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We investigate pattern formation and evolution in coupled map lattices when advection is incorporated, in
addition to the usual diffusive term. All patterns may be suitably grouped into five classes: three periodic,
supporting static patterns and traveling waves, and two nonperiodic. Relative frequencies are determined as a
function of all model parameters: diffusion, advection, local nonlinearity, and lattice size. Advection plays an
important role in coupled map lattices, being capable of considerably altering pattern evolution. For instance,
advection may induce synchronization, making chaotic patterns evolve periodically. As a byproduct we de-
scribe a practical algorithm for classifying generic pattern evolutions and for measuring velocities of traveling
waves.
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I. INTRODUCTION

The study of the intricacies underlying pattern formation
and pattern dynamics allows one to probe the nonlinear
mechanisms of nonequilibrium conditions in many physical
phenomena such as, laser dynamics[1], synchronization of
optical patterns[2], electroconvection[3], rheological phe-
nomena in fluid systems[4], field-induced phenomena in
magnetic fluids[5], oscillatory and translational Turing pat-
terns in reaction-diffusion systems[6–8], Rayleigh-Bénard
convection in hydrodynamical systems[9–11], and many
others[12]. Pattern formation is of importance also for bio-
logical systems, e.g., in investigations of pattern formation
inside living cells [13] and morphological structures and
self-organized patterns in bacteria colonies[14,15].

A very popular way of modeling pattern formation is by
using lattices of coupled oscillators ruled locally either by
differential equations or by time-discrete mappings, the so-
called coupled map lattices[16,17], models which are real-
istic and consume considerably less computer time. For in-
stance, coupled map lattices with chaotic elements coupled
through their amplitudes and phase have been recently pro-
posed as a model of a gas[18]. They also provide suitable
models of information coding in nervous systems[19]. Other
useful applications include the study of wavelike solutions in
diffusive lattices[20,21], of pattern selection induced by ex-
ternal forcing[22], reaction-diffusion processes in hierarchi-
cal structure[23], ocean convection parametrization[24],
synchronization processes of patterns[25–27], and many
others[16].

Traditionally, patterns are studied considering only the
competition between local nonlinearities together with the
amplitude spreading due to diffusion. However, as is well

known [28], spatially extended phenomena are quite fre-
quently subject not only to diffusion but also to advection,
particularly in ocean circulation and climate[29]. Denoting
by g the advection strength, a simple model incorporating
advection was proposed recently[30,31]:

xt+1sid = f„xtsid… + «Di,t − gAi,t, s1d

where, as usual,« represents the diffusion,fsxd controls the
local dynamics,Di,t and Ai,t are discretized forms of the
diffusion and advection operators, respectively,

Di,t =
f fxtsi + 1dg + f fxtsi − 1dg

2
− f fxtsidg,

Ai,t =
f fxtsi + 1dg − f fxtsi − 1dg

2
.

Models similar to Eq.(1) above have been used before to
investigate anisotropic coupling schemes in lattices of maps
and open flows[32–35]. In our model, however, the asym-
metry parameterg corresponds to an advective velocity
[30,31]. In the following we consider periodic boundary con-
ditions only.

The purpose of this paper is to report a detailed investi-
gation of the role of advection in pattern formation based on
the diffusive-advective model of Eq.(1). First, we describe a
general algorithm for identifying the propagation of periodic
patterns in lattices of maps and measuring their period and
velocity. The distribution of patterns is then studied as a
function of diffusion and advection as well as nonlinearity
and lattice size. We show that advection plays an important
role and is capable of considerably changing pattern behav-
iors. In particular, in certain parameter ranges, advection may
change chaotic into regular(periodic) behavior.
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The paper is organized as follows. In Sec. II we digress
about technical matters necessary to characterize “identical
patterns” for discrete-time evolutions in lattices and use it to
classify pattern evolutions into five generic classes, three pe-
riodic and two nonperiodic. In Sec. III we report the relative
distribution(histograms) of patterns as a function of the local
nonlinearity of the logistic map, the diffusion«, the advec-
tion g, and the lattice sizeL. Discussion and conclusions are
given in Sec. IV.

