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Quenched disorder—in the sense of the Harris criterion—is generally a relevant perturbation at an absorbing
state phase transition point. Here using a strong disorder renormalization group framework and effective
numerical methods we study the properties of random fixed points for systems in the directed percolation
universality class. For strong enough disorder the critical behavior is found to be controlled by a strong
disorder fixed point, which is isomorph with the fixed point of random quantum Ising systems. In this fixed
point dynamical correlations are logarithmically slow and the static critical exponents are conjecturedly exact
for one-dimensional systems. The renormalization group scenario is confronted with numerical results on the
random contact process in one and two dimensions and satisfactory agreement is found. For weaker disorder
the numerical results indicate static critical exponents which vary with the strength of disorder, whereas the
dynamical correlations are compatible with two possible scenarios. Either they follow a power-law decay with
a varying dynamical exponent, like in random quantum systems, or the dynamical correlations are logarithmi-
cally slow even for a weak disorder. For models in the parity conserving universality class there is no strong
disorder fixed point according to our renormalization group analysis.
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I. INTRODUCTION

Nonequilibrium many-particle systems are often de-
scribed by stochastic models in which some degrees of free-
dom with fast relaxation behavior are integrated out and are
replaced by a noise term, which may represent thermal or
quantum fluctuations, chaotic motion, etc. The classification
of steady states of these nonequilibrium models is an impor-
tant task and we are currently witnessing considerable theo-
retical progress in this field. Of particular interest are systems
that in the steady state show long-range spatial and temporal
correlations, as is the case when they are in the vicinity of a
nonequilibrium phase transition point. A special type of these
are the transitions between an active phase and an inactive
one where the particles are absorbed into a state without
fluctuations. These absorbing state phase transitions play an
important role in physics, chemistry, and even biology[1,2].

Classification of absorbing state phase transitions has
shown that the universality class of directed percolation is
particularly robust. It contains models with a scalar order
parameter, absence of conservation laws, and short range in-
teractions[3]. Well known models with a phase transition in
this universality class are the contact process[4] and the
Ziff-Gulari-Barshad model of catalytic reactions[5]. When
there is a conservation law present, other universality classes
can appear, the best known of which is the parity conserving
class[6] which includes the branching–annihilating random

walk with even number of offspring[6,7] and the generalized
contact process with two different absorbing states[8]. Most
recently reaction-diffusion models with multiple branching
and annihilation processes were also intensively studied[9].
Sandpile models with conserved energy can also be related
to absorbing state phase transitions[10].

Quenched, i.e. time-independent, disorder is an inevitable
feature of many real processes and could play an important
role in stochastic particle systems too. As an example, it has
been argued that due to the presence of some form of disor-
der the directed percolation universality class has not yet
been seen in real experiments[11], such as in catalytic reac-
tions [5], in depinning transitions[12], and in the flow of
granular matter[13] (for a review, see[11]). In stochastic
particle systems, disorder is represented by position depen-
dent reaction rates and its relevance can be expressed in a
sd+1d-dimensional system by a Harris-type criterion[14],

n' , 2/d. s1d

Heren' is the correlation length exponent in the spatial di-
rection of the pure system. Indeed for directed percolation at
any d,4 dimensions the disorder is a relevant perturbation.

The new, random fixed points, which control the critical
behavior of absorbing state systems with quenched disorder
have been studied in different papers and their properties are
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found in some respect to be unconventional[14–19]. Early
numerical studies by Noest[14] on random cellular automa-
ton models in the directed percolation universality class in
one and two dimensions have shown considerable change of
the critical exponents in comparison with the pure system’s
values. In more recent studies[15] of the two-dimensional
contact process with dilution, logarithmically slow dynami-
cal correlations were found. These could be related to the
results of a field-theoretical investigation by Janssen[16],
according to which the renormalization group equations have
only runaway solutions. Interestingly the exponents, associ-
ated with the logarithmic time-dependence of different dy-
namical quantities were found to be disorder dependent. The
absorbing phase was found to have properties similar to that
of a Griffiths phase and shows power law behavior with non-
universal exponents[15,17,18]. The static critical behavior
of the model has been explored less, but exponents ind=2
have been determined[15].

In the present paper we revisit the problem of absorbing
state phase transitions in the presence of quenched disorder.
In this study we make use of the formal analogy between
quantum systems and the “Hamiltonian” operator formalism
[20,21] of stochastic processes. Although the latter operators
are generally non-Hermitian, techniques developed in the
study of quantum spin systems can often be successfully
applied[21–24].

In the theory of random quantum spin systems, recently
considerable progress has been made in understanding their
low-energy(or long time), long distance behavior. In particu-
lar, the use of a real space renormalization group(RG)
method, originally introduced by Ma, Dasgupta, and Hu[25]
has led to many new, partially exact results and has
given—at the same time—new physical insight into the
problem[26]. Subsequent analytical and numerical work has
provided further important results, in particular for one-
dimensional systems[26–28]. One new concept which has
emerged from these studies is the existence of strong disor-
der fixed points in which the disorder plays a completely
dominant role. This property is manifested by the fact that
during renormalization, the distribution of the random pa-
rameters(couplings, transverse fields, etc.) broaden without
limits and therefore the RG treatment becomes asymptoti-
cally exact.

Having the close similarity between quantum systems and
the Hamiltonian description of stochastic processes, one
might ask the question if the concept of strong disorder fixed
point applies for the latter in the presence of quenched dis-
order. For what is perhaps the simplest stochastic process,
the random walk, the answer is positive. Sinai diffusion[29],
which represents a particular type of random walk in a ran-
dom environment, can be interpreted as a realization of a
strong disorder fixed point. Indeed RG methods have been
successfully applied to explore new exact properties of this
process[30].

While the Sinai diffusion obeys detailed balance, most of
the stochastic particle systems do not. Therefore it is particu-
larly interesting to know if quenched disorder could have a
similar effect on the latter problems, too. In this paper we are
going to study this issue in detail. In particular we investigate
the applicability of the strong disorder RG scheme for mod-

els in different (nonrandom) universality classes. The RG
predictions are then confronted with the results of extensive
numerical calculations, which are performed by density ma-
trix renormalization(DMRG) and by Monte Carlo(MC)
simulations. A short account of our results has been pub-
lished in a Letter[31].

The structure of the paper is the following. General nota-
tions about scaling theory at absorbing state phase transi-
tions, both at conventional and strong disorder fixed points,
are given in Sec. II. The method of strong disorder renormal-
ization group is explained in detail in Sec. III, where it is
applied to the random contact process and to its generaliza-
tion with two different absorbing states. Results on random
directed percolation are obtained by mapping onto a random
walk. Sec. IV contains a comparison of these analytical pre-
dictions with results of numerical calculations on the one-
and two-dimensional contact process. Our conclusions are
presented in the final section, and some technical details are
given in the Appendixes.

II. SCALING AT ABSORBING STATE PHASE
TRANSITIONS

In the models that we consider here each site,i, of a
d-dimensional lattice is either vacantsØd or occupied by at
most one particlesAd. The dynamics of the model is given by
a continuous time Markov process and is therefore defined in
terms of transition rates. The reactions in the system are
basically of two types:(a) branching in which particles are
created at empty sites(provided one of its neighbors is oc-
cupied) occurs with rateli, and death of particles with a rate,
mi. The average number of particles at sitei, at a given time
t is denoted byknilstd. This system evolves to a stationary
state in which averages become time independent. In this
state, if the average value of the branching rates compared
with the average value of the death rates is sufficiently large,
a finite fraction of sites,r=L−1oiknil.0, is occupied and the
system is in the active phase. In the opposite situation, i.e.
when the average value of the branching rates is relatively
small, thenr=0 and the system is in the inactive phase. The
two phases described above are separated by a phase transi-
tion point, which is located atD=Dc, whereD is a suitably
defined control parameter. In the homogeneous system with
mi =m andli =l we haveD=m /l.

