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The semiclassical limit of the coherent state propagatte ™" %|z’) involves complex classical trajectories
of the Hamiltoniarﬁ(u ,v)=<v|l:||u> satisfyingu(0)=z’ andv(T)=2z"*. In this work we study mostly the case
z'=7". The propagator is then the return probability amplitude of a wave packet. We show that a plot of the
exact return probability brings out the quantal images of the classical periodic orbits. Then we compare the
exact return probability with its semiclassical approximation for a soft chaotic system with two degrees of
freedom. We find two situations where classical trajectories satisfying the correct boundary conditions must be
excluded from the semiclassical formula. The first occurs when the contribution of the trajectory to the
propagator becomes exponentially largéi@ges to zero. The second occurs when the contributing trajectories
undergo bifurcations. Close to the bifurcation the semiclassical formula diverges. More interestingly, in the
example studiedafter the bifurcation, where more than one trajectory satisfying the boundary conditions exist,
only one of them in fact contributes to the semiclassical formula, a phenomenon closely related to Stokes lines.
When the contributions of these trajectories are filtered out, the semiclassical results show excellent agreement
with the exact calculations.
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I. INTRODUCTION kicked rotator, a system whose dynamics is partly chaotic
é’md partly regular. He emphasized that the semiclassical

The coherent states of the harmonic oscillator provide bropagator, contrary to Klauder’s expectatigass,d, is not

natural framework to study the semiclassical limit of quan-

tum mechanics in bhase space. Thev are perhans what m free from the problem of caustics. Moreover, Adachi found
P space. [hey are p P lutions of the classical equations of motion, satisfying the
closely resembles a classical particle, i.e., a localized Gauss-

. T f mini . h h ecessary boundary conditions, that shautibe taken into

ian distribution of minimum uncertainty. The coherent state;ccoynt in the semiclassical formula. These were called
propagatorK(z’,z', T)=(z"|e""T"|z’) represents the prob- “noncontributing trajectories,” and correspond to stationary
ability amplitude that the initial coherent statg) evolves  points of the path integral whose steepest descent contour of
into another coherent stal®’) after a timeT. The semiclas- integration cannot be deformed into the original contour of
sical limit of the coherent state propagator was first considintegration. The noncontributing points would be separated
ered by Klaudef1-3] and Weissmarj4]. More recently, a from the contributing ones by Stokes lines. A very interesting
detailed derivation of the semiclassical propagator for sysdiscussion of these topics was presented by Rubin and
tems with one degree of freedom was presented in [8gf.  Klauder in Ref.[10] (see also Ref{11]).

The semiclassical limit dk(z”,z’,T), similar to the semi- Other numerical investigations using the coherent state
classical formulas for the propagator in the position or mo+Propagator were performed for a number of physically rel-
mentum representations, involves classical trajectories. Thevant systems with one degree of freedom, such as simple
trajectories entering irK(z",z’',T), however, are usually bound potential§12,13, tunneling[14], and scattering sys-
complex. Moreover, the Hamiltonian governing these trajeciems[15]. More recently, systems with two degrees of free-
tories is not the classicaH, but a smoothed version dom were also |nvest|ga_te[d_6,1ﬂ._ The main d'f.f'CUIty that

~ appears in all these applications is the calculation of complex
=(z|H|2). In fact, due to the overcomplete character of the =

coherent states basis, several different representations of t assical trajectories. i is an analytic function o andp,
) . P . pre X . e complexified dynamics can be mapped into that of a real
path integral exisf6], leading to different semiclassical lim-

its [5]. One possible semiclassical approximation, for ir]_Ham|lton|an system with twice as many degrees of freedom

) . T ; [12,18,19. The boundary conditions, however, are non-
stance, involves yet a third Hamiltonian, different from both trivial, since they involve combinations of positions and mo-

the classicalH and the smoothed, and which can be menta at the initial and final times. In this work we have used

thought of as the antismoothed version of the classicaj adaptation of the method developed in R@f] for

Hamiltonian [5]. In this paper we shNaII consider only the Hamijltonians with one degree of freedom.

more usual semiclassical formula, with which we discuss The purpose of this article is to present a numerical ap-

in Sec. lll. plication of the semiclassical formula for the coherent state
The first numerical evaluation of the semiclassical coherpropagator for a soft-chaotic Hamiltonian system with two

ent state propagator was performed by Adachifor the  degrees of freedom. In this simplest time-independent situa-
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tion where conservative chaos is possithéz”,z’,T) be- Il. RETURN PROBABILITY AND PERIODIC ORBITS

comes a function of nine real variables: four “initial” and The connection between classical mechanics and quantum
four “final” phase space coordinates plus the timén order . i o A d
mechanics can be examined in either direction. The usual

to reduce the number of free variables, we shall restrict our- . .
selves to the diagonal propagatofz,z,T). In this case we W& attempts to calculate quantal properties from classical

expect the real periodic trajectories to play an important roledat@. This is called “quantization.” It is the historical way

We shall see that this is indeed the case. Furthermore, w@nce classical mechanics was well-established when quan-
choose to calculaté(z,z,T) for z on a fixed energy shell, tUm mechanics was being invented. Examples of quantiza-
where H(z,z* )=E. Then, for eachT, the number of vari- tion are the Gutzwiller trace formulg20] and the Bogo-
ables is reduced to three, which turns out to be manageablB0Iny formula [21,22, yielding energy levels and wave
We shall show that the semiclassical formula works genfunctions in terms of classical periodic orbits. The hope of

