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The characteristics of the spatial eigenmodes of vertical-cavity surface-emitting lasers with a large circular
aperture are considered close to the lasing threshold. Experiments yield patterns based on rotational symmetry
(“flowerlike” patterng or on Cartesian symmetiigtripelike patternsfor very close operating conditions. The
former are compatible with the boundary conditions whereas the latter are expected in infinite devices. Theo-
retically, the problem is considered in the framework of an eigenmode analysis of a linear partial differential
equation for the optical field valid at threshold. This formulation allows for a simple implementation of
asymmetries due to the reflection properties of Bragg mirrors as well as of transverse variations of gain and
refractive index due to the device structure or due to imperfections in the growth process. A sharp transition
between flowerlike modes and stripelike modes is shown to occur, if the device aperture is increased.
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[. INTRODUCTION Cartesian symmetry and even stripelike modes were ob-
. . . tained, indicating that the selection between the different
'!'h_e spatlgl mode structure of vertical-cavity sur_face-types is only “weak’(we use the term “Cartesian symmetry”
emitting semiconductor Iase(_vCSELs) has been a subject to characterize stripelike modes as well as Hermite-Gaussian
of considerable research during the last yése®, e.g., Refs. modes, see Sec. IIl for a more detailed discussitm this
[1__'_1]]' his is d he f hat th . paper, we are going to address the spatial mode structure of
0 a great extent, this Is due to the fact that the spatiap .4 areq VCSELSs in more detail. After a presentation of
structure determines the spatial coherence and thus the br, ome experimental results, the question of pattern and sym-
liance of a laser bgam, which .is important, if .Iarg.e-aperturemetry selection at the laser threshold is addressed by an
VCSELs are cc_ms@ered for high power appll|cat|on as fre igenmode analysis of a linearized partial differential equa-
space communication, laser pumping or medical applicationg§,, tor the optical field valid at threshold
[4'12’13'. Howevgr, VCS.ELS are also_ |nyest|gated due to a Our theoretical approach differs in some respect from the
general interest in spatial self-organization phenomena ang,q conyentionally taken in the determination of the thresh-

pattern formatior{5-7,9. old mode. Tvi . . )
L . Typically, analysis starts with a calculation of the
In squareVCSELS stripelike modes were observéd14) eigenmodes of the “empty” cavity, i.e., the properties of the

which resembled very closely ransverse Fourier mode ain medium are not considered at this stage, though the
|(_|p|an(? wgves propagLallzt)lng Odﬁ'ax'? r?_f Lhe ;esoré)aa_nd'not ¢ Calculation of the electromagnetic properties can be quite
ermite-Gaussiaror LP) modes of high order. Emission of o5 10te and rigorous reaching the level of fully vectorial
a single traveling plane wave is predlctgd for generic If_ise[:alculations Refs[8,20-23. Then the modal gain is ob-
models[15,1§ and the counter-propagating wave resultingiaine by calculating overlap integrals @hateria) gain and
in the ob§(_erved_ stripe pattern can be generated due to boun ode profiles(see, e.g. Refs[8,23 for device structures
ary conditions in a laser V.V'th finite extg(ﬂa.g., Ref.[17]). similar to the one analyzed by usNote that the material
Hence, the observed nonllne_ar pattern is also a mode of the.: . o< 4 spectral dependence which might be important.
linear laser structure. Beautiful example of more complexrys finally enables one to determine the mode selected at
patterns arising due to interference of tilted waves reflecte reshold
at thed bOlénfgrly conditions in square lasers were demon- In contrast, we obtain the modes of the field generated at
str?tel n[9, "hq. el 71 the boundari threshold by considering a linearized equation for the laser
5 n aslers wit a:lrcqb?r apehrture[_ ], the foun _grlels are field at threshold under certain lateral-boundary conditions.
0 V|oquy r_wot co:jnpact:l e wit g_mlslsmn of an 1 eaftrands--l-he eigensolutions of the such problem with highest growth
\éerze purlean;o e q orregpr)]on hl_nghy, %m'ssf'sn was found tp, e give the spatial distribution of field at threshold, auto-
e dominated by modes with a high or er( cretg) rota- matically taking into account both the symmetry of resonator
tlongl symmetry being similar to Laguerre-Gaussian mode nd the properties of the active medium, included in the “un-
of high azimuthal order, nevertheless, also modes based ONfrlying” system from which the linearized problem was ob-
tained. This equation derived in Refd1,24-26 includes a
general mechanism of pattern selection in lasers, based on a
*Email address: nloiko@dragon.bas-net.by detuning of cavity resonance from a gain maximum
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[15,16,27, as well as a mechanism based on the spatial an- . .

isotropy created by Bragg reflectors. The problem is nonlo- p-type Bragg Reflector T
cal, in general, mainly due to the influence of the Bragg clve e
reflectors. For the case of infinite homogeneous device it Way  piamond Heatspreader /

solved wusing the transverse Fourier transformation

Oxide Aperture — AuSn Solder

[11,24-26, and it was shown, that due to this anisotropy,
only two spatial Fourier modes have the lowest threshold
instead of the whole continuum of modes with the same

GaAs Substrate

. : . ALO,
transverse wave number as in the isotropic problem. Therepigation Layer \ AR Coating \
fore, for the anisotropic case, it is possible to gain some GeNiAu Contact n-type Bragg Reflector
information on regular pattern formation already in the Light Output

ear approximation, whereas in the isotropic case the nonlin-
ear competition is strictly important for a further selection of ~ FIG. 1. Bottom emitting VCSEL soldered junction down on a
modes. diamond heat sink.

Here, we study the problem for a transversely boundeqln Refs.[4,7,12,13. We refer to these papers for details.

device. To formulate a well defined mathematical problem, The devices under study are based on InGaAs/GaAs

we aptproxmate thte nhor)Ioca.Imeis bty local éer(dla‘fer((ejn_tla:q ¢ quantum wells embe_dded ina spacer layer with a thi_ckness
operator using a technics similar to one developed in Ref. ¢ o0 wavelengthi{Fig. 1). The emission wavelength is in

[28]. After this approximation we obtain an eigenproblem for o 950 nm spectral region. The cavity is closed by Bragg
a partial differential operator of the fourth order, which under efiectors (p side: 30 stacks, reflectivity of nominally
suitable boundary conditions possesses a discrete spectruml.> 0.9998:n side: 20.5 stacksR,>0.992. The p side is
The eigenfunction with largest real part of eigenvalue giveSeytyred by etching mesas down till the spacer layer which
the field distribution near threshold. , . carry thep-contact pads. The size of the active area is de-
This formulation allows also for a simple implementation e by a 30 nm-thick oxide aperture which provides the
of transverse variations of the currggain) or/and refractive  cyrrent as well as the optical confinement. Emission takes
index profiles. These inhomogeneities might be intendeghace through the thinned, nearly transparent substrate. This
(e.g., the oxide aperture present in modern VCSEL dgvice jyottom-emittinggeometry provides a better uniformity of the
due to parasitic effectee.g., thermal lensingor due to im-  ¢yrrent and carrier distribution in the active layer than a top-
perfections in the growth process. Hence, we are able t@mjtiing one(i.e., where the emission is coupled out through
investigate how the spatial modes are affected by the boungpe p mirror) since in this case thp-contact pad has to be
ary condi_tions and inhor_nogeneities inevitably present in anYing shaped29]. This was checked in our devices by taking
real semiconductor device. _ _ __images of the near field spontaneous emission profile well
We show that the symmetry properties of the field distri-pye|o\ threshold which should indicate the spatial carrier dis-
bution at threshold depend very sensitively on the inhomoyipytion. The observed irradiance is homogeneous to within
geneities and the diameter of the laser, and the transitiofg_o0 o4 but still has the maximum at the perimeter of the
between different types of symmetries can be very sharp. |aser (and a local minimum at the cenjedue to residual