A. Conventional scaling behavior

In the vicinity of the nonequilibrium phase-transition
point, where the reduced control parameterd=sD−Dcd /Dc is
small, generally anisotropic space–time scaling symmetry
holds. The order-parameter,rsd ,1 /t ,1 /Ld, as a function of a
finite time-scalet, in a large finite system of sizeL, scales
under changing lengths by a factorb.1, L8=L /b, as[2,3]

rsd,1/t,1/Ld = b−xrsdb1/n',bz/t,b/Ld. s2d

Here the critical exponents,x, n' andz have the usual defi-
nitions: the correlation lengthj' in the spatial(the relaxation
time tr or the correlation lenghtji in the temporal) direction
diverges asj',udu−n'str =ji ,udu−nid) and the anisotropy or
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dynamical exponent is defined asz=ni /n'. Taking the scal-
ing parameterb=d−n' we have in the thermodynamic limit,
1 /L=0 and in the stationary state(1/t=0), rsdd,db with the
order-parameter exponentb=xn'. For a surface site one de-
fines the surface order-parameter,rs, the scaling behavior of
which is the same as in Eq.(2) but involves the surface
scaling dimension,xs, instead of the bulk exponentx so that
rssdd,dbs with bs=xsn' [32].

The dynamical behavior of stochastic systems is related to
the scaling properties of the characteristic time,tr, which in
the Hamiltonian formalism is given by the inverse of the
smallest gap,e. In a conventional fixed point we have the
relation

esd,1/t,1/Ld = b−zesdb1/n',bz/t,b/Ld; s3d

thus in a finite system the appropriate scaling combination is
eLz.

The autocorrelation function,Gsd ,1 /t ,1 /Ld=knistdnis0dl,
which, at least for a homogeneous system, is independent of
the position of a particle in the bulk, has the scaling behavior
at the transition point:

Gsd = 0,1/t,1/Ld = b−2xGsd = 0,bz/t,b/Ld. s4d

Here, takingb= t1/z we obtain in the thermodynamic limit
Gstd, t−2x/z.

In a MC simulation one usually starts with one seed-
particle in the origin of an empty lattice and measures the
survival probability at the origin,Ps, the total number of
particles present in the system,N, and the mean-square dis-
tance of the particles from the origin,R2. For the contact
process it can be shown[3,33] that in the long time limit, the
survival probability equals the local order parameter. This
“duality” relation also holds in the disordered case. More
generally, it is expected that if there is only one absorbing
state, the two quantities are expected to obey the same scal-
ing behavior[2]. Thus from Eq.(2) we then immediately get

Pssd,1/t,1/Ld = b−xPssdb1/n',bz/t,b/Ld. s5d

For b= t1/z we obtain at the critical point,Psstd, t−u with u
=x/z=b / sn'zd. Generally we haveGstd, Ps

2std. The total
number of particles is proportional to the integral of the
density–density correlation function and obeys the scaling
relation

Nsd,1/t,1/Ld = bd−2xNsdb1/n',bz/t,b/Ld. s6d

It therefore behaves at the critical point asNstd, th, with h
=sd−2xd /z. Finally, R2 scales similarly asL2:

R2sd,1/t,1/Ld = b2R2sdb1/n',bz/t,b/Ld, s7d

and at the critical point we haveR2std, t2/z. We note that in
the general situation, i.e., when several absorbing states ex-
ist, the scaling relations in Eqs.(5)–(7) involve a new expo-
nent,x8, instead ofx.

For further comparisons, we quote the current estimates
of the various critical exponents for the case of the homoge-
neous, one-dimensional contact process[2,32]: x=0.2524,
n'=1.0972,z=1.582 andxs=0.669.

B. Strong disorder scaling

Strong disorder fixed points were observed so far in ran-
dom quantum systems as well as in Sinai diffusion. Here we
suggest that the same type of fixed point can also exist in
absorbing state phase transitions and we introduce the corre-
sponding scaling theory, which is based on two ingredients
[34]. First, at a strong disorder fixed point the dynamical
behavior is ultraslow. The characteristic length-scale,j, is
related to the logarithm of the characteristic time-scale,tr, as

jc , ln tr; s8d

thus the dynamical exponent,z, is formally infinity. Second,
the average value of quantities related to the particle occu-
pation number are dominated by so calledrare events(or
rare regions of a large sample). In a rare eventknil=Os1d,
thus L independent, whereas in atypical realizationknil, is
generally exponentially small inL. The fraction of rare
events,f, is decreasing with the size,L. At the critical point
we can write for it the scaling transformation:

fs1/Ld = b−xfsb/Ld; s9d

thus with b=L we have f ,L−x. The average value of the
particle density is indeed dominated by the rare events; thus
r, f, and the order-parameter at the critical point satisfies
the scaling transformation:

rsd,1/ln t,1/Ld = b−xrsdb1/n',bc/ln t,b/Ld. s10d

One can see that the static exponents,b=xn' andbs=xsn',
are given by the same expressions as in the case of ordinary
scaling. (We shall explicitly show the construction of rare
events for random directed percolation in Sec. III B 2.)

Due to the ultraslow dynamical behavior the scaling rela-
tion (3) is modified into

ln esd,1/ln t,1/Ld = b−cln esdb1/n',bc/ln t,b/Ld; s11d

thus in a finite system the appropriate scaling combination is
sln edLc.

To calculate the average autocorrelation function one
should keep in mind that disorder in the time-direction is
strictly correlated; thus in a rare event the autocorrelation
function is of Os1d and (almost) zero otherwise. Thus the
average autocorrelation function is proportional to the frac-
tion of rare events,G, f, and scales at the critical point:

Gsd = 0,1/ln t,1/Ld = b−xGsd = 0,bc/ln t,b/Ld. s12d

Thus in the thermodynamic limit,Gstd,sln td−x/c. We can
also determine the scaling behavior of other dynamical quan-
tities such asPs, N, andR2, in the strong disorder fixed point
in a similar way. It is therefore sufficient to replace in the
conventional scaling relations in Eqs.(5)–(7) t by ln t andz
by c. As a consequence the time-dependence of the dynami-
cal quantities will also be logarithmic at the critical point:

Psstd , sln td−ū, ū = x/c,
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Nstd , sln tdh̄, h̄ = sd − 2xd/c,
s13d

R2std , sln tds̄, s̄ = 2/c.

This type of logarithmic time dependence has been observed
by Dickman and Moreira[15] by analyzing numerical data
on the diluted 2d contact process, and were interpreted as a

“violation of scaling.” The measured exponentsū, h̄, ands̄
were found to be dilution, i.e. disorder, dependent.

In the following, using a real space renormalization group
method we(i) shall give a natural explanation of the ob-
served logarithmic time dependence and(ii ) shall calculate
the critical exponents, which—in the one-dimensional
case—are presumably exact.

C. Scaling in the Griffiths-phase

In a disordered nonequilibrium system, which is globally
in one stationary phase, say in the nonactive phase with
d.0, there are specific local regions of sizelc, in which
strong fluctuations of the local rates prefer the existence of
the other phase, say the active phase. These rare regions,
which are localized and have an exponentionally small prob-
ability of occurrence,pslcd,exps−alcd, contribute to an ex-
ponentially large relaxation time[35], tr ,expsslcd. (In a
d-dimensional systemlc should be replaced bylc

d.) Then the
distribution of large relaxation times has an algebraic tail:

pstrd, tr
−1/z8−1, with 1/z8=b /s and the average autocorrela-

tion function:

Gstd , E dtrpstrdexps− t/trd , t−1/z8 s14d

also decays algebraically. Consequently in this so called
Griffiths phase[36] dynamical correlations are quasi-long-
ranged, whereas spatial correlations are short ranged. The
dynamical exponent is a continuously varying function of the
distance from the critical point,z8=z8sdd.

This result can be incorporated into a scaling theory as
follows. Since a rare event, which brings the dominant con-
tribution to the average autocorrelation function is localized,
its probability of occurrence is inversely proportional with
the size of the system,L. Consequently the average autocor-
relation function obeys the scaling law

Gsd,1/t,1/Ld = b−1Gsd,bz8/t,b/Ld, s15d

and withb= t1/z8 we recover in the thermodynamic limit the
relation in Eq.(14). Finally, scaling of the lowest gaps follow
the rule

esd,1/t,1/Ld = b−z8esd,bz8/t,b/Ld; s16d

thus in a finite system the appropriate scaling combination is
eLz8. We note that in the Griffiths phase the power-law sin-
gularities are often supplemented by logarithmic corrections
[38,39], which are related to the fact that the size of the rare
event grows logarithmically,lc, ln L, sincepslcd,1/L.

