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We investigate pattern formation and evolution in coupled map lattices when advection is incorporated, in
addition to the usual diffusive term. All patterns may be suitably grouped into five classes: three periodic,
supporting static patterns and traveling waves, and two nonperiodic. Relative frequencies are determined as a
function of all model parameters: diffusion, advection, local nonlinearity, and lattice size. Advection plays an
important role in coupled map lattices, being capable of considerably altering pattern evolution. For instance,
advection may induce synchronization, making chaotic patterns evolve periodically. As a byproduct we de-
scribe a practical algorithm for classifying generic pattern evolutions and for measuring velocities of traveling
waves.
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I. INTRODUCTION known [28], spatially extended phenomena are quite fre-
o ) _quently subject not only to diffusion but also to advection,
The study of the intricacies underlying pattern format'onparticularly in ocean circulation and climaj29]. Denoting

and pattern dynamics allows one to probe the nonlineafy, ., the advection strength, a simple model incorporating
mechanisms of nonequilibrium conditions in many physicalygyection was proposed recenf30,31:

phenomena such as, laser dynanjitks synchronization of
optical patterng2], electroconvectiorj3], rheological phe-
nomena in fluid system$4], field-induced phenomena in
magnetic fluidg5], oscillatory and translational Turing pat- o
terns in reaction-diffusion systenj§—§|, Rayleigh-Bénard where, as uguab represents the dliffu3|o.ri(x) controls the
convection in hydrodynamical systenie—11, and many Io_cal _dynam|cs,DLt gnd A, are dlscretlze_d forms of the
others[12]. Pattern formation is of importance also for bio- diffusion and advection operators, respectively,
logical systems, e.g., in investigations of pattern formation
inside living cells [13] and morphological structures and i+ D]+ f[x(i-1)]
self-organized patterns in bacteria colonjé4,15. Diy= > — FIx(],

A very popular way of modeling pattern formation is by
using lattices of coupled oscillators ruled locally either by
differential equations or by time-discrete mappings, the so- (i +D)]-f[x(i-1)]
called coupled map latticg46,17, models which are real- it 2 :
istic and consume considerably less computer time. For in-
stance, coupled map lattices with chaotic elements couple

Xee1(1) = F(xi(1)) + €Dy o = v A, 1)

flodels similar to Eq(1) above have been used before to

. i Hvestigate anisotropic coupling schemes in lattices of maps
posed as a model of a g@s8]. They also provide suitable 4 open flowg32-33. In our model, however, the asym-

models of information coding in nervous systefh8]. Other metry parametery corresponds to an advective velocity

useful applications include the study of wavelike solutions in 30.31L. In the followina we consider periodic boundary con-
diffusive lattices[20,21], of pattern selection induced by ex- Eﬂitié)ng.only. g P y

ternal forcing[22], reaction-diffusion processes in hierarchi- The purpose of this paper is to report a detailed investi-

cal struc'gure'[23], ocean convection parametrizatig4], gation of the role of advection in pattern formation based on

synchronization processes of pattefiZ5-21, and many he gifusive-advective model of EqL). First, we describe a

Others[_l?ﬂ- . L general algorithm for identifying the propagation of periodic
Traditionally, patterns are studied considering only thepaerns in |attices of maps and measuring their period and

competition betwgen local nonlinqarities together W_ith thevelocity. The distribution of patterns is then studied as a
amplitude spreading due to diffusion. However, as is Wellynction of diffusion and advection as well as nonlinearity

and lattice size. We show that advection plays an important

role and is capable of considerably changing pattern behav-
*URL: http://iwww.ical.uni-stuttgart.defind iors. In particular, in certain parameter ranges, advection may
TURL: http://www.ical.uni-stuttgart.defigallas change chaotic into regulg@periodig behavior.
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The paper is organized as follows. In Sec. Il we digress x(i) :
about technical matters necessary to characterize “identical AR
patterns” for discrete-time evolutions in lattices and use it to v \\ N
classify pattern evolutions into five generic classes, three pe- A W G S S . ) i
riodic and two nonperiodic. In Sec. Il we report the relative (a) Xz\ ‘
distribution(histogramsg of patterns as a function of the local e NI T T T YA
nonlinearity of the logistic map, the diffusioy the advec- | X3 |
tion v, and the lattice sizé. Discussion and conclusions are ‘ :
given in Sec. IV. x(@1)

