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Continuous control of chaos based on the stability criterion
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A method of chaos control based on stability criterion is proposed in the present paper. This method can
stabilize chaotic systems onto a desired periodic orbit by a small time-continuous perturbation nonlinear
feedback. This method does not require linearization of the system around the stabilized orbit and only an
approximate location of the desired periodic orbit is required which can be automatically detected in the
control process. The control can be started at any moment by choosing appropriate perturbation restriction
condition. It seems that more flexibility and convenience are the main advantages of this method. The discus-
sions on control of attitude motion of a spacecraft, Rossler system, and two coupled Duffing oscillators are
given as numerical examples.
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I. INTRODUCTION Pyragas have proposed two methods of permanent chaos

In recent years, the chaotic control and the chaotic syn¢ontrol with a small time-continuous perturbation in the form
chronization have been widely studi¢t-16. Controlling ~ ©f linear feedbackl0]. The stabilization of unstable periodic
chaos is a very attractive subject initiated by Ott, GrebogiOrPits(UPOS of a chaotic system is achieved either by com-
and Yorke (OGY) [1]. They proposed an efficient method bined Imear_feedback with the use of a spt_emal_ly designed
(OGY method of chaos control. This method has the ability externa'l oscillator or by delayed self-controlling linear feed-
to stabilize a desired orbit chosen from the many unstabl@aCk without any external force. They have calculated the
orbits embedded within a chaotic attractor. This aim ismaximal Lyapunov exponent of the UPOs using the linear-
achieved by making a small time-dependent perturbation if¢ation of system to analyze the local stability of the system
the form of feedback to accessible system parameter. In réd to select suitable experimentally adjustable weight pa-
cent years its usefulness has been shown by application {gmeterk. Both methods are based on the construction of a
many practical systemj@—7]. Some extensions of the OGY SPecial form of a time-continuous perturbation, which does
method have been proposf&|9]. Besides, a number of dif- not change the desired UPO, but can stabilize it under certain

; ; nditions.
frgzpe'[dn;it:geci;égﬁqbeen developed and applied using e Ushio proposed a method of chaos control for stabilizing

) . . Lo .. a periodic orbit embedded in a discrete-time chaotic system
A nonlinear system with chaotic behavior is very Sens't'vebased on contraction mappings in 1928]. The validity of
to initial conditions, particularly in the system with large i

. 2~ the method is shown using a property of contraction map-
Lyapunov exponentgl7], that a tiny error may lead to fail- g a property b

ure of the control process when its errors are amplified ex- An.open-plus-closed—looﬁoPCL) method of controlling
ponentially with time. Such errors can be introduced by theyonlinear dynamic systems was presented by Atlee Jackson
linearization of a nonlinear system, the inaccuracy of experiand Grosu in 199%12]. The input signal of their method is
mental measurement, and the noisy environment. A numbghe sum of Hiibler's open-loop control and a particular form
of presented methods modify control parameters once eaclt a linear closed-loop control, the goal of which can be
period of Poincaré mafi,8,15,18, and the stabilization can  selected as one of the UPOs embedded in chaotic attractor, or
be realized only for such periodic orbits whose maximalanother possible smooth functions tofThe asymptotic sta-
Lyapunov exponent is smaller than the reciprocal of the timayjlity of the controlled nonlinear system is realized by the
interval between parameter changes. For the control systefihear approximation around the stabilized orbit. But the cal-
with large Lyapunov exponent or high-order unstable pericylation of the closed-loop control signal is very difficult in
odic OrbitS, the t|ny errors may “kick” the SyStem state out Ofsome cases, especia”y for Comp|ex and high_dimension cha-
its controllable region. The fluctuation noise leads to occaptic systems.
sional bursts of the SyStem into the region far from the de- In this paper, inspired by the continuous linear feedback
sired periodic orbit, and these bursts are more frequent for gontrol method[10] and the contraction mapping control
large noise. Therefore the idea of adjusting the system stai@ethod of discrete systef0], as well as the OPCL method
more frequently than once each peridd[15,19, and the [12], we propose a method for controlling chaos in the form
idea of a time-continuous control seem attractive in this conpgf special nonlinear feedback. The validity of this method is
text [10]. based on the stability criterion of linear system, and it can be
called stability criterion methodSC methogl The construc-
tion of a nonlinear form of a time-continuous perturbation
*Corresponding author. Email address: yuhongjie@sijtu.edu.cn feedback by a suitable separation of the systems in the SC
"Email address: iuyzhc@online.sh.cn method does not change the form of the desired UPO. The
*Email address: jhpeng@sijtu.edu.cn close return pair techniquib] is utilized to estimate a de-
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sired periodic orbit chosen from numerous UPOs embeddeparts, according to the stability criterion of linear system, the
within a chaotic attractor. zero point of errorw(t) is asymptotically stable andi(t)

