd.edu ment of the transition from incoherence to coherence for a

Very recently attempts to study the transition from inco-
herence to synchrony in the case where the individual units
%re chaotic systems of ordinary differential equation have

Concerning large systems of globally coupled chaotic
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large globally coupled map system. This paper, howeverandw, are independent. We note that additive noise makes
treats only the special case of identicalrdod 27 maps. the time averaged orbit probability distribution function of
In the present paper, we present a general method to den uncoupled map smooth so that the distribution has no
termine the critical coupling strength and the frequency ofsingularities[20], and noise may also eliminate small peri-
oscillation at the onset of coherence in a system of globallydic windows within the chaotic parameter region. The maps
coupled chaotic maps. Our analysis allows for arbitrary mag(x, ;) are assumed to arise from a one parameter family
functions, the inclusion of noise, and the treatment of enwith parametep;, and we assume that the are distributed
sembles that are heterogenegus., it is not required that all in some specified manner. For example, in our examples
maps in the ensemble are the sanfdso, we investigate (Sec. Ill) we will consider the case where the are distrib-
techniques for numerical application of the analysis. Oumted uniformly in an interval, and also the case of identical
analysis adapts taliscrete-time (mapg the perturbation maps where all the,; are the saméu;=w). Also in Egs.(1),
method which Otiet al. [14] applied to systems of globally N is the ensemble sizé,is the coupling coefficient, and the
coupledcontinuous-timedynamical systems. The goal is to function g(x) and q(x) are assumed to be smooth and
relate the evolution of a perturbation of the individual un-pounded. The symbdl-) denotes the average over the en-
coupled elements to the evolution of a perturbation of thesemple(the average oveiy at a fixed timen, and thus de-
globally coupled system. Thus, we represent the behavior gfends om. The symbok-). denotes the infinite time mean

coupled systems in terms of the behavior of uncoupled ele,, 4 typical orbitx, of a noisy uncoupled majk=0 in Egs.

ments. ving x® = fx® )+ . .
The system model and the analysis of the system is pre(—l)’ giving Xy, =F(xy ', p) +wy, | averaged oveps; thus (:)

sented in Sec. Il. One-dimensional map examples employin'gslc témse (T)diirze?f%n—t'( Ir(1x;r>1e ilémwﬁzhwéég?ﬁ:'ggeu Sﬁ:}”“ﬁgs
and testing the analysis are given in Sec. Ill. One result o as- A%0)? =40(X))-, ping

the numerical experiments in Sec. Il C is that there is a o effect. We refer to this solution as the “incoherent state.”

apparent failure of the perturbation theory in a case of a or large finiteN, it is expt_acted and _numerice_xlly observed
ensemble of identical noiseless nonhyperbolic mappar- that for parameter values in the pr_ed|c1|§d—>oo 'Tf,‘;here”t
ticular, the logistic map However, the introduction of noise State{d(Xy)) executes small fluctuations of ordsr = about
or of parameter spread appears to have a regularizing effef@(¥))+. As |k is increased, the incoherent state becomes un-
which seems to restore the validity of the perturbation theorystable, and the mean fietg{=(q(x,))—(a(x))- begins to have
approach. Section IV gives an example for an ensemble ot macroscopigi.e., O(N°) rather thanO(N"/?)] value. This
two dimensional maps. The examples in Secs. Il and IVtransition typically occurs at some critical nonzero coupling
contain ensembles of shifted Bernoulli maps, ensembles afoefficientk, [14,19. In fact there can be two criticelt,
modified Bernoulli maps in which a parameter of the map isvalues, a positive one, at which coherence arise& as
uniformly distributed throughout an interval, ensembles ofcreases through the critical value, and a negative one at
identical logistic maps, ensembles of identical noisy logisticwhich coherence arises &sdecreases through the critical
maps, ensembles of noiseless logistic maps with a uniforrvalue. It was shown for globally coupled, noiseless,
distribution of the map parameter in an interval, and en-<continuous-time systenid4] that the transition from the in-
sembles of cat maps. coherent state to the coherent state can be analyzed by a
perturbation method. Here, we develop this perturbation
Il SYSTEM MODEL AND ANALYSIS metho_d to analyze globally coupled, noisy, discrete-time sys-
tems(i.e., map$.
A. System model

In this section we study systems of globally coupled, cha-
otic, one-dimensional maps similar to the system studied in
Ref.[19]. (The generalization to higher-dimensional maps is We carry out the stability analysis for the system in the
made in Sec. Y. In our theory, we assume that there is aN—oe limit. Thus, for the purposes of this analysis, given a
mixing chaotic attractor so that almost every orbit of thefunction h, the symboKh(x)) is now understood to mean
uncoupled system yields the same long-time statistical be-
havior. The general form of the system we consider is