II. RECOGNIZING IDENTICAL PATTERNS

The key concept when studying spatially extended sys-
tems is that of “pattern.” Roughly speaking, a pattern is a
snapshot showing the configuration of the system at a given
instant. For spatiallycontinuoussystems, a pattern is a con-
tinuous function[12], sayjsrd with r PR. For spatiallydis-
crete systems(lattices), a pattern is a discrete set of ampli-
tudesxtsid, which we represent byPt;hxtsidj, wherei PN.
Note that while the amplitudesjsrd always vary continuously
at each pointr for lattices, the amplitudesxtsid at each sitei
may be either a discrete set of values, like in cellular au-
tomata, or a continuous interval, like in coupled map lattices.
We call indistinctly space of statesthe set of all possible
local amplitudes that a system may assume.

After introducing these notions, the next important thing
is to be able to identify whether two given patterns are iden-
tical or not. The identification would be trivial if patterns
could never appear spatially shifted on the system. For con-
tinuous systems the detection of identical patterns is rather
simple: two continuous patternsjsrd and hsrd, are identical
when it is possible to find a constantdPR such thathsrd
=jsr −dd for all r. Obviously, whend=0 the patterns coin-
cide, i.e., they are not shifted with respect to each other.

For discrete systems two cases need to be distinguished
since the space of states may be either discrete(cellular au-
tomata) or continuous(lattices of maps). For cellular au-
tomata, the definition is similar to that for continuous sys-
tems: patterns are identical ifxtsid=xtsi −dd, for all i where
now d is an integer, not a real number, since space and space
of states are both discrete.

For lattices of maps, the situation is slightly more subtle
since direct comparison of the actual amplitudes may not
necessarily reveal their identity. As illustrated in Fig. 1, to
recognize if two patternshX1,X2,X3,X4j and hY1,Y2,Y3,Y4j
are identical requires comparing auxiliary interpolated con-
tinuous functions, sayIsrd andI1srd. Although patterns ap-
pear to be completely different because their amplitudes are
different, the interpolated functionsIsrd andI1srd associated
with them are identical in the sense thatI1srd=Isr −dd for all
r. Therefore, in sharp contrast with the situation for continu-
ous systems and for cellular automata as discussed above for
lattices we need to compare the auxiliary continuous func-
tions. The auxiliary continuous functions are needed because
although space is discrete, the space of states(amplitudes) is
continuous.

To define the auxiliary continuous function we use a con-
venient basis sethfksrdj. Two patternshXij andhYij are iden-

tical if and only if their corresponding interpolated functions
Isrd=ok=0

L−1 Ak fksrd andI1srd=ok=0
L−1 Bk fksrd, satisfy for allr

the condition

Isrd = I1sr − dd, s3d

for some fixeddPR.
Obviously, the above definition of identical patterns ap-

plies also for spatially continuous systems, when only a
single function is needed(the pattern itself), as well as for
cellular automata. Next, we apply this definition to detect
temporal repetitions of patterns, shifted or not.

As time evolves in discrete steps, the lattice displays a
sequence of patterns

Pt0
,Pt1

, . . . ,Pt,
, . . . , s4d

each one having an interpolating function associated with it:

It0
,It1

, . . . ,It,
, . . . . s5d

If the initial patternPt0
reappears at some later timet,, their

interpolated functions,It0
andIt,

must obey the condition of
Eq. (3). In the particular case whend=0 the amplitudes of
both patterns coincide identically. In all other cases, when
dÞ0, despite having different amplitudes, the patternsPt0
and Pt,

are identical since, according to Eq.(3), they are
embedded in the same interpolating function. In any case the
velocity v of the pattern isv=d / st,− t0d.

To implement the above definition of identical patterns for
a lattice composed byL sites one needs to solve a linear
system ofL equations at each time step and compare the
corresponding solutions(coefficients). However, a more con-

FIG. 1. The definition of identical patterns in discrete lattices
cannot be always made with the actual amplitudes but may require
finding an interpolated function.(a) No translation of the ampli-
tudes hX1,X2,X3,X4j make them coincide with the amplitudes
hY1,Y2,Y3,Y4j. Straight lines are simple guides to the eye here;(b)
the interpolated functions,Isrd andI1srd show that amplitudes are
in fact correlated. See text.
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venient and fast procedure is to use an equivalent numerical
algorithm based on least squares deviations of the amplitudes
both in time and in space.