Using the SC method, the effect of the control can betends to zero wheh— . Then the state vectot(t) tends to
guaranteed directly without calculation of the maximalthe periodj trajectoryx’(t). It implies that the unstable pe-
Lyapunov exponent of the UPOs using the linearization ofriodic orbit is stabilized. Note that the input perturbatia)
system as in Ref10]. This method does not require linear- hecomes zero after the state of the controlled system con-
ization of the system around the stabilized orbit and calculaverges to the UPO.

tion of the derivative at UPOs. It seems Simpler than the Some very Comp|icated periodica"y driven dynamic sys-
OPCL method and OGY method in controlling UPOs. Astems along with the stabilized UPO can have alternative
examples of numerical simulation, the control of the Résslektable solutions belonging to different basins of initial con-
system, the control of chaotic attitude motion of a spacecrafigitions. Besides, large initial values of the perturbation can
and the control of two coupled Duffing oscillators are inves-pe also undesired for some experiments. Such problems can

tigated. be solved by restriction of the perturbation. Therefore the
stabilization is achieved by small input values when &).
Il. THE STABILITY CRITERION METHOD is modified as follows:
We consider a time-continuous nonlinear dynamic system _ .
with input perturbation described by u(t) = D(X(t)): D(x *(t)) if [x—x| <e
g =AXX=X) +f(x") = f(x) ’
X
P f(x(t)) +u(t), (1) =0 otherwise (8)

wherex e R" andu € R" are the state vector and input per- wheree(e>0) is a restriction value of error within which
turbation of the system, respectively. Equatidn without  u=+0. The perturbatioru(t) is treated as a nonlinear feed-
input signal (u=0) has a chaotic attractof). A mapping  back form. In fact, when the conditiof®) is satisfied by a

f:R"—R" is defined inn-dimensional space. We suitably suitable separation of systet), UPOs can be stabilized

decompose the functioffx(t)) as based on stability criterion of error linear syst¢m. More-
over, the perturbation(t) has a simple form as shown in Eq.
fFx(®) =g(x(V) +h(x(®), (2 (8). It is not needed to calculate the derivatisi/dx at the
where the functiorg(x(t))=Ax(t) is suitably disposed as a UPO as required in the OPCL control methidd].
linear part off(x(t),t), and it is required thaA is a full rank In order to obtain the necessary information on an appro-

constant matrix, all eigenvalues of which have negative reaPfiate location of a desired periodic solutiah the strategy
parts. So the functioh(x(t)) =f(x(t)) ~Ax is a nonlinear part Of the close return pairs described in R§&19 is utilized.

of f(x(1)). Then the systenil) can be rewritten as A time §eries of the qhaotic trajector_y generated_ by the sys-
tem (1) is stroboscopically sampled in every periddvhen
dx u=0. The data sampling can be used to detect the close re-
— = Ax(t) + h(x(t)) + u(t). 3)

turn pairs, which consist of two successive points nearing
each other, and indicate the existence of a periodic orbit
Let D(x(t))=-h(x(t)), we can see that the functid#D=f  nearby. Because of the ergodic character of the orbits on a
—h is a linear mapping with respect to the state veotor strange attractor, we can get many such pairs if the data
namely, string is long enough. Suppose tha andx; , are used to
denote the first point and its successive point ofithecol-

dt

(f+D)(x) = Ax. (4) lected return paii,=1,2, ... M, respectively, wher# is the
Let x"(t)=x"(t+jT), j=1,2, ..., be geriod{ trajectory em- maximum number of collected return pairs. When the first
bedded withinQ). The input signalu(t) is considered as a close return pair has been detectédt is within a predes-
control perturbation signal as follows: ignated region taking the first pointx; ; of this pair as a