X1 = 00 ) + Wy + kg )[(A0x)) = (a(0)- ],
i=1,...N We note that, whileN— < in the analysis, our numerical
experiments necessarily have finile and, as we will see in
N Secs. Il and 1V, the finiteness dfl will have a profound
1 (i) effect for implementation of our theory in numerical ex-
(A0)) = 7 2 00 (1) ; _
Nizy amples, even thougN will be very large in these examples.
L) . ) For compactness of notation, where it is unlikely to create
The(i)quantltyv(\i/ (_|)n Egs. (1) is a random noise where confusion, we will henceforth drop the subscripts and super-
Elw,'1=0, E[w,’'W,"]= 0?68, E[] denotes the expectation scriptsi denoting the individual maps.
value,o? is the variance of the noise, and for eacandi the To perform theN— stability analysis, we assume a

w are identically distributed. Moreover, we assume that small perturbation from the incoherent state and investigate

n

B. Stability analysis

1 N
(hOx) = lim > h(x)).
—=Ni=1
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its stability. Let 8, be a perturbation ta, when there is no cial choices ofx; (e.g.,Xg on an unstable periodic orlifor

coupling, and letx, be the perturbation with coupling, which &(xg, 1) takes on a different valugfor Eq.(7) to have
, meaning we require that the summation owerconverges.
Oni1 =" X )6y S0 =1, (2 This Wi|? be so g J
Xy = T (X 1) Xy + KGX(G' (X)) X0 (3) IN > €max= foupf(xO ), (9)

[Note that, while the noise does not appear explicitly in Egs.
(2) and(3), |ts presence is stlll important since it influences
the orbitx,: n+l—f(xn ,M,)+w .] We are interested in how

the mean f|eI_d perturbatiofy’ (xn)é)(n> develops from an ini- [£(x, )/ \]™, and Eq(7) is meaningless. For the case where
tial perturbatior(@’ (xo) dxo). Setting \ satisfies Eq(9), the exponential convergence of the sum-
PV (4) mation implies that we can interchange the order of the av-

v erage and the summation. Thus we obtain

wherexg is in the attractor basin and is in the range of
parameter values used in the ensemblé|l& &(xg, 1), the
mth term in the sum increases exponentially withas

in Eg. (3), and employing Eq(2), we obtain

a1~ 2=k (0 ),

n+1

ks Qn_
1—ME=O m = kQ), (10

recursive application of which yields whereQm=(Pm or

(i > 11
Zne1 = kz <q (Xp)&(p> + 2y, (5) Qm <5n—m+1q (Xn+)9Xn-m) /- (11

p+1 . . o
Because we are dealing with chaotic situatiofne.,

where z;=6%,. Using the relation(4), we can obtain Lyapunov number greater than gnécq. (9) implies that

{9’ (X,) 5, from Eq.(5), Q(\), given by Eq.(10), can, so far, only be used fox
sufficiently larger than one. We now argue that ELf) can

%) 5 >> be expected to apply fdi|<1. This is crucial, since it is

piEp required in order to use the theory for studying the onset of
coherence. We heuristically argue in Appendix A that the

+ Xo(q' (Xn+1) One1) - (6)  quantityQ,, can be expected to decrease exponentially with

m for typical chaotic mapsa similar argument is presented

n Ref.[14] for the case of continuous time systgnsssum-

ing this to be the case, we have

"\ Onead O
<q,(Xn+1) (»(n+1> = k<2 1q (;( 1)g(x )<CI'(
p=0 p+1

Now, we assume exponential instability of the incoheren
state so that the mean of the perturbation grows exponen-
tially with n, (q'(X,) ) =Aq’ (Xg) Xy With |[\|>1. Then,

we can rewrite Eq(6) as |Qm < K&E™, (12)
1 " Snr19’ (Xne1)9(Xp) X' Xrye1) e whereK and é. are positive constants ard<<1. Thus the
A=kl s AP )+ Q0 sum in Eq.(10) now converges for al\|> &. Hence, while
p=0 prl Eq. (10) was derived fof\|> &, EQ.(12) implies that we
Letting n— e, assuming convergence of the summation, andan analytically continu€(\) from the region|A|> &y to
settingm=n-p, we have the regioné =\ | > & <1.
. At the transition of the incoherent state to the coherent
k P state(i.e., atk=k;) the system is marginally stable so that
1 =X< EO )\m> = kQ\), () I\|=1 or A\=€"® with o real. Thusk.Q(¢“)=1. Taking the
imaginary part of this equation, we obtain an equation for the
where frequency of oscillationw at the transition
pP.= 5n+1ql(xn+1)g(xn—m) Im{Q(elw)} =0. (13)
" -1 After solving this equation fow, we obtain the critical cou-
The ratio 8,1/ 8y-me1 IS pling strength,

Bt _ b s i) - £ L@ ke=Q(e)™. (14)
L 7 (X i) T (Koo ) = T Xy 1o 2) - - _ .
Sn-mi1 T e el £ In addition, expanding Eq.10) aboutk=k. and \=€*, we

. . . . obtain the following result foik near the transition
For largem, this quantity increases exponentially withas

EM(Xo, ), Whereé&(xg, u) is the Lyapunov number of the map W, k=K 5
f(x, u) for the initial conditionx,. [For almost allxg, £(Xg, 1) A=+ Q' (€°) + Ol(ke =K,
is the same numbe(i.e., what is usually referred as “the”

Lyapunov number of the chaotic attradtdout there are spe- whereQ’(N\)=dQ(\)/d\.
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I1l. EXAMPLES: ONE-DIMENSIONAL MAPS 10° , .
A. An ensemble of shifted Bernoulli maps / 5=0.0
Our first example is an ensemble of Bernoulli maps, , i : :
1077 ' : ]
i i . [ 1 = 4 D |f
fOX ) = 2V + ) mod 2, i=1,...N R p o0 ;
N
[0 1
v '
g(x) = sin 2+ sin 4x, 107
g(x) = cosx, (15) i :
_ o . ko kO KO K
wherey; is a shift which is in general different for each map 10°° 2 .c2 . o1, el
i. Because of the simplicity of this exampl®(\) can be (a) -1 -1 05 0 05 1 152

obtained analytically. After plugging EggL5) into Eq. (11),
and taking the noisew to be symmetrically distributed
aroundw=0, we obtain

Qu(N) == =3 (S Xpua(Sin 2+ sin 4xp)>< 2 )n—p
A p=o0 A

1 2
=— 5((coswn)(cos )+ X<C05 2V,-1){COS W)

X{cos 3w>>.

