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Quenched disorder—in the sense of the Harris criterion—is generally a relevant perturbation at an absorbing
state phase transition point. Here using a strong disorder renormalization group framework and effective
numerical methods we study the properties of random fixed points for systems in the directed percolation
universality class. For strong enough disorder the critical behavior is found to be controlled by a strong
disorder fixed point, which is isomorph with the fixed point of random quantum Ising systems. In this fixed
point dynamical correlations are logarithmically slow and the static critical exponents are conjecturedly exact
for one-dimensional systems. The renormalization group scenario is confronted with numerical results on the
random contact process in one and two dimensions and satisfactory agreement is found. For weaker disorder
the numerical results indicate static critical exponents which vary with the strength of disorder, whereas the
dynamical correlations are compatible with two possible scenarios. Either they follow a power-law decay with
a varying dynamical exponent, like in random quantum systems, or the dynamical correlations are logarithmi-
cally slow even for a weak disorder. For models in the parity conserving universality class there is no strong
disorder fixed point according to our renormalization group analysis.
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I. INTRODUCTION walk with even number of offsprinff,7] and the generalized

Nonequilibrium many-particle systems are often de-Contact process with two different absorbing stqgsMost
scribed by stochastic models in which some degrees of fredecently reaction-diffusion models with multiple branching
dom with fast relaxation behavior are integrated out and ar@nd annihilation processes were also intensively sti@jed
replaced by a noise term, which may represent thermal opandpile models with conserved energy can also be related
quantum fluctuations, chaotic motion, etc. The classificatiof0 absorbing state phase transitigas].
of steady states of these nonequilibrium models is an impor- Quenched, i.e. time-independent, disorder is an inevitable
tant task and we are currently witnessing considerable thedeature of many real processes and could play an important
retical progress in this field. Of particular interest are system&0le in stochastic particle systems too. As an example, it has
that in the steady state show long-range spatial and temporfen argued that due to the presence of some form of disor-
correlations, as is the case when they are in the vicinity of &ler the directed percolation universality class has not yet
nonequilibrium phase transition point. A special type of thesdeen seen in real experimeijfd], such as in catalytic reac-
are the transitions between an active phase and an inactif@ns [5], in depinning transition§12], and in the flow of
one where the particles are absorbed into a state witho@ranular matteff13] (for a review, seg11]). In stochastic
fluctuations. These absorbing state phase transitions play &&rticle systems, disorder is represented by position depen-
important role in physics, chemistry, and even biol¢#)2]. dent reaction rates and its relevance can be expressed in a

Classification of absorbing state phase transitions hal+1)-dimensional system by a Harris-type criterids],
shown that the universality class of directed percolation is
particularly robust. It contains models with a scalar order v, <2/d. (1)
parameter, absence of conservation laws, and short range in-
teractiong 3]. Well known models with a phase transition in Here v, is the correlation length exponent in the spatial di-
this universality class are the contact procgésand the rection of the pure system. Indeed for directed percolation at
Ziff-Gulari-Barshad model of catalytic reactiof§]. When  anyd<4 dimensions the disorder is a relevant perturbation.
there is a conservation law present, other universality classes The new, random fixed points, which control the critical
can appear, the best known of which is the parity conservingpehavior of absorbing state systems with quenched disorder
class[6] which includes the branching—annihilating randomhave been studied in different papers and their properties are
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found in some respect to be unconventiofied—19. Early  els in different(nonrandon universality classes. The RG
numerical studies by Noegt4] on random cellular automa- predictions are then confronted with the results of extensive
ton models in the directed percolation universality class imumerical calculations, which are performed by density ma-
one and two dimensions have shown considerable change @fx renormalization(DMRG) and by Monte Carlo(MC)

the critical exponents in comparison with the pure system'simulations. A short account of our results has been pub-
values. In more recent studig¢s5] of the two-dimensional |ished in a Lettef31].

contact process with dilution, logarithmically slow dynami-  Tne structure of the paper is the following. General nota-
cal correlations were found. These could be related to th§ons apout scaling theory at absorbing state phase transi-

results of a field-theoretical investigation by Jans¢®®l, jons hoth at conventional and strong disorder fixed points,
according to which the renormalization group equations haV%Lre given in Sec. Il. The method of strong disorder renormal-

only runaway solutions. Interestingly the exponents, assoCk, o400 group is explained in detail in Sec. IIl, where it is

ated with the logarithmic time-dependence of different dy- : . o
namical quantities were found to be disorder dependent. Th%pphed to the random contact process and to its generaliza

absorbing phase was found to have properties similar to thato" with two d'ff.efe”t absorpmg states. R?SUHS on random
of a Griffiths phase and shows power law behavior with non- irected percolatlon are obtameq by mapping onto a random
universal exponentgl5,17,18. The static critical behavior Walk- Sec. IV contains a comparison of these analytical pre-
of the model has been explored less, but exponents=id dictions Wl_th res_ults of numerical calculations on th_e one-
have been determindd5]. and two-dimensional contact process. Our conclusions are