. reference point, a number of close return pairs nearing the
u(t) = D(x(t)) - D(x (1)) (5  reference point can be detected,

Substituting Eq(5) into Eqg. (3), system(1) and(3) can be )
rewritten as Xip— X1 <e1, [Xip—Xyl<ep 1=1,2,...M.

x=X =(f+D)(x) - (f+D)(X) =A(x-Xx") (6)  We define the mean value as

The difference betweer(t) andx’(t) is defined as an error M
w(t)=x(t)-x(t)", the evolution of which is determined by i_ 1 . o
Eq. (6) as X ZME[XIJ Xi 2, (9)

() = A @) where x" is regarded as an approximate fixed point. This
Obviously, the zero point ofu(t) is its equilibrium point.  fixed point can be used to define a restriction condition

Since all eigenvalues of the matrik have negative real |x(t)—x"(t)|<e within which the control input signal # 0.
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dp/ dv
= O N W b

FIG. 1. Chaotic phase trajectory attractor and Poincaré niap&haotic attractor of phase trajectory afil Poincaré maps.

ll. NUMERICAL SIMULATIONS Runge-Kutta method is used for the numerical integration.
The chaos occurs when the parameters are fixegd-8t04,
K=1.0, y=0.2, =0.7, andw=0.1 without input controlu

In recent years, different approaches of chaos control are(). Corresponding chaotic phase trajectory attractor and
applied in the field of spacecraft techniqUe@d—24. In this  pojincaré maps are depicted in Figéa)land ib).
paper the SC method is utilized to control the chaotic attitude \we decompose the functiditx) into functionsg(x) and
motion of a spacecraft, the dynamical equations of which arg,x) according to Eq(2):
described in Ref[24] as

2 i ) _ Xl _ _05 l Xl
e ZeSII’IU<1+d_(p>+ Ksin2p y de g(Xy,%) = A (=

A. Control of chaotic attitude motion of a spacecraft

2 - 2 2 O - 05 X2
dv- 1+cosv dv l+ecosv (1+cosv) dv
codp+v+w) -3 cofe-v—w) 0.5¢;
+ +u(t)=0, (10 Xp) = — Xq1) = .
“ 1+ecosv ® (10 h0xa, %) D0ex) fa(Xq,%0) + 0.5¢
where Then
3(B-A I X -05 1 X
=38A L gy, (F+D)(xyx) =A] " ={ ] Nt
ZC ZCM X2 0 - 05 X2
— wheref +D=f-h is a linear mapping and matri has nega-
_¢pvp tive real eigenvalue$-0.5,-0.5. Obviously, the stability
Y C\,u ' condition of linear systen(’) is satisfied. The following con-

trol input can be used to stabilize certain desired periodic

and ¢ is the libration angle of the spacecraft in the orbital orbits embedded in the chaotic attractor of EHf),
plane;v is the true anomaly of the spacecraft measured from

perigeeip, e, i, andw are semiparameter, eccentricity, angle  U(X;,Xp) = D(x) = D(x)
of inclination, and the argument of perigee of the orbit, re- _ *

. L . 0.5¢; + 0.5¢,
spectively;u and u,, are the gravitational and magnetic con- =

stants of the earth, respectiveliy; B, andC are the principal = F(xq,Xp) = 0.56 + f5(xq,%p) + 0.5,

moments of inertia of the spacecraft; ak is the control if [x-x'|<e
torque provided by the actuator. Chaotic attitude motion of )
the controlled spacecraft can be numerically demonstrated by =0 otherwise. (12)

integrating Eq(10), which can be rewritten as After obtaining the characteristics of the systgfD)

dx without input signal, the SC method can be applied to control

— =Xy + Uy = F1(Xg,X%9) + Ug(Xq, %), the chaotic motion of the spacecraft onto the period-1 trajec-

dv tory. The numerical integration begins from the initial value
(X1,%2)T=(0,0)". A period-1 orbitx"(T) is approximately es-

dx, _ 2esinu (1+%) - Ksin 2 Y timated by Eq(9) at (5.0237x 10°* and 7.453& 107} for
dv  1+ecosv 7 1+ecosv (1+cosv)? ? M=3 andg;=¢,=5%.
Figures 2a)-2(d) show the results of stabilization of the
_ acos(xl Tt w)-3co8x —v - w) + Uy unstable period-1 orbit witle=0.06. Figure 2a) shows the
1+ecosv process of stabilization of period-1 orbit. After a transient

