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Three-body dynamics in a(1+1)-dimensional relativistic self-gravitating system
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The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal
gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the
Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This
solution is compared to the corresponding nonrelativistic and post-Newtonian approximation solutions so that
the dynamics of the fully relativistic system can be interpreted as a correction to the one-dimensional New-
tonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a
large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and
chaotic; the first two being regions of quasiperiodicity while the latter is a region of chaos. By changing the
relative masses of the three particles we find that the relative sizes of these three phase space regions changes,
and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles.
Furthermore, we find that many of the interesting characteristics found in the case where all of the particles
share the same mass also appear in our more general study. We find that there are additional regions of chaos
in the unequal mass system which are not present in the equal mass case. We compare these results to those
found in similar systems.
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[. INTRODUCTION model the motion of a billiard colliding with a wedge in a
uniform gravitational field[2] two elastically colliding bil-
liard balls in a uniform gravitational fiel{4], and a bound

fied, mutual force is one of the oldest problems in physics
. State of three quarks to form a “linear baryd®]. There are
commonly referred to as té-body problem. This problem still many open questions about the OGS concerning its er-

gg;gf;igu;n:gsgnagﬁ nillv?]':gntﬁesgbgﬁilgg da?c;jrcr:rga{ﬂzta%odic behavior, the condition® any) under which equipar-
) P tion of energy is attained, whether or not it can reach a true

g;nvttigﬂl?)? %r:\/r%tligrtlhégﬁ Sb%agsglnrggnﬂ;"ggs’TahfsloizerfoiormequiIibrium configuration from arbitrary initial conditions,
. . S . and the appearance of fractal behaVior.

true for (3 +1)-dimensional general relativistic gravity, how- In a relativistic context, reduction of the number of spatial

ever, due to the existence of energy dissipation in the form O&i !

ational radiation. All att ot lculate th " mensions results in an absence of gravitational radiation
gravitational radiation. Al attempts to caiculate the motion,,; retaining mostif not all) of the remaining conceptual
of more than one particle i3+1) general relativity have

. . features of relativistic gravity. Consequently, one might hope
required some form of approximation. g 4 g 4 g P

. . . to obtain insight into the nature of relativistic dynamical
Considerable progress in this area of research has be g y

. AT X avitational systems at the classi¢ahd perhaps even quan-
made recently by reducing the number of spatial dimension y caihd p P d

m) level in a wide variety of physical situations by study-
from three to one. These lower-dimensional theories providcﬁqg )the relativistic OGS o}r/ ROpGé. y y

a simpler prototype for their higher-dimensional counter-
parts. Furthermore, for Newtonian gravity, one-dimensionat
self-gravitating system@GS’s have proven to be very use-

ful in modeling many diverse physical systems. For example

The calculation of the motion dfl particles under a speci-

Comparatively little has been known about the ROGS
even forN=2) until quite recently, when a prescription for
obtaining its Hamiltonian from a generally covariant, mini-

in globular clusterg1]. These structures consist of a dense

¢ particl b ded b loud fthe OGS into the relativistic regime, and indeed, consider-
core of particies near equilibrium surrounded by a cloud ol o progress has been made. Exact, closed-form solutions to
high kinetic energy particles that interact very weakly with

. e two-body problem have been obtain@. These have
tf;}e core. me OG|S also modelséhe Idynam|cs c(;f fLat, parall een extend)édpto include both a cosmol(r)gilzal con$rhe
sheets colliding along a perpendicular ak®$ and the mo- L : )
tion of stars interacting with a highly flattened galapg]. and electromagnetic interactiofitl], and a new exact solu

- . tion to the static-balance problem has been obtajaéfl In
More specifically, the three-particle OGS has been found Bhe N-body case, the Hamiltonian can be obtained as a series

expansion in inverse powers of the speed of light arbi-

trary order and a complete derivation of the partition and
*Email address: jjmaleck@uwaterloo.ca single-particle distribution functions has been found in both
"Email address: mann@avatar.uwaterloo.ca the canonical and microcanonical ensemilE3 providing
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interesting information concerning the influence of relativis-[2,4,5,23,* the fully relativistic casgR) described above,
tic effects on self-gravitating systems. Very recently, formu-and a post-Newtonian expansiguN) of the R system, trun-
lation of the ROGS has been extended to circular topologiesated to leading order in™2. While exact relativistic solu-
[14] (forbidden for the OG$ and a newN-body dynamical tions of theN-body problem have only been found for
equilibrium solution has been fourfd5]. An exact expres- =2,3, thepost-Newtonian expansion has been found for all
sion for the relativistic, three-body Hamiltonian has been calfinite values ofN up to any order of accurady]. Both the R
culated and the motion of three equal-mass particles has be@Rd PN systems reduce to the N system in the lgnite.

extensively studied16,17: these results are summarized in _ !N Sec. Il we outline the canonical reduction procedure of
Sec. VA, Ref.[17] that leads to the relativistic Hamiltonian expression

fand the resulting canonical equations of motion. Some gen-
al properties of each of the systems are then discussed in
ec. lll, focussing on the character of the associated potential

energy functions of each. The method for numerically solv-

the RICCi laR | to the t f the st fing the equations of motion is described in section IV and the
€ Riccl scalair equal fo the trace of the SWess Energy ol qq s of this numerical solution presented in Sec. V. These

prescrlbed matter fle!ds and SOWC‘?S- Hence, 48 ﬂ) di- results are then summarized and discussed in Sec. VI, which
mensions, the evolution of space-time curvature is governegdyncludes with a comment on areas of further research
by the matter distribution, which in turn is governed by thejnterest.

dynamics of space-timgl8]. Sometimes referred to &R

=T theory, it is a particular member of a broad class of dila-

ton gravity theories formulated on a line. What singles it out

for consideration is its consistent nonrelativigi@., c— ) Il. HAMILTONIAN FORMULATION OF THE

limit [18] which is, in general, a problematic limit for a RELATIVISTIC EQUATIONS OF MOTION

generic (1+1)-dimensional theory of gravitf19]. Conse- The general procedure for deriving tiNebody Hamil-
quently it contains each of the aforementioned nonrelativisti¢onian via canonical reduction is given in Rej8,10,17 and
self-gravitating systems as special cases. Furthermore, it renly a brief description will be given here.
duces to Jackiw-Teitelboir@dT) theory[20] when the stress The action for the gravitational field minimally coupled to
energy is that of a cosmological constant. N point particles in(1+1) dimensions is given by
We have found that the best way to study the motion of
three particles is to work in the canonical formalism. By
expressing the action in canonical variables we are able to 1 1
determine the Hamiltonian as a spatial integral of the second = | d?x —V’ng’”{\PRﬂv+ —V,}IIVV‘I’}
derivative of the dilaton field. This field is determined by the 2« 2
constraint equations derived from the action which can be N

2
solved by matching the solution of the field across each of > JdTa{_ ma(_g (X)%d_z;> }5(2)[X_Za(7'a)]]
mv 1
1