erally very well throughout the phase space and for a widdluantization is to produce exact quantal results, but this is
range of timesT. However, as remarked by Adadh], it is very hard and it has not been achieved except in special
not free from caustics, nor from the problem of noncontrib-cases. The opposite approach, sometimes referred to as “clas-
uting classical trajectories. Eliminating these spurious contrisicalization,” starts from exact quantum data and uses them
butions is not an easy task. Close to caustics, where bifurcde calculate classical properties. It is free of the problems
tions occur, the semiclassical formula diverges. After theaffecting quantization, such as nonconverging infinite sums.
bifurcation, where more than one trajectory exist, there ar@he only possible obstacle is the fact that some quantal be-
Stokes lines. One must identify these lines in order to decid@aviors have no classical equivalent. The present paper will
which of the trajectories should be taken into account an@ontain examples of both quantization and classicalization.
which should be discarded. When the spurious trajectorieget us begin with the latter.
are ehmmatgd anq one stays sufflc!ently far from the caus- suppose that you have complete knowledge of quantum
tics, the semiclassical results are quite accurate. In particulafechanics. Suppose that you use this knowledge to calculate
the fuzzy periodic orbits predicted in Sec. Il, neatly seen i nropagation of a wave packet, and that the packet is large
the exact(numerica) calculations, are faithfully reproduced onq, 4 at the start not to spread itself out of existence. Then,
gg;?: sst(raLT:It?JI?esssIi%a{h%roeg?ﬂ%?tp?rrb;—:gearlttao?rﬁo?ﬁﬁecgt?;rrerl)g'ga%? course, th_e packgt follows a classical trajectory approxi-
to real periodic orbits. These turn out to i:)e reproduced alsr%ately. And .'f’ after timer, you see _the packe_t coming back

' o the place in phase space where it started, it must have been

in the semiclassical calculations, provided no attempt i lowi odic orbit of period. Thus. if |
made to approximate one step further and to express t owing a periodic orbit of periodr. 1hus, 1T you can solve
the quantum-mechanical problem, andiifs small enough,

results in terms of real periodic orbits instead of complex ) . - .
ones. This shows how important it is to carry out the semiyoU can find the classical periodic orbits, or at least a fuzzy

classical approximation in terms of complex classical orbits@PProximation to them, the fuzziness diminishingiatends
and not to insist that these orbits somehow be made real. toward zero. This is an example of classicalization.

We point out that our work differs frortand extendpsthat This idea was applied in Reff23] to the calculation of the
of Adachi in several respects. First of all we consider a fullquantal equivalent of the classicdt, 7) plot, which is the
two degrees of freedom system, not a one-dimensional chglot showing the connection between the energy and the pe-
otic map. Moreover, for a given propagation tiieand en-  riod of families of periodic orbits. One of the things we shall
ergy shellE (chosen to be almost completely chaptwe  do in the present work is to perform exact quantal calcula-
place our coherent state) at a grid of phase space points tions exhibiting the classical periodic orbits themselves, si-
and propagate all of them, generating a complete picture ahultaneously with the relation betwe&and 7. To that ef-
the propagator over the phase space. We also consider longett, we shall calculate the return probability of a wave
propagation times than those considered by Adachi, who repacket.

stricts himself to short times only. As a result we find a larger e consider a two-dimensional system with a time-
number of noncontributing trajectories and are able to track s .
Independent HamiltonianH. Phase space is four-

ghneesappearance of caustics as bifurcations  of Cor]mbum%limensional. We start at time O with a minimum-uncertainty
' Gaussian wave packet, or coherent stabes |p,q) specified

The paper is organized as follows. In Sec. Il we define theb its mean momentum and its mean positiog. At time T
return probability, the main quantity to be calculated in the y L . P a-

next sections. In Sec. Ill we present a brief derivation of theh€ packet has evolved @ﬁwﬁ|p,q>_.-|-he overlap of the
semiclassical coherent state propagator for systems with tw@volved packet with the original one is

degrees of freedom starting from path integrals. Section. IV LT

is dedicated to the calculation of complex trajectories and in Qp,a;T) =(p,qle™™""|p,q). (1)

Sec. V we discuss the role of caustics as bifurcations Ofl'his is large whenever the poifip,q) is situated in phase

e s e SASpace o o ner & clasical peic it hose per:
M . close toT.The absolute square 61

act” calculations. In order to understand the role of the non-

contributing orbits and caustics, we show some of the “raw R(p,q;T) =|Q(p,q; T2 2)

semiclassical data,” including these two nonphysical contri-

butions. After we filter them out, we compare the semiclasdis the probability that the wave packet will return to its start-

sical plots with the exact calculations. ing configuration after timel. By exploring R in phase
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space, one gets a fuzzy picture of those periodic orbits whose |2) = e—(1/2)\zlzez-éT|0>, )
7 is close toT.
The question is how best to represent this exploration ofvith |0) the harmonic oscillator ground state and
R, a function of five variables, in the two-dimensional pub- . .
lishing world. We like to think of thel dependence @R as a At i_(& . i&) _ i_(& .\ i&) ®
moving picture, although in this paper we shall only show V2\b, ¢/’ V2\b, ¢/’
“stills” from this movie. But there are four other variables =~ . . )
P, Py, 0y, 0y to contend with. We decided to fix the classical dr Pr, @nda, are the position, momentum, and creation op-

energyE of the packet. For motion in an ordinary potential €rators, respectivelyy, and p, are real numbers ang is
V(ay,qy), this is complex. The index assumes the valugsandy and the dot

. in Eq. (7) stands for the scalar product. The parameters
=(p2+ +
E= (ot )2+ V(Geay). . b, = (i/mw,)¥2 and ¢, = (Amw,) "/ 9)
Fixing E is convenient for us because we calcul&gEq.
(1), by summing over the stationary states as intermediatéefine the length and momentum scales, respectively, and
states. The main contribution to this sum comes from quantdheir product isi. They are the coherent state widths along
energies not too different fror,, hence the sum is conver- the coordinate and momentum axis, respectively. Fingjly,
gent. Givern,, gy, andE, the magnitudg of p is determined ~ andp; are the average values gf andp,, respectively, and
correspond to the center of the coherent state.
p= {Z[E - V(qx1 Qy)]}llz (4)

and the only variable left is the directiof of p such that B. Path integral and stationary exponent approximation