Il. RECOGNIZING IDENTICAL PATTERNS (b)

The key concept when studying spatially extended sys-
tems is that of “pattern.” Roughly speaking, a pattern is a
shapshot showing the configuration of the system at a given
instant. For spatiallontinuoussystems, a pattern is a con-
tinuous function[12], say&(r) with r € R. For spatiallydis- i
crete systemg(latticeg, a pattern is a discrete set of ampli-
tudesx(i), which we represent by, ={x(i)}, wherei e \.

FIG. 1. The definition of identical patterns in discrete lattices

N hat while the ampli r) alw. var ntin | cannot be always made with the actual amplitudes but may require
ote that € the amplitudegr) always vary continuously finding an interpolated functioni@ No translation of the ampli-

at eagh pQIEt for lc?mces’ the ar?p“tIUde&(;_)kat_eaCh”Sllte tudes {X;,X5,X3,X,} make them coincide with the amplitudes
may be either a discrete set of values, like in cellular au'{Yl,Yz,Y3,Y4}. Straight lines are simple guides to the eye héng;

tomata, or a continuous interval, like in coupled map lattices,,q interpolated functiong(r) andZ,(r) show that amplitudes are
We call indistinctly space of stateshe set of all possible i, tact correlated. See text.

local amplitudes that a system may assume.

After introducing these notions, the next important thing
is to be able to identify whether two given patterns are iden
tical or not. The identification would be trivial if patterns
could never appear spatially shifted on the system. For co
tinuous systems the detection of identical patterns is rather I(r) = Zy(r - &) 3)
simple: two continuous patterr&r) and #(r), are identical 1 '
when it is possible to find a constadte R such that7(r)  for some fixeds e R.

=&(r—o) for all r. Obviously, whens=0 the patterns coin- Obviously, the above definition of identical patterns ap-
cide, i.e., they are not shifted with respect to each other. plies also for spatially continuous systems, when only a

For discrete systems two cases need to be distinguishegingle function is needeghe pattern itsejf as well as for
since the space of states may be either disai@tBular au-  cellular automata. Next, we apply this definition to detect
tomatg or continuous(lattices of mapg For cellular au-  temporal repetitions of patterns, shifted or not.

tomata, the definition is similar to that for continuous sys- As time evolves in discrete steps, the lattice displays a
tems: patterns are identical f(i) =x(i—¢), for all i where  sequence of patterns

now §is an integer, not a real number, since space and space

of states are both discrete. Pto,Ptl, R 24
For lattices of maps, the situation is slightly more subtle

since direct comparison of the actual amplitudes may noeach one having an interpolating function associated with it:

necessarily reveal their identity. As illustrated in Fig. 1, to

recognize if two patterngXy, X,, Xz, X, and{¥y,Y5,Y3, Y} LipLeyy - Lypro-e - (5

are identical requires comparing auxiliary interpolated con- o ) )

tinuous functions, sagi(r) andZ,(r). Although patterns ap- |f the initial pattern, reappears at some later tirye their

pear to be completely different because their amplitudes ar@terpolated functionsf, andZ;, must obey the condition of

different, the interpolated functior’r) andZ,(r) associated EQ. (3). In the particular case whef=0 the amplitudes of

with them are identical in the sense thaftr) =Z(r - 6) for all both patterns coincide identically. In all other cases, when

r. Therefore, in sharp contrast with the situation for continu-6% 0, despite having different amplitudes, the pattefs

ous systems and for cellular automata as discussed above fand P;, are identical since, according to E), they are

lattices we need to compare the auxiliary continuous funcembedded in the same interpolating function. In any case the

tions. The auxiliary continuous functions are needed becauseelocity v of the pattern i =6/ (t,—ty).