In this paper, we will generalize the study of the motion o
three patrticles to include the unequal mass case. We wo
with a two-dimensiona{2D) theory of gravity on a lin€lin-
eal gravity that models 4D general relativity in that it sets

the three particles. The result is a transcendental equation = drydr,

containing the Hamiltonian and expressed in terms of the (1)
remaining degrees of freedom, that is, the two mutual sepa-
rations of the particles and their conjugate momenta. From

this transcendental equation we obtain the canonical equ%iCCi tehsor.r, the proper time for thath particle with mass

tions of motion, which are then solved numerically. T ~

Through a change of coordinates, the Nevvton)gan, three an_d positiorz,, andK_BT’G/C[l' We USEV, to den_ote the
particle OGS can be shown to be isomorphic to the motion o ovariant der|vat|ye associated wi,. The scala(qnaton) .
a single particle in a linear, hexagonal well potential. By 'E.’quf has_ be_en mcorpprated_ beCf?”S‘? 'ghe classical Einstein-
applying this same change of variables to the three-particlgl'lpert action |n_(1+1_) d|men5|ons_ IS tr|\_/|a| due tq the van-
ROGS we find an analogous hexagonal potential where th‘?h'n.g qf the Einstein tensor. Th's. action dg;crlbes a self-
sides of the hexagonal cross section are curved outwards a'?&avnatmg system oN particles without collisional terms
the sides of the well no longer increase linearly with increas!!-€- the particles pass thrqugh each O)her , Lo
ing particle separation. We find that, by changing the relative From Eq.(1) one can derive the following field equations:
masses of the particles, the shape of the hexagonal cross
section in both the Newtonian and relativistic systems is ex- R-g“V,V,¥=0, (2)
panded or contracted perpendicular to one of the lines con-

necting opposite vertices. This change of variables simplifies 1tpese studies examine the three-body problem in a classical po-
the analysis of the motion significantly and is used throughential obtained by solving Poisson’s equation in one spatial dimen-
out to extract Usefu| |nf0rmat|0n from bOth the three'part|cles|on The potentiaj |inear|y depends on the Separation of the par-
OGS and ROGS. ticles as seen in Eq(20). The chaotic properties of the one-

As in Ref.[17] we consider three distinct three-body, self- dimensional three-body problem with a potential that depends
gravitating systems: the nonrelativistic ca$$) which has inversely on the separatigas in three dimensiopfiave been stud-
been extensively studied in many different contextsied in Ref.[22].

hereg,, is the metric tensor with determinagtR,,, is the
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sV, UV, ¥ -39, V'OV, W +g, V'V, ¥ -V, V¥ = «T

v

3
d dzl_1 dzdz | _
ma[ d a{g,uv(za) dTa} ng)\,M(Za)dTadTa - O! (4)
where
Emadea /_gg,u,trgvpdza 46(2)[)( Za(Ta)]
5

is the stress-energy tensor for theparticles and is con-
served via Eq(3). Inserting the trace of Eq3) into Eq.(2)
we obtain

R= KTZ. (6)
The fact that we retain this simple relation between the ge:
ometry of space-time and the matter, analogous to the Ein

stein field equations, is the motivation for choosing the dila-

ton coupling in Eq(1).
Equationg4) and(6) form an(N+ 1)-dimensional system

that can be solved for the single metric degree of freedom

and theN particle degrees of freedom. Equati() relates
the evolution of the dilaton field to the evolution of the point
masses.

To arrive at a Hamiltonian theory we begin by writing the
metric as

ds = — N3(x,t)d? + y(dx+

Na(xt) dt)z @
. .

whereNy andN; are the lapse and shift functions which act

as Lagrange multipliers for the resulting constraints of the

Hamiltonian system and is the single metric degree of
freedom.

By also definingp,, 7, andll to be the conjugate momen-
tum of z,, v, and WV, respectively, one can canonically reduce
the action to the fornj7]

| = f dZX{E PaZad(X — Z,) + %A‘P}, (8)

upon eliminating the constraints and choosing the coordinat
conditionsy=1 andII=0. Here we use\ to denoted?/ x>
and a dot to denoté/dt. With the action in this form, we
recognize the second terii=—1/xA¥ as the Hamiltonian
density and can immediately write down the Hamiltonian for

N particles as
1
- [oe=-2 [

dxH =-—
whereV is a function ofz, and p, and can be determined

9

K
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AW = 2024 a2+ k3, \p2+ m2a(x - 2,) = 0,
a

(10

27 + >, padx—2,) =0, (11)

where a prime denote¥ Jx.

The solution of Eqs(9)—«11) for the three-particle case is
given in Ref.[17] and will not be reproduced here in detail.
The basic procedure involves choosing a specific configura-
tion of the three particles and solving E¢&0) and (11) in
the region between each patrticle. The constants of integra-
tion are then determined by demanding tHatand ¥’ re-
main finite and coincide at the position of the particles. This
gives an implicit equation for the Hamiltoniad for the
specified particle configuration and the Hamiltonian for a
general configuration is obtained by permutation of the par-
ticle indices(1, 2, and 3.

This implicit equation for the Hamiltonian can be ex-
pressed as

LiLolg= MMy lzelsid(brtMidng (Lot May2;g]
+ MoysM 32|_*1€(K/4)523[(L2+M23)221_(|_3+M32)231]
+ MM gl el saillbarMayzar(LirMigal,

(12)

or more compactly

Lilols= 22 || MM Ly DS LMz LMz,
ijk

(13
where
M;;=M; - epssj, M;=\p’+n?, (14)
eL H- M (2 ijji), L::(l— H SjSk)Mi+Lia
i j<k#i
(15
with z;=(z-z), s;=sgr(z;), and € is the three-

dimensional Levi-Civita tensor. The discrete parameter
=1 is a constant of integration that flips sign under time
reversal. This provides a measure of the flow of time of the
gravitational field relative to the particle momenta.
Although we cannot obtain an explicit expression for the

from the solution to the constraint equations which now takeHamiltonian, we are able to derive the equations of motion

the form

explicitly by partially differentiating Eq(13) implicitly with
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respect toz, and p, and solving fordH/dz, and dH/dp,, . JH
respectively. From Hamilton’s equations Pa= - 9z (17)
z,= IH (16) Wecan obtain the equations of motion.
JPs For example, fom=1, Eqgs.(16) and(17) become

) K.« ~
21{ Lolg+Lilg+Lilo = [Mo— €pyS1][M1 — €p1Sp5] [ 1+ ZL3|212|}e(K/4)312[<L1+M12)213 (L2 M21)Z28l — [M 5 - ep3S31][M 1 — €psSial

X{l+iLazlsi}e(K"”%l“Ls“”sﬂzwM—wz-fpzszsws-epsssﬂ[l+iﬁizﬁ]e“"“%W”“'“WZ”]}

oM N N oM
~(Me” 6p232ﬂ[< T 6512) tam(Ma™ fpls”){ st ELB(EZ”)He(K/4>512[(L1+M12)113_(L2+M21)223] +[M- epsssﬂK oo
1 1
* * ﬁ M
— 6513> L, - (M, - eplslg){ €S+ ELZ( 6213)}:|e(K/4)Sli(L1+M13)212+(L3+M31)223] +[M; — €poS,3][M3 — €P3Ss,] [ - SlZSISa_pl
1
* oM
+ 2523L1[€|212| - €|213|]} el (LMo (Lot Magzialy T o *LoLg+ e(splalg + Sialoly), (18)
1

and

. K » _
pl{ Lolg+ Lyl +Lilo = [My— €p551][M1 — €psSp2] { 1+ ZL3|212| ] gl /481 (L Mz (Lo ManZosl — [M 5 — €pysy1][My — €p1Sy3]

X {1 + g'—*2|213| } el s (b Migeiatbat Map2zal - [M, — eppSp3l[ M3 — epssss] [ 1+ §L1|223|}
x @Kl4)5d (La+M23)Zo1~(Lg+M32)Z31 ]