The second equality results from noting that, since
X, mod 27 has a uniform density 60, 27), all terms in the
summation are zero except fg=n and p=n-1. In the
above, if the ensemble of shift parametéus} is generated
from a probability density(w), then

FIG. 1. Results for an ensemble KE 10° Bernoulli maps with
and without noisefa) shows(a?) versusk. The time averag&?) is
computed using 1000 iterations. The power spectral densitiag of
at the positive critical values are shown(l) for the cases without
noise(k=kg), solid graph and with noisak=k.;, dash-dot graph
(cosMu) = f p(u)codMu)du. The predicted values of critical coupling strengths and frequencies
of oscillation agree with the experimental results.

Taking the noisev to be normally distributed, we obtain 51465 near the predicted critical values of the coupling
1[ a2 D507 strengthgthe vertical dashed lingsAlso, the power spectral
Qe?) =~ —<-—<cos,u> + ———(cos 3@). density of the sequence &f, Fig. 1(b), shows that the fre-
2\ € e’ guencies of oscillation &=k'? andk=k,, coincide with the
cl 1
predicted value&(c(f and w.; for each case. Here, and in the
following examples, the power spectral densities are esti-
mated using Welch’s methd@1].
In Fig. 2Aa), we replot{a® versusk for the above de-
e20° scribed ensemble of noisy Bernoulli maps using a linear
ko= e5"2’2, W1 = arcco{— —) scale(dot9. Also, a quadratic curve fit to the numerical data
4 in the range 1.5k=<1.8 is shown as a solid line in the same
figure. We see that the fitted line agrees well with the experi-
Kep=— 20672 4 2675921y, = 0. (16)  mental results fok=<1.8. Consistent with the expectation
. that the transition is a Hopf bifurcatigisince the frequency
For 0=0, Egs.(16) agree with the result of Ref19]. of oscillation at transition(Fig. 1) is nonzery, (a® ap-

We present results of numerical experiments in Fig. 1 for, - oo o linearly wittk—k.,). (Close examination of
the case that the system has no noise and the case that 0e umerical results in Ei (@ very neark, shows a slight
system has normally distributed noise wiii=0.16. With- 9 y 9

L O ) ©)_ 0) rounding of the, otherwise sharp, transition due to filitg
out noise (i.e., 0®=0), Egs. (16) yield K1 =1 "’?t Wey Figure 2b) showsa,,; versusa, for two values ofk, one
=arccoé-3)~0.58r and k9=-2/3 at ©'9=0. With o2 : ; :

a 0T c2 c2 =V slightly pastk;; (coherent and one slightly beforé&., (inco-
=0.16, Egs(16) yield the cr|t|£:al Va'“9%1“1-4? atwey  pereny. Fork=1.45<k,=1.49, we see that the orbit points
~0.61r and ke, ~-0.88 atwe,;=0. In Fig. Xa), (@) is the  5nhear as a cloud centered at the origin as expected for the
time average of the square of the mean fielg=(q(x))  incoherent state. Fde=1.53>k.,, the orbit points appear as
—(q(x))~ and this average is computed over 1000 iterations ira loop encircling the origin. As expected, at each step
time. We see that the mean field starts to have macroscopjmints in the ring, on average, advance in angle by almost

For simplicity, in what follows we take(u)=48(w), so that
{cos u)y={cos 3u)y=1, which with Eqs(13) and(14), yields
critical values
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FIG. 3. Results for ensembles Nf=10*, 10, 1P, 10’ Bernoulli
-0.05 maps:(a) shows vsk. (b) shows(a? vs N. Within the incoherent
state(a?) varies asN™L.
-0.1
_0‘1 20 '05 0 0 '05 0‘1 comes sharper, consistent with the spectrum approachéhg a
(b) ' ’ a ' ’ function atw=w, asN— o°,
n

RemarkIn the supercritical Hopf bifurcation of a discrete

FIG. 2. Linear scale plot ofa2) and orbits ofa, for an ensemble time system, the resu_lting s_tat?le ort_)it lies on a closed curve
of 10° noisy Bernoulli maps(a) shows(a2) vs k (dot9 and a qua- bifurcating off the basic periodic orbit that was stable before
dratic curve fit(solid line) to the data in the range 1s5k<1.8.(b)  the bifurcation(in our case, the incoherent state, which has
shows orbits ofa, for k=1.53>k.,~1.49 (points in halo about Period ong. On this curve, the orbit can be either periodic
origin) and k=1.45<k., (points clustered near origin(a® ap-  (consisting of a finite number of discrete points quasip-
proaches zero linearly and the orbits encircle the origin consisterriodic [filling out the curve, as in Fig. (®)]. Generically,
with a Hopf bifurcation. wc/ 27 will be irrational, and, for mostin the Lebesgue