although space is discrete, the space of st@eplitudes is To implement the above definition of identical patterns for

continuous. a lattice composed by sites one needs to solve a linear
To define the auxiliary continuous function we use a con-system ofL equations at each time step and compare the

venient basis sdff(r)}. Two patterngX;} and{Y;} are iden-  corresponding solutiongoefficients. However, a more con-

tical if and only if their corresponding interpolated functions
Z(r) =225 A fi(r) and Zy(r) =223 By fi(r), satisfy for allr
(fhe condition

(4)

PURERN
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(a) o6 After determining the period instead of working in the
0.5 “fast scale”t, we may simply consider patterns at instants
~ 04 which are multiples ofr, namelymr, using the “slow scale”
S 0.3 m. With the slow scalem we determine the direction of
02 movement through the function
0.1
0 L
(b) ooz ‘ ‘ || SG.m) = 3 [Xgorneli +1) =, (D, (7)
= 0.008 =1
~ 0.006
& o wherej and me N, and the sumi+j is taken moduloL.
0.002 Obviously, forj=0 we haveS(0,m)=T(m7).
0 Equation(7) allows us to define a useful “displacement
0 10 2 t o © %0 indicator” d,, as being the firsi which minimizesS(j,m).

Obviously,d,, must be an integer between 0 aindthe size
FIG. 2. lllustrative examples of(t), Eq. (6), characterizing the ~ Of the lattice. To detect a moving pattern means to detect a

possible nature of the periodic behavioa) static patterngs=0), nonzero value ofd,. Since patterns generally move quite
when T(t,) =0, (b) moving patterng 6+ 0), whenT(t,)=0. The  slowly, one typically detectsl,,=0 during a relatively long
valuesT(t,) increase quadratically with interval before findingl,,# 0. Since wheneved,, is nonzero

our algorithm updates the reference and compdtgs, for
venient and fast procedure is to use an equivalent numericany m only three values may be found;,=0,1L-1. A
algorithm based on least squares deviations of the amplituddttern is said to be moving in the “positive” direction when-

both in time and in space. everd,,=1, and in the “negative” whed,,=L-1.
To this end we fix a reference pattern, sBy={x (i)}, Figure 3 illustrates typica(j,m) andd for moving pat-
and compute the quantity terns[Fig. 3@] and chaotic pattern evolutiorf&ig. 3b)].

For static patterngnot shown, d is always zero, i.e., the
L minimum of S(j,m) is always reached for=0.
_ . (o With the periodr and displacement indicatal,, we are
T ‘E[Xt(') =X, ®)  able to detect and classify any pattern evolutigfe). The
classification is as follows.
If a PE has periodr periodic, then the associatedpat-
This function is useful becau§e§t€):0 for all instantste for terns either remain Stati(]jm:() a|Way$’ or not. Thus, as
which the pattern of reference reappears, thereby allowinghown in Fig. 4, there are three classes of periodic PEs: static

one to determine the period Note that one find3(t;)=0  (classS), positively moving(classP), and negatively moving
only for static patterns, i.e., whefi=0. To have a moving patterns(classN).

pattern implies havings#0 and, therefore, to havé(t,) We find convenient to separate nonperiodic PEs in two
=0. The difference between static and moving patterns i®road classes: truly chaotic evolutiofdassC) or chaotic
illustrated in Fig. 2. evolutions consisting of PE during finite intervals of time.
3
60
E 2 y y
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S . //l///L/L : |//4 / ‘/ /\/ / L/
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FIG. 3. Typical temporal variation of(j,m) for j=0, and ofd. Left column: positive moving patterfa=1.73 £=0.5,L=64]. Right
column: chaotic pattern evolutidm=1.95,=0.5,y=0,L=64]. For negative moving patterrigot shown one obtains results, with non-
negative values ofl beingd,,=L-1.