K

=[M2~ €p;5211[M; ~ 6p1312-||: 4312L;[H +e(p2 = PoSi2+ 5p3313]:| gl sid (Lt Mipzyg (Lot Moy 25q]

K * + (Lot
+[M3 - epsSgil[My - eplslg][zslst[H + €pySyo+ e(ps— pl)slal]e(“"”sﬁ[“l MigngH(bgMar) 2]

+[M; - epsSy3l[M3 - fpgssﬂ[iszsl—*lpl(slz_ 513)} el/sd(LarMadag (Lot Mag,l, (19
[
The equations fom=2,3 aresimilar and will be omitted To compare the relativistic motion to that predicted clas-
here. sically, we introduce the Newtoniad particle Hamiltonian

in (1+1) dimensions
Ill. GENERAL PROPERTIES OF THE THREE-BODY
SYSTEM

P2
Before we go on to solve the equations of motion, it is Hy=2 om. TG X MMy|Za, (20
instructive to consider some general characteristics of the 2 ? a b
three-body system described by the determining(E®). and
its associated nonrelativistic and post-Newtonian counterwhere z,,=z,—z, as before. We shall refer to this as the

parts. Newtonian or N system.
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A post-Newtonian approximation of the genefdbody  rescaled so that(z,,=0,p,=0)=(m; +m,+my)c? in order to
Hamiltonian has been four{d] and is given here up to order properly compare it to the pN and R cases.

c2 In order to simplify our analysis we will adopt the con-
5 . vention of Refs.[5,17] and define the following canonical
p KC coordinates:
HPN = CZE m, + E Sl _E 2 marno|zab|
a a 2ma 8 a b
+EKC322( Nz - S (oM P:%(Zl_zz), )\2716(21"'22_223), L=n+25+1,
— mypp,— M Zyp) —C \ \
3 ~ < P 3 ab " Smg
(25
KC? p2
+ ?2 % maﬁ)|zab| = PaPb|Zal with conjugate momenta
a
1( k2 1 1
+ —(—) 2 2 2 MamM(|Zap|2ad + ZaoZao) - Pp==(P1= P2, PA=—=(PL+ P2 2ps),
4\4 a b ¢ V2 V6
(21)
pz= %(F’l‘F P2+ Pa). (26)

If we rescale(21) to remove the constart, m,c? term and
take the limitc— o then it is clear that we retrieve the New-

tonian result20). In the nonrelativistic limitZ andp, are related to the center

However, the coordinates andp, are not necessarily the of mass and its conjugate momentum. While the equivalence

most natural coordinates to use to describe the posl;:_)rinciple does not allow us to arbitrarily sé&tin the relativ-

Newtonian system. The reason is that the fourth term on th?tic_ case, we can, without Ioss_of_generality, chop§do_ .
right hand side of Eq(21) is proportional toc™™. In (3+1) vanish. The consequence of this is that we can explicitly

dimensions, terms in odd powers ©f are associated with EXpressy, Py, andps in terms of the newly defined momenta
gravitational radiation, but, ifl1+1) dimensions, there are (26) but can only express theeparationsf the particlesz,,

not enough degrees of freedom to allow for the existence 0?Xp|ICI'[|y in terms of the new coordinatégs). This gives us

gravitational radiation, and such terms are artifacts of théhe following relations:

choice of canonical variables. 1 1
H -1 = = I
Indeed, as in Ref[7], we can remove the™" term by 25=\2p, z13==(\3\+p), Z3= =(V3\-p),
performing the canonical transformation V2 V2

- 27
Za—70= 2, (22) (27)

- e S SN SN \F
paapa—pa—zg MaMyZabs (23) pl—v%px VED,J, P2 = V,pr \Epp, P3= 3P
(28

after which, Eq(21) becomes
All of the Hamiltonian expressiong€l2), (20), (21), and

~ [ [ (24) do not depend orZ or p, and so these variables are
_ 2
Hon=¢22 my+ 2 om. 8 2 2 Mz, - e 8me irrelevant. Expressions for Eq&l2), (20), and(24) in terms
a a e a b a e of the new coordinates are given in RgL7] for the case

KC? [ o when m=m,=mg. The corresponding expressions for un-
+ ?2 Eb: manl’zab| ~ PaPolZa equal masses are very cumbersome and will not be repro-
2 duced here.

1/ «\? 6 - - By defining the potential of each system &$p,\)
+Z<Z) ¢ %%gmambnk(ﬁabﬁa&_zabzac% (24) =H(p,=0,p,=0) we can compare some of the different
characteristics of the three systemspta coordinates thé\

whereZ,,=7,—7,. Since Eq.(24) uses different coordinates potential becomes
than Eqs(20) and(12) it is important to distinguish between
the two expressions for the post-Newtonian Hamiltonian. We
will refer to the system described by EQ1) as the untrans-
formed post-Newtonian system, or UpN system, and the sys- _
tem described by Eq24) simply as the post-Newtonian or +mymg| V3N = pl), (29

pN system. Note that only the pN system was studied in Ref.

[17]. To complete our nomenclature, the fully relativistic sys-where we have rescaled the Hamiltonian as described above
tem will be denoted as the R system. Unless otherwiséwith ¢ henceforth set to unity unless explicitly stated other-
stated, the Newtonian system will be assumed to have beemise). The UpN potential is given as

Vn=my+mp+mg+ 4—175(2m1m2|p| +mymg| 3\ + p|
V
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Vpn=mg+my +mg + 7 ,E'(2m1m2‘p| +mymg| 3\ + pl
\)’

= 1{ k\? =
+ MMl \3\ = pl) + 5(2) mympmg[4p? + (V3\ + p)°
+ (V3N = p)?+ (L +5,5)|pl[V3\ + p]

1/ k 2 =
+ 5(2) mlmZmS[(l =5,5)|p|[V3\ = p| + 5(1+s5)

X[Vax + pl[V3x - p] (30)

and the pN potential is

K ~ T~ ~
Von=mg +mp +mg + 4\—5(2m1m2|p| +mymg| 3\ + |

— 1{ k\? —

+mzm3|v37~—pl)+5 7) Mamemsl (1-35))
~1| [y |~ ~ =\l Ay~ 1 ~~
X[pIIV3N + 5l + (L +3S)[pl[N3N — 7l + S(1-5%)

><|\'§X+~,3||\'§X—7)|] (31)

wherep andX are defined as in Eq25) using thez, coor-
dinates of Eq.(22). Here we have defined,=sgr(p), s,
=sgn(\3\+p), ands,=sgr(y3\—p) and thes terms are de-

fined similarly in terms ofp and X. The exact relativistic
potential can be calculated from Ed.2) to be

(Vr=my) (Vg = my) (Vg — my)
= mlmz(V_R —$;S;My)

K
Xexp _rVR|P|:| +mymg(Vg +5,5,mp)
| 22
K =
xXexp 4\5VR| V3N + Pq +MpyMg(Vg — S,81My)
X ex |« VAl 3\ | (32
7 \J — .
p |2 R p

An extensive comparison between the different potentials _q |
has been given in Refl7] for the case where the particle
masses are equal and so here we wish to focus on th -1
changes to the potential due to changes in the relative masse _ s|

of the three particles.

A cross section of each of the potentials at a fixed value of -2f
V is shown in Fig. 1 for the case where all particles have the g . :
same mass. All of the potentials share a certain hexagonz -3 -2 -1
symmetry in that they are all smooth except along the lines

(33)

(34)

PHYSICAL REVIEW E69, 066208(2004

V= 1.3mc?