(11) process, the system comes into the periodic regime corre-
sponding to the unstable orbif at 31st sampled time
wherex; = ¢, X,=de¢/dv, andu=[uy,u,]". The fourth-order =31T. Maintaining the control, we find that the errat

= (X, Xp) + Up(Xg, %),
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FIG. 2. Results of stabilization of the unstable period-1 orbit witt0.06.(a) Process of stabilization of period-1 orbib) the plot of
logygd vsi, and(c) time history ofo(v) and(d) phase trajectory of period-1.

=|x(iT)-x[(i—-1)T]| between the present sampled point andis plotted in two-dimesional2D) (¢,d¢/dv) space[see Fig.

its previous point rapidly decreases with each stép 2(d)] and the period-1 UPO is embedded within the chaotic
=1,2,...p=iT) and eventually achieves less tharr@qt  attractor shown in Fig.(&). The fixed point corresponding to
means that the period-1 UPO is automatically detected in ththe 2D period-1 on the sampled surface is detected at
control process with increasing accurgege Fig. 20)]. Fig-  (5.0227x10°%,7.4495< 107Y)T in the control process.

ure 4b) indicates the fast convergence property too. We The time history of the input perturbation signal for
maintain the control to 80th sampled time 80T and then stabilization of period-1 UPO is shown in Figs(aB-3(c)

turn it off. The time history of stabilization of the period-1 whene=0.06, 0.3, and 1.5. The signa is taken as zero all
trajectory is shown in Fig. 2). The detected period-1 orbit the time before it satisfies the conditibn-x"| <e. The per-

(b)
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0.2
0.1
0.1
0.05
s o g 0
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0 20 40 60 80 100 120
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FIG. 3. Time histories of the input signab(v). (a) £=0.06,(b) £=0.3, and(c) e=1.5.
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80 u(t) to adapt requirements stabilizing different periodic orbit.

Zg It seems that the SC method has more flexibility and conve-

50 nience than the OGY method as well as OPCL method. The
ﬁ 40 results of the flexible control of the chaos to unstable
" 30 period-1 or period-2 orbit are shown in Figgapand %b);

20 after free running, the control is turned on at the 20th time

10 step(v=20T) and the chaotic orbit is stabilized on period-1.

After the maintenance of the control for 50 steps, the orbit

returns to chaotic again when the control is turned off. We

turn on the control again to stabilize the period-2 orbit at the
FIG. 4. Influence of restriction value on convergence velocity 100th step, then maintain it for 60 steps.

of control processimin Vs . Besides, the results of the stabilization of the period-2

orbit of the spacecraft attractor are shown in Fi¢g)Gand

turbation signalu, of the transient process is rather large in 6(b)- ) ) _ )

the case of=1.5. Theu, is always small including the tran-  TO investigate the influence of noise, we add termds
sient process; while the wait time for control on average iando¢; to the right-hand sides of E¢L1), where¢,, and&,

now longer in the case 0£=0.06, the control system is are two independent random functions, having mean value 0
switched on(u# 0)only when the trajectorx(v) comes near and mean-squared value 1. Figure 7 Shows the results of
the period-1 trajectory’(v) at certain time, namely, when Stabilization of period-1 orbit for two different levels of
the conditions <0.06 is satisfied. In Fig. 4 the influence of NCiS€ Withc=0.1 ando=0.01. There are no bursts into the
restriction ranges on the convergence velocity of control '€dion far from the UPO even for relatively large noise. The
process is illustrated. The shortest control timg =i, Tis ncrease of noise leads to the increase of edand the

the shortest time of control process when the ersor Smearing out of the period-1 orbit.

=|x(iT)-x[(i-1)T]| achieves 1¢® and i, is the shortest

control steps. It is shown that the convergence of control B. Control of chaotic motion of Rdssler system

process is fasti,, € [7,10]) when the initial conditions are
far from the periodic orbit, namely, when the perturbation
restrictione is taken as €[0.26 0). The control stepsy,
fluctuate in interval[6,76] when £ €[0.04,0.23. We can dx, o

choose an appropriate value®fo suit different requirement gt TXe Tt 0.2¢,

of best control; for example;=0.3 is corresponding to a fast

convergence procesgsee Fig. 4 and the signalof the tran-

sient process is also smaBee Fig. 80)]. To maintain the 0% = 0.2 +xX3(X, — 5.7). (13)
stabilization on the periodic orbit, the feedback of the pertur- dt

bation is sufficient small.