The paper is organized as follows: Sec. Il gives the exyrrent crowding at the oxide aperture. This is in agreement
perimental motivation of the work, clearly showing that cir- \yith the calculations presented in RE29).

cular large-aperture VCSEL can generate both flowerlike and The metallizedn side of the wafer is attached to a thin
Cartesian modes. Our theoretical approach is explained fugopner submount with a central bore for the emission. The
ther in Sec. Ill, where the eigenproblem is first formulatedg;ge is contacted with the help of a probe tip. Perturbations
and comparison with traditional rotationally symn_w_etrlc SYS-induced by the probe tip can be kept very small, if the con-
tems is provided. In Sec. IV, the symmetry transitions withiact js done at the perimeter of the contact pad. This is due to
changing laser diameter are investigated in detail. In Sec. e fact that the diameter of the contact pad is slightly larger
the influence of inhomogeneities on the field distribution iSthan the one of the active zore.g., 8um compared to
examined. Section VI contains a summary and discussion @4, m) and therefore a direct stress can be avoided. The wa-
the results. The derivation of the linearized equation, as weller investigated has very similar nominal characteristics as
as its approximation to obtain a local one, and methods ofhe wafer considered in Ref7]. In one case, we present
numerical solution of corresponding eigenproblem are adyegits from a device with a diameter of 28n, whosep

dressed in Appendixes. contact is soldered on a diamond heatspredBigy. 1, Ref.
[4]).
Il. EXPERIMENT The experimental setup is rather simple. The copper sub-

mount with the VCSEL is attached to a thermoelectric cool-
In the following, we will describe some experimental re- ing (Peltiep element for temperature control and stabiliza-
sults on spatial structures observed in broad-area bottontion. The output light is collected with an aspheric lens and
emitting VCSELs. The aim of this section is to provide afocused on a charge-coupled devi€CD) camera such that
motivation for the theoretical studies on symmetry properthe contrast of the boundary of the active area is optimized
ties, not a detailed study of device characteristics. Severdbr the spontaneous emission below threshold. This corre-
aspects of devices of the type used were investigated befogponds to a near field imaging of the time-averaged intrac-
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FIG. 2. Typical pattern obtained in the dominant polarization
component at 10% above threshold in a device with a diameter of (a) (b)
54 um. (a) Near field,(b) far field.
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avity field intensity. Alternatively, the back focal plane of the £ 2
collimator can be imaged on the CCD camera providing ac- é 06} é B
cess to the far field intensity distribution of the emitted light. N 0.4} N 04¢
A combination of a Fresnel rhomb and a Glan-Thompson E 0.2} 8 0.2}
linear polarizer serves for polarization resolved detection. € 0.0 8 00
Figure 2 shows a typical pattern observed close to thresh- -180-90 0 90 180 -150-75 0 75 150
old in devices with a diameter of 54m. It is a flowerlike (¢)  vertical position (pixel) (d)  vertical position (pixel)

pattern[Fig. 2a)], i.e., it is characterized by a nearly circular _ . N
arrangement of bright peaks at the perimeter of the laser. In FIG. 3. ThfeShP'd pattern in the dom_mant polarization compo-
the example presented here, the line of peaks has a defect Rgnt Ln a device with a diameter 9f 4n ('ma.ges shown obtained
the upper left part of the laser. Similar defects are not untypi - f/° Iab_ove thresholda) Near field,(b) far field, (c) cut through
cal, but circular flowers exist als(see also the images in ? ea:: ;gd 'tnter?s't)é.d'ts.tl;'btmlon lalon?_ line 'S.d 'Catgd) cut through
Ref. [7]). The average pitch along the perimeter is on thear ‘eld Intensity distribution along fine indicated.
order of some micrometéhere 7um). Near[Fig. 2(a)] and
far field [Fig. 2b)] are rather similar but not exactly identi- which near and far field are rather simit&ig. 4 of Ref.[7]).
cal. This indicates that the structure is close to but not iden- The data show that in the wafer under study apparently
tical to a Laguerre-Gaussian mode. the selection between modes with dominant rotational and
These patterns should be considered as typical represe@artesian symmetry is weak, i.e., apparently small distur-
tatives of flowerlike patternésee also Figs. 3 and 8 of Ref. bances decide over the symmetry. This is further exemplified
[7]). They are obviously related to the principal circular sym-by the fact that sometimes the symmetry of the pattern
metry of the laser which might be perturbed by some inho<hanges in the course of time at nominally constant operating
mogeneities. conditions. This happens probably in situations in which the
Figure 3 shows a pattern obtained in a laser from the samstrain on the device due to the contact tip is not negligible
array, i.e., from a laser, which should have very similar prop-and some mechanical relaxation occurs which changes the
erties as the laser discussed before. Nevertheless, the oiifess condition. Such an observation also indicates that
served pattern is quite different. In the near field it consists oslight disturbances can mediate the transition from one situ-
a sequence of stripes which do not fill the apert[ffig.  ation to the other.
3(a@)]. The far field is dominated very much by two peaks Figure 4 shows a situation, in which the near pattern field
[Fig. 3b)] indicating that the pattern is better characterizedpattern at threshold does not fill the apert[ffeg. 4@)]. The
as stripes, i.e., as a transverse Fourier mode, than ass#uctures shows modulation across both axis and is rather
Hermite-Gaussian mode. irregular. The far field is dominated by off-axis contributions
This issue is investigated further in FiggcBand 3d). [Fig. 4b)]. These observations indicate the existence of a
The amplitude of the lines is not uniform across thegradient inhomogeneity in the device which might be either a
device—as it should be for perfect stripe patterns—but peakgradient in cavity resonance or in pump current.
at the sides. The amplitudes between center and perimeter Interestingly, this inhomogeneity becomes smaller, if the
have a ratio of about 0.5:1. However, in the far field patterncurrent is increaseffFig. 4(c)] and essentially disappears for
the amplitude ratio is about 1:10, i.e., it is much lower thaneven high current§Fig. 4(e)]. At the same time, the spec-
in the near field. Thus the observed structure is clearly not &#um broadens to the high-frequency side reaching a width of
Hermite-Gaussian mode, since Gaussian modes are se#bout a THz(about 3.2 nmfor the conditions of Figs. 4)
similar on propagation. Thus we conclude that the boundargnd 4f). This indicates that the high-order transverse mode
conditions do not permit the emergence of ideal stripes butvhich are increasingly detuned from the longitudinal reso-
that the observed patterns is a realization which is compatance have a higher rotational symmetry than the ones with
ible with boundary conditions and possibly inhomogeneitiesa low detuning. This hints to the fact that the observed gra-
Similar structures were reported for other wafers in Rgf.  dient inhomogeneity is due to a gradient in cavity length. Its
Apart from these stripelike structures and the flowerlikeexistence is well knowrte.g., Ref.[7]), if not the best por-
ones, patterns with a Cartesian symmetry are observed ¢ion around the center of the wafer are considered.
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the mode with the lowest threshold. However, the shape of
this mode takes into account only the properties of the empty
cavity (boundary conditions and possible inhomogenejities