FIG. 1. A cross section of the four potentials\at 1.3M,C% in
the case that all three particles have the same mass. N—solid, pN—
dashed, UpN—dotted, R—dash dottedand A are dimensionless
variables defined using the dimensionless positiprs Eq. (38).

p—\3\=0, (35)

which correspond t@;=2z,, z;=23, and z,=z;, respectively
(i.e., the potential is not differentiable when two particles are
coincidenj. This is true for all ratios of the masses of the
particles.

The Newtonian potential is a distorted hexagonal well
with sides that increase linearly with The hexagonal cross
section at any value d¥y only has equal length sides when
m;=m,=m,. Figure 2 shows various cross sections of the

V=~13M_c?
tot
25 . : : :

ol
1.5

1k
0.5F

< 0f

FIG. 2. Cross sections of the Newtonian potential \at
~1.3M,c* for various mass ratiosn:m,:ms. Solid—1:1:1;
dashed—:1:4; dotted—4:4:1; dash dotted—%:4:8. Note that all
discontinuities lie on one of the three bisect8)—(35) regardless
of the mass ratiop and\ are dimensionless variables as in Fig. 1.
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2
V=13 Mtot [
6 1F 4
s
0.5¢ |
Vv
o
< 0Or b
o
-0.5¢ 1
N
0 05 1 1j5 2 25 3 1t .. 4
m
FIG. 3. Critical values of the relativistic potentidk as a func- -1 -05 0 05 !
tion of a given particle mass in units M, (here set equal t0)3 P
The maximum critical value occurs in the case WhBRFMiq/ 2. FIG. 4. Cross sections of the relativistic potential ‘Wt
The minimal value approaches the lifig=M;asm —0 orMwr <1 .3u,,c2 for different ratios of the particle masses. The corre-

spondence between line style and ratio is the same as in Fig. 2. The
Newtonian potential at a fixed value ¥ffor different mass deformation of the potential due to changing the mass ratio is the
ratios. We see that increasing the mass of particle 3 has trsame as in the Newtonian case. Theand \ are dimensionless
effect of expanding the hexagon away from fhe0 bisector ~ variables as in Fig. 1.
while decreasing the mass contracts the hexagonal cross sec-
tion towardsp=0. Increasing and decreasing the mass ofhe distorted hexagonal cross section are concave outward.
particles 1 or 2 has the same effect but the deformation isiowever, as one might expect, the potential increases less
perpendicular to the—y3\=0 or p+y3\=0, respectively. rapidly than the relativistic potential but still more rapidly
When all three particles have unequal mass, the hexagon iBan the Newtonian potential at small values(pf\). Fur-
deformed as above with the magnitude of the deformation inhermore, the sides of the well continue to increase quadrati-
each direction given by the relative values of the mass.  cally with increasing(p,\) without the slope ever going to

The relativistic potential is similar to the Newtonian po- nfinity as in the relativistic case. Figure 5 shows a cross

tential except that the sides of the hexagon become concavéection of the untransformed post-Newtonian potential at a
Furthermore, for small values @b, \), the relativistic poten-  fixed value ofV for different mass ratios.

tial increases much more rapidly than the Newtonian poten- The transformed post-Newtonian potential has a much

tial. However, at a valu&/y such that different character than all of the potential energy functions
discussed so far. The sides of the distorted hexagon become
<((/R —m) Ve~ (M mj)]) convex and the vertices are always coincident with the New-
tonian potential at a fixed value &f. As V increases, the
(Mior — mpmy sides become more convex with respect to the Newtonian
-~ 1 1 potential. Cross sections of this potential for different ratios
:VRl ~ 2 ] (36) of the particle masses at a fixed value\bftan be seen in
(VR=m)  [Vr=(Mier—m))] Fig. 5.

Finally, we note that the potential energy does not com-

(for j=1,2, or 3, the slope of the relativistic potential be- letely govern the motion in the R and pN cases as it does in

comes infinite, after which the size of the distorted hexago he N case due to the momentum dependenc¥ af the

decreases “ké_ln YR)/VR with anreasmgVR. In the equal former cases. Consequently, such comparison of the poten-
mass case this yields a valig~6.7119Tc’, wherem tjgls is limited in the insight it can provide.

=Moi/ 3. Form=M /2 we obtainVg~ 6.886 68nc® which
is the maximal possible critical value of the potential, and in
. 0 . IV. METHODS FOR SOLVING THE EQUATIONS
the limitsm— 0,M;,; we find Vg— M. A plot of the critical OF MOTION
values of the potential as a function wiis given in Fig. 3.

The overall shape of the relativistic potential is that of a The motion of the three particles under study is quite
distorted, hexagonal carafe. The distortion of the relativisticomplex so we have adopted several methods to study the
potential for different ratios of the particle masses is analoequations of motion. The most straight forward approach is
gous to the Newtonian potential and can be seen in Fig. 4.to look at the position of each particle with respect to the

The untransformed post-Newtonian potential shares simieenter of mas&m,z, as a function of timgwhere time will
lar features with the relativistic potential in that the sides ofbe explicitly defined shortly Recall, however, that the
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_ 2 _ 2
V~1.3Mmc V~1'3Mtotc

p P

FIG. 5. Cross sections of both the untransforngledt) and transformed post-Newtonian potentialsvat 1.3M,,c> for various mass
ratios. The correspondence between ratio and line is the same as in Fig. 2.ahde. are dimensionless variables as in Fig. 1.

choice of the center of mass reference frame is arbitrary anchore complex than in the Newtonian case and it is not clear
is not necessarily stationary to an observer as it is in thdow to create a discrete mapping between particle collisions.
Newtonian case. Following Refs.[2,17] we define two types of motiorA
Under the change of coordinatg) and(26), the motion  motion, where two particles cross twice in succession;Bnd
of the three particles is isomorphic to the motion of a singlemotion, where a single particle crosses each of the other two
particle moving in the hexagonal well potenti@9) in the  in succession. Iip,\) space, after the hex particle has just
Newtonian case. The situation is analogous in the fully relacrossed one of the bisectorsmotion would correspond to a
tivistic and post-Newtonian cases except that the potentialsrossing of the same bisector whi2motion would corre-
become momentum dependent. So, as in Rgfg,5, we spond to it crossing a different bisector. In this way, one can
focus on the trajectory of this particle, which we call the describe the trajectory of the hex particle as a succession of
“hex particle,” in thep-\ plane as an alternate way to ana- A and B motions and develop a “symbol sequence” for a
lyze the motion. given trajectory. To simplify the notation, we use exponents
As mentioned before, the bisectq@3)~(36) correspond to denote a number of repeats of a given type of motion so
to points where two of the particles are coincident. Thesdhat the symbol sequence takes the fofhy , (A™B")'k,
bisectors divide the-\ plane into six sextants corresponding wherely,my;,n; e Z* andl, is possibly infinite, in which case
to the six different configurations the three particles can aswe denote it by an overbaji.e., lim,_...(A2BP)°= A2BP].
sume. So, when the hex particle moves from one sextant t8ince the type of hex-particle motion at a given bisector
the next, this corresponds to two particles passing througbdepends on the previous bisector, we avoid ambiguity by
each other. In the equal mass case, all six sextants asaying that the first bisector crossing of the hex particle is
equivalent, and in the unequal mass case, opposite sextaniadefined, and the symbol sequence begins at the second
correspond to the opposite configuration of particjes.  crossing. To aid in understanding this nomenclature we have
(1,2,3—(3,2,1]. Further symmetries exist when two par- listed the symbol sequence in the captions of all configura-
ticles have the same mass. tion space trajectories where the trajectory is easy to follow.
An analogous system was studied by Lehtihet and Miller The above methods allow us to study and classify indi-
[2,2]] who demonstrated that a self-gravitating Newtonianvidual trajectories of the hex particle in the four dimensional
system of three particles i1 +1) dimensionswith collisions  (p,\,p,,p\) phase space. In order to study some of the glo-
is equivalent to the motion of a particle in a uniform gravi- bal structure of this phase space, we construct Poincaré
tational field colliding elastically with a wedge. The exis- maps. Since all of the Hamiltonians under study are time
tence of particle collisions in our study of the N systemindependent, the total energy of the system is a constant of
would correspond to the hex particle being confined to anotion and so the motion at a given energy is confined to a
single sextant where it would reduce to the particle-wedgéhree-dimensional hypersurface in phase space. We can fur-
system. In this particle-wedge system, the equations of mather reduce this to two dimensions by plotting the radial
tion can be integrated between collisions of the particle withmomentumpg and the square of the angular momentpﬁn
the wedge and a discrete mapping describing the radial anaf the hex particle each time it crosses one of the bisectors,
angular velocity of the particle at each collision can be useas in Refs[2,17]. This is known as the surface of section or
to describe the motion. The simplification to a discrete map+Poincaré map.
ping allows one to calculate fixed points in phase space and In the equal mass case, all bisectors are equivalent and so
evaluate their stability much more easily. Unfortunately, thepg and pf, at each bisector can be plotted on the same surface
equations of motion for the pN and R systems are muclof section, as in Refd.17]. When the masses are unequal,
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this procedure is not possible and one must distinguish behat we obtained in the unequal mass case are clearly un-
tween the different bisectors and the directions in which theyhysical and will not be presented in this paper.