066206-3



LIND, CORTE-REAL, AND GALLAS PHYSICAL REVIEW E69, 066206(2004

Static Negative

725
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FIG. 4. lllustrative examples
of the five classes of pattern evo-
lutions for the diffusive-advective
coupled map lattice(a) ClassS,
“static” (b) ClassP, “positively
moving; (c) ClassN, “negatively
moving; (d) ClassH, “hesitatiori;
and (e) Class C, “chaoti¢. For
clarity, adjacent points of each
pattern are joined with lines.

We refer to this situation as Hesitating pattern evolutions7 is so large that PEs with high velocities, of the order of
(classH), see Fig. 4d). v~1 site/step, may complete a full revolution around the
When implementing our algorithm, it is useful to consider lattice in less thar time steps. In our case§,~ 10° time
the following additional points. First, to avoid spurious local steps proved to be an adequate choice.
minima, the computation of requires a majorané1 of T(t). Finally, note that while for continuous time evolutions it
This majorant depends on the local dynamids). An is always possible to determine the direction of motion by
adequate choice for the logistic map.Ad=0.2. Second, to successive measurements of the positiort,att, 1+ (th-1
prevent neglecting a local minima of a moving pattern, we-t,_,)/2, for discrete times one has the restrictigat,_;
impose thatT(to+m7) and T [to+(m+1)7] are of the same =1. Therefore, during one time step, the displacemeni of
order of magnitude. Third, whenever a value fois found, sites in one direction or, equivalently, a&f-p sites in the
the reference[xto(i)} is updated, and a new value efis  opposite direction, are both possible. To determine the actual
determined and compared with the preceding one. This pradirection of motion, one must take into account that, since
cedure is repeated during an interval Bftime steps. The we have nearest neighbors coupling, state propagation can-
accuracy ofr increases wheff increases, up to a point when not be greater than one site per time step. Consequently, after
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TABLE |. Characterization of the five classes usingand d,, ClassH consists of an alternation of
periodic and chaotic behaviors which occur during finite time intervals.

Class Periodr Displacement,,  S,=L-|L-2d.//2 Directionoy,
Peiodic Static Constant 0 0
Positive Constant 1 1 +1
Negative Constant L-1 1 -1
Nonperiodic Hesitation Constant/undefine®,1,L-1)/undefined (0,1)/undefined +1/undefined
Chaos undefined undefined undefined undefined

one period 7 time stepgthe pattern cannot move more than lll. CHARACTERIZATION OF PATTERN EVOLUTIONS
7 sites. Thus, when € p=< 7 we say that the pattern is mov-
ing in a positive direction, while wheh—-r<p=<L-1itis
said to be moving in the opposite negative direction.

The velocityv of moving patterns may be directly com-

In this section we apply the algorithm above to character-
ize and classify PEs in the diffusive-advective model, Eq.
(1), for the usual quadratic local dynamics

puted fromr andd,, by averaging over a time interval X1 = F(x) = 1 —axC. (9)
the quantity(L—|L-2d,])/2, weighted by the sigwr,, of L _ o '
—2d,,, which indicates the direction of movement: In Sec. Il A we consider the purely diffusive regime

(y=0) while in Sec. Ill B we consider the effect of advec-
tion. We compute histograms for all possible combinations of
parameters using samples of 100 random initial conditions.
2 oL =L = 2dy)). (8 For fixed lattice size. we use a mesh of 5050 grid points,
m=1 and a mesh of 108 50 grid points when varying. among
100 different values. In both cases the grid resolution is suf-
After some elementary algebra one sees tifat|L ficient to catch the _main features _o_f the distri_bution_ of the
—2d,/)/2 equals the displacement for eat}) independently ~PES. Pattern evolutions are classified after (_jlsaardmg tran-
of the direction in which the pattern moves. In particular, thisSi€nts of 16 time steps, being carried out during*i€ubse-

quantity has the same value for both directions, positivéluent time steps. A summary of all the results found is given
(d,,=1), and negativéd, =L 1), and is zero fod,,=0. Note in Table Il, at the end of this section. We now discuss these

that, if o, has always the same value, saythen the PE  esults in detail.
belongs to clas® (o=1) or to classN (o=-1), while if o
=1 and -1 intermittently, the PE belongs to cléssnd the
velocity (8) has the meaning of an average velocity. The results of this section extend preliminary wg8e]