The alternative approach was developed for a homoge-
neous laser with a large aperture in the limit of an infinitely
extended systenil5,27. In that case the eigenmodes and
their growth rates can be directly obtained from a linear sta-
bility analysis of the nonlasing zero solution of the nonlinear
partial differential equationd?DES9 governing laser dynam-
ics. The resulting eigenmodes are plane tilted watess-
verse Fourier modgswith definite wave vectors and their
growth rates depend on the detuning of the longitudinal cav-
ity resonance from the gain maximuh5]. For a laser with
losses independent from wave vector orientation, those plane
waves are selected by the critical value of wave number, i.e.,
by the modulus of transverse wave vector, and therefore the
situation is highly degenerate. The pattern selection can be
obtained only by taking nonlinear interactions into account
(see, e.g., Refd27,34).

As it was shown in Refg/10,11,23 and confirmed by a
more rigorous mod€I35], the rotational symmetry is broken
for off-axis emission with a defined polarization even in the
infinitely extended laser. This is due to the fact that the re-
flection coefficient of the Bragg reflectors enclosing the cav-
ity depends on the angle between polarization vector and
wave vector. For linear polarized wave there are two oppo-
site directions of transverse wave vectors, with maximal re-
flection [56]. As a result, only two tilted wavegbeing the
complex conjugates from each othdrave minimal losses
and become critical at the first laser threshold. In other
words, there is a selection not only of the critical wave num-
ber but also the wave orientation due to the linear mecha-

FIG. 4. Patterns obtained in the dominant polarization compo-ism in comparison with the mentioned above case of a laser
nent in a device with a diameter of 38m mounted on a heat sink. Wwith isotropic cavity. The nonlinear competition takes place
(@),(c),(e) Near field andb),(d),(f) far field. Distance above thresh- only between two selected traveling waves and standing
old: (a),(b) 6% (however the pattern is identical to the one obtainedwave created by them. This problem was discussed in Ref.
at 3% above threshold except for the fact that the contrast of th¢26].

(a) (b)

latter is lower; (c),(d) 56%; (e),(f) 938%. In the case of square devicgs35], those transverse Fou-
rier modes are compatible with the lateral boundary condi-
IIl. THE EIGENPROBLEM AND MODE SELECTION tions, and hence can be selected at threshold when the trans-

verse area is finite. It is well known, that Gauss-Hermite
Motivated by the experimental observations, we are goingnodes(e.g., Ref[36], for curved mirror resonators or wave
to consider below the mode structure of broad-area VCSELguides with a parabolic refractive index profiler Fourier
and the symmetry selection theoretically. We assume that th@odes (for homogeneous apertujesire the appropriate
laser has a well defined linear polarization, that allows one t@hoice of eigenfunctions. In the latter case, the simplest pos-
simplify the system description. That assumption stems fronsibility is a stripe pattern aligned to one of the sides. We will
the fact that smal(to a great extent uncontrollg@dnisotro-  refer to these modes as “stemming from Cartesian symme-
pies select usually a well defined polarization state at threshry” or shortly as “modes with Cartesian symmetry,” since
old (e.g., Refs[30-33, and references therginMoreover, they have typically only a low-order rotational symmetry.
the patterns obtained in the two polarization components are For circularly shaped devices with conventional isotropic
similar as a rule that implies common mechanisms of theimirrors, the situation is more complicated. The eigenmodes
formation, so the extension to a vectorial model is rathemwf the empty cavity satisfying the lateral ring boundary con-
straightforward. ditions are Gauss-Laguerre mod@s devices with a para-
As is known, there are two distinct types of descriptionsbolic refractive index profilg the so-called LP-modedin-

for a laser operating near the lasing threshold. In the first onearly polarized modes based on Bessel funciiamslevices
which is mostly used for small-aperture devices, the fieldwith (weak step-index wave guidege.g., Ref.[37]) or
e(x,y) is decomposed into transverse eigenfunctions of th&essel modes in devices with a homogeneous refractive in-
empty cavity[8,23,33. Then, the modal gain needs to be dex profile. As in the infinite device these modes are highly
computed by an overlap integral of the gain and the modatlegenerate in the case of rotationally symmetric systems,
profile taking into account the frequency dependence of theince the modes, obtained by a rotation by any angle, have
material gain. After this procedure, it is possible to determinghe same growth rate at threshold.
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duced by the Bragg reflectofand possibly other imperfect- |aqer equations is presented in Appendix A. In general, it is a
ness of the cavity the mode appearing at threshold cannotse,qogifferential operatd#1] including nonlocal integral

be a pure rotationally symmetric or a pure stripelike modesye g They arise because a part of the operator describing
but something intermediate. In such an anisotropic situatioty,, light interaction with Bragg reflectors of the laser cavity

only a few modes have the same threshold, and the pattefa yefined through the action in transverse Fourier spre
;electlon prot_)lem.can be conS|dered_aIreaQy on the Stage,Ofl-?owever, it is possible to approximate this operator by a
linear approximation. Therefore we investigate an eq“at'orbartial differential operator of the type

of the type

4 -
Je(x,y,t) - - Y
0 o Oy = - ——. 6
at O(x’y)E(X,y,t), (1) (xy) i,jE:O( I) a”(?XIy] ( )
Whereé(x,y) is a linear operator, acting ifx,y) space on the The fact that the equation is of fourth ordgnstead of

transverse profile(x,y,t) of the optical field at the laser secong ensures the existence of a maximum of the disper-

threshold. From Eq(l), the following eigenproblem is ob- §iqn_curve(3) for nonzerok_at suitable para_tmeters as for an
tained: infinite homogeneous device. The derivation of such an ap-

proximation is described in Appendix B.