Px=p €OS6, py=pSin 6. The coherent states form an overcomplete set. This leads

Thus, having fixed andT, we want to look at the return, 3 certain freedom in the construction of the path integral
probability as a function of the three variablgsay, 6 [5,6], allowing for many different representations of the
R(0y, 0y, 6;E,T). (5)  propagator. Although all these representations are quantum
mechanically equivalent, their semiclassical approximations
Plotting a function of three variables is still a challenge. All may |ead to different resul§$], coinciding only in first order
our pictures of return probabilities were obtained by choosof 7. In this paper we shall adopt the most common repre-

ing a mesh in they,qy, plane and then, at each point of this sentation, associated with the normal ordering of the opera-
mesh, drawing a small polar pl¢c “pawprint’) representing  tors 3, and a;r

Ras a function off. The same units are used frthrough- For bidimensional states, the unit operator is given by
out the picture, of course. A big advantage of this kind of

plot is that, at eaclu,qy,, we get a visual sense, not only of _ d'z _ [ docdg, dpdpy

the overall magnitude dR, but also of the direction in which 1= ?|Z><Z| - (27h)? 2. (10

the wavepacket must be launched to ensure a large return

probability. In other words, the periodic orbits themselves We divide the timeT into N intervals of sizee and insert
jump out of the plot. In the following, both the exact quantal @ unit operator between every two consecutive infinitesimal
return probability(classicalizationand its semiclassical ap- €volutions, so that Eq6) can be written as
proximation(quantization are plotted in this way. N-1

N-1
d*z. n
Kiz'*,z,T)=| [I (_l> X I (zeale™ 2,
=1 L k=0

Ill. THE SEMICLASSICAL PROPAGATOR

IN TWO DIMENSIONS (11

The semiclassical limit of the coherent states propagato\f"here we have identified’ =2, and Z’,%ZN' The infinitesi-
was derived in great detail in Re5] for systems with one Mal propagator (zy.1,2, €) =(z«1€™" |z can be cal-
degree of freedom. In this section we derive the formula forcylated as usual by expanding the opergﬁﬂ?‘dﬁ to first
two degrees of freedom. Since the main steps of the calcwrder ine and reexponentiating the result
lation are very similar to the one-dimensional case, we opted

for a short presentation, referring to Rg5)] for the details. <Zk+1|e_”:|5/ﬁ|zk> ~ (Zq1 —i|:|5/ﬁ|zk>
= (21|20 (1 = iHyy06lhi)
A. The coherent state propagator ~ <Zk+l|zk>e_in+ll26/ﬁ (12)
For time-independent Hamiltonians, the coherent state h
propagator is defined by where
K(z'*,z',T) = (2"|eHTh|z"). (6) Flsy= (ZalH|z _ (13

|z) is the bidimensional coherent state of a harmonic oscilla- (Zlzd
tor of massm and frequencies, and wy, Using the overlap formula for coherent states
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l2* 12
Z|lZ')y=expg - —(—-——(+z*-72'|,
(22 ,{ 5

we rewrite Eq.(11) as

N1/ (4,
K(z”*,z’,T)=f (—d Zj>e(”h)f,
o1 77_2

J

PHYSICAL REVIEW EG69, 066204(2004)

In terms of the canonical variablgsandp,, Eqs.(19) are

just Hamilton’s equations for the Hamiltonidh Since Egs.
(18) do not involvez’;vo andz, , the solutions of Eq(19) that
contribute to the semiclassical propagator must obey the
boundary conditiong’=z(0) and z"*=z*(T); z*(0) does
not have to be equal ta’* and z(T) does not have to be
equal toz". These restrictions, which correspond to eight real
constraints, make it generally impossible to find a solution of
Eqg. (19) in a four-dimensional real phase space. But solu-
tions exist in a complexified phase space, whgris not the
em” =T K (zk+l,zk,e) ex e complex conjugate of. As we shall see in Sec. IV, this
k=0 k=0 complex four-dimensional phase space can be mapped into a
real eight-dimensional phase space governed by the real part
1(Zk+1 ) 1(Zk+1 ) * }
2 2 k+1

(14)

(15

where
N-1 N-1

ﬁ Hk+l/2

of H.
To avoid confusion with complex numbers and their com-
plex conjugates, we rename the varialtes u andz* —v:

1 qf pr)
— | = +|—
Zr—>ur /—< | : y

(16)

In the limit whereN— «~ and e— 0, with Ne=T, Eq. (15
becomes a path integral representationkgt”,z’,T). F
plays the role of the action, as in the path integral in the
position representation. However, as we shall see, it is not
the actual actiors which will appear later. . 1(q .p

In the semiclassical limit — 0, the main contributions to Z—u=slp e (20)
the integral come from the stationary points Bf In the ' '
vicinity of each stationary pointF can be replaced by a
guadratic form and the integrand can be replaced by a Gausg:
ian. Since the integrdll5) is 4N-1) dimensional, so is each

stationary point. Together they define a stationary trajectory ~ ~

\

, and p, are now complex variables and# v* in general.
this notation Hamilton’s equationd9) read

in the four-dimensional phase space. The stationary exponent Al = — and -k, = ﬂ, (21)
condition is " oo, "o
N-1 'y
dF oF . with boundary conditions
OF = 2|: _*84’1':|:0- (17)
j=1 r=x (92” (?Zr’j 1 q, p,
Considering independent variations & ; and 6er we can U =u(0) =z = E(Er + r)’
write this condition explicitly as ' '
* * ie t?ﬁ k+1/2 . q p//
— + - e — [A— ar _ i Fr
R P =y (M=27 = br |Cr : (22
|6(9Hk+1/z We emphasize that,, p;, g/, andp;, the labels of the co-
Lk~ L= iz (18) herent stateiz’) and|z"), are real parameters. The variables
Jk+1

wherek=1,... N-1 in the first equation an#=0,... N
-2 in the second equation.