cross. We have chosen to plot points on the Poincaré map We cast the expressions for the Hamiltonian and the equa-
each time the hex particle crosses w0 boundary in the tions of motion in the different systems in a dimensionless
positive angular directior(i.e., whenp,>0). In the case form using the coordinates and p;, given by

whenm,=m,, particles 1 and 2 are indistinguishable and we

may also pIot(pR,pi,) each time the hex particle crosses the z= 4 pa (39)
p=0 bisector in the negative angular directign<0). Due KMo

to the nature of the Hamiltonian phase space, the different

surfaces of section corresponding to the different bisectors pi = Mo Ci.- (39

and directions contain the same information and no generabv . . T

ity is lost in making the above choice. e then express the dimensionless Hamiltonian as
Since we were unable to find a closed form solution to H

either the relativistic determining equati¢h?) or the equa- n=

tions of motion(16) and (17), it was necessary to employ

numerical techniques to study the motion. Usingi/ATLAB so thatn=0 corresponds té1 being equal to the total rest

integration routingode15$ we were able to solve the equa- mass of the system. The total dimensionless energy for all

tions of motion in the N, pN, and R systems. systems isp+1 (recall that we are assuming the Newtonian
The odel5s routine uses a variable order method for solvMHamiltonian has been rescaled so that the zero point is the

ing stiff differential equation$23]. In order to control com- total rest energy of the systenin this way, a single value of

putational errors, we imposed absolute and relative error toly corresponds to the same energy in all three systems.

-1, 40
Mio(C? 40

erances in the numerical routine f,.= €,;= 108 so that the The equations of motion then become
estimated error in each of the dynamical variables ~ R
p(i),\(i),p,(i), andp,(i) at each step in the numerical in- J om _ 1oH 4 dz — dz (41)
tegration is ap; cap KMtOtC3 dt  dt’

E(i) = ma){erel|y(i)|r€abs]! (37) J n_ 4 c?H 4 df} _ dﬁ

— = R e €]
where y(i) represents a generic, dimensionless dynamical 74 KM‘OtC &Z' KM““C dt dt

variable at time step These dimensionless variables will be where we recognize as the dimensionless time unit, given

introduced shortly. as

Furthermore, we periodically checked that the total en-
ergy of the system remained constant to ensure that the so- t= 4 3 (43)
lution was stable and physically correct. KM€

We found (both in this study and in Ref.17]) that the
numerical precision available to the computer did not allowWe refer tot=1 as one time stegp, A, P, andp,, the di-
the integration routine to solve the equations at energies apgnensionless counterparts @f\, p,, andp, respectively, are
proximatelyH = 2M,,,c2. We were unable to find a numerical defined as in Eqg25) and(26) using the hatted variables of
integration routine that could integrate the equations of moEds.(38) and(39). In the subsequent analysis, dimensionless
tion in this energy regime so the dynamics of the system avariables will be assumed unless otherwise stated.
high energies still remains an open problem.

Furthermore, when we integrate the pN equations of mo-
tion, we find that the resulting energy of the numerical solu-
tion does not remain constant in time, despite the fact that In this section we present the results of our numerical
the Hamiltonian(24) describes a conservative system. Theanalysis of the equations of motion. In Sec. V A we summa-
variation in energy becomes greater as the differences beize the equal mass results [df7] then go on to present how
tween the masses increases. For the case when all massestare dynamics change in the unequal mass case in Secs. V B
equal, this variation is on the order of the imposed numericaand V C.
error tolerances and can be ignored. A description of the
dynamics of the pN system in the equal mass case is given in
Ref.[17]. The variation in energy increases drastically when
we change the ratio of the masses even by a small amount. The study of the N, pN, and R systems when all three
For example, when we integrate the equations of motion imparticles share the same mass revealed a large variety of
the case where the mass of one particle is half that of thdifferent types of trajectories. The different types of motion
other two, we see a variation in the total energy on the ordecan be classified into three broad categories which we call
of 102M,c? over the duration of the trajectory. The causeannulus, pretzel, and chaotic. Note that our naming scheme
of this energy variation is unclear but its magnitude is clearlyis not standard in the literature of dynamical systems. Our
too large to ignore. Due to this energy fluctuation, the nu-nomenclature was chosen because of its direct physical in-
merical solutions to the post-Newtonian equations of motiorterpretation in terms of the three particletespite the fact

V. SOLUTION TO THE EQUATIONS OF MOTION

A. Equal mass solution
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1=0.200 o=3.000

that the terms annulus and pretzel derive from the shape o
the trajectories in the—\ plane.