To this end we fix a reference pattern, sayPt0
=hxt0

sidj,
and compute the quantity

Tstd = o
i=1

L

fxtsid − xt0
sidg2. s6d

This function is useful becauseTst,d.0 for all instantst, for
which the pattern of reference reappears, thereby allowing
one to determine the periodt. Note that one findsTst,d;0
only for static patterns, i.e., whend=0. To have a moving
pattern implies havingdÞ0 and, therefore, to haveTst,d
.0. The difference between static and moving patterns is
illustrated in Fig. 2.

After determining the periodt instead of working in the
“fast scale” t, we may simply consider patterns at instants
which are multiples oft, namelymt, using the “slow scale”
m. With the slow scalem we determine the direction of
movement through the function

Ss j ,md = o
i=1

L

fxt0+mts j + id − xt0
sidg2, s7d

where j and mPN, and the sumi + j is taken moduloL.
Obviously, for j =0 we haveSs0,md;Tsmtd.

Equation(7) allows us to define a useful “displacement
indicator” dm as being the firstj which minimizesSs j ,md.
Obviously,dm must be an integer between 0 andL, the size
of the lattice. To detect a moving pattern means to detect a
nonzero value ofdm. Since patterns generally move quite
slowly, one typically detectsdm=0 during a relatively long
interval before findingdmÞ0. Since wheneverdm is nonzero
our algorithm updates the reference and computesdm+1, for
any m only three values may be found:dm=0,1,L−1. A
pattern is said to be moving in the “positive” direction when-
everdm=1, and in the “negative” whendm=L−1.

Figure 3 illustrates typicalSs j ,md andd for moving pat-
terns [Fig. 3(a)] and chaotic pattern evolutions[Fig. 3(b)].
For static patterns(not shown), d is always zero, i.e., the
minimum of Ss j ,md is always reached forj =0.

With the periodt and displacement indicatordm we are
able to detect and classify any pattern evolution(PE). The
classification is as follows.

If a PE has periodt periodic, then the associatedt pat-
terns either remain static(dm=0 always), or not. Thus, as
shown in Fig. 4, there are three classes of periodic PEs: static
(classS), positively moving(classP), and negatively moving
patterns(classN).

We find convenient to separate nonperiodic PEs in two
broad classes: truly chaotic evolutions(classC) or chaotic
evolutions consisting of PE during finite intervals of time.

FIG. 2. Illustrative examples ofTstd, Eq. (6), characterizing the
possible nature of the periodic behaviors:(a) static patternssd=0d,
when Tst,d;0, (b) moving patternssdÞ0d, when Tst,d.0. The
valuesTst,d increase quadratically witht.

FIG. 3. Typical temporal variation ofSs j ,md for j =0, and ofd. Left column: positive moving patternfa=1.73,«=0.5,L=64g. Right
column: chaotic pattern evolutionfa=1.95,«=0.5,g=0,L=64g. For negative moving patterns(not shown) one obtains results, with non-
negative values ofd beingdm=L−1.
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We refer to this situation as Hesitating pattern evolutions
(classH), see Fig. 4(d).

When implementing our algorithm, it is useful to consider
the following additional points. First, to avoid spurious local
minima, the computation oft requires a majorantM of Tstd.
This majorant depends on the local dynamicsfsxd. An
adequate choice for the logistic map isM=0.2. Second, to
prevent neglecting a local minima of a moving pattern, we
impose thatTst0+mtd and T ft0+sm+1dtg are of the same
order of magnitude. Third, whenever a value fort is found,
the referencehxt0

sidj is updated, and a new value oft is
determined and compared with the preceding one. This pro-
cedure is repeated during an interval ofT time steps. The
accuracy oft increases whenT increases, up to a point when

T is so large that PEs with high velocities, of the order of
v,1 site/step, may complete a full revolution around the
lattice in less thanT time steps. In our cases,T,103 time
steps proved to be an adequate choice.