C. Continuous variables and complexified phase space
In the limit e— 0, Eqs.(18) become

i oH . i oH
h oz,

z= (19

whereH, defined by Eq(13), assumes the forrﬁ:(z|l:||z>.
The “smoothed Hamiltonian"ﬁ(z,z*) differs from the
equivalent classical Hamiltoniaf(q(z,z*),p(z,z*)) by

terms of orderi. As discussed in Ref5] these differences
are important and cannot be discarded.

u”=u(T) and v’ =v(0) are not restricted by the boundary
conditions. They are determined by the integration of Hamil-
ton’s equationg21).

When F is calculated at the stationary trajectory and the
limit e— 0 is taken, the sum ové¢rin Eg. (16) becomes an
integral over the trajectory frort=0 to t=T. The value of
u(T) as computed from the continuous trajectory is, as we
just discussed, different froma’. Similarly, the value taken
by v(0) is generally different fromz’* But in expression
(16), uy or zy, wasz” andv, or zO wasz'*. Therefore, if we
just replacect0 by v andzy by uy, we would make a mis-
take. To correct this mistake, we must take out from the sum
the two terms containingly and vy, namely, 2vN uy and
—§v0 Ug, and replace them by their correct values, namely,

-]z’ and 5|z’|% Consequently, the value &f in the limit
e— 0 becomeg5]
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i—}‘:fT{l(\'/-u—v-U)—i—ﬁ(U V)}dt
AN heo

+ %(U, v+ _VH) _ %(|Zr|2+ |er* |2) (23)

The complex action is defined as the first two terms of Eq.

(23,
e e [ 2 uov. i o
%S(v ,u ,T)—fO {Z(V-u vV-u) ﬁH(u,v)}dt

1
+§(U, 'V, +U"'V"). (24)

This quantity has properties similar to the usual action of re
Hamiltonian systems, namely,

as

n
v,

= — iU, -&, (25

— =—itv/,
au’ U

r

Whereé,’:ﬁ(u’ ,v’):ﬁ(u”,v") is the complex energy.

D. The Gaussian integral

Once the stationary trajectory has been found, the inte
grals in Eq.(15) can be calculated in the Gaussian approxi-

mation. ExpandingF up to second order around the station-
ary trajectoryF~ Fo+1/25%F, we obtain

4
d'z

= )e(iIZﬁ)az]-', (26)

N-1
K(ZH * Z',T) — e(i/ﬁ)]—'o H (
=1

PHYSICAL REVIEW E 69, 066204(2004)

E. The semiclassical propagator

Putting Egqs(26), (23), (24), and(27) together we obtain
the final expression for the semiclassical propagator:

s o (i2)0
KZ'*,2/\T) =2 ———
traj \"|detMvv|
xexp{i—(8+2) —}(|z’|2+ 12"

h 2 '
(30)

The sum indicates that, in principle, all stationary trajectories
satisfying the boundary conditiorf22) should be included

afsee, however, the discussion in Sec. VI about noncontribut-

Ing trajectories.

The propagator has nine real parameters: four initial la-
belsay,qy,py.py, four final labelsoy,dy,p},py, and the timeT.

In this paper, we shall restrict ourselves to the diagonal
propagatorz’=z' =z, reducing the number of independent
parameters to 5. In this case, if a stationary trajectory hap-
pens to be real, then it is also periodic akidis its mono-
dromy matrix. For generic values afand T, however, the
stationary trajectories are complex and nonperiodic. The
Fourier transform of the diagonal propagator is the diagonal
Green's functionG(z,E). For bound systems it has poles at
the energy level&, and the residues are the Husimi func-
tions [(z| W) The semiclassical limit of5(z,E) will be
considered in Ref{24].

From the classical mechanics point of view, the transition
probability from the pointz’ to z” is 1 if there is a real
trajectory connecting the initial and the final points in tifhe
and 0 otherwise. In the semiclassical limit we expect large

where 7, is the phaseF calculated at the stationary trajec- contributions to the propagatoraf happens to be on the real
tory. This integral was calculated in great detail in R&l  trajectory througte’, separated by a time interval Other-

for systems with one degree of freedom. For the present casgise the trajectory satisfying Eq&21) and (22) is complex

of two spatial dimensions, the calculation is similar, but moreand the more it wanders into the complex plane, the less it

involved. Here we shall simply write down the result, leav- should contribute to the propagator. Therefore, according to
ing the details of the calculation for a future publicati@d]. Eq. (30), we expect the total exponent

We find
Ih 12 v flO’
N-1 /44y - 2)0+(1h)T] F=S+Z+_(Z'[P+[2'%) -~ (32)
H U qremys?r — 2 2 2
. 2 |€ N rsremi (27) o . . .
j=L\ T v|detM,,)] to have apositiveimaginary part for complex trajectories. As

) ~we shall see in Sec. VI, this is almost always the case. There
whereM, , is a 2x 2 block of the complex tangent matrix are however, exceptions, that we shall discuss momentarily.
Note thato is always realand therefore does not contribute
to the imaginary part oF) and thatz’|? and|z"|? are of the
order of4™! [see Eqs(7) and(8)].
Equation(30) involves four classical quantitiess, M,,,
o, andZ. The role ofZ was discussed in Ref5]. It is a kind

M, defined by
MVl.l MVV ’
— v
M
. . of compensation for the appearance of the smoothed dynam-
wheresu’, 5v' are small displacements around the Statlon_ics H instead of the classical. For a harmonic oscillator
ary trajectory at=0 andsu”, §v” are the propagated dis- ' k

lacements at=T. The quantityZ is S+7 is identical to the action computed with the classidal
P ' q For nonharmonic Hamiltonians, the compensation is only ap-
T
[ a
0

proximate.
ando is the phase of de¥l,, ).