Annulus trajectories correspond to the hex particle never
crossing the same bisector twice in a row resulting in an orbit |
about the origin of thép,\) plane. The symbol sequence for

all annulus orbits i8. In terms of particles, these trajectories _ys
represent all motions in which no two particles cross succes:
sively. Most of the trajectories in this class never exactly

0.5

—0.5 p0 0.5 1

P
. . =0.800 o =23.000
repeat themselves after any number of orbits about the ori- 4 " * 1

gin. The result is a densely filled region of the,\) plane

circling the origin. All of these trajectories form closed loops 2 05

on a Poincaré map. =0 =<0
Pretzel trajectories are so named because of the comple

patterns they make when plotted(im, \) coordinates. Sym- -2 -05

bolically, these trajectories fall into two distinct classéeb: " »
regular trajectories, which are denoted by some repeating =+ 2  p° 2 4 06
pattern ofA’'s andB’s (e.g.,A’B'?AB?) and(2) quasiregular _ o _
trajectories, represented by some repeating pattefrsaind FIG. 6. Examples of tr_ajectorles in the N syste_m for different
B's with extraA motions occasionally occurring on each rep- Values of anda. Each trajectory was run for 150 time steps. The
etition of the patterme.g.,A3(AZB6)3A2(AZB‘5)11. _]. Asin the small box indicates the starting position of the trajectory. Proceed-
annulus case, most pretzel trajectories never exactly repe@g&gcskw'se f’éomTthe top left plot the symbol sequencesEars,
themselves and densely fill a region of phase space. PretZeP AB", andB’ABA.
trajectories appear either as a series of small enclosed loo
or as a series of disconnected lines on a Poincaré map.
Chaotic trajectories are those that eventually cover all al
lowed regions of phase space and are denoted symbolical
by an apparently random sequence A and B’s. Since asses are unequal. . L
chaotic trajectories erratically cover a large region of phase,. In terms of the hgx partlple moving in thex plane, we
space, they appear as densely filled regions on a Poincapéd not find a S'g_r"f'caf“ d|ffer_ence between the equal and
map. In all three systems there is a region of chaos separati equal mass trajectories besides a general distortion of the

the annulus and pretzel regions on the surface of sectio nulus orbits as the difference in masses increases. For in-
[17] stance, in the equal mass cd4&], all of the annulus orbits

were generally hexagonal about the origin. When the mass of
one particle is larger than the rest, these annuli take on a

general, the particles in the relativistic system cross eacl'°® box_l|ke _shape, as can _be seen in Fig. 7. BeS|d_es a
other at a higher frequency than in the Newtonian case fogeneral distortion, we did not find any novel types of motion
the same value of. The structure of the relativistic Poincaré 1t Were not seen in the equal mass case. Since the qualita-
maps at all energies attainable were similar to the Newtoniar n=01 a=05
ones except for a shifting of all trajectories to one side. Re-
markably, this structure remained stable up to the valueg of 02
that were attainable despite the high degree of nonlinearity irx
the equations of motion.

Furthermore, for all trajectories studied in all three sys-
tems,B motion always occurred in multiples of[37]. That
is, all symbol sequences were of the folf (A™B3M) so
that any time a single particle, say particle 1, crossed the
other two in succession, particles 2 and 3 always crosset
next before meeting particle 1 again.

S . R
P/alues ofa in the N system while Fig. 7 and 8 show ex-
amples of annulus and pretzel trajectories, respectively, for
e R system. Similar trajectories are obtained when all three

A comparison between the relativistic and Newtonian sys
tems reveals differences in the trajectoriesjaacreases. In

n=06 a=50

B. Unequal mass trajectories A0 ’)))I/W/I//“’,.
In order to study the effects of changing the relative
masses of the particles, we adopt the parametehenever -2
two masses are equal so thmi=m,=am,;. When all three
masses are unequal, we will describe the relative masses as a
ratio (i.e., m;:my:my=1:2:3). FIG. 7. Examples of relativistic annulus trajectories for different
In the case when two masses are equa# 1), we find  values of  and . Note the characteristic boxy shape at higher
the same diversity of trajectories in the,\) plane as in the values ofe. Each trajectory was run for 200 time steps. All trajec-

a=1 case[17]. Figure 6 shows this diversity for different tories have the symbol sequenBe

T o
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N=04 a=05

1
0.5 1
A0 3 0

-0.5
-1

-1

-0.1 -0.05 0 0.05 0.1
P
4 n=09 a=3

2
2 1
A0 20
o -1
-2

Co

FIG. 8. Examples of relativistic pretzel trajectories for different ~ FIG. 9. The relative position of each particle with respect to the
values ofy anda. Each trajectory was run for 200 time steps. The center of mass is plotted as a function of time for various values of
top right plot has symbol sequenféB3. a in the R system. The particles 1, 2, and 3 have relative masses in

the ratiol:1:«. Solid line—particle 1, dotted line—particle 2, and
tive aspects of the motion in the-\ plane do not reveal dashed line—particle 3. Each plot uses the same initial values of
much about the underlying physics, we will forgo any further(p,\,pp,p\) but the total energy;+1 is fixed by the energy con-

discussion on this matter. , straint(12). The top two plots display annulus moti¢B) while the
Another effect of changing the difference between theysom two are classified as pretzel trajector[¢B°A)’B% and

particle masses is that the ratio between the number of ankg3(aB3)S, respectively.

nulus trajectories compared to the number of pretzel orbits at

a given energy Qe.c_reases..'!'hat |s,oasllecreases., we find former case is shown in Fig. 11 for the N and R systems
fewer and fewer initial conditions that give annuli comparedwherea:loo_ In both cases, as one would expect, we see

to initial conditions that produce pretzels. The reason for thiﬁhe large mass barely moves while the other two particles
IS besft der_nons;ra_\ted by looking at the motion of the particlegqijiate about it. The inset shows the small perturbations to
asg unctéonlo tmk:e. lati . f th icles for d the motion of the larger mass caused by the passing of the

igure 9 plots the relative motion of the particles for de-y\, harticles. In the Newtonian case, the perturbation is very

_cr_e_aTlng ;f”‘_'“es 33 in thehR system ;‘or a sqecmc_selt of smooth and regular while the perturbation in the relativistic
|n|t|a_1 conditions. We see that, at equa m@; ), asingle case is more jerky and erratic. That is, the velocity of the
particle alternately crosses the other two without ever cross-

ing the same particle twice, indicative of annulus motion. osl

However, asa decreases, the mass of particle 3 decrease:, \ |

and so its frequency of oscillation decreases while its ampli-_, .| M. } /. A M AN R Y ASA M

tude increases with respect to the other two.  —~ R - 20
In effect, we see that the two massive particles gravita- .

tionally bind together more tightly as the difference between

their mass and the mass of the third particle increases. Ever °

tuall_y, this binding becomes so tight _that the_two massive -1g m 2 30 20 %0

particles are forced to execute an additioAahotion before . Time

crossing the third particle and, hence, there is a transitior 2r ) )

from annulus type motion to pretzel type motion. This be- * 0/ "\ /X

havior, while expected for the Newtonian systéfig. 10, is

also present in the relativistic case.

. . . cpps 10 ST~ PRRtN AT
As the mass difference increases, it is much more difficult . 7 N ‘. N 7 .
. g e . . 2z =L
to set up initial conditions at a given energy such that particle = "} S N N 528201
. . S L e L Sy )
1 and 2 do not cross more than once during one of particle ~'% 10 20 30 40 50

3's long period oscillations. This effect is also seen in the

Newtonian system, as shown in Fig. 10. This difference in FIG. 10. The relative positions of each particle with respect to

the ratio of the number of annulus trajectories compared tehe center of mass as a function of time in the N system. These plots

pretzel trajectories will be made more clear in the followingwere created using the same procedure as in Fig. 9 and follow the

section when we look at the Poincaré maps. same conventions except that E20) is used to fix the value of the
Using these position-time plots, it is interesting to exploretotal energys. The first is an annulus trajectof8) while the re-

the limit where one mass is much greater and much smallanaining are pretzelB%A, (B3A%)B3A3, and(B3A%)2B3A% from top

than the other two(a>1 and a<<1, respectively The to bottoni.
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6 Relativistic: 1 = 0.2793 0.2r

0 20 40 _ 60 80 100
Time : : ~e 01
10 Newtoniap: n=0.1748 :

20 40 TimeGO 80 100 _8

FIG. 11. Relative motion of the particles with respect to the
center of mass plotted as a function of time for the R system) FIG. 13. A Poincaré map of the Newtonian system when all of
and the N systentbottom). Both plots have mass ratids1:100 or  the particle masses are equal.
«a=100. The lines are as defined in Fig. 9. The insets show the small

perturbation in the motion of the large mass due to the crossing ofipje in the N system. The reason for this is that the two

the smaller masses. heavy particles in thew=0.01 case are twice as massive as

i _ the single particle in thex=100 and so the motion of the
large mass in the R system increases much more suddenlyo-pody subsystem is much more stable and less suscep-

mass. , qualitative nature of the perturbation remains the same as in
Figure 12 shows the corresponding plots when0.01.  the »=100 case.