III. THE RENORMALIZATION GROUP FRAMEWORK

In this section we apply a real space renormalization
group method for random stochastic particle systems, which
is a variant of the Ma-Dasgupta-Hu method originally devel-
oped to study random quantum spin chains[25]. The essence
of the method can be summarized in the following points.

(i) Start with the initial distribution of the random reac-
tion rates,Pinsmd andRinsld and sort the rates in descending
order. The largest rate, i.e. the fastest process, sets the energy
scale,V, in the problem.

(ii ) Integrate out the fastest local process, i.e. eliminate
the rate,V. This amounts to decimate out one site of the
lattice or to replace a pair of sites with a new effective one.
Renormalized couplings are then determined using a second
order perturbation calculation. It is interesting to remark that
for stochastic systems this step corresponds to a fast rate
expansion as discussed in Sec. 4.3 of Ref.[21].

(iii ) Iterate the decimation process. This will result in a
reduction of the energy-scale,V, and a modification of the
distribution of the(effective) rates:Psm ,Vd andRsl ,Vd.

(iv) At the fixed point of the transformation(which is at
V=V* =0) the distributions of the rates become singular and
from these singularities the value of the critical exponents
are calculated.

In the following we construct and solve the RG equations
explicitly for the random contact process.

A. The random contact process

1. The Hamiltonian formalism

In the contact process each site of the lattice can be either
vacantsØd or occupied by at most one particlesAd, and thus
can be characterized by an Ising-spin variable,si =1 for Ø
andsi =−1 for A. The state of thesystem is then given by the
vectorPss ,td which gives the probability that the system is
in the states=h. . . ,si , . . .j at timet. A particle can be created

at an empty sitei with a rate pl̂i /p0, where psp0d is the
number of occupied neighbors(the coordination number of
the lattice) and at an occupied site the particle is annihilated
with a ratemi. The time evolution is governed by a master
equation, which can be written in the form

dPssd
dt

= − HCPPssd. s17d

Here the generatorHCP of the Markov process is given by:

HCP = o
i

miMi + o
ki j l

l̂i

p0
sniQj + Qinjd, s18d

in terms of the matrices

M = S0 − 1

0 1
D, n = S0 0

0 1
D, Q = S 1 0

− 1 0
D ,

and ki j l stands for nearest neighbors. It is well known[21]
that the steady state probability distribution of a stochastic
process coincides with the ground state of its generator
(sometimes also called quantum Hamiltonian of the stochas-
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tic process) while relaxation properties can be determined
from its low lying spectrum.

For nonrandom couplings there is a nonequilibrium phase
transition in the contact process which belongs to the univer-
sality class of directed percolation[2,3]. In one dimension it

is at sm / l̂dc=0.3032 and the critical exponents are given by
b=0.2765,bs=0.7337,n'=1.097 andz=1.581. In two di-

mensions sm / l̂dc=0.6065 and b=0.584, bs=1.03, n'

=0.734 andz=1.76. In the following we often use the vari-

ablel= l̂ /p0 to characterize the creation rate.

2. Decimation rules of the random process

For the random contact process the transition ratesmi and
li are independent and identically distributed variables and,
as described in the previous section, the largest oneV
=maxshlij ,hmijd sets the energy scale in the system. Thus,
the largest rate can be either one of the death ratesmi or be
one of the branching ratesli. For each a different way of
decimation should be used.

(i) The largest term is a branching rate: Ω5λ2. If the
largest rate is a branching, sayl2, which connects sitesi
=2 and j =3, the two-site cluster(2,3) spends most of the
time in the configurationsAA or ØØ and can be rarely found
in one of the other two configurations,AØ andØA. Conse-
quently for large times the two sites behave as a cluster with
a moment ofm̃=2 and with an effective death rate,m̃2,
which can be calculated from the energy spectrum of the
two-site Hamiltonian,HCP

23 . As shown in Appendix A the two
lowest energy levels of the cluster are separated from the two
others by a distance ofl2, therefore in a good approximation
just the two lowest levels can be retained. The effective death
rate,m̃, is given from the value of the lowest gap as

m̃ =
2m2m3

l2
, s19d

wherem2 andm3 are the original death rates at sitesi =2 and
j =3, respectively. The renormalization equation in Eq.(19)
should be extended by the renormalization of moments(i.e.,
the number of original sites in the cluster):

m̃= m2 + m3, s20d

where in the initial situationm2=m3=1.
The renormalized value of the death rate can also be ob-

tained with the following reasoning. Let us start with the
original representation, when the two-site cluster is in the
occupied state,AA. In the effective decay process first the
particle at site 2 should decay(with ratem2), which is then
followed by the decay of the particle at 3. This second pro-
cess has a very low probability ofm3/ sl2+m3d. Since the
same processes can also occur with the role of 2 and 3 inter-
changed, we find that forl2@m2,m3 the effective decay rate
is given in Eq.(19).

(ii) The largest term is a death rate: Ω5µ2. In this case
the site(2) is almost always empty,x, therefore it does not
contribute to the fractal properties of theA cluster and can be

decimated out. The effective branching rate,l̃ between the

remaining sites 1 and 3 can be obtained by studying the
eigenvalues of the three-site Hamiltonian,HCP

123. As shown in
the Appendix A out of the eight eigenvalues there are four of
Osm2d, which are discarded. The remaining lowest four lev-
els are identified as the spectrum of a two-site cluster with an
effective branching rate:

l̃ =
l2l3

m2
. s21d

As in the previous case one can obtain the renormalized
value of the branching rate with a simple reasoning, which
works as follows. Let us have the configuration of the three-
site cluster in the original representation asAØØ. The effec-
tive branching rate between sites 1 and 3 is generated by a
virtual process, in which first a particle is created at site 2
(rate l2), and then one at site 3[probability l3/ sl3+m2d].
Hence, we get for very strong disorder the branching rate
given in Eq.(21).

The renormalization equations in Eqs.(19) and (21) can
be transformed into a symmetric form in terms of the vari-

able,J=l /k= l̂ / sp0kd with k=Î2 as

m̃ = k
mm8

J
, m̃= m+ m8, J̃ = k

JJ8

m
. s22d

We can see from Eq.(22) that for a weak disorder the gen-
erated new rates can be occasionally larger than the deci-
mated ones; thus in these steps the energy-scale does not
lower. For a strong enough disorder, however, these non-
monotonic steps are expected to be so rare that they do not
influence the behavior of the RG flow. With this assumption
we analyze in the following the properties of the RG equa-
tions in one dimension. The results are then confronted with
numerical calculations in Sec. IV.

3. Renormalization in one dimension

In one dimension the topology of the lattice does not
change under renormalization which makes it possible to
treat the problem analytically. First we note that after re-
peated use of the transformations in Eq.(22) the generated
branching(death) rates are in the form of a ratio of products
of original branching (death) rates and original death
(branching) rates. The control parameter,d, is defined as

d =
fln mgav − fln Jgav

varfln mg + varfln Jg
, s23d

and at the fixed point,d=0, which follows from duality of
the RG equations in Eq.(22) (heref·gav denotes the average
over the disorder).

At a given energy scale,V, we have the distribution func-
tion of the death rates,Psm ,Vd, and that of the branching
rates, RsJ,Vd. Changing the energy scale,V→V−dV,
amounts to eliminate a fraction of dVfPsV ,Vd+RsV ,Vdg
sites. The distribution of the branching rates changes as:

ABSORBING STATE PHASE TRANSITIONS WITH… PHYSICAL REVIEW E 69, 066140(2004)

066140-5



RsJ,V − dVd =HRsJ,Vd

+ dVPsV,VdE
0

V

dJ1E
0

V

dJ3RsJ1,VdRsJ3,Vd

3 FdSJ −
kJ1J3

V
D − dsJ − J1d − dsJ − J3dGJ

3h1 − dVfPsV,Vd + RsV,Vdgj−1. s24d

Here on the r.h.s. the three delta functions represent the one
generated new branching rate and the two decimated branch-
ing rates during one RG step and the second factor ensures
normalization.[37]. A similar equation is obtained for the
distribution of the death rates. From the duality of the RG
equations, it follows that one should only make the inter-
changem↔J andP↔R.