ou”
5V//

Su’
ov’

(28)

92H
+
duydvy,

92H
AUy

1
==
2

The prefactor|detM,, |2, also plays a very important
role in the semiclassical formula. It contains information
about the neighborhood of the stationary trajectory. Unstable
trajectories, for example, are expected to contribute less than

(29)
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stable ones. Finallyy controls the relative phase of the dif- however, the family might branch into two or more, produc-
ferent trajectories contributing to the propagator. ing the bifurcation. Close to the bifurcation point there are
two (or more nearby trajectories, differing by small dis-
placements u(t)#0 and Sv(t)#0, and satisfying éu’

=6vrr =0. At the bifurcation point, there must exist nontrivial
solutions of the equatiofsee Eq(28)]

)l e

implying that deftM,,, ]=0 and leading to the divergence of

IV. THE CALCULATION OF COMPLEX TRAJECTORIES

If His an analytic function ofg,, gy, px, andp,, the

four-dimensional complex phase space can be mapped into ((m,,

0

MUU
My

MUV
MVV

0
é\//

an eight-dimensional real phase space, where the usual meth-
ods of Hamiltonian dynamics can be appli¢t2,18,19.

Therefore, assuminB to be analytic we define real variables

(35

% andp; by the semiclassical formulgd0). The eigenvector correspond-
Oy=X; +iX3, Pyx=P1—ipPa, ing to the null eigenvalue df1,, indicates the initial condi-
tion of the bifurcated trajectory.
Q=% +iXs Py=pP2—ips. (32) These bifurcations imply the existence of chal points in
. - . the complex phase space. To see this we write the tangent
By the Cauchy-Riemman conditions, Hamilton's E¢81)  matrix M in terms of second derivatives of the complex ac-
become tion (24). From Eqs.(25) we have
g Re(H) . JReH) aS aS
= andp=-——"—, (33 —ifiov! =8 — | and -ikou'=8| —|. (36
b oap : % o T\ (38

where RéH] is the real part oH andj=1, 2, 3, and 4. The

- X Computing the variation on the right-hand sides and rear-
boundary conditiong22) for the diagonal propagator be-

ranging the terms so as to write” and v” as functions of

come su’ and &v’ we get[see Eq(28)]
b b _
O = X4(0) + épg(O) =x(T) = ps(T), 928 92S \1
" i #s \t | wjau, vl
gMVV = "oy ! = 28 28 (37)
= p1(0) + x6(0) = py(T) ~ Zxe(T) e o oo
PP T % B op qupau, oo,
b b Using Eqgs.(25) again we obtain
dy =%(0) + EYP4(0) =x(T) = py(T),
y S vy Iy
&v' &U, ﬁU’ (91}, -1 (9U” (90”
By = Pol0) + x(0) = po(T) = xy(T). (34 My (—j—i -~ ) R B )
by by Uy oy oy vy _% %
The search for complex trajectories in a four-dimensional ny o wy
phase space is then reduced to that of real trajectories in
eight-dimensions satisfying the eight mixed boundary condi-Thus, the prefactor can be written as
tions above. We have used an adaptation of the numerical
method developed in Ref12] (which, in turn, is an adapta- g vy vy vy |
tion of the monodromy method for periodic orbi85]) to |detM,,| 2= P — (39
find the trajectories for given,, gy, py, py, andT. oy vy oy vy

For one-dimensional systems this reduce$td/ av”|*2.
It diverges when a small displacemeit att=0 leads to the
same end poind” at time T, implying éur» =0 and charac-
The semiclassical propagator, E(O), diverges when terizing a focal point, or caustic. In two dimensions the pref-
|detM,,|—0. In this section we show that this happensactor is more complicated and the focal point can occur gen-
whenever a bifurcation occurs. These are bifurcations oérally in four different ways. As an example, it occurs when
complex, nonperiodic trajectories, and they take place as fola small displacement in the direction dv, att=0 leads to

V. BIFURCATIONS AND FOCAL POINTS

lows: the semiclassical propagaté(z’*,z’,T) depends on
the classical trajectory satisfying(0)=z' and v(T)=2z"*.

the same end point in tl"gedirectionvg at timeT. In general
it occurs when a particular combination &f, and évy, cor-

The set of classical solutions satisfying these boundary corresponding to the null eigenvector bf,,, leads tosv”=0.

ditions form one parameter families as a functiomoff T is

In any case, we expect the semiclassical approximation to

small, there is usually a single solution of Hamilton’s equa-fail near such bifurcations. We shall see examples of them in

tions satisfying the boundary conditions. AS increases,

Sec. VI.
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FIG. 1. Shortest periodic trajectorig¢s) and (x,p,) Poincaré
section(b) at E=0.5. The dotted lines show the periodic orbits of

smoothed Hamiltoniakl and the full lines show the corresponding
periodic orbits of the classical Hamiltoniad. The approximate
periods of the orbits are 4.44 for the vertical oscillation, 7.1 for the
boomerang shaped symmetric orbit, and 7.4 for the pair of asym-¥ *°]
metric orbits. The equipotential lines ¥t=0.5 (solid) andV=0.5
(dotted are also displayed.

VI. ANUMERICAL EXAMPLE:
THE RETURN PROBABILITY E=05 T=460 F=015

=14 T T T T T .0
-15 -1.0 -05 0.0 05 1.0 1.5

A. The Nelson Hamiltonian X

As an application of the semiclassical theory developed in FIG. 2. Exact return probability for propagation timés4.2,
the previous sections, we compute the return probability, a8.4, and 4.6. The period of the vertical periodic orbifis 4.44.
defined by Eqs(1)—«5) of Sec. Il, for a Hamiltonian system )
with two degrees of freedom. We shall present numericaVork on the energy surfacde=0.5, which corresponds to a
comparisons between the exact return probability, compute@0stly chaotic region of phase space, in the sense that the
directly from the eigenfunctions of the Hamiltonian, and theshortest periodic orbits are all unstable. Nonetheless, the

semiclassical return probability, computed from complex traLyapunov exponent of the shortest orbit times its period is
jectories. We have chosen the Nelson potential, given by about 2.06. We also have chosen0.05 and, for the widths

of the initial wave packets,=b,=b=0.2, which impliesc,
V(X,y) :(y—x2/2)2+0_05(2 :Cy:C:ﬁ/bZO.ZS.