) o o ] sensg (k—k.) values near zero, the orbit will be quasiperi-

wcy radians.(A plot similar to that in Fig. ) appears in  qgic, although there is an open dense set of valuetkof

Ref. [19] for the noiseless case=0.) —k,) for which there is an attractin L .
. . g periodic orbit. We note
Figure 3 demonstrates the effect of varying the ensembl : . g S .
size N. Figure 3a) shows results for our coupled noiseless?nat’ in our case, due to finité, the bifurcation is noisy, and

Bernoulli map example foN=10%,1CF,1CF, and 16. We this can wash out small windows of periodic behavior.
note that these graphs differ appreciably only in the range
k(cg)<k< k(ci) corresponding to the incoherent state. Figure

5 ) B. A heterogeneous ensemble of modified Bernoulli maps
3(b) shows the values dfa®) averaged over the range,

+0-2)$k$(k(c(i)—0.2), that is within the incoherent region The preceding example, coupled Bernoulli maps, is useful
(we denote this averag@?)), versusN on a log-log plot. because it allows an analytic solution fQ(\) (preceding

Also shown in Fig. 8) is a straight line of slope —1. We see section and Ref{19]). In more typical cases, analytical so-
that, similar to what is expected for a sum of random vari-lution for Q(\) is not possible, and numerical techniques for
ables, a scaling afa®) asN™ is consistent with the data. The calculatingQ(\) must be formulated. Furthermore, the maps
behavior seen in Fig. 3 is also seen for all our other examplek the ensemble may not all be identical. In order to illustrate
(except for that in Sec. lll £ Regarding Fig. (), we also these points, our second example is an ensemble of noiseless
note that, as the ensemble size is increased, the spectrabdified Bernoulli maps depending upon a map parameter
power not atw, decreases, and the spectral peakwabe- that is uniformly distributed in the interval , 2),
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fix)=2xmod 27 + y; sinx, u;~U(1,2, i=1,... N,

g(x) =sin 4, q(x) =cosx,

where U(1,2) is the uniform distribution over the interval
1,2.

Since we do not have a closed form expression for the
natural invariant density in this case, we evaluate’®) nu- g
merically in the following way. First, we producs=10°
points,X,, uniformly distributed in the interval0, 277) with a
random number generator, and we also produce the sam
number of randomly chosen parameters uniformly distrib-
uted in the interval(1,2). Then we evolve the uncoupled
(k=0) system forward in time for 3000 steps saving the val-
ues ofx for the last 31 iterations. Using these values we
construct histogram approximation to the invariant density (@)
using bins of width 2 x 1072 in X. We letxsggobeXn.1 in Eq.
(11). Using the saved data, we obtaiﬁl/ 8" [from Eq.

(8)] and g(xﬂlm), and employ Eq(11) to obtain an approxi-
mation toQ,, for m=0,...,30. Note that, in the incoherent
state x for the systenil) has an invariant density resulting
from the uncoupled individual maps. Thus, if the ensemble
has an infinite number of magkl— «), and each orbit in the
ensemble is given an initial perturbatiér, (as in our analy-
sis in Sec. 1), then the uncoupled ensemble will eventually
settle down to the invariant density after a sufficiently large —
number of iterations. It is, therefore, expected that Kor
—oo the mean field perturbatiofq’(x,) o, converges to
zero asn increases. Henc@,, converges to zero with in-
creasingm in the large ensemble limN—oc. However, due
to the finite ensemble siz&\=1CF), our computation of),,

does not converge to zero. What happens is thamnas- ®) ) o
crease®),, eventually becomes small; say it assumes a small
value atm=m,.. However, asm becomes larger, our com- FIG. 4. Q(é®) for an ensemble oN=10 modified Bernoulli

puted approximations toQ,, become inaccurate. Since maps with uniformly distributed parameters) shows six numeri-
5;11/ 521w1 on average increases exponentially with  cal approximations t®. The six approximations are near zero at
(chaog, the individual terms in the averagél) becomes m=4,5, butthen diverge from each other due to the combined
larger and larger am increases. On the other hand, fdr  effect of chaotic dynamics and finite ensemble sig®. shows
—, the average decreases with Thus asm increases Q(€*) evaluated by averaging the six results froan for m=0-4
cancellation between terms in the average must becom@d takingQn=0 for m=5. The imaginary part oQ(e') has four
more and more precise. Hence to obtain good statistics faggero-crossing points and we label three of them and corrgspondlng
Q,, demands exponentially larger and larger ensembleNsize real parts of these three points. The real parts correspondiag; {0
asm increases. Thus for any finité we expect our numeri- 2" @ci2are close to each other.
cal computation ofQ,,, to breakdown asn increases.