A summary of the classification is given in Table |. Look- and serve as reference to compare the modifications caused
ing at this classification, one may wonder if Table | shouldby including advection.
not also include quasiperiodic solutions. The problem here is Figure 5 shows the distribution of pattern evolutions as a
how to unambiguously characterize the presence of quasfunction ofa ande for the same lattice size=64 considered
periodicity in coupled map lattices. The term “quasiperiodic-earlier by Kaneko and Tsudgl6]. For a<1.4 we find a
ity” was already used by KaneK@6] and Franceschini and “plateau” where only periodic PEs are observed. The upper
Vernia [37], but without a proper definition of what should boundary of this plateau lies approximately at the accumula-
be precisely understood by it. Subsequently, Francesehini tion pointa,,=1.4011 of the 2 doubling cascade of the local
al. [38] map, Eq. (9). This “periodic plateau,” extends unti&
discussed solutions which they call “quasiperiodic traveling=-0.25, the lower limit of allowedh values. The periodic
waves,” characterizing them by a winding numhker1/J,  plateau is composed only by stafiassS) PEs, except for
where J is the amount of time steps needed for a site tol.27<a<a., ande=0.45, where pattern evolutions belong-
complete one turn in phase-space. We feel that the terrimg to classP and N are also observed. The lower limat
quasiperiodic traveling waves is somewhat contradictory and- 1.27 corresponds approximately te-24 doubling bifurca-
prone to confusion. In a lattice, we understand that one eitheaion of the local quadratic map. Although period-4 plays a
has a “traveling wave,” when a wavelike pattern repeatsrucial role in traveling waveTW) solutions for coupled
periodically in time but shifted in the lattice, or “quasiperi- map lattices[40], as far as we know there is no complete
odic solutions,” when it is possible to associate an irrationakxplanation for the absence of moving patterns below the
winding number to the solution. Since the characterization operiod-4 bifurcation. Moving patterns observed in all these
irrational winding numbers for spatially extended system isregions have low velocities,~ 10 site/step.
not at all trivial, not to say impossible, we find more appro- Beyond the periodic plateagfor a>a,) nonperiodic
priate to talk generically about traveling waves only, while classes predominate, except in the region<laés 1.9 when
we wait for a reliable way(algorithmic, not conceptupbf  £=0.45 anda =1.6 fore~0.15, where traveling waves are
recognizing quasiperiodicity in spatially extended systems. profusely observed, with velocitias~ 102 site/step.

1 M

T 2Mr

v

A. The purely diffusive lattices
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=50, periodic PEs are observed for all valuesact 1.6,
while for L=50 they disappear beyond a threshold which
decreases with.

Our simulations indicate that moving patterns, either class
P or N, are not observed for small lattices, of the order of
L=10. This lower limit for observing moving patterns is a

Nonperiodic
(C+H)

10:)%) , general feature of coupled map lattices: there seems to exist
50 a minimum number of sites below which no pattern can

move. It would be interesting to find an analytical proof for
this observation.

In the (e,L) space we fixeda=1.73, also a value for
which all classes exist. For small coupling strengths,
=0.4, nonperiodic classes predominate, except in two nar-
row strips localized at ~0.1 ande ~0.3 where class is
also observed. The predominance of nonperiodic classes at
o £=0.4is due to the fact that we chose a valua édr which

Periodic the local dynamics is chaotic. Choosing a nonlinearity corre-
(S+P+N) sponding to periodic local dynamics one would observe
mainly classS periodic evolutions.

For ¢ = 0.4 periodic classes predominate although classes
P and N may be also observed, except for certain specific
lattice sizes, as shown in Fig. 5.

Finally, for larger sized =100 we observe that all the
features described above remain unchanged ulp~300,
when traveling waves apparently disappear. Transient times
required to reach definitive conclusions are quite long for
these sizes and we have not attempted to investigate such
large lattices.

B. Effects of advection

We now consider the effect of advection, the contribution
which is of great interest for practical applications
o o [21,24,30Q.