-~ - = The coefficientsa;; are complex-valued in general. The

Oty Bl Y) = AgBylxY) = 0. @ imaginary part of coefficients appears from two different
Here, {g} parametrizes the set of eigenmodggx,y) with sources. The first one is the usual diffraction term of the form
eigenvalues,y which are the spatial field distributions grow- iaA (whereA is transverse Lapalcian, ardis a diffraction
ing as a whole with rate Rg. coefficieny. It gives a contribution only to coefficient),

For a homogeneous device of an infinite aperture, th@nday, The second part giving contribution into al} is a

spectrum\y of Eqg. (2) is continuous with eigenfunctions result of the field phase shift at reflection from the complex
being transverse Fourier harmonieg=expikr) [where k distributed Bragg structure.
=(ky,ky) andr=(x,y)]. Their selection described above is The simplest way to model of the finiteness of a real
determined by a maximal value of Redefined from the device is imposing of zero boundary condition &fx,y) at

following dispersion relation: the end of aperture. For a circular aperture it takes the fol-
lowing form:
O(ky,ky) = g, 3
whereO(ky, k) is defined through a transverse Fourier trans- € (%,Y)ljrp=r2 = 0. @)
form 7 of the fieldey(x,y) This condition is confirmed by the fact that both gain and

field intensity decrease rapidly close to the aperture. In fact,
Fieg(x,y) — 4Ky ky) :feg()(,y)e_i(kxX+kyy)dxdy, (4) this condition is not sufficient for a solution of E¢p), be-
cause this equation is of fourth order. One should provide a

as a multiolication in the transverse Fourier space: second boundary condition including the derivatives of the
P P field which has to satisfy so called Lopatinstor ellipticity)
FIO €% )] Oy, K, Jey(Kyky) (5) condition [41]. It is clear that the second condition also

should be consistent with the decreasing of the field far away
The eigenproblend2) with proper boundary conditions has a from the aperture Therefore some combination of spatial de-
discrete spectrum, and it is evident from the physical natureivatives of the field should be zero. From the reflection sym-

of the problem that Re is bounded from above. In the metry of the operato®,,,, it follows that this combination
following, we suppose that ally are arranged in the order of 5 contain only derivatives of even order. In general, the

decreasing of their real values: Re=Re\,=Re\;. .. . second boundary condition must be
Such an approach includes both the frameworks men-

tioned: on one hand, the eigenproblem with certain lateral- A _

boundary conditions accounts for the peculiarities of the T&g (X,y)||r‘2:R2—0, (8)
empty cavity(such as the transverse shape of the device and -

inhomogeneities of the transverse area of the c4@®y39);  WhereT is

on the other hand, this equation is the linearization of equa-

tions describing the laser at threshold that allows to take into 'T'ztﬁ+i 9)
account wavelength selection mechanism due to an interac- ax?  ay?

tion of light with active mediuni34] and pump spatial pro-

file. We restrict ourselves only to this linearized problem,with complex coefficient. We do not assume in this paper
leaving more complex effects as the influence of spatial hol@ny anisotropy introduced by boundary conditions, hence we
burning [26,33,38,4) and the nonlinear competition of should taket=1. Then the second condition becomes the
eigenmodes with nearly the same growth rate for furthesame as for an isotropic device which arises automatically in
more detailed investigations. the last case due to reducing the opergéptto the next one:
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A = 2 modes with dominant Cartesian and dominant rotational
Oxy) = DA+ b, & + s, (10 symmetry, we start from the simplified case of E6) and
[by,b,,b; are some(in general complexcoefficienty, and  assume that the coefficients in E) are real valued.
due to the equality7). One can easily recognize in E4.0) In that case the eigenvalues of E@&) are known to be
the linear part of the well known Swift-Hohenberg equationalso real valued. Moreover, the transverse Fourier spectrum
[16,27, describing the evolution of a laser field near thresh-gy(ky,k,) of the eigenfunction corresponding to some eigen-
old. Therefore, the anisotropic operat@) corresponds to a Vvalue Ay is a generalized functiondistribution) which is
generalization of the spatial parts of the Swift-Hohenberg-nonzeroonlyon a curve§y(k,,k,), defined as a set of zeros of
like order parameter equatiorj46,34 obtained from the the polynomial(3) [41].
usual “uniform-field”-models often used to model pattern Therefore, the characteristics and the anisotropy of an
formation problems in cavitiefl5,16,34,42 since it allows eigenfunction iscompletelydetermined by the topological
for an asymmetry irk space. and symmetry characteristics of the cut@gin (k,k,) space

To the best of our knowledge, there is no analytical solufor a defined value ok,. Obviously, it depends on the par-
tion of the general eigenproble(®) with the operator(6). ticular value ofAg.

However, the problem can be solved numerically by reduc- For example, in the isotropic cag&0) with real coeffi-
ing this equation to a system of two equations of seconaientsb;, the eigenfunctions are known to be also eigenfunc-
order (see Appendix ¢ For that, an auxiliary function is tions of Helmholtz equation, being generalized function of
introduced and the simple numerical procedure can be useatlie form

when the zero boundary condition as K@) is imposed on

it. However, this corresponds to the use of second boundary ey(ky ky) = explings) S, (12
condition(8) of the original problem witti# 1. The value of

this parameter is determined by the inner anisotropy of thavhereSis a circle of radiuR; which is connected ta, by
operator(6). It is comparatively small, and the obtained so-the relation )\g:ble+b2Rg+b3, ds is a Dirac  function
lution is very close to a solution of the problem with isotro- which is zero everywhere except & and ¢ is an angular
pic boundary conditioni8) with t=1 (see Appendix ¢ coordinate ors [43].

It will turn out, that the anisotropy of the problem and the  We can characterize the spatial anisotropy of &y.by
circularly boundary conditions are competing in the determi-comparing it with the nearest operator of ty{®). The sur-
nation of the eigenfunctions ab). Hence, with decreasing faceO(k,,k,) for dispersion relatiori3) (that corresponds to
diameter of the aperture the solutions of the problem underhe surface of possiblg, for an infinite casgis displayed in
goes a transition from a solution which is a superposition ofFig. 5a) for some model coefficients in E(6). The example
two transverse Fourier modéas for the infinite aperture of its intersection by a plane corresponding to some eigen-
case to the flowerlike eigenfunctions of the isotropic opera-value\, for a finite case is also presented. As was mentioned
tor (10). In the following section we consider this transition, above the transverse Fourier harmonics of the corresponding
taking as a starting point the proble(®) with the operator  eigenfunctione, are nonzero only on the cun® obtained
(6) and boundary condition&),(8). from this intersection.

Up to now, we assumed a homogeneous pump and refrac- Figure b) shows such curve§, for the eigenfunctions
tive index profile. However, in real devices there are addiin transverse Fourier space for values\@fcorresponding to
tional inhomogeneities of current density, resonator length othe first unstable eigenfunctions of devices of different size
refractive index. To describe index inhomogeneities, givensolid lineg. The corresponding curves for the closest opera-
by ni(x,y), and to take into account possible inhomogeneitytor of type (10) are displayed as dashed lines. For an isotro-

of the current densityu the operatoiO,,,,, should be con- PiC operator(10) Ay can be found analytically for given ra-

sidered in the following form: dius of the apertur®. It can be easily showf43] that Ry
=ug/ R, where u, is gth zero of zero order Bessel function
A 4 i I Jo(w). Therefore, the outermost curve corresponds to a small
Oy = _20(_ )"ay Xyl +i1ni(X,y) + goodu(x,Y), device, the inner ones correspond to devices of larger aper-
i,j=

ture. It is worth noting that similar plots are obtained when a
(11)  spectrum of eigenmodes for a single device is considered.

It is evident that the curves with a large diameter—i.e.,
the ones corresponding to small devices—are quite similar to
ﬁircles. In this case, the anisotropy of E8) is not notice-
able and the eigenfunctions can be described by distributions
similar to Eqg.(12), resembling flowerlike pattern. From the
IV. THE COMPETITION OF SYMMETRIES second point of view mentioned above, these curves present

IN A HOMOGENOUS DEVICE the spectrum of high-order eigenmodes—i.e., modes with
smaller eigenvalues;—for a single device with fixed diam-
eter. This implies that the eigenfunctions of higher-order
eigenmodes are less anisotropic.