We computedR(x,y,8;E=0.5,T) from T=0 to T=9 in
for our numerical study. In this section we shall usandy  steps of 0.1. Figure(d) displays all the periodic orbits in this
instead ofq, and gy. This system has been widely investi- range of T for energy 0.5. The shortest periodic orbit is a
gated, both classically25-27 and quantum mechanically harmonic oscillation along thg axis, called the “vertical
[22,23,28,29 In the present calculations we have chosen toorbit,” with T~4.44. The next shortest orbit is a symmetric
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FIG. 3. Exact return probability for propagation timés 7.1,

7.4, and 7.7.

libration with T=7.1, followed by a pair of symmetry-
related asymmetric librations witli=7.4. Finally, there is
the first repetition of the vertical orbit &t~ 8.88. The full

lines show the periodic orbits of the classical Hamiltorign
whereas the dotted lines show the corresponding periodic
orbits of the smoothed HamiltoniaH. The equipotential
lines atV(x,y)=0.5 andV=(z|V(X,¥)|z)=0.5 are also dis-

played. Figure (b) shows thex, p,) Poincaré section dfl at
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FIG. 4. Semiclassical return probability fér=7.4:(a) including

the contributions of all complex trajectories, except those whose
individual contribution givesR>1, (b) all trajectories with

Im F <0 have been remove() all x—y- 6 points close to caustics
have been removed.

B. Exact results

We display the return probability, both exact and semi-

classical, in(x,y, ) pawprint plots, or minipolar plots, as
explained at the end of Sec. Il. For the figures below we have
used equally spacexl,y points at intervals of 0.08 in both

the Poincaré sections & andH at this

energy.
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FIG. 5. Comparison between the return probabilitiesxe0.72,y=0.24, andE=0.5 as a function of (in degreesfor T=7.0(circley
andT=7.4(squares (a) Return probability(b) imaginary part of the total exponeRt (c) prefactor|detM,,)| >/ (d) phaseo of prefactor.
Panels(c) and(d) show that there are two orbits contributingést 140 with o differing by .

centered at eaclk,y point, we draw the pawprint, a tiny shape. This structure, although “neat,” does not correspond
polar plot of 36 points with equally spacets, each radius to a real periodic orbit of the Nelson Hamiltonian. We shall
being proportional tdR(x,y, 6) (we are omitting the labelg return to it.

and T). We connect the 36 points with straight lines. Since o ) _ _ _

the value ofR(x,y, #) could sometimes be too large or too C. Noncontributing trajectories and bifurcations

small, we have multipliedR(x,y, 6) by a constant factoF, The semiclassical construction of one of our plots requires
which is shown on the figures, so as to make the pawprintthe calculation of at least 36 complex trajectories for each
visible but separate. This way of plottifgjis very effective,  x,y point on the mesh. Finding these complex solutions is no
since it shows both the intensity of the contributing classicakasy task. Our search algorithm, based on Newton’s method,
trajectory and the direction in which it is going. uses nearby real periodic orbits as starting points. For sys-
Figure 2 shows three sets of mini polar plotsToeclose to  tems with two or more degrees of freedom there may be
the period of the shortest periodic orbit=4.2, T=4.4, and more than one such nearby orpitee Fig. 1a)]. Therefore,
T=4.6. The plots show the fuzzy quantal image of the clasfor some values ok, y, and #, the method may findcon-
sical vertical trajectory forming near the axis asT ap-  verge t9 more than one trajectory satisfying the appropriate
proaches the orbit’s period, 4.44. If one tried to make a simiboundary conditions. Such a trajectory may be buried deep
lar plot for a value ofT far from the period of the periodic in the complex phase space. If the imaginary part of the total
trajectory, such a§=3 or T=5.5, one would see nothing, exponentF is large and positive, the contribution to the
becausd for such ar would be extremely small at all points propagator is negligible. Including this trajectory or not
and all angles. AsT gets close to 7.1, a new structure makes essentially no difference. There are, however, other
emerges, and the quantum image of the symmetric libratiosituations where more than one trajectory exist and where
becomes clear. This is shown in Fig. 3, which displays polacareful analysis is needed to decide whether or not to include
plots of the return probability for three values™f7.1, 7.4, them in the semiclassical formula. In this subsection we con-
and 7.7. FoiT close to 7.4 the asymmetric libration becomessider these cases in detail.
subtly visible. WhenT nears 7.7, both of these orbits go  Figure 4a) shows an example of a semiclassical plot, for
away and a different pattern takes over: an upside down “V'T=7.4, where the contributions of almost all trajectories
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FIG. 6. Bifurcation of the trajectory fox=0.72,y=0.24, E=0.5, and#=140 as a function off: (a) return probability with all
contributions added. Pandls)—<d) show the individual contribution of each trajectory separat@yreturn probability,(c) imaginary part
of F, (d) prefactor. The branches after the bifurcation are labBlednd B..