FIG. 5. Distributions of nonperiodic and periodic pattern evolu-  ag already demonstratel@1], for coupled map lattices
tion as a function of nonlinearitg and diffusione, in the absence the range of admissible values, of the advection Strength,de-
of advection(y=0), for a lattice ofL=64 sites. pends on the diffusion and is given B8] —e< y<e.

Here, classeB andN have the same distribution, because _Figures 7 and 8 show histograms of the distribution of
of the symmetry in the coupling. See Rg39) for details on ~ PES in the(a, ) and (e, y) spaces, respectively, fr=64.
this point. In Fig. 7 we plot the distributions of class[Fig. 7(a@)],
Figure 6 shows the distributions of periodic and nonperi-class P [Fig. 7(b)], both for £=0.5, and of nonperiodic
odic classes in botla,L) and (¢,L) spaces. For théa,L) classesC+H [Fig. 7(c)-7(e)], for three coupling strengths,
space we fix=0.5, a value for which all classes exist. From €¢=0.3, 0.5, and 0.7, respectively. The distribution of clEss
the histograms in Fig. 6 one sees that the periodic plateau & symmetric to that of clas®, with respect to the axiy
a<a, exists for all sizes, but now the upper boundary=0.
sightly decreases whednincreases, an artifact that could be ~ From Fig. 7 one observes that the periodic plateaa at
removed by considering larger transief4]. We found that =<1.4 is composed by static evolutiorislass S) only for
for transients about 100 times larger this slight discrepancyeak advectiony=0. The periodic plateau also exists when
disappears. the advection is further increased although only moving pat-
Nonperiodic PEs predominate fax,<a<1.6. Fora  terns are observed. In other words, advection induces static
= 1.6 one observes mainly periodic PEs, essentially wavelik€®Es to move. This is true not only for the periodic plateau
patterns, moving or not. Interestingly, for this latter regionbut also above the accumulation point, i.e., &3¢ 1.4.
nonperiodic evolutions are found only for specific sizes of The predominance of moving patterns is also very pro-
the lattice which vary slowly with nonlinearitg and diffu-  nounced for 1.55a=<1.8. Comparing this region with that
sion . Moreover, for these specific values we found noobserved in the purely diffusive regingsee Fig.  one sees
periodic evolutions. A possible explanation for this could bethat for specific ranges, namely &= 1.8, PEs which are
the mismatch between the lattice size and the characteristimonperiodic in the absence of advection become periodic and
wavelength[16,2] of the wavelike patterns. Note that for start to move when advection is present in the system.
fixed nonlinearitya the sizesL for which nonperiodic PEs Another interesting fact illustrated by Figsicy and 7e)
are observed seem to be equally spaced. Furthermorg, forconcerns nonperiodic PEs in the region delimited by 1.6
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Nonperiodic Periodic
S+P+N)

100

FIG. 6. Distributions of nonperiodic and periodic pattern evolutions as a function of latticé $area purely diffusive lattice y=0).
Top: typical distributions as a function afobtained fore =0.5. Bottom: typical distributions as a function ®bbtained fora=1.73. These
constants are chosen to guarantee the existence of all classeteXt