In order to explain the principles of reasoning and to in- If the diameter is increased, the topmost eigenvalue tends
vestigate the general tendency in the transition betweeto the absolute maximum and reaches it in the limit of infi-

where the derivation and the coefficiemig,| are addressed
in Appendix B. The influence of inhomogeneities in Eijl)

on symmetry properties of the eigenmodes is considered i
Sec. V.

A. Simplified example: Eigenvalue problem with real
coefficients
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FIG. 6. The two first eigenmodes of the homogeneous operator
(6) with boundary conditiong7),(8) for the case of rather small

aperture and the detuning=10 nm. (a),(b) 2R=12.5um, differ-
ence in the threshold of the first and the second mode is 2.6%.

(¢),(d) 2R=20 um, difference in the threshold is 0.5%.

=
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formation(the boundary conditions in real space will then be
zero on an ellipse instead of a cirgléhe solutions of the
problem can be expressed in terms of Matheiu functions.

B. The laser case: Complex coefficients

() x For the laser equations, the coefficieas are complex
FIG. 5. lllustration of the qualitative behavior of eigenfunctions. valued. 'T‘ this case the eigenvalues are e.1ISO complex and It.ls
(a) Surface of the real part of, in dependency oftk,,k,) defined npt p.OSSIbIe anymore to represent the elgenfunctlon$ as dis-
by Eq. (3) for model parametgeraooz—52a02:10.2;1;OY:9.18a22 tributions on some curve, defined as a cross section of a
=—120,=-0.5,a,0=—0.5. (b) corresponding curves of eigenfunc- surface at some plr':\r{él,.43. Therefqre, a simple represen-
tions for different values ok (solid lineg. They are obtained as fation like one in Fig. 5 is not possible. However, we show
cross sections of the surface (@) with planesk,=const[one of below that the qualitative behavior of the eigenfunctions will

which is shown in@)]. A decreasing sequenceXf can be obtained b€ the same as in the preceding case. _
by either increasing the diameter and considering the largest eigen- This statement is illustrated by Figs. 6 and 7. It is easy to

value \, for each diameter, or by considering the sequengéor  see that for a small diameter the first mode is rather rotation-
g=1,2,... for adevice with fixed diamete(in both cases thegare  ally symmetric and is similar to a fundamental one for an
assumed to be an ordered sgt=\,=..., the first value giving the empty cavity[Fig. 6a)].

most unstable modeThe same curves are shown for the closest The second eigenmodEig. 6b)] has zero intensity in the
operator of typg10) for comparison(dotted ling. beam center and the emission is formed by an even number
of “petals” arranged in a circular manner. It is nearly degen-
nite diameter, when the corresponding cuBghrinks to two  erate in growth rate with the first one. If the device diameter
points in transverse Fourier space, giving a stripelike patteris increased, this mode becomes the first eigenmode and the
of the form expik,r)+c.c in (x,y) space[where *,, are  number of petals increas¢Big. 6c)]. The image illustrates
the coordinates of the maxima of the surfa8g. From this  that it is not necessary to invoke a current enhancement at
note, one can easily find two manifestations of spatial anisothe edges due to the peculiarities of the VCSEL deffgag
tropy. The first one is obvious for very large diameters, whenn order to explain the appearance of such modes. Neverthe-
the line S breaks into two disconnected ones, each of thenless, we will see in the following section that even a slight
having the center atk, At that two transverse counter- current crowding can shift the eigenvalue of a flowerlike
running waves appear in th&,y) space. The second mani- pattern to the top even in the case when its growth rate in a
festation stems from the fact that each connected part of theomogeneous device is not the maximal one.

curve deviates from an ideal circle. Although an analysis is If the diameter is increased, the anisotropy of the operator
difficult in the general, for the simple case when the cu8ve coefficients becomes important, as shown in Fig. 5. Thus, the
can be transformed to a circle by a linear coordinate transfirst mode is a stripelike pattenirig. 7). The pattern in the
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increasing the detuning, on the analogy of the infinite case
[16,44 the spatial wave vector with maximal growth rate is
increased, leading to increasing number of spots in the finite
case, both for stripelike and flowerlike patterns. For the
negative detuning, a pattern like in Fig.apappears first in
the sequence of eigenfunctions.

()

V. THE INHOMOGENEOUS CASE

As it is shown in Appendix B, inhomogeneities of index
and small inhomogeneities of current in the device can be
modeled by simple additive terms, with the operatbt)

(a) (b)
instead of Eq(6). The boundary condition&’),(8) must be
“"' kept to provide a discrete set of eigenmodes.
.\ ‘ The most noticeable type of pump inhomogeneities is
g e pump crowding, appearing for large enough device aperture
".;\ [7,29,39. Due the construction of the device, the pump is
more pronounced near the edges of aperture. In the numeri-
cal simulations, such type of inhomogeneity is modeled by
() (@) the following function:
° —
(e) U]

_(|r|—R0)2>
Su= mexp( eyt Irl <Ry 13

m, "> Ro,

where r=\x?+y?, m is the depth,R, is the width of the
profile, ando defines the half-width of the “transient area.”
v For a tiny inhomogeneity, the shape of eigenfunctions of
operator(11) is almost not changed compared to Eg), and
the shift of eigenvalues is also very small. However, for large
enough diameter, such as that presented in Figs. ahd
FIG. 7. The first(a),(b) and the secondc),(d) eigenmodes for  7(f), eigenvalues are very close together, and even small in-
the diameter R=36 um (8=6.5nm, difference in the threshold of homogeneity can change the order of eigenfunctions.
the modes is 0.09%In (e),(f) the first eigenmode forR=55 um In this “perturbative” case, the shift in Rg depends on
(and the same) is shown. The subsequent several modes for thdhe overlap integral of the inhomogeneify.(x,y) with the
case(e),(f) have the same symmetry. The first flowerlike eigenmodecorresponding eigenfunction of E@) [45]. Figures 8a) and
in this sequence is fag=11, and it resembles the one shown in Fig. 8(b) show the first eigenmode of operatdd) with tiny gain
8.(a),(c),(e) are the near field intensity distributiofd),(d),(f)—the  crowding for parameters as in Figgeyand 7f). This mode
far field intensity distribution. would be the eigenmode of operat(), with a threshold
different only by 1.5% from the first mode, shown in Figs.
Fig. 7(a) is not self-similar after a transverse Fourier trans-7(e) and 7f). Thus, tiny inhomogeneity leads to preference
form [Fig. 7(b)], but has a rather pronounced Cartesian symof flowerlike pattern instead of stripelike. The stripelike pat-
metry, especially far from the boundary. However, neighbortern does not disappear, but it is shifted to the bottom in the
ing eigenmodes can have a completely different symmetryset of eigenvalues.
as shown in Fig. (€). The second mode, having a very close  Along with pumping inhomogeneities, there are several
threshold value, is a Laguere-like or Bessel-like function,types of inhomogeneities of the refraction index. The most
with the same flowerlike picture in the far field. pronounced is the index gradient due to oxide aperture
With further increasing diameter, the difference in growth[38,46. Numerically, it is realized by adding a term pro-
rate between neighboring modes tends to zero, and one cg@rtional to Eq.(13) which is sharp enoughr=0.01R), and
find more and more eigenmodes, falling in a fixed interval ofR  close toR. In this case, the circular symmetry of inhomo-
gl’OWth rates above threshold. As in the case shown in F|g %eneity iS Strong enough to h|de the anisotropy Of the opera_

these modes keep the asymmetry of the ope(@ornd the  tor O, ), and the pictures are analogous to Fig&) &nd
Cartesian symmetry of the first mode becomes more ewderg(b)_