We see that, in both cases, the two heavy particles form a e aiso find that the amplitude of oscillations in the New-
stable, two-body subsystem while the third particle oscillategonian system is generally larger than in the relativistic sys-
about their center of mass. As seen in the upper most inséfgm at corresponding values of the total energy and that the
in both the R and N case, the presence of the light particlgrequency of oscillations is greater in the relativistic case.
has a weak gravitational effect, causing the oscillatory moThese observations agree with the results found in the equal
tion of the center of mass of the two more massive particlesynass casgl17].

Unlike the effect seen in Fig. 11, the perturbation of the  Einajly we note that, as in the equal mass case, we find

motion of the heavy particles due to the crossing of the lightyatB motion always comes in multiples of three. That is, the
particle is very small in the R system and almost impercepsymbol sequence always takes the form

LT (A™,B%)', (44)

ij,k
for all values ofa and 7 that were studied. This extends our
hypothesis proposed in RéfL7] that all trajectories in the R
and N systems, when translated into a symbol sequence,
have the form(44), to also hold for all mass ratios of the
three patrticles.

C. Global structure of phase space

By studying the two-dimensional representations of phase
space represented in the Poincaré maps we were able to dis-
cover some interesting global properties of both the N and R
systems. We begin this section by describing some of the
basic features of the Poincaré plots and then go on to discuss
how the structure of phase space changes when the mass

FIG. 12. Relative motion of the particles for the case where the'@tio of the particles is changed. Our results will then be
mass ratio is1:1:0.01 ora=0.01 for both the R(top) and N compared with similar studies conducted previously.

(bottom) systems. The insets show the motion of the stable, two An example of a Poincaré map for the N system when all
body subsystem made up of the two heavy particles, as well as th@asses are equal is shown in Fig. 13. All points on this
effect of encounters with the light particle. surface of section fall within a parabolic region which is

2 4
0 0 Time

066208-12



THREE-BODY DYNAMICS IN A (1+1)-DIMENSIONAL...

Relativistic:n =03 a =1
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0.1

0.051
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FIG. 14. A Poincaré map of the relativistic system when the

masses of all of the particles are equal.
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the series of closed loops in the lower right portion, sur-
rounded by the warped chaotic region, which is further sur-
rounded by the region of pretzel trajectories.

In general, the relativistic phase space is a warping of the
corresponding Newtonian space. As described in Rif],
this is due to the weaker symmetry of the relativistic Hamil-
tonian compared to the Newtonian. As seen in &), the
N system is invariant under the symmefry— —p; and this is
manifest in the symmetry about thg=0 axis in Fig. 13.

The relativistic Hamiltonian, determined by Ed.2), is in-
variant under the symmetrgp;, €) — (—p;,—€). Contrary to
the Newtonian case, this relativistic symmetry is not mani-
fest in our surface of section.

We find that the annulus and pretzel trajectories continue
to fall into similar regions, as described above, for all differ-
ent mass ratios studied, and that these two regions are always
separated by a region of chaos. By changing the mass ratio at
a given value of the total energy, the size and shape of the
different regions change.

More specifically, by looking at the case where particles 1
and 2 share the same mass, the annulus region becomes
smaller and moves towards the top of the allowed region of
the surface of section with decreasiag 1 as can be seen in

defined by the system’s energy constraint. It was found irFig. 15 fora=0.1 in both the N and R systems. This shrink-
Ref. [17], as mentioned previously, that the three types ofing of the annulus region is a manifestation of the effect
motion, annulus, pretzel, and chaotic, fall into three regiongliscussed in Sec. V B where annulus motion becomes more
on the surface of section. Quasiperiodic annulus orbits forndifficult to attain when one particle is significantly less mas-
single closed loops about a stable fixed point at which theive than the other two.

motion is completely periodic. In Fig. 13 this region of qua-

As «a increases, the annulus region extends towards the

siperiodic annuli is located at the center of the plot enclosedower region of the plot, as shown in Fig. 16 far=10 in
within the densely filled triangular shaped region. Thisboth the R and N systems. Essentially, this means that one
densely filled region is created by chaotic trajectories andequires a lower magnitude of angular momentum of the hex
separates the annulus region from the pretzel region. Alparticle to attain an annulus orbit in tlpe\ plane. Since the
pretzel trajectories fall outside of this chaotic region andgravitational attraction between the two light particles is not
form either a series of disconnected loops or a series of distery strong compared to their interaction with the heavy par-

connected lines.

ticle, the light particles do not tend to oscillate about each

A similar segregation of the surface of section is also seewther very much but instead act like two separate two body
in the R system, an example of which is shown in Fig. 14.systems with the heavy particle taking the role of the second
The relativistic Poincaré map is strikingly similar to the body, like a two-planet, one-dimensional solar system. This
Newtonian one in Fig. 13. The annulus region is shown asituation is shown in Fig. 11 for=100 and explains why

Newtonian:n = 0.3, o = 0.1

0.25-

0.2f

@ 0.15F

01F

0.05r

-02 -0145 -01 -0.05 0 0.05 0.1 0.15 0.2

Relativistic: n = 0.3, 0. = 0.1

035¢ o OOOOO0

03r

0.25-

0.2r

0.15r

FIG. 15. Poincaré plots witk=0.1 for the Newtoniarleft) and relativistic(right) systems. The insets on the right show the onset of

chaos in the pretzel region.
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Newtonian:n =0.3, a =10

Relativistic: n = 0.3, « = 10

0.1

0.045 0.09

0.04 0.08

0.035 0.07

0.03 o 20.06
[

°g" 0.025 0.05

0.02 0.041

0.015 0.031
0.01 0.021

0.005 0.0t -

-03 -02

FIG. 16. Poincaré plots witlr=10 for the Newtoniargleft) and relativistic(right) systems. The insets show additional regions of chaos
in the pretzel region that are not present in the corresponding region on the equal mass Poincare section.

there is no decrease in size of the annulus region with inthe pg=0 axis no longer exists in the Newtonian system due
creasinga. to the fact that none of the particles have equal mass. We also

The symmetry aboupgr=0 present in Figs. 15 and 16 is see a further warping of the relativistic plots due to this
really just an artifact of our choice of surface of section.added asymmetry. Furthermore, we find that the different
Recall that we chose to construct our Poincaré maps by plotegions are not as clearly segregated as imthem, phase
ting a point each time the hex particle crossed ghe® bi-  space but extend over more of the Poincaré map. For in-
sector, or, equivalently, each time particles 1 and 2 crossedtance, in the relativistic map of Fig. 17 we see that the
The above figures were constructed with=m, and so the chaotic region separating the annulus and pretzel trajectories
symmetries of the equal mass system persist. If we were tfmarked by(1)] is no longer a single, densely filled loop but
have chosen a different bisector, all of the features discusseattually two loops which were created by a single trajectory.
above would remairie.g., shrinking, expanding of annulus The annulus region is confined to the area inside both of
region but these would not occur in the same sense and théhese loops, where a single annulus trajectory will visit both
plots would not be as symmetrical. regions.