Note a comparison between the OGY as well as OPC
method and the above-mentioned SC method. The perturba- o -1 -1 [x 0
tion in the OGY method OPCL methogl is applied only at !
the moment when the state of the system is close to the fixed®)={1 =8 0 [{%, (+1(0.2+B)X; [ =Ax+h(x),
point, since they use a linear approximation for the devia- 0 0 -57|xs 0.2 +X;%3
tions from the fixed point. In the SC method the control can
be started at any moment by choosing appropriate restrictiowhere 8 is a constant, which can be selected to satisfy the
condition of perturbatiors, and the chaotic behavior of the stability criterion of linear system. Then the eigenvalues of
system can be interchanged easily by the perturbation inpdhe matrixA can be written as

0 0.5 1 1.5 2
€

As another example, we consider the Rdssler system de-
scribed by

I_\/\/e decompose the functidifx) as follows:

(a) (b)
2.5 - ¢
* 0
2' . _1
LS ., . w
gL e ol G2
~ .
1p; . .. . . '-. o -3
% 0.5-‘5 .'.’ * M '_°| -4
R RRK -5
0' .,. . '..‘. -6
l‘ > 1 ® I 1
0 50 100 150 200 0 50 100 150 200
i i

FIG. 5. The flexible control of the chaotic motion of the spacecraft syst@nProcess of stabilization of period-1 and period-2 orbits and
(b) the plot of loggd vs i.
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6 (@) s (b)
. X /\\
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> 3 > 2
kY T \
g 2 J 3 N
1 0
0 f} f) r -1
0 20 40 60 80 100 120 140 0 1 2 3 4 5 6
['4 [

FIG. 6. Results of stabilization of the unstable period-2 orbit witt0.3. (a) Time history andb) phase trajectory.

-B+ \“““,32 —4 C. Control of chaotic motion of two coupled
N =—=5.7, Np3= - 5, Duffing oscillators

The SC method also can be applied to high-dimensional

_ _ ) ) chaotic systems. As an example we consider a four-
Obviously all eigenvalues of matrid have negative real gimensional nonautonomous system consisting of two

parts only wherg>0. Therefore the following control input  coypled Duffing oscillator§15] described by
u(t) can be used for stabilization:

E+ag+ =+ codl),
0

u) =1 =Y =%) [ if [x-x[<e n+en+p=¢E. (14)
_ + *  *
XX T XX The first oscillator is driven by an external periodic force,

=0 otherwise, and two oscillators interact with each other lgyand 7.

When the parameters are fixed @t0.2, b=10.0, andc
=0.45, the chaotic behavior of the coupled Duffing oscilla-

wherey=0.2+8, p>0. _ tors can be numerically demonstrated by integrating Eq.
The results of the stabilization of the period-3 cycle of the(14) which can be rewritten as

Rossler system are illustrated in Fig$a)8-8(c) ate=2 and
y=1.2 with periodT=17.5. As it is expected, the perturba-

tion becomes very small after a transient process. It is shown X=X
in Figs. 8a)—-8(c) that the control is quite simple and effec-
tive for stabilizing UPOs. X, = —ax — X + X3 +b cost,
The constanty cannot be taken very large, for example, (15)
when y>11.3, it leads to an unsuccessful control process X3= X,

due to a large perturbation inpus(t). Such problem can be

solved by restriction of perturbation, namely, lef=U, . 5

whenu,= U, andu,=-U, whenu,<-U,, whereU,>0 is a X4 =X 7 CX ~ X3,

saturating value of the perturbation. Figga)%and 9b) show ]

the results of stabilization of the period-3 UPO of the ROsslemwherex; =¢, x,=§&, X3=7%, andx,=#n. According to Eq.(2),

attractor aty=15, e=2, andU,=0.08. we suitably decompose the functidfx(t)) as
2 (a) 3 (b)
17 1t
«oﬁ 0 %2 ol -~
1) -1
= -1 = -1}
S, S i
-3 -3
0 20 40 60 80 0 20 40 60 80

i i
FIG. 7. The effect of noise in stabilizing a chaotic trajectory onto a period-1 @eitr=0.01 and(b) 0=0.1
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(b)
15
2 (a)
10 ‘ H \
1.5 LMl ‘ ‘
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1 gl “M JH“‘ \1 ,‘\
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51()5 ‘!11‘};1 [ AL JE
. -5 I‘ 11 “: §
0 U"L"‘!.LL -10
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
t t
c
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5t
0Ff
)
-5
-10+
50 5 10
b 2}