We plot six numerical approximations @y with differ-  these zeros,, .11, andwc;, The positive values o(e*)
ent randomly chosen initial conditions in Figa# We see  at o ,,~0.377 and w, =~ are close to each other, al-
that our approximations tQ, become small at arounth  though the value ato.;, is larger. From the real part of
=4 or 5', but increase after that and clearly become unequagy(é«), we obtain critical coupling strengthls,,~—1.24 and
To obtainQ(€'“), we setQ,, to be zero fom=5 and take the k.1~ 2.48 corresponding te., and wq;o.
average over our six approximations. The real and imaginary Results from coupled ensembles of Ehd 16 noiseless
parts of the resulting approximation @) are shown in  modified Bernoulli maps are shown in Fig(as along with
Fig. 4(b). [When the imaginary part d(€'’) crosses zero, the critical valuegvertical dashed lingswhich we obtained
the real part has a maximum or minimum near these crossingom our numerical approximation ®Q(e'“). We see thak.,,
points] The greatest positiv@(e'’) at a crossing point and and k, closely agree with the experimental results. Figure
the smallest negativ@(e'“) at a crossing point are the recip- 5(b) shows the power spectral density af for k=k.;,
rocals of the positive and negative critical coupling strengths=2.48; we note that peaks are present botwat (vertical
respectively. In this example, the imaginary partQfe'®) dashed lingand atw.1, and that the peak ai.,, is, in fact,
crosses zero four times in the plotted range. We label three dérger, even thougk,,, is less than 1Q(e/“c11).
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-6000¢ }
FIG. 5. Results for ensembles Nt 10°, 16° modified Bernoulli _8000 ‘ ‘ ‘ ‘ ‘ ‘
maps with uniformly distributed paramete(a) shows(a?) vsk, (b) 0 5 10 15 20 25 30 35
is the power spectral density af, at k=2.48~ k. © m
FIG. 6. Qy, for an ensemble oN=10" logistic maps with pa-
C. An ensemble of logistic maps rameterp=3.9: (a) showsQ,, up tom=17 and(b) showsQ,, plot-
Our third example is a noiseless ensemble of Iogistided up tom=35. We see tha_t our approximations do not converge to
maps withg(x)=1 andq(x)=x, small values before diverging from each other.
xﬂilz f(Xg)) PR = (0, i=1,... N, critical coupling strength from the theory. Since it is imprac-

tical for us to increas@l further we cannot proceed further.
i o) n In'de'ed, singe Fig.'6 indicgtes growing oscillations @f,
f(xy)) = uxy (1 =x5"), (17 with increasingm, it is questionable that increase dfwould
solve the problem.

Note that the logistic map has dense periodic windows in
the chaotic parameter range and that the natural invariant

illustrate that numerical implementation of E¢LO) can densityp(x) of the logistic map for typical chaotic parameter

sometimes be problematic, and to speculate on why tha{a!ugs has a dense countable se:_t vhlues at whictp(x) is
might be the case. infinite [22]. We speculate that this could be the root of our

In this example, we again do not have a closed form exproblem in applying Eq(10) (see the Appendix B In par-
pression for the fnvariant density of an uncoupled mapticular, both of these features call the application of the per-

; : turbation theory used in Sec. Il into question.
Hence, we attempted to evalud@g, numerically using Egs. o ; : :
(8) and (11) which in this case is simply In addition, we find that the behavior found for this ex-

ample is qualitatively different from the behavior found for
S the examples in Secs. Ill A and Il B. In particular, Fig. 7
Qm=\ /- (18

where all maps have identical parametdg=u=3.9,
=1,... N). In this case, we were not able to obtain useful
results by use of Eq10). We include this example mainly to

shows{(a?) versusk for N=10*, 1%, 1(f, and 10. We see
that, unlike Fig. 8a), theN dependence is confined to a very
In Fig. 6, usingN=1C", we plot five approximations t®,,  small region neak=0, and this confinement becomes nar-
up to m=35 obtained using different random initial condi- rower asN increases. Thus, if there are critical vallgs>0
tions (as in Sec. Il B. We see that the five approximations and k.,<0, bounding an incoherent state ky,<k<Kk.,

stay close to each other up to=28 without converging to these values have very small magnitude. Another possibility
zero. Pastn=28, they diverge from each other. Our numeri- (which we suspect might be the casethat there may be no

cal approximations ta@Q,,, do not converge to zero before incoherent state, except &=0, and that, as soon dsis
diverging from each other, and we thus cannot predict théionzero, coherent behavior arises discontinuously. Such a

5n—m+l
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FIG. 7. (a®) vs k for ensembles of logistic maps: Data for en- = . ,
sembles of sizebl=10*, 10, 1C° are shown in(a). We plot(a?) for —=-2r 10 W
ensembles oN=1C°,10°,10° logistic maps versuk in a narrower -40 0'1 0'2 0'3' 0'4 0'5 O‘6I 0'7 0|8 0'9 1
range ofk in (b). We see that thdl dependence is confined to a very ) ) : : 0;/ ) ) ) )
s

small region neak=0 and that, af\ increases, the confined region
becomes narrower.

theory.

D. An ensemble of logistic maps with noise

Sec. Il, adding noise makes the orbit density smooth ang
may eliminate small periodic window20]. Hence, we can
expect that the confinement bf dependence ofa®) shown

FIG. 8. Q(€®) for an ensemble oN=10° noisy logistic maps
. . . . with parametern=3.9 and normally distributed nois€a) shows
situation would be outside the scope of our perturbationnree numerical approximations @, The three approximations
are near zero an=8,9, butthen diverge from each othe&h) shows
Q(€®) evaluated from(a) assuming tha@,,=0 afterm=8.