found by our search method were taken into account. The Figure 5 shows a comparison between the semiclassical
only trajectories removed were those which, alone, wouldeturn probabilities at the poink=0.72, y=0.24, andE
makeR larger than 1. Even after these trajectories have beern 0.5, as a function o), for two timesT=7.0 andT=7.4.
removed, several large contributions, not present in the coifhe latter is one of the points in Fig(l®) showing a large
responding exact plot, can still be seen. Many of the trajecsemiclassicaR. Figure %a) shows thaR becomes very large
tories responsible for these large contributions, have a negéer T=7.4° aroundd=140°. Figure 8) shows that this near
tive imaginary part ofF. This type of trajectory does not divergence is not due to a large negative imaginary paf, of
exist for the one-dimensional harmonic oscillator, wheresince In{F) remains positive both af=7.0 and afT=7.4.
Im(F)=1|2%(1+coswT) is always non-negative. But they do Figure %c) shows the prefactor of the semiclassical propa-
exist in other, nonlinear, one-dimensional probleih®,13.  gator|de{M,,)| *?, which indeed becomes very large for
As discussed in Ref§7,13], these trajectories are probably =7.4. Notice that there are two contributionséat140 (two
related to forbidden deformations of the integration contoursquare symbols in the figurecorresponding to two different
in the stationary phase approximation, and should not bérajectories satisfying the same boundary conditions. The
included in the semiclassical calculation. Including themfamily of one of these trajectories contributes alone for
would result in exponentially large contributions to the #<140 whereas the other family contributes alone for
propagator a# goes to zergsee Eqs(30) and(31) and Ref.  §>140. This is clearly seen in Fig(&), which shows the
[10]]. These trajectories are easy to identify and remove. phase of the prefactor. Fdr=7.4, the phase jumps by at

In Fig. 4(b) all trajectories with IniF) <0 have been re- §=140, exactly as in the case of caustics in the usual coor-
moved. It is clear that several other spurious contributionglinate representation.
remain. Most of these large values attained by the return Figure 5 suggests strongly that the large values of the
probability have to do with bifurcations, or focal poirier  semiclassical return probability in Fig() are due to caus-
caustics, which separate regions where different number oftics. To demonstrate that this is indeed the case, we show the
trajectories contribute to the propagator. As discussed in Sebifurcation explicitly in Fig. 6. Pane{a) shows the return
V, the semiclassical propagator diverges at focal points, angrobability atx=0.72, y=0.24, E=0.5, and #=140° as a
is not a good approximation in their neighborhood. function of T, showing again the peak @at=7.4. Panelgb)—
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FIG. 7. Semiclassical return probability in tAe plane for6=140,y=3x/2 andE=0.5. The peak at =7.4,x~0.55 is the bifurcation
point. To the right of the gray lines two trajectories exist. The first trajectory is continuous as it crosses the upper gray line and discontinuous
at the lower gray line, and vice versa for the second trajectargontribution of one the trajectoriedy) contribution of the other trajectory,
(c) both contributions are taken into accou(d) at each point only one of the two trajectories contribute, according to the Stokes line
criterion.

(d) show a detailed analysis of the contributing trajectories a$\ =adx+hbdy+cds0=0, wherea, b, andc are derivatives of

a function of T. For T<7.4 we find a single complex trajec- \ with respect tok, y, and calculated aky, yq, 6. Since the
tory satisfying the boundary conditions, whereas two sucltoefficientsa, b, andc are complex, the equatiof\=0 can
trajectories are found fof =7.4. The new trajectory bifur- be solved in terms ofd6 to give Sx=d&x(56) and &y
cates from that existing fof <7.4. Their separate contribu- =¢8y(56). This means that the singular set, where the bifur-
tions to the propagator are shown in paiie). Panel(c)  cation occurs, forms a one-dimensional curve in xhe 6
shows the imaginary part ¢f and paneld) shows the pre- space. This is compatible with the semiclassical plots shown
factor. This bifurcation is probably connected to the bifurca-in Fig. 4. Actually, since our grids in they plane and in the
tion of the asymmetric families of periodic orbits from the angle ¢ are rather coarse, we never hit the very bifurcation
symmetric family[26], which occurs aE~0.38 when the point, but we may pass close to it.

period of the orbits isT~7.55. The detailed connection be-  Going back to the semiclassical return probability plot for
tween the periodic orbits bifurcation and the complex trajec-T=7.4, Fig. 4c) shows the result with the contributions of all
tories bifurcation deserves a deeper understanding, and widyg points near such bifurcations removed. Comparing this

be the object of future research. figure with the exact return probability, Fig. 3 fo=7.4, we
Notice that, for fixed initial conditiong, y, ¢, andE, the  find very good agreement.

solutions of Hamilton’s equations satisfyirmj=z and z"*
=z* form one-parameter families, parametrizedTyin each
plot showing the return probabiliti andT are fixed. There-
fore, if we find values,, yo, and 6, where one of the eigen- Finally we discuss the last, and perhaps most difficult,
values ofM,,, \, is zero, then the dimensionality of the set question. After a bifurcation, and sufficiently far from the
of singular points, where.=0, can be obtained by setting bifurcation point, two(or more trajectories may contribute

D. Stokes lines
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similar amounts to the return probability. Figurébpfor T i 1o 05 oo 05 Lo o
=7.5 shows an example of this situation where two trajec- LI o
tories exist. Should both contributions be included in the B sCOUNN

semiclassical formula?

In order to understand the situation, we plot in Figg) 7
and {b) contour levels of the semiclassical return probabil-
ity calculated along the ling=2x/3, 0<x=<1, for a fixed
angle 6=6,=140, E=0.5, and for 7.6=T=<8.0. This line
crosses the bifurcation region in Fig¢bd The bifurcation
shows itself in Fig. 7 as a peak closeTg7.4,x=0.55. For
0+ 6, the bifurcation occurs at different points in thi&
plane. The two gray lines emanating from the bifurcation
point show the projection on this plane of the bifurcations at
other angles. On the left of the gray lines there is a single
trajectory satisfying the boundary conditions. On the right of
the gray lines there are two such trajectories. Notice that
there is no divergence as we cross these lines away from th
central peak: since the bifurcation is not exactly there, the
two trajectories on the right side of the line are different from ST
each other, and not infinitesimally similar as in the case of a 45 RS A NN o5

Figure {a) shows the return probability computed with
only one of these trajectories. Figuréby shows the same v o.
thing but using only the other trajectory. The regions where
each trajectory exists form superimposed sheets inTthe
plane.