Expanding RsJ,V−dVd one arrives at the integro-
differential equation:

dR

dV
= RsJ,VdfPsV,Vd − RsV,Vdg

− PsV,VdE
J/k

V

dJ8RsJ8,VdRS J

J8k
V,VD V

J8k
,

s25d

and similarly one obtains for the distributionPsm ,Vd,

dP

dV
= Psm,VdfRsV,Vd − PsV,Vdg

− RsV,VdE
m/k

V

dm8Psm8,VdPS m

m8k
V,VD V

m8k
.

s26d

A solution of these equations can be obtained analytically at
the fixed point,V=0, at d=0, in which the distributions
RsJ,Vd andPsm ,Vd are asymptotically identical. The calcu-
lations can be found in Appendix B. According to these re-
sults the appropriate scaling variable is in logarithmic form
h=−sln V−ln Jd / ln V=−sln V−ln md / ln V, and its distri-
bution is given from Eqs.(B1) and (B8) as

pshddh = exps− hddh. s27d

The distribution in terms of the original variables,J (andm)
in Eq. (B2), is given by

RsJ,Vd = R̃SV

J
D1−R̃V

, R̃V =
1

lnsV0/Vd
, s28d

where V0 is a reference energy scale, and the distribution
becomes singular at the fixed point, asV→0. Due to this
singularity the decimation transformation in Eq.(22) be-
comes exact at the fixed point. This can be shown by calcu-
lating the probability that one of the neighboring death rates,
besides the largest branching rate withJ=V, has a value of
m.aV, with a,1:

Psad . E
aV

V

PsJ,VddJ = R̃VE
a

1

x−1+R̃V dx < R̃V lns1/ad,

s29d

which indeed goes to zero as the iteration proceeds, since

R̃V→0. Consequently the RG transformation becomes as-
ymptotically exact and the singularities, calculated by this
method at the critical point, are also very probably exact.

We start to determine the relation between the energy
scale,V, and the length scale,LV, by studying the fraction of
nondecimated sites,nV. When the energy scale is decreased

by an amount of dV a fraction of sites. dnV=nVfP̃sVd
+R̃sVdg, is decimated out, so that we obtain the differential
equation:

dnV

dV
= nVfP̃sVd + R̃sVdg, s30d

which can be rewritten as

−
d ln nV

d ln V
= − VfP̃sVd + R̃sVdg = − 2ysVd. s31d

Using the solution toysVd in Eq. (B8) one can integrate Eq.
(31) with the result

nV = F1 + y0 ln
V0

V
G−2

, Fln
V0

V
G−2

, d = 0. s32d

Thus from Eq.(32) we get for the typical distance between
remaining spins,LV, as

LV ,
1

nV

, Fln
V0

V
G2

, d = 0. s33d

This is equivalent with a logarithmic dynamical scaling as
written in Eq.(8) with an exponent,c=1/2.

In order to calculate the singularity of other quantities,
such as the correlation length and the order-parameter, at the
fixed point we should study scaling of the lengths and the
cluster moments. As we have shown in the Appendix C, at
the fixed point these calculations are equivalent to that for
the random transverse Ising spin chain. Therefore here we
quote only the results. For a detailed derivation we refer to
the original literature[26,39].

We are reminded first that a renormalized site is com-
posed from parts of the original lattice and the renormalized
length is given by the sum of the lengths in the original
lattice. In the paramagnetic phase the average length of sites
approach a finite value,j', during renormalization asV
→0. In the vicinity of the fixed point the RG-equations lead
to a singularity:

j' , udu−n', n' = 2. s34d

To study scaling of the order-parameter one should inves-
tigate the average cluster moment, which at the critical point
behaves as

HOOYBERGHS, IGLÓI, AND VANDERZANDE PHYSICAL REVIEW E69, 066140(2004)

066140-6



m̄= m̄0FlnSV0

V
DGF

, F =
1

t
=

1 +Î5

2
. s35d

Then the order-parameter can be calculated asr=m̄/LV,
which behaves asymptotically as

r , L−x, s36d

and the scaling dimension,x, is given by Eqs.(33) and(35)
as

x =
2 − F

2
. s37d

Finally, scaling of the surface order-parameter is related to

the average cluster moment of the surface site,ms̄. This is
naturally smaller than for a bulk site, since the surface mo-
ment can accumulate from original sites only in one direc-
tion. According to an analysis of the RG results we have

ms = ms0FlnSV0

V
DG; s38d

thus

rs , L−xs, xs = 1/2. s39d

4. Renormalization in two dimensions

In higher dimensions the topology of the lattice changes
under renormalization: contacts and therefore reactions are
generated between remote sites, too. However, the renormal-
ization does not introduce new types of reactions. Therefore
the renormalization process, which is summarized in the
decimation equations in Eq.(22) can be implemented nu-
merically. As in one dimension for a weak disorder the gen-
erated new couplings are frequently larger than the deci-
mated ones; therefore the RG scheme does not work and
scaling in the random system is most probably conventional,
as described in Sec. II A. For a stronger disorder, however,
the situation could change and strong disorder scaling could
set in. If the critical behavior of the system is indeed at-
tracted by a strong disorder fixed point, then, as in one di-
mension, the value of a finite pre-factork.0 in Eq. (22)
does not matter. Numerical renormalization group calcula-
tions for the random transverse-field Ising model, for which
k=1, have shown the existence of a strong disorder fixed
point in two-dimensions[40,41]. The numerically observed
critical exponents arex=1.0, n'=1.07 andc=0.42 [40].
Karevskiet al. [41] use a somewhat different numerical tech-
nique and findx=0.97,n'=1.25 andc=0.5. In light of the
above arguments we expect also for the two-dimensional
random contact process strong disorder scaling with the
above exponents in Eq.(10) if the strength of disorder is
sufficiently large. To verify this scenario we shall reanalyze
the numerical results of Moreira and Dickman[15] in Sec
IV B.

B. Random directed percolation

Directed percolation can be viewed as an anisotropic vari-
ant of percolation, in which the possible path of occupied

sites follows a given preferential direction. Equivalently, di-
rected percolation can be interpreted as a dynamical process,
in which the spreading of a nonconserved agent is studied. In
the random version of the problem the occupation probabili-
ties are random variables, which are strictly correlated along
the preferential(time) direction, corresponding to random
reaction rates in the dynamical interpretation.

1. Random Reggeon field theory

The field theory, which is expected to describe the critical
behavior of directed percolation is the Reggeon field theory.
In s1+1d-dimension in the Hamiltonian limit the time-
evolution of the process is governed by the Hamiltonian[42]
HRF=SiHi with

Hi = − hisi
x −

gi

2
fs1 − 2si

+ds1 − 2si+1
+ d − si

zsi+1
z g, s40d

where si
x,y,z are Pauli matrices at sitei, and si

+=ssi
x

+ isi
yd /2. The structure ofHRF is similar to the Hamiltonian

of the random transverse-field Ising model in Eq.(18): it
consists of an interactionterm(which is non-Hermitian in
HRF) and a transverse field term. The order in the system is
measured by the asymptotic limit of the autocorrelation func-
tion, Gstd=fk0usi

zstdsi
zstdu0lgav: it is zero in the paramagnetic

phase and finite in the ordered phase.
The renormalization of the random Reggeon-field theory

can be made in a way that is completely similar to that for
the random contact process(or the random transverse-field
Ising model). A very strong coupling,g2=V, will result in a
two-site cluster in a renormalized field which is given by

h̃ =
2h2h3

g2
. s41d

On the other hand a site on which a very strong field,h2
=V, acts is decimated out and a new coupling is generated
between remaining sites, as

g̃ =
g2g3

h2
. s42d

Comparing the decimation equations in Eqs.(41) and (42)
with those for the random contact process in Eqs.(19) and
(21) we can see that they are equivalent. This is not surpris-
ing, since the two Hamilton operators in Eqs.(18) and (40)
are related through a unitary transformation[3], if mi ↔hi
and li ↔gi. Consequently the singular behavior of the ran-
dom contact process and the random Reggeon field theory
are equivalent.