Finally, note that while for continuous time evolutions it
is always possible to determine the direction of motion by
successive measurements of the position attn= tn−1+stn−1

− tn−2d /2, for discrete times one has the restrictiontn− tn−1

ù1. Therefore, during one time step, the displacement ofp
sites in one direction or, equivalently, ofL−p sites in the
opposite direction, are both possible. To determine the actual
direction of motion, one must take into account that, since
we have nearest neighbors coupling, state propagation can-
not be greater than one site per time step. Consequently, after

FIG. 4. Illustrative examples
of the five classes of pattern evo-
lutions for the diffusive-advective
coupled map lattice:(a) ClassS,
“static,” (b) ClassP, “positively”
moving; (c) ClassN, “negatively”
moving; (d) ClassH, “hesitation”;
and (e) Class C, “chaotic”. For
clarity, adjacent points of each
pattern are joined with lines.
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one period(t time steps) the pattern cannot move more than
t sites. Thus, when 0øpøt we say that the pattern is mov-
ing in a positive direction, while whenL−tøpøL−1 it is
said to be moving in the opposite negative direction.

The velocityv of moving patterns may be directly com-
puted fromt and dm by averaging over a time intervalMt
the quantitysL− uL−2dmud /2, weighted by the signsm of L
−2dm which indicates the direction of movement:

v =
1

2Mt
o
m=1

M

smsL − uL − 2dmud. s8d

After some elementary algebra one sees thatsL− uL
−2dmud /2 equals the displacement for eachdm, independently
of the direction in which the pattern moves. In particular, this
quantity has the same value for both directions, positive
sdm=1d, and negativesdm=L−1d, and is zero fordm=0. Note
that, if sm has always the same value, says, then the PE
belongs to classP ss=1d or to classN ss=−1d, while if s
=1 and −1 intermittently, the PE belongs to classH and the
velocity (8) has the meaning of an average velocity.

A summary of the classification is given in Table I. Look-
ing at this classification, one may wonder if Table I should
not also include quasiperiodic solutions. The problem here is
how to unambiguously characterize the presence of quasi-
periodicity in coupled map lattices. The term “quasiperiodic-
ity” was already used by Kaneko[36] and Franceschini and
Vernia [37], but without a proper definition of what should
be precisely understood by it. Subsequently, Franceschiniet
al. [38]
discussed solutions which they call “quasiperiodic traveling
waves,” characterizing them by a winding numberv=1/J,
where J is the amount of time steps needed for a site to
complete one turn in phase-space. We feel that the term
quasiperiodic traveling waves is somewhat contradictory and
prone to confusion. In a lattice, we understand that one either
has a “traveling wave,” when a wavelike pattern repeats
periodically in time but shifted in the lattice, or “quasiperi-
odic solutions,” when it is possible to associate an irrational
winding number to the solution. Since the characterization of
irrational winding numbers for spatially extended system is
not at all trivial, not to say impossible, we find more appro-
priate to talk generically about traveling waves only, while
we wait for a reliable way(algorithmic, not conceptual) of
recognizing quasiperiodicity in spatially extended systems.

III. CHARACTERIZATION OF PATTERN EVOLUTIONS

In this section we apply the algorithm above to character-
ize and classify PEs in the diffusive-advective model, Eq.
(1), for the usual quadratic local dynamics

xt+1 = fsxtd = 1 −axt
2. s9d

In Sec. III A we consider the purely diffusive regime
sg=0d while in Sec. III B we consider the effect of advec-
tion. We compute histograms for all possible combinations of
parameters using samples of 100 random initial conditions.
For fixed lattice sizeL we use a mesh of 50350 grid points,
and a mesh of 100350 grid points when varyingL among
100 different values. In both cases the grid resolution is suf-
ficient to catch the main features of the distribution of the
PEs. Pattern evolutions are classified after discarding tran-
sients of 105 time steps, being carried out during 104 subse-
quent time steps. A summary of all the results found is given
in Table II, at the end of this section. We now discuss these
results in detail.

A. The purely diffusive lattices

The results of this section extend preliminary work[39]
and serve as reference to compare the modifications caused
by including advection.