If the two trajectories on the right of the gray lines are
included in the semiclassical formula, the approximation be-

E=05 T=7.70 F=029

comes clearly discontinuous, as shown by Fi@).7Notice Lo - pp T o ™ 10
that the family of trajectories in Fig.(& produces continu- ’ ’ | x ’ ’ |
ous results when the upper gray line is crossed, while the (b}

family in Fig. 7(b) produces continuous results when the  r\5 g semiclassical return probability fd=7.7 with (a) the
lower gray is crossed. This suggests that there is a line €M@y contributions after the bifurcation ant) with a single
nating from the bifurcation pointand between the two gray contribution.

lines) which separates the region where each family contrib-

utes alone. This I|r_1e can _b?‘ found by dema_ndmg the.appmx'éalculation taking into account only the contribution whose
mation to be continuous: it is the Stokes line for this prob-

lem. The result of this division, shown in Fig(d, is a initial seed is the closest real periodic orbit. This gives a very

smooth and continuous semiclassical picture. The divisiorg(i)gc’d?,reSUIt if compared to the exact quantum calculation in

line can actually be seefapproximately in Figs. 1a) and
7(b) as the place where the contour lines change curvature
quite suddenly.

Notice that the upper critical line radiating from the bifur-  Figure 9 shows the semiclassical return probability for the
cation point in Fig. 7 ends vertically al~7.55. This is same values of shown in Fig. 2, close to the period of the
exactly the bifurcation period of the symmetric family into shortest periodic orbit. In this region, although no bifurca-
the asymmetric ones, pointing again to a connection betweetions exist, we do find a few noncontributing trajectories,
the periodic orbits and complex orbits bifurcations. whose actions have negative imaginary parts. When these are

Although the analysis above elucidates the interplay befiltered out, the semiclassical result becomes very similar to
tween trajectories after a bifurcation, it does not point to ahe exact quantum mechanical calculations Fig. 2.
simple and direct way to decide which of them should be Figure 10 shows the semiclassical calculations for the
included when one is plottin®, as in Fig. 4. However, it same values of shown in Fig. 3. This time not only non-
turns out that the right choice of trajectory can be madecontributing trajectories had to be filtered out but also several
automatically by feeding the search algorithm with the starttrajectories close to caustics had to be eliminated. At these
ing real periodic orbit which is close@h phase spagdo the  points we have simply not computed the propagator at all.
point where the return probability is being evaluated. For theThis is responsible for the kinky plots around somg
range of periods studied here, this simple procedure workegoints. It is, however, very interesting to see how the plot for
very well. T=7.7 reproduces faithfully the quantum mechanical results,

As an example we show in Fig(& the return probability  displaying a structure similar to the symmetric periodic orbit
for T=7.7 calculated adding the two contributions that ap-of Fig. 1(a). Notice, however, that the symmetric orbit has
pear after the bifurcation at 7.4. Figuréb8shows the same the period 7.1, while this structure shows up at 7.7. Therefore

E. Filtered results
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FIG. 9. Semiclassical return probability with noncontributing
trajectories filtered out for=4.2, 4.4, and 4.6.

FIG. 10. Semiclassical return probability with noncontributing
trajectories filtered out and points close to caustics removed for
=7.1,7.4,and 7.7.

it does not correspond to a real periodic orbit of the Nelso
potential. This shows the importance of complex trajectori
in the semiclassical coherent state propagator.

r‘bpecific boundary conditions. Not all these trajectories, how-
©2ver, contribute to the propagator.

The reasons why a trajectory might not contribute can be
understood if one bases the semiclassical approximation on
the steepest descent method. This is a powerful and very
useful tool in semiclassical analysis. It replaces the integra-

We have compared exact and semiclassical coherent staien of oscillatory functions by the stationary phase method,
propagators for a soft chaotic system with two degrees oin which the integrand is replaced by Gaussians centered on
freedom. The semiclassical calculation relies on classicahe saddle points of its phase. However, in the steepest de-
complex trajectories of a smoothed Hamiltonian satisfyingscent method, it is well known that not all saddle points

VII. CONCLUSIONS
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contribute to the asymptotic approximation: one has to b& and energyE=H(z), we found regions where two trajec-
able to deform the original contour of integration into that tories(both with positive imaginary parts of the actjoexist.
passing through the steepest descent path of the saddle. Thike regions where each of these families of trajectories are
Airy function is a well studied example of this problem. found form sheets that meet at a bifurcation point. In the

In the case of path integrals, the question of contributingegions where these sheets are superimposed one cannot con-
points becomes more involved because of the infinite numsider the contributions from both trajectories, since that
ber of integrals to which the approximation is applied. Thewould render the propagator discontinuous. To avoid this
saddle point is replaced by a saddle “curve” and identifyingproblem we take only one of the trajectories, following its
which of them should contribute or not to the semiclassicakheet from the region where it exists alone into the region
formula from a topological point of view is very hard. There- where its sheet meets that of the other family. When the
fore, instead of relying on rigorous mathematical criteria, wemagnitude of its contribution equals that of the other family,
appeal to physical arguments. One of these arguments is thge switch sheets. This procedure guarantees continuity of
magnitude of the contribution itself. Many of the complex the semiclassical result and turns out to produce excellent
classical trajectories found by our search method have aagreement with the exact calculations.
tions whose imaginary part is negative. Some of these trajec-
tories alone give contributions that result|K(z,z,T)| > 1,
which is clearly unphysical. These trajectories are therefore
eliminated. M.AM.A. and A.D.R. acknowledge financial support

The other situation has to do with the aftermath of causfrom CNPq, FAPESP, and FINEP. A.D.R. especially ac-
tics. When computing the return probability for a fixed time knowledges FAPESP for Grant No. 00/00063-2.
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