. o Again we do not have a closed form expression for the
In our forth example, we consider the case studied in the, i density, and hence we rely on a numerical approxima-
preceding section, but with noise added. As mentioned o, to Q,, to obtainQ(e®). Three approximations tQ,, for

ifferent random number seeds are shown in Fg).8&hese
three plots show good agreement with each other umto
=9, where they assume small valu€Xe'“) derived from

in Fig. 7 will be widen and we confirmed this dependence bygne of these approximations wiy, set to zero fom=9 is
numerical experiments. Also, we find that the noise promotegpown in Fig. 8b). Using the data in Fig.(®), we predict

convergence ofQ,, and that application of Eq.10) now
yields accurate and useful results. We consider Egswith
f(x)=3.%(1-x), g(x)=1, q(x)=x, andwﬂ) normally distrib-
uted with variances®=10" (see Sec. )l Note thatx
Egs.(1) could fall outside the basin of attraction of the map
(0<x< 1) because of the noise
the order of 10* near the incoherent state with= 10° noisy

()

n+1

(i)

n+1

in we1=~ 0.347 and w,=0.

64,

that the critical values of the coupling coefficient will be
k.1=0.29 andk.,~-0.39, and that the corresponding fre-
quencies of oscillation at the onset of coherence will be

In Fig. 9a) we plot the time average of the square of the
(the coupling term is on  mean fielda, for ensembles of foand 16 noisy logistic
maps,(a?), and the predicted values of the critical coupling

logistic map$. To prevent any variable from escaping the strengths(vertical dashed lingsk.,; andk., We replot(a?)

basin, we replace

basin.

(i)

n+1

(i)

n+1

by x

mod 1, if it falls outside the

using a linear scale in Fig.(®) (dotg. Also shown in Fig.

9(b) as a solid line is a quadratic curve fit to the numerical
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FIG. 10. Power spectral density and orbitsagfor N=10" The

_FIG' 9 _Experime_ntal results for an ensembIeNyf:_lo“'., 10° frequency of oscillation and the power spectral densitypht k
noisy logistic maps with parametgr=3.9 and normally distributed =k, are plotted in(a). (b) shows orbits ofa, for k=0.30>k,

noise:(a) shows a semilogarithmic plot ¢&%) vs k, and(b) shows ~0.29 (points in halo about originandk=0.28< k; (points clus-
(a®) (dot9 and a quadratic curve fit to the numerical data in thetered near origin

range 0.28<k=<0.44 (solid line) for N=1C.

data in the range 0.29k<0.44 which agrees well with the gggg:ggg%@ ?ﬁgxaﬁgsémlgg;;gﬁl.lanzmg effect has been
experim_ental resultzs fok=0.51. .Extrapolating thg fitted Figure 11a) shows six approximations Q,, for different
quadratic curve t¢a’)=0, we obtain an accurate estimate of random number seeds. They agree well with each other up to
the critical value of the coupling strengtke=0.29, confirm-  ,— 15 \yhere they assume small valu(e®) shown in
ing the theoretical prediction. From Figltf) we see thata®) Fig. 11(b) is derived from one of these approximations with
approaches zero linearly with—k;;) consistent with a Hopf Q,, set to zero fom= 12. From Fig. 1{b) we predict that the
bifurcation (w; # 0). critical coupling strengths will bek,~0.24 and k.,
The frequency of oscillation ak=k;; obtained from ~-0.13, and that the corresponding frequencies of oscilla-
Q(e") is shown in Fig. 10g) as a vertical dashed line, along tion at the onset of coherence will ke,;~0.377 and o,
with the power spectral density &, The dominant fre- =~0.60s7.
quency of the spectrum agrees with the frequency predicted In Fig. 12a) we plot the time average of the square of the
by our analysis. Figures 1) showsa,,, versusa, for two  mean field for noiseless ensembles of 1@, and 16 lo-
values ofk, one just pask;; (coherentand one just before gistic maps with the parametes, uniformly distributed in
kcq (incoherent Fork=0.28<k:;=0.29, we see that the or- the interval(3.88,3.96. The power spectral density af, at
bit points appear as a cloud centered at the origin. kor k~k_ is shown in Fig. 12b). We see that the predicted
=0.30> Kk, the orbit points appear as a loop encircling thevalues agree well with the numerical experiments. Note that
origin (at the frequencyoy). the peak arouné=0.74r is also expected from the data in
Fig. 11(b). The real part ofQ(€) at w=~0.74mr, where the
E. A heterogeneous ensemble of logistic maps Z?Egil?cary part crosses zero, has a value comparable with that
In our fifth example, as in Sec. Il C, we again consider a '
noiseless ensemble of logistic ma@ds), but now with the
map parameteru, uniformly distributed in the interval
(3.88,3.96. We find that the introduction of parameter In this section we examine globally coupled multidimen-
spread appears to have a regularizing effect and, for thisional systems for which, analogous to the systém the
noiseless case, we now obtain results in agreement with owonsidered system is

IV. EXAMPLES: TWO-DIMENSIONAL MAPS
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FIG. 12. Experimental results for a noiseless ensembl&l of
=10%, 10, 10F logistic maps with parameter uniformly distributed
in the interval(3.88,3.96: (a) shows(a® vs k, and(b) shows the

FIG. 11. Q(g®) for a noiseless ensemble <l>_f=109 logistic  power spectral density @, at k=0.24~k, for N=1CF.
maps with parameter uniformly distributed in the interval