Figure 5 shows the distribution of pattern evolutions as a
function ofa and« for the same lattice sizeL=64 considered
earlier by Kaneko and Tsuda[16]. For a&1.4 we find a
“plateau” where only periodic PEs are observed. The upper
boundary of this plateau lies approximately at the accumula-
tion pointa`.1.4011 of the 2, doubling cascade of the local
map, Eq. (9). This “periodic plateau,” extends untila
=−0.25, the lower limit of alloweda values. The periodic
plateau is composed only by static(classS) PEs, except for
1.27&a,a` and«*0.45, where pattern evolutions belong-
ing to classP and N are also observed. The lower limita
,1.27 corresponds approximately to 2→4 doubling bifurca-
tion of the local quadratic map. Although period-4 plays a
crucial role in traveling wave(TW) solutions for coupled
map lattices[40], as far as we know there is no complete
explanation for the absence of moving patterns below the
period-4 bifurcation. Moving patterns observed in all these
regions have low velocities,v,10−4 site/step.

Beyond the periodic plateau(for a.a`) nonperiodic
classes predominate, except in the region 1.6&a&1.9 when
«*0.45 anda *1.6 for «,0.15, where traveling waves are
profusely observed, with velocitiesv,10−3 site/step.

TABLE I. Characterization of the five classes usingt and dm. ClassH consists of an alternation of
periodic and chaotic behaviors which occur during finite time intervals.

Class Periodt Displacementdm Sm= L− uL−2dmu /2 Directionsm

Peiodic Static Constant 0 0

Positive Constant 1 1 +1

Negative Constant L−1 1 −1

Nonperiodic Hesitation Constant/undefineds0,1,L−1d /undefined s0,1d /undefined ±1/undefined

Chaos undefined undefined undefined undefined
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Here, classesP andN have the same distribution, because
of the symmetry in the coupling. See Ref.[39] for details on
this point.

Figure 6 shows the distributions of periodic and nonperi-
odic classes in bothsa,Ld and s« ,Ld spaces. For thesa,Ld
space we fix«=0.5, a value for which all classes exist. From
the histograms in Fig. 6 one sees that the periodic plateau at
a&a` exists for all sizes, but now the upper boundary
sightly decreases whenL increases, an artifact that could be
removed by considering larger transients[41]. We found that
for transients about 100 times larger this slight discrepancy
disappears.

Nonperiodic PEs predominate fora`,a&1.6. For a
*1.6 one observes mainly periodic PEs, essentially wavelike
patterns, moving or not. Interestingly, for this latter region
nonperiodic evolutions are found only for specific sizes of
the lattice which vary slowly with nonlinearitya and diffu-
sion «. Moreover, for these specific values we found no
periodic evolutions. A possible explanation for this could be
the mismatch between the lattice size and the characteristic
wavelength[16,21] of the wavelike patterns. Note that for
fixed nonlinearitya the sizesL for which nonperiodic PEs
are observed seem to be equally spaced. Furthermore, forL

&50, periodic PEs are observed for all values ofa*1.6,
while for L*50 they disappear beyond a threshold which
decreases withL.

Our simulations indicate that moving patterns, either class
P or N, are not observed for small lattices, of the order of
L&10. This lower limit for observing moving patterns is a
general feature of coupled map lattices: there seems to exist
a minimum number of sites below which no pattern can
move. It would be interesting to find an analytical proof for
this observation.

In the s« ,Ld space we fixeda=1.73, also a value for
which all classes exist. For small coupling strengths,«
&0.4, nonperiodic classes predominate, except in two nar-
row strips localized at«,0.1 and«,0.3 where classS is
also observed. The predominance of nonperiodic classes at
«&0.4 is due to the fact that we chose a value ofa for which
the local dynamics is chaotic. Choosing a nonlinearity corre-
sponding to periodic local dynamics one would observe
mainly classS periodic evolutions.

For «*0.4 periodic classes predominate although classes
P and N may be also observed, except for certain specific
lattice sizes, as shown in Fig. 5.

Finally, for larger sizesL*100 we observe that all the
features described above remain unchanged up toL,300,
when traveling waves apparently disappear. Transient times
required to reach definitive conclusions are quite long for
these sizes and we have not attempted to investigate such
large lattices.

B. Effects of advection

We now consider the effect of advection, the contribution
which is of great interest for practical applications
[21,24,30].