Next, we consider the geometrical interpretation of di-
rected percolation and study its critical behavior in the very
strong disorder limit.

2. Strong disorder: Mapping to random walks

Here we consider directed percolation on the square lat-
tice with random occupation probabilities which are, how-
ever, strictly correlated in the same layer, as shown in Fig. 1.

For simplicity, we use a bimodal distribution, the occupa-
tion probability in the i-th layer can be eitherpi =q with

ABSORBING STATE PHASE TRANSITIONS WITH… PHYSICAL REVIEW E 69, 066140(2004)

066140-7



probability p or pi =1−q= q̄, with probability p̄ (we takeq
ø q̄). For isotropic percolation the critical point is located at
p=p̄=1/2, which follows from self-duality[43]. Since di-
rected clusters generally contain less bonds than the isotropic
ones, for directed percolation at the critical pointp,p̄. In
the strong disorder limit we takeq→0 in which case at the
critical point sp / p̄dc→1 as we shall show below. The effect
of the same type of disorder for isotropic percolation has
already been considered by one of us[43]. The reasonings in
the two problems are very similar and they lead to identical
critical properties. Therefore, here we just briefly describe
the method and emphasize the relations and differences be-
tween the directed and isotropic problems. For more details
we refer to the original Ref.[43].

The characteristic structure of the occupied bonds is very
different for the two types of layers. In layers with a large
probability, pi = q̄, almost all bonds are occupied, between
two unoccupied bonds there is a characteristic distance,l
,1/q. On the other hand in layers with a small probability,
pi =q, there are only very few occupied bonds; two occupied
bonds are separated by the same characteristic distance,l
,1/q. Note the duality: for layers withpi =q the nonoccu-
pied (say white) bonds play the same role as the occupied
(say black) bonds for layers withpi = q̄.

Now let us consider a system consisting ofr =1,2, . . . ,L
layers with free boundary conditions, with the seed atr =0
and determine the surface order-parameter,rssLd, which is
given by the probability that the percolating cluster extends
up to the other surface atr =L. To calculaterssLd we con-
sider strips of widthk=1,2, . . . ,L and estimate,nskd, the

typical number of sites in thek-th (i.e., surface) layer which
are connected to the seed. It is evident from the duality prop-
erties that fornskd@1 the probability that the seed is con-
nected to thek-th layer through white bonds is pwskd
,1/nskd, since typically one out ofnskd sites has this prop-
erty. We show by induction thatnskd is either zero or given
by nskd,q−Xskd, whereXskd.0 is the number of layers with
a probabilityq̄ minus the number of layers with a probability
q. First, our statement is trivially true fork=1. Herens1d
,1/2q [and thuspwskd,q], for p1= q̄ and ns1d=0, for p1
=q. Evidently, if in a given samplenskd=0 for somek,L,
thennsk8d=0 for anyk8.k and the surface order-parameter
is zero. To complete our proof, in the second step we show
that, if Xskdù1, then Xsk+1d=Xskd±1, where the upper
(lower) sign stands for a probabilitypk+1= q̄spk+1=qd. The
proof of this statement follows from the fact that forpk+1
=q the number of black bonds in the cluster at layerk is
reduced by a factor of,q, whereas forpk+1= q̄ the probabil-
ity pwskd is reduced by a same factor,q. Here, whenXskd
=1 andpk+1=q, thusXsk+1d=0 the cluster is considered to
be terminated at this point; thusrssLd=0.

To calculate the average value of the surface order-
parameter we use a random walk picture, which has already
been applied in the isotropic problem[43]. To a given sample
with a given probability distribution we assign a random
walk which starts at positionX0=0 and makes itsi-th step
upwards(downwards) for pi = q̄spi =qd. The position of the
walker in thek-th step is justXk. The existence of the finite
surface order-parameter in the given sample is then formu-
lated by the conditionnskd.0 for k=1,2, . . . ,L; thusXk.0
for k=1,2, . . . ,L so that the random walk has a surviving
character. The averagevalue of the surface order-parameter
is given by the fraction of samples with finite surface order,
which is just the survival probability of the random walk:
frsgavsLd, PssLd,L−1/2. From this relation the value of the
surface order-parameter scaling dimension,xs=1/2 follows,
which is the same as for the random contact process in the
strong disorder fixed point in Eq.(39). Note that the rare
events introduced in Sec. II B in this case are the samples
with a surviving characteristics in the probability distribu-
tion. Furthermore in the critical situation, when the average
surface order-parameter decays as a power withL the prob-
abilities, p=p̄, as announced before.

Other exponents can be deduced in an analogous way as
for isotropic percolation. The typical temporal extent of the
percolating cluster is given by the typical number of con-
nected sites in a layer,ji ,ntypsLd,q−Xtyp, where the typical
excursion of a(surviving) random walk inL steps isXtyp
,L1/2. Thus we have the logarithmic scaling relation in Eq.
(8) with c=1/2, as for therandom contact process. To cal-
culate the bulk order-parameter the seed is put in the middle
of the lattice and in a given samplersLd=Os1d if the perco-
lating cluster has an extent ofL. In the language of random
walks this property is related to the so called average persis-
tence[44]. From this, scaling of the average(bulk) order-
parameter is given byfrgavsLd,L−x, with x=s3−Î5d /4, as
for the random contact process in Eq.(37). Finally, to deter-
mine the scaling exponent of the order-parameter in the vi-
cinity of the critical point one should consider random walks

FIG. 1. Directed percolation on the square lattice with random
bond occupation probabilities, which are perfectly correlated along
the vertical diagonal direction. Occupied bonds are drawn in bold.
In the two columns on the left bonds are occupied with a large
probability q̄, while in the other three columns this probability is
small and equalsq. The typical length-scale in the problem isl
,1/q. The direction of time,t, is also indicated which gives a
reinterpretation of directed percolation in terms of a reaction-
diffusion model.
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with finite bias,dwÞ0, towards the absorbing walk andd
,dw. From the scaling of the surviving probability of biased
walks [34] one obtains for the correlation length,j',udu−2.
Thus we recover the same exponent,n'=2, as for the ran-
dom contact process in Eq.(34).

Hence we can conclude that the critical properties of ran-
dom directed percolation can be deduced from a random
walk mapping in the strong disorder limit. The critical be-
havior is the same as for random isotropic percolation and
corresponds to the RG results obtained for the random con-
tact process in the strong disorder fixed point.

C. The generalized contact process with disorder

So far we have considered different variants of absorbing
state phase transitions which, in the absence of disorder, all
belong to the directed percolation universality class. We ob-
served that in the presence of strong enough quenched dis-
order all these processes show strong disorder scaling behav-
ior with identical critical exponents. In this section we
consider other processes, which are not in the directed per-
colation universality class.

For a renormalization group treatment, one of the most
convenient models is the generalized contact process with
several different absorbing states introduced by Hinrichsen
[8]. In this model a site can be occupied by a particle,A, or
can be in one ofn empty statesØ1,Ø2, . . . ,Øn. Furthermore,
besides the rules known for the ordinary contact process,
there is a competition between the different type of empty
states. At the border of clusters with a different type of empty
states, particles can be created. As a consequence, in these
models, with increasingn there is a preference for the active
phase and the phase transitions is found to be in universality
classes different from the directed percolation one. Forn
=2, the model was shown to be in the parity conserving class
[8], whereas fornù3 the model is always active[45].

Here we consider in particular the effect of a disorder on
the model withn=2. For this case, the following processes
are allowed:

AA→ AØ1,AØ2,Ø1A,Ø2A, rate mi/2,

AØ1,Ø1A → Ø1Ø1; AØ2,Ø2A → Ø2Ø2, rate mi ,

AØ1,AØ2,Ø1A,Ø2A → AA, rate li ,
s43d

Ø1Ø2 → Ø1A,AØ2;Ø2Ø1 → Ø2A,AØ1, rate li .