(3.88,3.96: (a) shows three numerical approximationsQg, The

three approximations are near zeravat 12, but then diverge from (I-QMNK)v=0.
each other(b) showsQ(e'®) evaluated from@) assuming tha®,

=0 afterm=12.

where
X1 = FOx) + Wi+ CO)K(axa)) = ¢A00)-), .
=N Q0= 2 /A,
m=1

wherex,=[X; Xo ... % nl", I is the dimension of a may, is
the coupling matrix(>(x,) is a matrix function, and(x,) is
a vector function ofx,. Here Wﬂ) is random noise where 0,,=(D \ _ .
: DG o _ _ dm={(Da(xx)M(n,n=m+ )G (X)), (19
E[wf]')]zo, E[WS)WE)TFE&U Sne 2 s the covariance matrix, " ¥ o
and we assume that the noise at each iterate is identically _
distributed and thax,, andw,, are independent. which yields

Let Df(x)=df(x)/dx and

Df(X-)Df (Xp) -+~ Df(x), N=p+1, de(l-QMK) =0. (20)

M(n,p)={ﬂy n=p

. _ . . . _ By settingh=€® in Eq. (20), we can determine the critical
wherel is the identity matrix. Then proceeding as in Sec. Il, coupling strength and the frequency of oscillatisee Sec.

we assume that the mean of the perturbafiergrows expo-  ||).

nentially with n, (Dq(x,) &, =VA", wherev=(Dq(Xo) o). We now illustrate Eq(20) by application to an ensemble
Letting n— o0, assuming convergence of the summation, andf globally coupled two-dimensional maps. In particular, we
settingm=n-p, we obtain takef(x) to be the cat map,
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=] XY d2m qeo=| P 10" ——— —
X) = mo . X) = , Voo b
X+2y m 0 af o Do
10 =~ Y
coo =[S+ 0] ko o1 ol 4 ; i/
(>(Xx) = , = s :f 1
0 0 00 {
N/\1 0—3_ 0=0.0 —™ {
wherex,=[x,y,]". For the noise, we choose ¢ L
|\‘ h
. . 2 0 107 4 L
Elwi1=0, Ew{w{'= { 0 o2 | %% AN i
10° o
wherew!))=[w{ ! |7. We denote the element at tkt row Sl KD KO ik
and thelth column of a matrixA by [A],. Then, after plug- 10— 5 ] °1é .
ging Egs.(21) into Egs.(19), we obtain (a) k
n-1 -1 - . : . :
] . . [M(n,p+1)]y4 ! _
[Qn()\)]ll == E <S|n XnSII"I(ZXp + 3yp)>T — 0700
p=0 -2f
1
=- 2_)\2<C03Wx,n T Wyn-1t Wy,n—1)>- 3
3
The second equality results from noting that, since the mea- 0‘9-4-
sure generated by orbits of the uncoupled noisy cat mapsis 8
uniform in 0<x=<2w,0<y=<2, all terms in the summa- T -5p
tion are zero except fop=n-2. For normally distributed
noise,[Qy(\)]11=—-(2\?)texp(-302/2). From the condition -6[, ..
(20), we obtain i\
1 g3 ®) 0 02 04,06 08 1

FIG. 13. Experimental results for an ensembleNsf10° cat
which yields the critical valuek,;= 2e3"2/2 atwy=m/2 and  mMaps with and without nois¢a) showsk vs (a?) for the cases with
Kep= 2e3‘72/2 at we,=0 noise and without nois€b) show the power spectral densitiesaf

- .

2=" . . . ftive crit : ©
Figure 13 shows results of numerical experiments for thidt the positive critical values for the cases without naisek,

system without noise and with noise?=0.16. Without ~ S°id 9raph and with noisek=k, dash-dot graph

noise, the critical values arbf:(’l):z at wf:ol):fr/Z and kf:OZ) noisy Bernoulli maps, for a noiseless system of modified
=-2 atwgzo. With noise, the critical values akg;~2.54  Bernoulli maps with distributed parameters, for noisy logis-
at wg,=7/2 andk;,~-2.54 atw.,=0. In Fig. 13a), we see tic maps, and for a noisy system of cat mags two-
that the transition occurs near the predicted critical values fodimensional examp)e However, we did not obtain useful
each case. Also, Fig. 119 shows that the predicted frequen- results from our analysis when we attempted to apply it to an
cies of oscillation ak:kg) andk=Kk.; (which is /2 in both ~ ensemble of identical noise-free logistic maps. We speculate
casey match the peaks of the power spectral densitiea,of that this may be due to the facts that the natural invariant
for eachk. density p(x) of the logistic map, in common with other ge-
neric nonhyperbolic maps, has a dense countable set of
values at whichp(x) is infinite and that the map is structur-
ally unstable(it has a dense set of periodic windows in its
A large class of globally coupled systems of chaotic mapshaotic parameter rangeStructural instability, for example,
experience a transition from incoherence to coherence amplies that a small perturbation can result in totally different
critical values of a coupling coefficient. We have shown thatdynamics, and hence application of a perturbation method
these critical values can be determined from a perturbatiomay be questionable. On the other hand, we have found that
method, and we apply our method to ensembles of homogesither noise or parameter spread appears to restore the valid-
neous chaotic maps, ensembles of chaotic maps with distritity of the perturbation theory approach. It would be worth-
uted parameters, and ensembles of chaotic maps with noisehile to further investigate noiseless ensembles of smooth
We have shown that numerical approximation(@®) can  maps that have a dense set of periodic windows.
be sufficiently accurate to yield good predictions for the tran-
sition, provided that a large enough number of elements is ACKNOWLEDGMENTS
used in obtaining the approximations. The authors acknowledge support from the Office of Na-
In our numerical experiments we obtained good agreeval ResearchiPhysic$ and the National Science of Founda-
ment with our theory for ensembles of a large number oftion (Grant No. PHYS 0098632