[Figs. 1) and Af)]. , Another inhomogeneity is also often encountered in some
The number of stripes as well as number of spots in flowe,jices: it is a constant gradient of the cavity length related
erlike pattern strictly depends on the coefficients@f,, to peculiarities of fabrication. This gradient, if not too strong,
which in turn depends on the parameters of the original sysis equivalent to the gradient of indg¥7,48, because the
tem. The main length scale selection mechanism in a frameadditional phase shift introduced by such an inhomogeneity
work of the basic model is connected to the detuning. Withcan be compensated by introducing a term of a ipge, y).
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- -
- -
2 -
Y
W @ 0) ©
@) b) FIG. 9. The first(a) and two subsequent, namely, 5t), and
10th (c) eigenmodes for R=36 um, and other parameters as in
Figs. §c)—-8f). The eigenmodes with higher threshold fills the ap-
erture better, in analogy with Fig. 4.
— case. This is illustrated in Fig. 9, where the 1st, 5th, and 10th
eigenmodes are presented. This figure provide the analogy
_— with Fig. 4 which also shows a more homogeneous aperture
filling with increasing current.
(d) VI. DISCUSSION AND CONCLUSION

In this paper the competition of symmetry properties of
patterns in VCSEL with wide circular aperture is considered.
Experiments yield patterns based on rotational symmetry or
‘ on Cartesian symmetry for very close operating conditions.
- Two different kinds of symmetry are shown to be created by
— different sources: the rotational symmetry of the device ap-
) erture and the Bragg reflector anisotropy, selecting a certain
direction in the transverse plane. The system was analyzed in
" the framework of linearized equations describing a VCSEL
near threshold with lateral boundary conditions correspond-
ing to the fast decay of the field towards the boundary. The
linearization and approximation procedyoescribed in Ap-

(e)

FIG. 8. (a),(b) first eigenmode for pump crowding, given by Eq.

(13) with ¢=0.28R, m=6.0xX 104, Ry=0.9R and other param- : . S
eters as in Figs.(8) and 7f). (c),(d) the first and(e),(f) the second pendixes A and Bgives an operato(1l) acting in (x,y)

eigenmodes for pump crowding as i@),(b), and index gradient SP3¢€- The eigenfunctions and eigenvalues of this operator
ni=2.8x 107%. The second one has threshold 2% higher but be9'V€ the pattern with a maximal growth rate at threshold,

comes the first forr=0.1R. (a),(c),(e) is the near field(b),(d),(f) is appearing fi_rst after on_set of genera.tion. .
the far field. The size of the device is as in Fig. 7. The solution of the eigenproblem is a discrete set of func-

tions, the separation between their eigenvalues is decreased

As above noted, small enough inhomogeneities leads twith increasing device aperture. It is shown that for a small
an exchanges of eigenfunctions without significant changesperture the preferred type of pattern is a “fundamental” one,
of their shape. The situation becomes different, if the ampliwith a maximum in the center and nearly rotationally sym-
tude of the inhomogeneities is increased. This is evident imetric shape. For larger diameter, more complicated patterns
Figs. 8c)-8(f), where we model a linear index gradient, appear at threshold. It is noticeable that flowerlike patterns
keeping at the same time gain crowding. It is clearly seemwhich are located mainly near the boundaries often have the
that the eigenfunction in the case of Fig¢c)8and §d) pre-  smallest threshold despite of there are no inhomogeneities in
serves the shape of stripelike structures, and becomes eveperator, making this kind of patterns preferable. With fur-
more Cartesianlike, than Figs(dj and 7e) (since the spots ther increasing the diameter, the spatial anisotropy of the
in far field are more pronouncgdigain in this case, one can system becomes important, and smallest threshold has in this
see a competition between the eigenmodes with completelgase stripelike pattern, aligned along the anisotropy direc-
different symmetry properties, as in the case of Figa) and  tion.
7(c). But now these modes are Cartesianljkégs. §c) and However, eigenfunctions with completely different sym-
8(d)] and spotlike[Figs. 8e) and &f)]. Very slight changes metries, namely with very high order of rotational symmetry,
of o in Eg. (13) leads to a change of the order of thesehave eigenvaluegsand therefore thresholgs/ery close to
modes. stripelike patterns, making the symmetry of pattern at the

One can see that low order eigenmodes for both homogeghreshold very sensitive to small inhomogeneities both of the
neous(Figs. 6 and Yand inhomogeneou$ig. 8) index and  refraction index and pumping level across the cavity. Very
pump profiles demonstrate only partial filling of the aperture.small inhomogeneities only shift eigenvalues without chang-
However, the subsequent higher order modes often fill théing of the shape of eigenfunctions, and this often leads to
aperture more homogeneously, even for inhomogeneowtering the order of patterns with different symmetry prop-
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erties. In a first approximation, for such a tiny inhomogene-are grateful to Markus Sondermann for many discussions
ities the preferred pattern at threshold depends on the overland for providing us with some of his raw data and for pre-
integral of the corresponding eigenfunction with the inhomo-paring Figs. 2 and 3. T.A. acknowledges many fruitful dis-
geneity which leads to the preference of “rotationally sym-cussions and the collaboration with Salvador Balle and Jorge
metric” patterns(in the sense discussed in Sec) fior the  R. Tredicce in earlier stages of these investigations. We are

most often encountered circularly symmetric inhomogeneg|so grateful to Rainer Michalzik for supplying the device
ities. It should be noted, that very sharp transitions betweeggmples.

different spatial patterns of the same symmetry due to strong
sensitivity to small parameter variations was reported for op-
tical parametric oscillatof51]. APPENDIX A: THE BASIC EQUATIONS

If the inhomogeneity is increased, eigenfunctions change . ) . .
significantly their shape. For example, for a gradient inho- The underlying model was introduced and considered in
mogeneity of index along a fixed direction, patterns whichRefs. [10,11,25,26,4B The system consists of evolution
only partially fill the aperture and concentrate around oneequations, describing the behavior of the slow field ampli-
side of it are preferable. Among them are deformed stripelikdude e(t,x,y) and population inversion profilé(t,x,y):
patterngFigs. &c) and 8d)] and spotlike patterng-igs. §e)
and &f)]. The subsequent eigenfunctions for that case fill the
aperture more homogeneoushig. 9 which gives some ex-
planation the increase of homogeneity of emission with in-
creasing of pump level, observed experimentéHig. 2). Go _ SN

The form of the linear operatqdl) is quite general and d=-d+u-Imli- e Lde)], (A2)
does not depend on the concrete model from which it wag ore « is the field decay rate, and is the linewidth en-