As already demonstrated[21], for coupled map lattices,
the range of admissible values of the advection strength de-
pends on the diffusion and is given by[21] −«øgø«.

Figures 7 and 8 show histograms of the distribution of
PEs in thesa,gd and s« ,gd spaces, respectively, forL=64.

In Fig. 7 we plot the distributions of classS [Fig. 7(a)],
class P [Fig. 7(b)], both for «=0.5, and of nonperiodic
classesC+H [Fig. 7(c)–7(e)], for three coupling strengths,
«=0.3, 0.5, and 0.7, respectively. The distribution of classN
is symmetric to that of classP, with respect to the axisg
=0.

From Fig. 7 one observes that the periodic plateau ata
&1.4 is composed by static evolutions(class S) only for
weak advectiong.0. The periodic plateau also exists when
the advection is further increased although only moving pat-
terns are observed. In other words, advection induces static
PEs to move. This is true not only for the periodic plateau
but also above the accumulation point, i.e., fora*1.4.

The predominance of moving patterns is also very pro-
nounced for 1.5&a&1.8. Comparing this region with that
observed in the purely diffusive regime(see Fig. 5) one sees
that for specific ranges, namely 1.6&a&1.8, PEs which are
nonperiodic in the absence of advection become periodic and
start to move when advection is present in the system.

Another interesting fact illustrated by Figs. 7(c) and 7(e)
concerns nonperiodic PEs in the region delimited by 1.6

FIG. 5. Distributions of nonperiodic and periodic pattern evolu-
tion as a function of nonlinearitya and diffusion«, in the absence
of advectionsg=0d, for a lattice ofL=64 sites.
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&a&1.85 for which one observes a pronounced variation if
the coupling strength is increased. First, when the coupling
strength increases from«=0.3 to 0.5 nonperiodic PEs turn
into periodic ones and move in the lattice. But, if the cou-
pling strength is further increased, strong advectionsg
*0.5«d induces those moving patterns to evolve chaotically
again. Here, one observes a parabolic shaped plateau beyond
which only nonperiodic PEs survive.

The precise mechanism responsible for the switching be-
tween nonperiodic and periodic evolutions when advection is
present is not yet fully established. However, it is well
known [16,38] that the periodicity depends on the quotient
L /l, l being the wavelength of the pattern and, as recently
reported[21,30], advection induces changes in the character-
istic wavelengths. This change of the wavelength may be
responsible for the switching between chaotic and periodic
behavior. Preliminary studies indicate that the convective
Lyapunov exponents seem to be a good tool to discriminate
regions in parameter space where advection induces period-
icity from regions where it induces chaos.

Figure 8 shows the distribution of classes ins« ,gd space
for class P and nonperiodicC+H classes when the local

dynamicsfsxd is chaotic, namely fora=1.7. The distribution
of classN is again symmetric to that of classP, while class
S is only observed in a narrow strip aroundg=0. The trian-
gular shape of these histograms reflects the condition −«
øgø«.

As one sees from Fig. 8, nonperiodic evolutions are ob-
served for strong advectiong,«, either in the weak or in the
strong diffusion regimes. Nonperiodic evolutions almost dis-
appear for other advection strengths, except for specific para-
bolic curves where a few can be observed.

The central portion of the« axis is dominated by moving
patterns with velocities approximately given by the advec-
tion strength v=g, if small random fluctuations are ne-
glected. This is true for chaotic local dynamics, namely,
above the accumulation pointa` of the quadratic map.

Only periodic PEs are observed for periodic local dynam-
ics, i.e., below the accumulation point of the quadratic map.
For «&0.25 one finds specific intervals, say −gcøgøgc,
where only classS exists. The value ofgc is a function of
diffusion and can be numerically determined[30,31]. Be-
yond this interval, static PEs start to move with a velocity
obeying a power law, namely,