FIG. 8. Results of stabilization of the period-3 UPO of the Rdssler attractgr &t2,¢=2. (a) History of perturbatioru,, (b) history of
the state variabley, and(c) (x1,X%,) phase portrait of the period-3 UPO.

f(t) = Ax(t) — D(x(t)) - X+ X
3 *3
—_ - X * X]—X . *
110 01x , u(t) = D(x) - D(X’) = e if [x—x'| <
[0 -a 1 O Xo X; — b cost = X3+ X3
o 0 -1 1]|x ~ X3 ' =Xy X+ X~ Xy
0 0 0 -cllx - X+ X3 =0 otherwise.
Then we obtain Figures 10a-1Qc) shows the chaotic attractor of the
coupled Duffing oscillator in 2D subspaces,x,), (X3,Xa),
(f+ D)(Xq, X, X3,X4) = AX, and(x;,Xg), respectively. The results of stabilization of the

where matrixA has negative real eigenvaluésl,-a,-1, unstable period-1 orbit are shown in Figs(de-1a().

—c). This is the simplest configuration of matéxwhose all
eigenvalues are negative real counts for high-dimensional
systems. Obviously, the stability condition of the error linear
system(7) is satisfied, and the following control input can be  An important methodSC methog of chaos control based
used to stabilize certain desired periodic orbit embedded ion the stability criterion of linear system is proposed in this
the chaotic attractor of Eq15), paper. The construction of a special form of a time-

IV. CONCLUSIONS

(b)

0.1 (@)

0.075
0.05
0.025

X
= N Wk~

-0.025
-0.05
-0.075

0 100 200 300 400 500 0 20 40 60 80 100
t i

FIG. 9. Results of stabilization of the period-3 UPO of the Rossler attractpr 46, ¢ =2, andU,=0.08.(a) History of perturbatiorus,,
(b) process of stabilization of the period-3 UPO with peribd17.5.
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=

ey

N

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X3 X1
(e) (f)

X,
]
N R O FE MW
X3
]
= o

-1.5-1-0.50 0.5 1 1.5 -3 -2 -1 0 1 2 3
X3 x)

FIG. 10. The attractor of the coupled Duffing oscillator in 2D subspéxgs,), (X3,Xs), and(xy,X3), respectively(a)—(c) The chaotic
attractor andd)—f) results of stabilization of the unstable period-1 orbit.

continuous nonlinear perturbation feedback in the SGmerical simulation even for high-dimensional systems. It
method does not change the form of the desired UPO foseems that more flexibility and convenience are main advan-
chaos control. The close return pair technique is utilized taages of this method.

estimate a desired periodic orbit chosen from numerous The complexity of the experimental realization of the SC
UPOs embedded within a chaotic attractor. This method doegethod is mainly the input of desired UPOs. The method
not require linearization of the SyStem around the Stabi”ze%'SO relies on expncit know'edge of the System dynamics_
orbit and estimation of the derivative at UPOs. The calculayye will solve these problems using delayed feedback input
tion of the maximal Lyapunov exponent of the UPOs analyz-jgng| in another paper. Moreover this method can be applied
ing the local stability of the system and selecting the range of; some possible goal behavior except UPOs embedded in

control parameter is not needed. It is unnecessary to start thaotic attractor. Detailed discussion can be given also in
control at the moment when the state of system is close tQnqther paper.

the desired periodic orbit. The control can be started at any
moment by choosing appropriate perturbation restriction
conditione, and therefore the chaotic behavior of the system
can be changed to any desired orbit easily by the perturba- This research was supported by the National Natural Sci-
tion inputu(t). The validity of stabilization is shown by nu- ence Foundation of Chin@roject N0.10272074
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