This can be shown by creating Poincaré maps for the case Besides this novel partitioning of the different regions, the
when all three masses are unequal. An example for both thehanges to the structure of the phase space for different ratios
R and N system is shown in Fig. 17 where the mass ratio i®f the mass when all three masses are unequal are analogous
m;:my,:me=1:5:10. Here we see that the symmetry aboutto the results described above for the case whgrem,. For

Newtonian: m,:m,

M, = 1:5:10 Relativistic: m;m,m, = 1:5:10

0.091

0.081

0.061
%> 0.05F
0.041
0.03F
0.02r

0.01F

FIG. 17. Poincaré plots with a mass ratiolaf5: 10 for the Newonian (left) and relativistic(right) systems. On the lefta) marks the
region of chaos separating annulus trajectofileside) and predominantly pretzel trajectorigautsidg while the densely filled area directly
above and belowb) marks a new region of chaos amongst the pretzel trajectories. On the right, the densely filled regions marked by a
were created by a single trajectory separating the annulus and pretzel orbits while the chaotic regions méZkecetsy created by a
trajectory within the pretzel region.
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example, the ratio 1:5:10 exhibits similar behavior as themaps, is identical between our system and the wedge-billiard
case when there is one light particle and two heavy onesystem.
only the effects are not as prevalent because of the interme- LM found that this wedge-billiard system exhibits the
diate mass particle. The results can be seen as an interpoleharacteristics of a conservative Hamiltonian system with
tion between the 1:1:1 case and the 1:10:10 case. two degrees of freedom and a discontinuity. By changing the
One major difference that we find between the equal andalue of a single continuous parameg@ghey found a variety
unequal mass cases is the presence of additional chaotic ref dynamics similar to our study. More specifically, for
gions in the unequal mass space that are not present in the< /4 (which corresponds to the entire range of physical
corresponding constant energy hypersurface of the equahklues ofa) they found that integrable, near integrable, and
mass space. This is true for both the Newtonian and relativehaotic regions coexisted in phase space. Furthermore, as the
istic systems. For the mass ratios and energy levels that weedge angle was increased frami6 [corresponding to both
have studied, these additional chaotic regions appear withian increas®r a decrease of due to the nature of the con-
the pretzel regions of the corresponding equal mass surfagection between mass ratio and wedge and®], they
of section. The novel chaotic trajectories are characterized bfpund that the region surrounding periodic fixed points was
broadened lines in the pretzel region as can be seen in Figsonsumed by regions of simply connected chaos which in-
15-17. The exact physical mechanism that gives rise to thisreased in size with increasing wedge angle.
increase in chaos is not presently known. As noted above, we find a similar behavior in both our
Note that, although there are no apparent regions of chadsewtonian and relativistic systems in that we see an increase
in the Newtonian,«=0.1 Poincaré map of Fig. 1&esides in the amount of chaos as the difference in the masses in-
the one separating the annuli from the pretgele do find a creases. However, we have only studied moderate particle
slight broadening of lines in the other two Poincaré mapsmass differences in order to characterize the general nature
constructed by plotting points each time the hex particleof the unequal mass system and it is not clear how the global
crosses the other two bisectors, respectively. structure of our system will behave for very large differences
That is, additional regions of chaos do form in the un-in the particle masses. In particular, we do not know if our
equal mass phase space but these new regions cannot be segstems will experience a global transition to chaos or if
on the particular choice of Poincaré section shown in Fig. 15there exists integrable and near integrable regions for all
We suspect that these new regions of chaos would becommass ratios. This remains an area for further study.
more prevalent as the difference in particle masses increases.
It is instructive to compare our results with a similar study
of a billiard in R? colliding with a wedge in a uniforniNew-
tonian gravitational field performed by Lehtihet and Miller
(referred to as LM herein[2]. LM showed that the two- We have presented the results of a continued study of the
dimensional wedge billiard system is isomorphic to a systemhree-body problem in lineal gravity begun in Ref$6,17.
of three elastically colliding, self-gravitating particlesnder  The focus of the present investigation was to see what hap-
Newtonian gravity in one-dimension, with the relative pens to the motion of the particles when the relative masses
masses of the particles directly related to the wedge angle byf each are not equal. Here we summarize our results.
The derivation of the three-body Hamiltonian by canoni-
cal reduction of the actioil) was summarized and the as-
= sociated post-Newtonian and Newtonian Hamiltonians pre-
V1+2a" (45) sented. Each Hamiltonian possesses two spatial degrees of
1+2a7t’ freedom with two conjugate momentum degrees of freedom
and these were made manifest by changinpta.) coordi-
nates. Expressions for the potential energy of each system
wherea is as defined in our study. LM only considered the were derived and the distortion of the potential energy due to
situations where the wedge is symmetric, which correspondgarying the mass ratio was described.
to the case when two of the three masses are the same. TheThe results of the study of the equal mass case were sum-
value of 6=m/6 corresponds tax=1, the equal mass case. marized and the different types of motion were classified into
This connection between particle masses and the weddg@ree categories: annulus, where each particle always crosses
angle agrees with the distortion of the potential energy dethe other two in succession; pretzel, in which two particles
scribed in Sec. Il where the angle of the wedge is related t@an cross each other twice in a row; and chaotic, where the
the angle between the bisectors of the hexagonal well. sequence of particles crossings does not progress in a dis-
The only difference between the LM system and our Ncernible pattern. By studying the motion of the three par-
system is the existence of collisions in the former while theticles and their corresponding hex-particle representation in
particles pass through each other in the latter. For the cagbe p-\ plane, we characterized how changing the mass ratio
where all three particles are identical, it is irrelevant whetheiof the particles effects the dynamics of the system. More
one considers that the particles are colliding or passingpecifically, we described in physical terms how the type of
through each othgibesides the question of labeling the par- motion (annulus, pretzel, and chaoti@and their relative
ticles). For this reason, the phase space structure of the Nevabundance in phase space changes with respect to the mass
tonian equal mass configuration, as presented in the Poincaratio.

VI. DISCUSSION

tan 6=
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As the relative difference between the masses of the pato be introduced in order to probe the dynamics of the system
ticles increases, we find the onset of additional regions irat high energies and in order to study the motion in the
phase space of chaos that are not present in the equal massst-Newtonian system for unequal mass particles. A de-
system—in other words, we find that motion that was oncescription of the global structure of phase space for extreme
quasiperiodic is now chaotic. This shows that the unequadlifferences in the particle masses is still needed in order to
mass phase space is not simply a deformation of the correletermine the stability of the system in these limiting cases.
sponding equal mass space but, indeed, contains novel dfjs mentioned above, a discrete map between particle cross-
namics. The physical mechanism behind this phenomenon isgs in the N and R systengalthough it is doubtful whether
currently unknown. this can be obtained for the latjamay illuminate some of

This is similar to the behavior of a billiard colliding with the more general features of the three-body system. The de-
a wedge(which is isomorphic to three particles elastically velopment of a relativistic three-body system where the par-
colliding on a line under their mutual, Newtonian attracjion ticles elastically collide instead of passing through each other
studied by Lehtihet and Millef2]. It is still not known what  would also be an interesting subject to study to see if the
happens to these novel regions of chaos as the difference increased chaos reported in R§2] has an analog in the

mass gets exceedingly large. relativistic system.
There are still many open areas of study in the lineal,
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