Qerived._ As it i.S s_h(_)wn in the paper,_if the operator is_ SPahancement factof52]. As noted above we restrict the con-
tially anisotropic, it is enough to confine oneself by a IlnearSideration to only one polarization component of field. In

approximation to describe qualitatively the competition O.fcomparison with Refs[10,11,25,25 we allow here for the

the symmetries of patterns. Moreover, as it was shown iy d f th d of th fracti
Refs.[9,18], the patterns obtained in a VCSEL can be very, Zpen enc(e 0) Teh pump ptar}nle,t?;r}lz 0+, e)ﬁ rac |c;n
complex, but can be explained, nevertheless, as eigenfuntld€Xn on (X,y). The operators. =«(F /- o*la)*lin; an

tions of Helmholtz equation of high order, or a combinationG=K(1+ia)(|EG/FGo)Zi describes loses and gain in the laser.

a few of such functions. With the linear operat6y or (11)  The operator$, =1-F2 and Fo=(1+F)? are related to the
derived in the present work, one can easily obtain the eigen-

. ; . : . eratorF of propagation of the light in one half part of the
functions which resembles eigenfunctions of high order ofoPe : .
Hemholtz equation, but having the lowest threshodugest cavity (both parts assumed to be identjcallculated in

real part of eigenvalye paraxial approximation and including the anisotropic reflec-

The main physical mechanism, defining the length scalé'on from the Bragg reflector as well the propagation in the

of resulting patterns in the underlying model is the detuningSPacer layer is a function in(k,,k,) spacghere,(k;, k) are

of the cavity resonance from the gain maxima. Unfortu-variables conjugated tx,y) by the transverse Fourier trans-

nately, such a simple model is not able to explain the experiform (4), andFg)0=Fg))(kx=ky=0)]. The term including

mentally observed patterns at a negative detuning. Howeven; accounts for an inhomogeneity of the refraction index in

some mechanisms which are not accounted for by the undeindex guided devices. It is introduced accordingly to well

lying model, can be simply introduced by just a shift of the known effective index approadd7], when an index gradi-

detuning. One of them is local field correctip49,5Q which ~ ent is averaged over the cavity length, giving the same total

effectively changes the detuning by quantits, whereb is  phase shift as the initial one. The coefficidmtrw/ng is

constant, proportional to the ratio/| of wavelength of the expressed via the optical frequenoytime passage of light

laser and the thickness of the active layer and can be therghrough the cavity, and the mean index The operaton&

fore noticeable for VCSEL, where latter is small. Therefore,describes the gain contour shape. Here we take a simple

for numerical simulation in this paper the value of detuning F

was adjusted to give approximately the same number okorentzian profile of the gain line€—L(ky,k)=1/(1+(5

stripes in the device aperture as in the experiments. It shouldQ(k,,ky))?/ %), where §=wy-w. is the detuning of the

also be noted that there are always at least two concurrefpeak of the gain spectrum from the cavity resonancde-

eigenfunctions with the same eigenvalue, with no competitermines the linewidth of the gain, arfd(k,,k,) is a cavity

tion in a linear approximation. To describe such a competifrequency for every tilted wavek,,k,).

tion as well as an influence of transverse hole burning which To derive the linear evolution equation of the foii),

is also become important already very close to thresholdising the basic equation#®1) and (A2), we take into ac-

[26,27, nonlinear terms should be added. All this is being acount that at the laser threshold two branches of the steady

subject of subsequent investigations. state solutions cross each other: the zero solugsr0), and
ACKNOWLEDGEMENTS the nonzero lasing one. Because of the lasing solution at the

cross-section point is characterized by0 andd=u the
This work was financially supported by the Deutsche Forfurther analysis is drastically simplified giving the following
schungsgemeinschaft for equipment and by travel grants. Wdiagonal operator of the linearized problem:

e=-Le+G(de), (A1)
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A o) 0 ReO at these points. Denotingo,,=ReO0(0,0), o0,
= ] (A3)  =ReO(kq,0), 0, =Re0(0,k,), and o, =ReO(ky,ky) we
0 022 have
The diagonal form of EqA3) shows, that the field and the " _ 4
carrier densityd are independent of each other at the laser 840 = (00~ 0/ (Kyg),
threshold, and as it easy to see, the spectrumCigrlies
entirely in the half-plane Re<0, hence we can consider agﬁz(oro—ory)/(k‘ylo),

only the equation for the fiel@l) (with CA)(X,Y)ECA)M). CA)(X,y)
includes the current density at threshale . From Eqgs.
(A1) and (A3) the explicit value for the operathAD(x,y) is
defined by the following action on the fiekd

— 4 44
a(zrz) = (@O + a0y + Oy + abiobi)/(kxyokxokyo)y

a(Zr()) == 2(OrO - Orx)/(kio '

O(ny)e: -Le+G(u X e). (A4)
In the case, when there are no inhomogeneities of pump an=- 2(Oro—0ry)/(k§0),
and indexn;, Eq. (A4) can be written in transverse Fourier
space: ) —
aOO - 0[‘01
O(k) ==L(k) + uG(k). (A5)

where af.’):Reaij, and  ag=-kLKS)+2kEKY, Zo—kﬁik;‘o
o A e v
APPENDIX B: APPROXIMATION FOR OPERATOR =25 KokS0, atpi =Kokjo-
) - _ For an approximation of the imaginary part 6fk), a
To approximate the nonlocal operatoyy ) by a partial  gtandard least square fitting method was uges). The error
differential operator of the typé5) we consider at first the petween the exact functiqi5) and the approximatiotB1)
homogeneous case, described by &d). We take into ac-  for |k|<1 is less than 1%. It is also should be noted that
count that for small values df(| the operator with Fourier changing the Coefﬁcieraoo leads to shift of}\g forallgas a

image(AS) can be approximated by the polynomial whole. Since we are interested here only in the order of
N eigenfunction it can be chosen arbitrarily. We cheggin
O =— S a ki (B1) such a way, that0(0,0)=0. In the anisotropic casgl0)
b ij=0 154 A40=804= 822/ 2=Db; and ayy=ag,=b,.