=<a=1.85 for which one observes a pronounced variation ifdynamicsf(x) is chaotic, namely foa=1.7. The distribution
the coupling strength is increased. First, when the couplingf classN is again symmetric to that of clagy while class
strength increases from=0.3 to 0.5 nonperiodic PEs turn Sis only observed in a narrow strip aroune:0. The trian-
into periodic ones and move in the lattice. But, if the cou-gular shape of these histograms reflects the conditien -
pling strength is further increased, strong advection <=wy<e.
=0.5¢) induces those moving patterns to evolve chaotically As one sees from Fig. 8, nonperiodic evolutions are ob-
again. Here, one observes a parabolic shaped plateau beyoserved for strong advectiop~ ¢, either in the weak or in the
which only nonperiodic PEs survive. strong diffusion regimes. Nonperiodic evolutions almost dis-
The precise mechanism responsible for the switching beappear for other advection strengths, except for specific para-
tween nonperiodic and periodic evolutions when advection idolic curves where a few can be observed.
present is not yet fully established. However, it is well The central portion of the axis is dominated by moving
known [16,38 that the periodicity depends on the quotient patterns with velocities approximately given by the advec-
L/\, N being the wavelength of the pattern and, as recentlfion strengthv=1, if small random fluctuations are ne-
reported21,30, advection induces changes in the characterglected. This is true for chaotic local dynamics, namely,
istic wavelengths. This change of the wavelength may beabove the accumulation poiat, of the quadratic map.
responsible for the switching between chaotic and periodic Only periodic PEs are observed for periodic local dynam-
behavior. Preliminary studies indicate that the convectivdcs, i.e., below the accumulation point of the quadratic map.
Lyapunov exponents seem to be a good tool to discriminat€or e <0.25 one finds specific intervals, say:< y<v,,
regions in parameter space where advection induces periodsere only classS exists. The value ofy, is a function of
icity from regions where it induces chaos. diffusion and can be numerically determing80,31]. Be-
Figure 8 shows the distribution of classes(iny) space yond this interval, static PEs start to move with a velocity
for class P and nonperiodicC+H classes when the local obeying a power law, namely,

066206-7



8-902990

TABLE II. Summary of the clasification of the five classes of pattern evolutions of the general diffusive-advective mode(Df Bere £ ~50, a,_,,~1.27,a,~1.4011 is the
accumulation point of the@period doubling cascade for the quadratic ni@p a* ~1.6,a’ is a function ofL, ¢’ ~0.2, €~ 0.4, ande* is a function of y. The symbol MP stands for

“moving patterns,” and denotes claBswvhenevery>0 or classN when y<<0. Velocities are measured in site/step.

a\y Purely diffusive modely=0) Diffusive-advective modelEq. (1)]
e\L L<L (Fig.6) L>L (Figs. 5 and § L<L (Fig. 7 and 8 L> L (Figs. 7-10
[e,1] S C+H C+H C+H
[a’,2] TWs for L~ 10 TWs withv ~y for large ||
C+H for someL (random fluctuation
[0,¢] C+H C+H C+H C+H
FewS for large|y|
[e,1] S TWs TWs withv ~y TWs withv ~y
[a",a'] TWs for L=10 (v~103-10?) Sfor small |y] S for small |y
C+H for someL C+H for someL C+H for someL C+H for someL
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FIG. 7. Distributions of classes as a functionaoénd y. (a) Distribution of classS, (b) of classP, both fore=0.5, and of nonperiodic
classC+H for (c) €=0.3,(d) £€=0.5,(e) €=0.7. In all cases =64.

[ tween the velocity of gradient flows and the geostrophic ve-
= (y=-v)"+0, (100 Jocity [21], a remarkable fact.

Y WhenL varies, the dependence ans similar to that of
the purely diffusive regime, with the following differences:
where « is proportional to the diffusion and is a suitable (i) patterns which are static in the absence of advection start
function intended to represent the small-scale fluctuations oo move, (ii) for a<a, the number of moving patterns in-
the velocity. Fore ~0.06 we finda=0.5 showing that in this creases with the advection strength. Moreover, for weak dif-
case the velocity of the traveling waves displays the saméusion, the region aa<1.1 where moving patterns are ob-
functional dependence on the advectiprms that found be- served, disappears for weak advectigns 0.3¢), while for

v
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Class P

FIG. 8. Distributions of pattern evolutions in the,y) space
(L=64) when local dynamics are chaotic, namaly 1.7. ClassN
displays a distribution symmetric to that of claBswith respect to
y=0. ClassesC and H are plotted together as “nonperiodic”
distributions.

FIG. 9. Distributions of moving patterns of claBsas a function
of ¢ andL for y=0.5 and for chaotic local dynamics, hamely)
strong diffusion an increase of advection suppresses moving=1.7 and(b) a=1.9. For values of the advection there are no
patterns in the region of high nonlinearitg=1.8). pattern evolutions belonging to class For y=—-0.5% (not shown
Figures 9 and 10 illustrate the distribution of patterns as alassesP andN interchange distributions.
function of & and v, respectively, when lattice side varies.