FIG. 6. Distributions of nonperiodic and periodic pattern evolutions as a function of lattice sizeL for a purely diffusive latticesg=0d.
Top: typical distributions as a function ofa obtained for«=0.5. Bottom: typical distributions as a function of« obtained fora=1.73. These
constants are chosen to guarantee the existence of all classes(see text).
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TABLE II. Summary of the clasification of the five classes of pattern evolutions of the general diffusive-advective model of Eq.(1). HereL,50, a2→4,1.27, a`,1.4011 is the
accumulation point of the 2,-period doubling cascade for the quadratic map(9), a* ,1.6, a8 is a function ofL, «8,0.2, «̄,0.4, and«* is a function ofg. The symbol MP stands for
“moving patterns,” and denotes classP wheneverg.0 or classN wheng,0. Velocities are measured in site/step.

a\g Purely diffusive modelsg=0d Diffusive-advective model[Eq. (1)]

« \L L,L (Fig.6) L.L (Figs. 5 and 6) L,L (Fig. 7 and 8) L.L (Figs. 7–10)

fa8 ,2g
f«̄ ,1g S

TWs for L,10
C+H for someL

C+H C+H
TWs with v,g

(random fluctuation)

C+H
for large ugu

f0,«̄g C+H
Few S

C+H C+H C+H
for large ugu

fa* ,a8g
f«̄ ,1g S

TWs for L*10
C+H for someL

TWs
sv,10−3–10−2d
C+H for someL

TWs with v,g
S for small ugu

C+H for someL

TWs with v,g
S for small ugu

C+H for someL

f0,«̄g C+H
S for L*10

C+H
S for L*10

TWs with v,g
S for small ugu

TWs with v,g
S for small ugu

fa` ,a* g f«̄ ,1g C+H
Few S for L*10

C+H
Few S for L*10

MPsv,0.1–1d
S+C+H for small ugu

MPsv,0.1–1d
S+C+H for small ugu

f0,«̄g C+H C+H MPsv,0.1–1d
S+C+H for small ugu

MPsv,0.1–1d
S+C+H for small ugu

fa2→4,a`g f«* ,1g Periodic plateau
P+Nsv,10−4d

Periodic plateau
P+Nsv,10−4d

MPsv,gd
S for L&10

MPsv,gd
C+H at «,1

f0,«* g Periodic plateau
S only

Periodic plateau
S only

MP [v~g as«d, Eq. (10)]
S (velocity locking)

MP [v~g as«d, Eq. (10)]
S (velocity locking)

C+H at «,0

f−0.25,a2→4g f«8 ,1g Periodic plateau
S only

Periodic plateau
S only

MPsv,gd
S for L&10

MPsv,gd

f0,«8g Periodic plateau
S only

Periodic plateau
S only

S (velocity locking)
MP [v~g as«d, Eq. (10)]

at a&1.1

S (velocity locking)
MP [v~g as«d, Eq. (10)]

at a&1.1
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v =
ugu
g

sg − gcda + u, s10d

wherea is proportional to the diffusion andu is a suitable
function intended to represent the small-scale fluctuations of
the velocity. For«,0.06 we finda=0.5 showing that in this
case the velocity of the traveling waves displays the same
functional dependence on the advectiong as that found be-

tween the velocity of gradient flows and the geostrophic ve-
locity [21], a remarkable fact.

WhenL varies, the dependence ona is similar to that of
the purely diffusive regime, with the following differences:
(i) patterns which are static in the absence of advection start
to move,(ii ) for a&a` the number of moving patterns in-
creases with the advection strength. Moreover, for weak dif-
fusion, the region ata&1.1 where moving patterns are ob-
served, disappears for weak advectionsg&0.3«d, while for

FIG. 7. Distributions of classes as a function ofa andg. (a) Distribution of classS, (b) of classP, both for«=0.5, and of nonperiodic
classC+H for (c) «=0.3, (d) «=0.5, (e) «=0.7. In all casesL=64.
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strong diffusion an increase of advection suppresses moving
patterns in the region of high nonlinearitysa*1.8d.

Figures 9 and 10 illustrate the distribution of patterns as a
function of « andg, respectively, when lattice sizeL varies.

The distributions in thes« ,Ld space are illustrated in Fig.
9 for class P for g=0.5« and chaotic local dynamics:a
=1.7 [Fig. 9(a)] anda=1.9 [Fig. 9(b)].