. . - ) i For convenience, we give here the numerical values of
with a; being the coefficients of a Taylor series expansion Ofcoefficientaaij for the cavity described in the Sec. I, and the

Eq. (AS). The value ofN in Eq. (B1), must be large enough fqiowing parameters of underlying systemx=2.9
to correctly approximate EqAS). Due to the invariance of 10451 ¢=3. §=10nm,6.5nm. For the former value of
the whole problem against reflectlgns(my) plane, the op-  ihe detuning they aragy=0, a,,=1.165-0.605 ag,=1.166
eratorO(k) must be an even function of boty andk, and  _0 599, a,,=-1.42-0.0568 a,,=-0.67-0.007L, ay,
the coefficientsa;; are complex quantities, in general, satis-=-0.72-0.0387 and for the latter one:ay=0, ay,
fying therefore the conditior;; =0 for oddi or j. Taking into  =1,0397-0.606 ay,=1.005-0.56 a,,=-2.04—0.057, a,,
account that two tilted waves with nonzero valuekofust  =-0.991-0.0072 a,,=-1.0369-0.0387. It is noticeable
have g minimalr;chrr:esholl[ihe ma;drrr:al Ivalue of Fglé(k)]fi” A that the anisotropy of coefficients is quite small.
accordance with the solution of the linear problem for the - P .
infinite casg10,11,25,2), the smallest proper value dfin To write the approxllmatlon of operatd in tpe case,
Eq. (B1) is equal to 4. when x andn; are fEJnCAtIOI’lS ofx,y), we Anote that. can be

It is worth to note that in generally the curvegk) and  written in the formL=L,+iln;, whereL,, describes the
G(k) can be obtained only numerically. Hence, the coeffi-device with the homogeneous refractive index. In addition,
cientsa; need to be evaluated by a fitting procedure of thewe suppose that the pump profjix, y) = uo+ du(x,y) con-
numerically obtained curve(k). For our case, the best pre- Sists of a constant term, and a small spatially dependent
cision is given by an approximation of real and imaginaryterm Su. Then, one can expand the opera@ifnto series

parts of Eq(B1) separately by different methods. such as the operat@ in Eq. (B1) (but with coefficientsy;),

Since the tilted wave selection mechanism described byq neglect all the derivatives éf in Eq. (A4). As a result,
the approximated operator should select the same harmonigse Eq.(A4) takes the following form:

at threshold as the exact one, fitting of real part is based on
the global and local extremal points of Bg) [see Fig.
5(a)]. We choose for that the zero poiftt, 0), two points at
every axeg+k,q,0) and (0, £k) and four points at the bi- .
sectrices(+ky;, tky;). In the isotropic case all the points lay It is clear from above thagoo=«(1+ia). Denoting +nom
on a cycle with|kx0|:|ky0|:\f§|kbi| with the same value of +uG asOy,,, we obtain

Oy =~ Lnone + uGe+ (iln; + gopdle.  (B2)
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Taking into account that the expression for the homogeneous

part of the operato©,,,, has been already obtained by Eq.
(6), and incorporating the homogeneous part of pumpigg
into the coefficientay, in Eq. (6) for simplicity, we get the
inhomogeneous approximatiqal). However, it should be
noted again thatll) is valid only for only small inhomoge-

neity du, such that its spatial derivatives can be neglected

compared toug. Besidesn; is also to be small enough to
make the effective index approximation valid. The last re-
striction, however, is not so strong as the first ¢4€].

APPENDIX C: THE METHOD OF NUMERICAL SOLUTION
OF EIGENPROBLEM (2)

1. Decomposition of fourth order eigenproblem into a
generalized eigenproblem of the second order.
Our method of solution of the proble() is based on the
fact that the operatod,,,, can be represented via multipli-

cation of two operator®,,P, of the second order with con-
stant coefficients

6h0m: islﬁ)ze_ Il = ﬁ)zﬁ)le_ Il (Cl)

where P;=V (¢, V),P,=V -(c;;® V). Herec;; are ma-
trices defined later ifC7) and (C8), V is an operator of

gradient in spacéx,y), () represents a scalar product and
means a convolution product by outer dimensigias? b)
=Ei2:1 a;jby. The second equality in E¢C1) means tha{Dl
and P, are commutative. By introducing an auxiliary func-
tion

€= [529, (CZ)
or

e]_ = Ie)le, (C3)

—li+ini+u 1,-1
a:(aoo 1IN +u 1 3)1 (C9)
wherel; are given by expressions

_—
lo= a5, ~ 4240804, (C10
|1 = (804850~ B22820802 + Aac@g) /15, (C1y)
2= (2804320 — @22802)/ (2l ), (C12
l3=ag/2. (C13

The problem in the forniC4) and(C5), is suitable for solu-
tion by the finite difference methogee second part of this
Appendix.

The above mentioned decomposition is not unique. The
operatorP; can be multiplied by any constant, where@s
needs to be divided by the same constant. In addition the
matricesc,, andc,; can be changed to

c1o=diad (az — 10)/2,a04], (C149

Co1 = diad (ap, + 10)/(2a94), 1], (C1H

which corresponds to a selection @f according(C3). For

the numerical procedure it is most natural to solve the system
with simple boundary conditiongsee second part of this
Appendix. It is known from general theorj41] that for the
system(C4) two boundary conditions satisfying a so-called
Lopatinsky (or ellipticity) condition are required. We con-
sider here the conditiores=0 on the boundary. For the initial
eigenproblen(2) this condition one; implies a condition of

the type(8) with t defined agay+1)/(2ay,) with minus for

Eq. (C2) and plus for Eq(C3). Because in the former case
[t|<1, whereas in the latter ong=1, these cases can be
considered as bounding of the isotropic boundary condition
with t=1 from bottom and from above. As Fig. 10, shows,
these two cases are very close to each other for both large

one can present the initial eigenproblem as a generalize@lnd small diameter of the aperture. Therefore, both of them

eigenproblem of the type

ﬁ’e—)\gde: 0 (C4)

for vector functione=(e,e;). Matrix d is a degenerate matrix
d=diag1,0) (here and later didg, -) means a diagonal ma-
trix with corresponding elements on the diagonaind the

operatorIA3 is defined as following:

P=V .(c®V)+a. (C5)

Hereais a 2X 2 matrix,c is a rank four tensor which can be
described by four X 2 matricesc;;. a andc for the cas€C2)
are determined by the following formulas:

Ci11 = 0, C22:0, (CG)
Cyo = diad (ax, +10)/2,804], (C7)
Cp1 = diad (ay, — 10)/(2a04), 11, (C9)

can be considered as very good approximation of the tase
=1. We note again, that this result is valid if the anisotropy of

operatorOy,, is small as in the present case.

2. Numerical solving procedure

The operatoP in the form(C5) is suitable for solving the
eigenproblem numerically, both for homogene@jsand in-
homogeneous¢ll) case, by a finite element meth@sd]. A
set of appropriate test two-component vector-functignss
selected, and the systgi@4) is presented as a set of integral
equations

J (,(P—\gd)e)dxdy=0, (C16)
Q

where(e, ¢,) is a scalar product in two dimensional space,
and(} is the circle with radiufk. Representatio(C5) allows

to integrate Eq(C16) by parts, giving linear finite eigen-
problem for a vectofp;}:
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lel arg(e)
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lel arg(e)
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o S 0.8 S

23 0 23 23 0 23
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FIG. 10. The cross section of eigenmodes for different second boundary conditipé®. Stripelike modes for diameterRz=36 um.
(c),(d) Almost rotationally symmetric modes for smaller diamet&=2..6 um. (a),(c) are the absolute valuegy),(d) the arguments. The
corresponding eigenvalues are exactly the same in all cases. Solid line is for the second boundary ¢8ndgiomed from the decom-
position (C2) whereas dashed one is for the decomposi(i©8).

where zero boundary conditioni) and (8) are taken into
; pjfQ (Vo (c® V) +(¢,a¢dxdy account, andp;} represent approximate decompositioneof
in a finite basisg;: e=Z; pj¢;. The systen{C17) was solved
- )‘92 p; L (¢;,dpyydxdy=0, (C17) Bg)r(nerically by Arnoldi metho@55], using Matlab PDE Toll-
J .
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