V. CONCLUSION
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APPENDIX A: DECAY OF Qg WITH INCREASING m x107°

In this appendix we give a heuristic argument suggesting — Unperturbed
that, in typical cases, it is reasonable to hypothesize that, for —— Perturbed
large m, Q,, decays exponentially with increasing. For
definiteness, we consider the case of a map="f(x,) of the
real line, =o<x=< +o0, which has a single chaotic attractor
in some bounded region of and we also assume that this
attractor has a natural invariant measjakso called a Sinai-
Ruelle-Bowen measufeBy definition the natural measure is
the unique invariant measure, such that, for any smooth
function s(x), the time average of(x,) over an orbit is
Js(x)dv for orbits generated by Lebesgue almost every initial
conditionx, in the basin of attractor. Recalling thgitx) and
g(x) are smooth bounded functions, we anticipate that the Oz 02 oaE 0E 055
decay ofQy, does not depend critically on details of these ()" ' X ' '
functions. Thus we consider the illustrative example of Eq.

(18). Using Eq.(8) we express Eq.18) as x10°

Q= (F ) (X)) - T e

w &

Density Distribution
\S]

The average(:--), is over an infinite number of initial con- 4r
ditionsxg) which are distributed on the attractor according to
the natural invariant measure. Since the natural measure is
invariant,

Q= (F" (Xm0 ' (Xim-2) -+ ' (X0)) = (O
The quantity(5,) has a simple geometric interpretation.
Imagine that, at timen=0, we displace all the initial condi- 1l
tion by the same amouulx,. That is, we rigidly translate the
natural invariant measure by an amouwh. Thus, at any
subsequent 'timem, (6dxy is the displacement of the $3s 0a 05 05 055
evolved orbits averaged over all orbits. In other words, (b) X
(5,ydxg is the displacement of the centroid of the evolved
measure from the centroid of the natural invariant measure. FIG. 14. The histogram approximated orbit densities in the in-
Since, by definition, the natural invariant measure is generterval[0.35,0.53 for ensembles of I0identical logistic maps with
ated by the time average of Lebesgue almost any initial conParameter.=3.9 with the initial perturbatiorx,=10"° (gray) and
dition in the basin of the attractofg,) should relax to zero Without perturbation(black: We set timet to 0 at which the per-
asm increases. Thus, for the exampte8), our hypothesis turbation is a_1ppI|ed(a) and (b) show the densities &=4 andt
thatQ,, decays exponentially, is equivalent to the hypothesis 10 respectively.
that the displaced centroid of a cloud of orbits relaxes expo-
nentially to its equilibrium value. This is rigorously true for
the case of hyperbolic attractdia3], and we also adopt it as
a useful working hypothesis for the general case. We cautio
however, that this hypothesis may not always be védiee
Sec. Il C and Appendix B

Density Distribution

bit distributions is perturbed by adding the same small per-
rijurbation =102 to every orbit points. We then evolve
oth sets of orbits forward in time and observe the orbit
densities to see how the perturbed density relates to the un-
perturbed invariant density. We divide the inter(@| 1) into
1000 subintervals, count the number of orbits in each sub-
APPENDIX B: ORBIT DENSITIES FOR ENSEMBLES interval, normalize the numbers, and plot these numbers for
OF LOGISTIC MAPS each_ supmterval. This _hlstqgram pro_cedure yields an ap-
proximation to the density with resolution 0
In this appendix, we attempt to gain understanding con- In Fig. 14, we plot our histogram approximation of the
cerning the observed lack of convergence found for the exerbit densities for the perturbed caggay) and for the un-
ample in Sec. Il C. To do this we numerically examine how perturbed caséblack) in a small interval 0.35x<0.55.
the orbit density evolves after a small perturbation from theThe perturbationsx,=10"2 rigidly shifts the original invari-
natural time asymptotic invariant density. We evolve a largeant density slightly to the right. Settirtgo 0 at this moment,
number of orbits(10” with ©=3.9), initially uniformly dis-  Figs. 14a) and 14b) show the orbit densities at4 andt
tributed, forward in time for many iterate@p approximately =10, respectively. We find that the perturbed density is dis-
reach the invariant orbit densjtyand, by duplicating, two torted significantly by around=8 so that the outstanding
identical orbit distributions are created. Then, one of the orpeaks in the perturbed density do not match those in the
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unperturbedi.e., invarian} density. Thus the small perturba- gram approximated invariant density. However, it is to be
tion &%, Iin the orbit location points leads to large perturba-expected that as the resolution of the histogram is increased,
tions in the absolute value of the histogram approximation ofarge differences in the approximated densities would be ob-
orbit density near points where the histogram approximatederved out to later and later times. This is a reflection of the
density has strong narrow peaks. After8, the histogram singular nature of the density and suggests that the perturba-
approximated perturbed density becomes closer to the histdion theory approach is not valid.
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