For nonrandom couplings the phase-transition in one dimen-
sion is located atm /l=1.592 and the critical exponents are
n'=1.82,z=1.75,b=0.91 consistent with those of the parity
conserving universality class. Note that the Harris-type cri-
terion in Eq.(1) with the aboven' predicts a relevant per-
turbation for quenched disorder.

Next, for the random system we try to apply the renor-
malization group method along the lines used for the random
contact process in Sec. III A. We start with the decimation
scheme and consider the situation when the largest rate is a
branching rate, sayl2=V. As for the random contact process
we take the two-site Hamiltonian, which contains now 9

states, since each site could be in three(one active and two
different inactive) states, and calculate the lowest three
eigenstates along the lines presented in Appendix A for the
random contact process. Among the three lowest states,
which are kept after decimation, two have eigenvalues, 0,
and the third has an energye1

23.2m2m3/l2. Thus after deci-
mation we have an effective two-site cluster in the presence
of a renormalized death rate, which is given just in the same
form as in the random contact process; see Eq.(19). The
value of the effective death rate can be also obtained by a
similar argument as for the random contact process. In order
to calculate the decay fromAA→Ø1Ø1,Ø2Ø2 one should
consider two second-order virtual processes:AA→AØ1
→Ø1Ø1 and AA→Ø2→Ø2Ø2, which leads to Eq.(19) by
taking into account the definition of the rates in Eq.(43).

For the case of a strong elimination rate,m2=V, the three-
site Hamiltonian contains 27 eigenstates, which are divided
into 9 orthogonal sectors, each of which have 3 states. The
highest levels of each sector have an energy ofOsm2d and
thus can be discarded during decimation. The remaining 18
states, however, are all in the same order of magnitude.
Three sectors have ground state energy zero and first excita-
tion energy,l2+l3. Two other sectors have the lowest ener-
gies:

e2
123= †s7l2 + 4l3d ± Îs7l2 + 4l3d2 − 16l2l3‡/8, s44d

and in another two we should exchange in Eq.(44), l2 and
l3. Finally the last two sectors are also degenerate with the
lowest eigenvalues:

e3
123= f3sl2 + l3d ± Î9sl2 + l3d2 − 32l2l3g/4. s45d

Consequently the decimation does not work out here for a
large death rate, since(i) one can only discard 9 out of the 27
cell states, so that the remaining states cannot be assigned to
one renormalized site and(ii ) the remaining energy levels are
of the same order as the original rates; thus the energy scale
is not lowered during these steps. These features of the deci-
mation can be seen by the following argument, too. With a
large death rate,m2=V, the sitei =2 is almost always inac-
tive, so that it is either inØ1 or Ø2 most of the time. Suppose
we decimate this site and calculate the effective rate for a
process in which in the original lattice at sites 1 and 3 there
is A andØ1, respectively, which will change toA andA. In
the original bases this process can most easily be realized
throughAuØ2uØ1→AuØ2uA, which (i) has a ratel2 and (ii )
the effective rate does not depend on the fact that site 1 is
occupied. Consequently during renormalization new degrees
of freedom will appear and there is no systematic decrease of
the energy-scale.

Thus we can conclude that the renormalization group
scheme does not work for the generalized contact process.
Therefore, it is improbable that a strong disorder fixed point
with the scaling properties described in Sec. II B could be
present in this model for some finite value of the disorder.
The qualitative difference between the random contact pro-
cess and the generalized random contact process is due to the
competition between the different absorbing states in the lat-
ter model. For this case a large death rate indirectly promotes
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particle branching, since the active phase intrudes between
the different absorbing states. This is the reason why the pure
model is always in the active phase fornù3 [45]. This could
also be true for the random model.

IV. NUMERICAL INVESTIGATIONS

Here, we discuss the results of two numerical approaches
which allow us to investigate the disordered contact process
as a function of disorder strength. In this way, we will be
able to show that the predictions made in the previous sec-
tion are consistent with the numerical results provided the
disorder is strong enough. However, we also find that there is
a regime at small to intermediate disorder in which the criti-
cal exponents deviate from the strong disorder ones and in-
deed seem to vary continuously. This is evidence for a line of
fixed points. However, the numerical results available do not
allow us to decide whether these are ordinary disorder fixed
points (finite z) or strong disorder ones(infinite z).

A. One-dimensional random contact process

In our numerical work, we investigated the particular case
for which the ratemi =1 and the branching rateli is distrib-
uted according to

Rsld = fdsl − l+d + dsl − l−dg/2, s46d

with l±=expsA±ÎDd. The main advantage of this distribu-
tion is that it allows an exact average over the disorder to be
made, at least on lattices that are not too large. For this
choice ofRsld the average value of lnl equalsA whereas
the variance isD. These can therefore be considered as suit-
able parameters to measure the activity and the disorder, re-
spectively.

1. DMRG studies

The density matrix renormalization group(DMRG)
method is a numerical technique that was originally intro-
duced to investigate the properties of quantum spin or fer-
mion systems. The method allows a precise determination of
the properties(energy, magnetization profiles, correlations,
. . .) of the ground state and low lying excitations of such
models. The method is most successful in one dimension.
Given the formal similarity between quantum systems and
stochastic ones, several groups started to apply this technique
to interacting particle systems in recent years[23,45]. The
method is now known to work well also in these cases
though it cannot give as accurate results as for the spin
chains, mainly because at this moment algorithms to diago-
nalize non-Hermitian matrices are not as well developed as
those for the Hermitian case.

In our DMRG work we made calculations for systems
with up to L=24 sites. ForLø14 we were able to perform
an exact average over all possible realizations of the disorder.
For the larger systems sizes we considered typically around
104 disorder realizations. These calculations were possible
for Dø2. For largerD-values, we encountered numerical
difficulties in the DMRG algorithm.

In any finite system, the stationary state of the contact
process is the absorbing state, i.e., the lattice without any
particles. In order to study the absorbing state phase transi-
tion within finite systems, we therefore worked with open
boundaries and put the death rate at the most right site of the
lattice, mL, equal to zero. This ensures the presence of par-
ticles in the stationary state. It can be expected that for large
enough systems and for sites that are deep in the bulk the
effect of this boundary will be negligible.

Using the DMRG we then first calculated the ground state
of the generator(18) with open boundaries. Within this
ground state we calculated the density profile, i.e.ri
=fknilgav.

In order to determine the location of the critical point and
the critical exponentsx, xs, andn' we investigated in detail
the behavior ofrs=r1 (surface density) and rL/2 (which we
took as our estimate for the bulk density) as a function of the
parametersA andD.

A major problem of the contact process in comparison
with several well studied disordered quantum spin chains is
that in the present case the location of the critical point is not
known exactly. The numerical inaccuracy in the location of
the critical point will in its turn influence the accuracy by
which critical exponents can be determined.

To locate the critical point we investigated the quantity

YL =

d ln
dr

dL

d ln L
. s47d

For a homogeneous system,r reaches its largeL-value ex-
ponentially fast away from the critical point, and as a power
law at the critical point[see(2) and(3) which are the same in
the stationary state]. As a consequenceYL goes to −̀ for a
noncritical system and to −s1+xd at criticality. We can there-
fore expect that in a finite system, the quantityYL goes
through a maximum as a function ofm /l from which one
can obtain a finite size estimate of the location of the critical
point and ofx. In this way we have obtained the critical
value ofA, denoted asAc for different values of the disorder
strengthD and for differentL-values. An extrapolation for
L→` then gives our final estimates forAcsDd. The data for
the surface densityrs can be analyzed in a completely simi-
lar way and give an independent estimate for the location of
the critical point. From the analysis in Sec. II, we expect that
for D→`, the critical point obeysfln mgav=fln Jgav which
for the present case leads to the prediction of the exact loca-
tion of the critical point, atAc=lnÎ8=1.0397. Unfortunately,
we are not able to investigate very largeD-values and hence
could not verify this prediction.

To determine the stationary state critical exponents we
next made scaling plots for the density and the surface den-
sity assuming(2) (taking t→`). In Fig. 2 we show such a
scaling plot for the density and forD=0.25 andAc=1.19.
From this we obtainx=0.24 andn'=1.25. Data for the bulk
and surface density for other values ofD can be analyzed in
a completely similar way and they give rise to the DMRG
estimates for the exponentsxs and x as shown in Fig. 3 of
Ref. [31] and Fig. 6, respectively. From these we see thatxs
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assumes the value predicted for the strong disorder fixed
point atD*1.5. For smallerD-values,xs decreases continu-
ously starting from its value for a homogeneous contact pro-
cess(xs<0.669[32]).