From the histogram in Fig. 9(a) a one sees that moving
patterns exist for«*0.3 and also around«,0.1. Comparing
these two regions with those observed in the absence of ad-
vection (see Fig. 6) one clearly sees that moving patterns
appear for considerably weaker diffusion strengths when ad-
vection is present. In particular, for«*0.3 one finds again
only periodic patterns except at particular lattice sizes where
nonperiodic evolutions predominate. Apparently, the lattice
size displays the same dependence on diffusion as for the
purely diffusive regime(compare with Fig. 6).

For very high nonlinearities, e.g.,a=1.9, the region where
moving patterns predominate shrinks with the lattice size and
with the nonlinearitya, as illustrated in Fig. 9(b). In particu-
lar, moving patterns disappear forL*50 and forL&10.

For a.a`, classS is not observed, while for periodic
local dynamicssa,a`d, static evolutions predominate for
the weak diffusion regime, similarly to what was observed in
Fig. 8.

Finally, the distributions in thesL ,gd space are shown in
Fig. 10, for a=1.7 (chaotic local dynamics) and «=0.7
(strong diffusion). In the same way when« was varied(see
Fig. 9), here one observes the predominance of moving pat-
terns, except for very specific lattice sizes, where nonperi-
odic PEs appear. The specific values ofL for each particular
case depend ofg.

Our simulations have shown that for chaotic local dynam-
ics and weak diffusion only nonperiodic PEs are observed,
while for periodic local dynamics they are absent and mov-
ing patterns(classP and N) are observed even for strong
advection, their density increasing with the diffusion
strength.

Table II summarizes the results described in this section,
covering the complete domain of parametersa, «, g andL.

IV. DISCUSSION AND CONCLUSIONS

This paper described in detail the influence of advection
in pattern formation and pattern dynamics in spatial extended
systems and classified the possible solutions observed in the

FIG. 8. Distributions of pattern evolutions in thes« ,gd space
sL=64d when local dynamics are chaotic, namelya=1.7. ClassN
displays a distribution symmetric to that of classP with respect to
g=0. ClassesC and H are plotted together as “nonperiodic”
distributions. FIG. 9. Distributions of moving patterns of classP as a function

of « andL for g=0.5« and for chaotic local dynamics, namely(a)
a=1.7 and(b) a=1.9. For values of the advection there are no
pattern evolutions belonging to classN. For g=−0.5« (not shown)
classesP andN interchange distributions.
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realistic diffusive-advective lattices of maps. Advection is
capable of inducing movement in static patterns. It can also
interchange chaotic and periodic behaviors(see Table II). We
showed that pattern dynamics in spatially discrete models
requires a slight extension of the concept of identical pat-

terns, involving interpolated continuous functions instead of
amplitudes.

The extended definition allows classifying pattern evolu-
tions into five generic classes(see Fig. 4). The five classes
incorporate all possible solutions observed for one-
dimensional advectively coupled maps. For instance, frozen
patterns[16] characterized by periodic sequences of patterns
which remain static on the lattice belong to classS, wavelike
patterns[42], moving fronts [40,43] and traveling waves
[16,40,42–44] belong to classesP or N, and both frozen
random patterns and evolutions with turbulent defects belong
to classC. Furthermore, our results indicate that these solu-
tions are not transient behaviors in a wide range of parameter
values, being robust after transients of up to 107 time steps.
Moreover, the classes exist for several types of boundary
conditions[16] and local dynamics[39,43,45,46]. They were
even observed for a coupled map lattice with nonlinear het-
erogeneity[47], i.e., where the local nonlinearity varies in
space.

The algorithm used to classify pattern evolutions is based
on two quantities only, a temporal periodicity and a displace-
ment indicator, and can be directly applied to any spatially
discrete model.

An interesting open question not addressed here is the
impact of the periodic windows of the local map(9) in the
distribution of the classes. In particular, when advection is
absent TWs exist only above the period-3 window, i.e., for
a*1.6, or between the period-4 bifurcation value and the
accumulation pointa`. Additionally, the velocity locking be-
havior [30,31,45] found in some parameter domain is not yet
fully understood and the precise sizes of the lattice for which
one finds a mismatch between the wavelength and the sizeL,
inducing chaotic pattern evolutions, should be investigated
more closely. We hope to report on these questions soon.
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