The distributions in thée,L) space are illustrated in Fig. Finally, the distributions in théL,y) space are shown in
9 for classP for y=0.5% and chaotic local dynamic®a  Fijg. 10, for a=1.7 (chaotic local dynamigsand £=0.7
=1.7[Fig. ¥a)] anda=1.9[Fig. Ab)]. _ (strong diffusion. In the same way whea was varied(see

From the histogram in Fig.(8) a one sees that moving Fig. 9) here one observes the predominance of moving pat-
patterns exist foe = 0.3 and also aroung~0.1. Comparing  terns, except for very specific lattice sizes, where nonperi-
these two regions with those observed in the absence of adyic pPEs appear. The specific valued.dbr each particular
vection (see Fig. 6 one clearly sees that moving patterns -gge depend of.
appear for considerably weaker diffusion strengths when ad- oy simulations have shown that for chaotic local dynam-
vection is present. In particular, far=0.3 one finds again ics and weak diffusion only nonperiodic PEs are observed,
only periodic patterns except at particular lattice sizes whergnile for periodic local dynamics they are absent and mov-
nonperiodic evolutions predominate. Apparently, the Iatticemg patterns(class P and N) are observed even for strong
size displays the same dependence on diffusion as for thegyection, their density increasing with the diffusion
purely diffusive regimgcompare with Fig. § strength.

For very high nonlinearities, e.qa=1.9, the region where Table I summarizes the results described in this section,
moving patterns predominate shrinks with the lattice size andoyering the complete domain of parametarg, y andL.
with the nonlinearitya, as illustrated in Fig. @). In particu-

lar, moving patterns disappear fo=50 and forL<10.

For a>a., classS is not observed, while for periodic
local dynamics(a<a,), static evolutions predominate for  This paper described in detail the influence of advection
the weak diffusion regime, similarly to what was observed inin pattern formation and pattern dynamics in spatial extended
Fig. 8. systems and classified the possible solutions observed in the

IV. DISCUSSION AND CONCLUSIONS

066206-10
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terns, involving interpolated continuous functions instead of
amplitudes.

The extended definition allows classifying pattern evolu-
tions into five generic classdsee Fig. 4. The five classes
incorporate all possible solutions observed for one-
dimensional advectively coupled maps. For instance, frozen
patterng16] characterized by periodic sequences of patterns
which remain static on the lattice belong to cl&svavelike
patterns[42], moving fronts[40,43 and traveling waves
[16,40,42—-4% belong to classe® or N, and both frozen
random patterns and evolutions with turbulent defects belong
to classC. Furthermore, our results indicate that these solu-
tions are not transient behaviors in a wide range of parameter
values, being robust after transients of up td fife steps.
Moreover, the classes exist for several types of boundary
conditions[16] and local dynamic$39,43,45,4% They were
even observed for a coupled map lattice with nonlinear het-
erogeneity[47], i.e., where the local nonlinearity varies in
space.

The algorithm used to classify pattern evolutions is based
on two quantities only, a temporal periodicity and a displace-
ment indicator, and can be directly applied to any spatially
discrete model.

An interesting open question not addressed here is the
impact of the periodic windows of the local m&®) in the
distribution of the classes. In particular, when advection is
absent TWs exist only above the period-3 window, i.e., for
a=1.6, or between the period-4 bifurcation value and the
accumulation poing.,. Additionally, the velocity locking be-
havior[30,31,45 found in some parameter domain is not yet
fully understood and the precise sizes of the lattice for which
one finds a mismatch between the wavelength and thd_size
inducing chaotic pattern evolutions, should be investigated
more closely. We hope to report on these questions soon.

FIG. 10. Distributions of the five classes of pattern evolutions as
a function of y and L, for chaotic local dynamicga=1.7) and
strong couplinge=0.7). Classes\ andP have symmetric distribu-
tions with respect toy=0.

90

100'0.7
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