A rather similar behavior is found for the bulk exponentx.
For increasingD, its value decreases from that for the ho-
mogenous contact process,x<0.252, to a value ofx<0.2 in
the region 1.5øDø2. Here it has to be remarked that since
the DMRG can only be performed for systems withL up to
24, it may very well be that our estimate of the bulk density
r is still influenced by the boundary conditions which we had
to choose, and this may very well be the reason why the
exponentx reaches its value at the strong disorder fixed point
more slowly.

The exponentn' is even more difficult to estimate since
its value is very sensitive to the precise location of the criti-
cal point. The values that we have determined are only rough
estimates. We find that the value ofn' increases from the
pure system value with increasing disorder, and equals
1.67±0.08 atD=1.5.

The exponentz, or in case of a logaritmic scalingc, can
in principle be determined from the distribution of the gap in
the spectrum of the generator(18). Using the DMRG, we
therefore also calculated the distribution of gap sizes for dif-
ferent system sizes. In Fig. 3 we show the results of such an
analysis at the critical point and forD=0.5. In the upper
graph we show a plot assuming ordinary scaling and the
value z=2, while in the lower part we have assumed loga-
rithmic scaling andc=0.35. As can be seen from this figure,
the DMRG-results do not allow us to discriminate between
the two types of dynamical scaling. A similar conclusion
holds for otherD-values.

2. Monte Carlo simulations

In an attempt to reach bigger system sizes and to get
independent estimates for the exponents we also performed
extensive numerical simulations taking a single seed particle
as an initial condition. In order to have a good comparison
with DMRG-data, we again put all death rates equal to one,
while the branching rates are distributed according to(46).
For various values ofD and A we calculated the survival
probability Psstd, the total number of particles in the system
Nstd as well as their average spreadR2std. We typically simu-
lated up tot=105 and took an average over 23104 disorder
realizations. For each of these realizations we simulated one
history of the stochastic process. In performing the simula-
tions starting from one seed particle at timet=0, there can be
at most 2t+1 occupied sites in the lattice after timet. In our
simulations the size of the system grows with time to take
account of this. So in fact, we can say that we simulate an
infinite system, at least for the particular initial conditions
chosen. For largeD-values, it is difficult to obtain reliable
simulation data since the dynamics becomes extremely slow.
For this reason we are not able to explore values ofD that
are much larger than<1.5.

To analyze our data we first have to determine the loca-
tion of the critical pointAcsDd. While in homogeneous sys-
tems the critical point is the only one characterized by a
power law decay ofPsstd, the same is not true in a disordered
system as first pointed out by Bramson, Durrett, and Schon-
mann[17]. Power law behavior can indeed be found in the
whole subcritical regime and is a manifestation of the pres-
ence of a Griffiths phase. Still, we expectNstd to increase
aboveAc and to decrease below criticality. In this way we
obtain a first estimate of the location of the critical point. A
second criterion which we used is that both for conventional
and for strong disorder scaling, at criticality, lnP/ ln N be-
comes a constant asymptotically. In Fig. 4 we show a typical
set of data for this quantity taken atD=0.5. From these we
determineAcs0.5d=1.177. The values for the critical activi-
ties which we find in this way are close(approximately
within 1%) to these found from the DMRG.

FIG. 2. Scaling plot of the particle density atD=0.25 assuming
Ac=1.19,x=0.24, andn'=1.25. The different symbols indicateL
=12shd, L=14ssd, L=16snd, L=18s,d, L=20sLd, L=22svd, and
L=24sxd.

FIG. 3. Test of dynamical scaling form forD=0.5,Ac=1.19. In
the upper graph, we have assumed ordinary dynamical scaling with
z=2.0, while in the lower graph we used logarithmic scaling with
c=0.35. The different symbols correspond withL=18s,d, L
=20snd, L=22ssd, andL=24shd.
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In Fig. 5 we present log–log plots for the three quantities
of interest at the critical point withD=1. These results are
typical also for the otherD-values investigated.

As can be seen there is still some curvature visible in
these figures, which could e.g. arise from the logarithmic
corrections which are ubiquitously present in these kind of
random “quantum” systems. Yet, the late time part can be
fitted quite well to a power law from which we can deter-
mine estimates of the exponentsx andz as a function ofD.

Our results for these exponents are presented in Figs. 6 and
7, respectively.

We notice two interesting trends. First, we observe a de-
crease ofx from its homogenous system value to a value that
is consistent with that at the infinite disorder fixed point. The
numerical values are moreover consistent with those found
from the DMRG. Second, we observe that the dynamical
exponentz seems to make a jump as soon as any disorder is
present after which it increases withD. These results are then
consistent with the idea of a line of ordinary(disorder) criti-
cal points which ends at some critical value of the disorder
above which exponents assume precisely the values of the
strong disorder fixed point.

In a regime governed by strong disorder fixed points we
expect that the dynamical quantities do not follow a power
law but scale logarithmically, i.e., as given in(13). Indeed
such a behavior was found in the simulations ind=2. [15]
We found that this kind of scaling can also describe our

FIG. 4. Plots of lnPstd / ln Nstd as a function of lnt at D=0.5
and forA=1.179, 1.177, and 1.175(top to bottom). From this, we
estimateAc=1.177.

FIG. 5. A plot of the survival probabilityPsstd, the number of
particlesNstd and their average spreadR2std (bottom to top) as a
function of t for D=1, Ac=1.171.

FIG. 6. A plot of the exponentx versus disorder strengthD. The
different symbols indicate the results obtained from the DMRG
(squares), and the simulations assuming ordinary scaling(circles)
and logarithmic scaling(triangles). We also indicate the values for
strong disorder(dotted line) and for the homogeneous system
(dashed line).

FIG. 7. A plot of the exponents 1/z (squares) andc (circles) as
a function of disorder strengthD.
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results for allD-values investigated. Assuming strong disor-
der scaling, we can determine estimates for the exponentsx
and c. These values are also shown in Figs. 6 and 7. We
notice that the values for the exponentx are not very sensi-
tive to the type of scaling that we assumed. We also observe
that the exponentc seems to increase towards its value ex-
pected at the strong disorder fixed point, i.e.c=1/2.

We can thus see that, as was for the case for the DMRG,
it is not possible to rule out from the numerics that there is a
line of strong disorder fixed points in the model. When we
compare the estimates for the dynamical exponents coming
from the two numerical approaches, we find that those for
the logarithmic corrections are more self-consistent. There is
a rather large discrepancy between thez-values as found
from the DMRG and the simulations. This could be due to a
lack of asymptoticity in time for the simulations and in size
for the DMRG. Assuming logarithmic scaling, the values
which we find from the two approaches are almost the same.
The existence of a line of strong disorder fixed points was
not found so far in real quantum systems and could be an
essential new feature of stochastic models. Yet, at present we
have no theoretical underpinning for the existence of such a
line of disorder fixed points. Further numerical studies are
needed to obtain more insight on this point.

B. Two-dimensional random contact process

As already remarked above, in the second paper of Ref.
[15], the logarithmic scaling(13) was first observed in the
two-dimensional contact process with dilution where it was
dubbed “violation of scaling.” In the present work we have
shown that this kind of scaling is the natural one to be ex-
pected at a strong disorder fixed point. In Ref.[15] it was
assumed that the logarithmic scaling holds for all values of
the dilution, which here we will denote byp. Since we do not
have the original dataset, it is not possible to investigate
whether the data of these authors are also consistent with
ordinary scaling in the smallp-regime. From the numerically

determined values ofū, h̄, and s̄ it is however possible to
determine values for the exponentsx and c in the two-
dimensional case. The results are shown in Fig. 8.

These numbers can now be compared with those expected
to hold at the strong disorder fixed point of the RTIM in two
dimensions, which arex=1.0 andc=0.42. Note that for the
largest disorder value, the exponentc is very close to this
value. The exponentx seems larger than expected. However,
in this respect it is interesting to remark that the authors of
Ref. [15] notice that the data onNstd are consistent with
ordinary scaling but withh=0 or with logarithmic scaling
and a very small value ofh̄. This is consistent with our ideas
which predict that at the strong disorder fixed point ind=2
and for x=1, h̄ equals zero. Hence, we believe that also in
two dimensions the strongly disordered contact process is in
the same universality class as the RTIM.

V. CONCLUSIONS

In this paper, we have investigated the effect of quenched
disorder in the transition rates on the critical behavior of

some models with absorbing state phase transitions. For
models in the directed percolation universality class, we have
given convincing evidence that, if the disorder is large
enough, the universal behavior is that known from the RTIM
and some other disordered quantum spin chains. This result
follows from calculations using a strong disorder renormal-
ization approach and is consistent with numerical results in
one dimension obtained with the DMRG and simulations. A
reanalysis of data for a diluted contacted process in two di-
mensions is also consistent with this conclusion. It therefore
seems that the effects of strong disorder lead to a new kind of
universality between Hermitian and non-Hermitian quantum
models.

For a weak and intermediate disorder our numerical re-
sults indicate the existence of a line of fixed points with
continuously varying exponents. Such behavior has been
found previously in some quantum spin chains[46]. Most
interestingly, our data could be consistent with a scenario in
which this is a line of strong disorder fixed points. Such a
behavior is also consistent with data obtained by Moreira and
Dickman on a two-dimensional diluted contact process. Fur-
ther simulations are needed to confirm this picture. It would
be especially interesting to develop techniques that can effi-
ciently simulate these kinds of systems for sufficiently large
disorder and long enough times. Moreover, it would be very
interesting to investigate whether the behavior that we find
can also be seen for distributions of the transition rates dif-
ferent from the ones that we used in our simulations. If the
logarithmic dynamical behavior can be demonstrated, it be-
comes a challenge to understand such behavior from analyti-
cal or RG arguments.

For absorbing state phase transitions in other universality
classes we have fewer results. Our RG calculations indicate
that for the generalized contact process with disorder, it may
be possible that the model is always active, also forn=2.
This prediction should be verifiable with simulations.
Whether this result also holds for other models in the same
universality class is not clear yet. We believe that the effect
of quenched disorder on absorbing state phase transitions in

FIG. 8. Values for the exponentsx(squares) andc(circles) as a
function of dilution p assuming logarithmic scaling. The values in
this table are ford=2 and are determined from the numbers given
in Table I of the first paper in Ref.[15].
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particular, and on stochastic many-particle systems in gen-
eral, provides an interesting field of future research.
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APPENDIX A: DECIMATION FOR THE RANDOM
CONTACT PROCESS

When the branching rate between two sites(say 2 and 3)
is the largest rate in the system, we consider the Hamiltonian
(18) restricted to these two sites and with free boundary con-

ditions. This operator can be represented by the matrix

HCP
23 =1

0 − m3 − m2 0

0 m3 + l2 0 − m2

0 0 m2 + l2 − m3

0 − l2 − l2 m2 + m3

2 . sA1d

In the limit m2/l2→0 andm3/l2→0 the eigenvalues are 0,
0, l2, l2. The degeneracies disappear for finitem2/l and
m3/l. Discarding the two highest energy levels, the gap be-
tween the remaining two lowest states can be calculated per-
turbatively leading to

ECP
23 =

2m2m3

l2
. sA2d

Now keeping in mind that a one-site cluster with a death rate
m̃ has a gapm̃ we obtain for the renormalized death rate,
m̃2=ECP

23 , as announced in(19).
When the largest rate is a death rate, saym2, one considers

a three site cluster whose Hamiltonian(free boundary condi-
tions) is represented by the matrix

HCP
123=1

0 − m2 0 0 0 0 0 0

0 m2 + l2 + l3 0 0 0 0 0 0

0 0 l2 − m2 0 0 0 0

0 − l2 − l2 m2 + l3 0 0 0 0

0 0 0 0 l3 − m2 0 0

0 − l3 0 0 − l3 m2 + l2 0 0

0 0 0 0 0 0 l2 + l3 − m2

0 0 0 − l3 0 − l2 − l2 − l3 m2

2 . sA3d

The corresponding eigenvalue problem is reduced to the di-
agonalization of four 232 matrices. In each subspace there
is an eigenvalue ofOsm2d, which is discarded. Of the remain-
ing four lowest eigenvalues there are two zero and two with
the value

ECP
123=

l2l3

m2
. sA4d

If we keep in mind that in a two-site cluster with an effective

branching ratel̃ the spectrum is given by 0, 0,l̃, l̃ we

obtain for the renormalized ratel̃=ECP
123 the result stated in

(21).

APPENDIX B: SOLUTION OF THE RG EQUATIONS
AT THE CRITICAL POINT

We look for a special solution of(25) and (26) (in the
fixed pointV→0) of the form

RsJ,Vd = RsV,VdSV

J
D1−RsV,VdV

, sB1d

Psm,Vd = PsV,VdSV

m
D1−PsV,VdV

. sB2d

Substituting(B1) and (B2) into (25) we get

d ln R̃

dV
−

dVR̃

dV
ln

V

J
+

1 − VR̃

V
= P̃ − R̃− VR̃P̃ ln

Vk

J
k−VR̃,

sB3d

where we used the notationsP̃sVd; PsV ,Vd and R̃sVd
;RsV ,Vd. For a moment we setk=1. After a trivial rear-
rangement, we obtain the relation
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FVR̃P̃ −
dVR̃

dV
GFln

V

J
−

1

VR̃
G = 0, sB4d

which leads to the ordinary differential equations

dR̃

dV
= −

R̃

V
+ P̃R̃, sB5d

dP̃

dV
= −

P̃

V
+ P̃R̃. sB6d

These equations which hold just fork=1 can be solved
for general(nonsymmetric) distributions[39]. The solution
gives information about the singular behavior of the system
outside the critical point, i.e., in the Griffiths phase. This
general solution, however, does not apply forkÞ1. On the
contrary, the solution at the fixed point, whenRsJ,Vd and

Psm ,Vd are identical, thusR̃= P̃, holds for any finitek.0.

Indeed, in terms of the variable,y=R̃V= P̃V, and the log-
energy scale,G=−ln V, we obtain the differential equations

dy

dG
+ y2 = 0, sB7d

with the solution

y = R̃V = P̃V =
1

G − G0
=

1

lnsV0/Vd
, d = 0. sB8d

HereG0=−ln V0 is a reference(log) energy scale. Now, go-
ing back to(B3) we can see that at the fixed point the actual

value of k does not matter. The termk−VR̃→1 and

ln k / lnsV /Jd,kR̃V→0.

APPENDIX C: THE RANDOM TRANSVERSE-FIELD
ISING MODEL AND ITS DECIMATION RULES

The prototype of random quantum systems is the random
transverse-field Ising model which is defined by the Hamil-
tonian

H = − o
ki,jl

Jijsi
xs j

x − o
i

hisi
z. sC1d

Here the sum runs over nearest neighbors andsi
x, si

z are
Pauli matrices at sitei. The exchange couplingsJij and the
transverse-fieldshi are independently distributed random
variables with distributionspsJd andrshd, respectively. The
Hamiltonian in Eq.(C1) in one dimension is closely related
to the transfer matrix of a classical two-dimensional layered
Ising model, which was first introduced and studied by Mc-
Coy and Wu[47].

In the renormalization scheme we have the following
decimation relations. If the largest term in the Hamiltonian is
a coupling, sayJ=V, then the two sites connected byJ and
having transverse fields,h and h8 and momentsm and m8,
behave as an effective composite cluster with momentm̃ in a

renormalized transverse field,h̃, which are given by

h̃ =
hh8

J
, m̃= m+ m8. sC2d

On the other hand, if the largest term is a transverse field, say
h=V, then the site with this transverse field gives a negli-
gible contribution to the(longitudinal) magnetic susceptibil-
ity, thus can be decimated out. This leads to a renormalized
coupling between the nearest neighbors of the decimated site
that is given by

J̃ =
JJ8

h
, sC3d

which is related to(C2) through duality.
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