In the present paper we revisit the problem of absorbing’resented in the final section, and some technical details are

state phase transitions in the presence of quenched disord8fven in the Appendixes.
In this study we make use of the formal analogy between
quantum systems and the “Hamiltonian” operator formalism Il. SCALING AT ABSORBING STATE PHASE
[20,27 of stochastic processes. Although the latter operators TRANSITIONS
are generally non-Hermitian, techniques developed in the , .
study of quantum spin systems can often be successfull& In the models that we consider here each sifeof a
applied[21-24. -d|men5|onall lattice is either vgcaﬁﬁ) or occuplled.by at
In the theory of random quantum spin systems, recently0St one particléA). The dynamics of the model is given by
considerable progress has been made in understanding thai€ontinuous time Markov process and is therefore defined in
low-energy(or long time, long distance behavior. In particu- terms of transition rates. The r.eac.tlons in the _system are
lar, the use of a real space renormalization grg®e)  Pasically of two types(a) branching in which particles are
method, originally introduced by Ma, Dasgupta, and[g5]  Ccreated at empty sitgprovided one of its neighbors is oc-
has led to many new, partially exact results and hagupied occurs with rate\;, and death of particles with a rate,
given—at the same time—new physical insight into the/- The average number.of particles at sitat a given time
problem[26]. Subsequent analytical and numerical work hadt is denoted by(m)(t). This system evolves to a stationary
provided further important results, in particular for one-state in which averages become time independent. In this
dimensional systemi26—29. One new concept which has state, if the average value of the branching rates compared
emerged from these studies is the existence of strong disowith the average value of the death rates is sufficiently large,
der fixed points in which the disorder plays a completelya finite fraction of sitesp=L"'Z(n;) >0, is occupied and the
dominant role. This property is manifested by the fact thaisystem is in the active phase. In the opposite situation, i.e.
during renormalization, the distribution of the random pa-when the average value of the branching rates is relatively
rameters(couplings, transverse fields, etbroaden without small, thenp=0 and the system is in the inactive phase. The
limits and therefore the RG treatment becomes asymptotitwo phases described above are separated by a phase transi-
cally exact. tion point, which is located aA=A_, whereA is a suitably
Having the close similarity between quantum systems andefined control parameter. In the homogeneous system with
the Hamiltonian description of stochastic processes, ong;=u and\j=\ we haveA=u/\.
might ask the question if the concept of strong disorder fixed
point applies for the latter in the presence of quenched dis- A. Conventional scaling behavior
order. For what is perhaps the simplest stochastic process, o o .
the random walk, the answer is positive. Sinai diffusji2l, _In the vicinity of the nonequilibrium phase-trans_|t|0n
which represents a particular type of random walk in a ranP0int, where the reduced control paramefsi(A—Ag)/A is
dom environment, can be interpreted as a realization of §Mall, generally anisotropic space—time scaling symmetry
strong disorder fixed point. Indeed RG methods have beefjolds. The order-parametgs(6,1/t,1/L), as a function of a
successfully applied to explore new exact properties of thiinite time-scalet, in a large finite system of size, scales
procesg30]. under changing lengths by a factor-1, L'=L/b, as[2,3]
While the Sinai diffusion obeys detailed balance, most of — X v W2
the stochastic particle systems do not. Therefore it is particu- p(&, L1, L1L) =b7p(ob7, b bIL). @
larly interesting to know if quenched disorder could have aHere the critical exponentg, v, andz have the usual defi-
similar effect on the latter problems, too. In this paper we aranitions: the correlation length, in the spatialthe relaxation
going to study this issue in detail. In particular we investigatetime t, or the correlation lenghg, in the temporal direction
the applicability of the strong disorder RG scheme for mod-diverges ast, ~ |8 ™(t,=&~|8™)) and the anisotropy or
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dynamical exponent is defined as v,/ v, . Taking the scal- B. Strong disorder scaling
ing parameteb=45"+ we have in the thermodynamic limit,
1/L=0 and in the stationary statg/t=0), p(5) ~ &° with the

order-parameter exponeAtxv, . For a surface site one de-
fines the surface order-parametey, the scaling behavior of
which is the same as in Eq2) but involves the surface

Strong disorder fixed points were observed so far in ran-
dom quantum systems as well as in Sinai diffusion. Here we
suggest that the same type of fixed point can also exist in
absorbing state phase transitions and we introduce the corre-
. . ) . sponding scaling theory, which is based on two ingredients
scaling dimensiony, instead of the bulk exponentso that |34 First, at a strong disorder fixed point the dynamical
po(9) ~ &% with Bs=xe, [32]. behavior is ultraslow. The characteristic length-scaleis

The dynamical behavior of stochastic systems is related tp,|5ted to the logarithm of the characteristic time-scales
the scaling properties of the characteristic tifpewhich in

the Hamiltonian formalism is given by the inverse of the &~Int,; (8)
smallest gapge. In a conventional fixed point we have the
relation thus the dynamical exponers, is formally infinity. Second,

vz ol Lz . the average value of quantities related to the particle occu-
(6,11, 11L) = be(ab'" bt bIL); ) pation number are dominated by so callege events(or
thus in a finite system the appropriate scaling combination i§are regions of a large sampldn a rare eventn)=0(1),
el thusL independent, whereas intgpical realization{n;), is

The autocorrelation functiorG(s,1/t,1/L)=(n;(t)n;(0)),  generally exponentially small ih.. The fraction of rare
which, at least for a homogeneous system, is independent events,f, is decreasing with the size, At the critical point
the position of a particle in the bulk, has the scaling behaviowe can write for it the scaling transformation:
at the transition point:

f(1/L) =b™f(b/L); 9)
G(6=0,14,1/L) =b 2G(5=0,b%t,b/L). (4)

thus with b=L we havef~L™. The average value of the
particle density is indeed dominated by the rare events; thus

=2z
G(t) ~ 7=, ) ) ) p~f, and the order-parameter at the critical point satisfies
In a MC simulation one usually starts with one seed-,, scaling transformation:

particle in the origin of an empty lattice and measures the
survival probability at the originPg, the total number of p(8,1/In t,1/L) = b (b2, b¥/In t,bIL). (10)
particles present in the systeid, and the mean-square dis-

tance of the particles from the origifR?. For the contact One can see that the static exponegsxr, andB=xgv,
process it can be show8,33 that in the long time limit, the  are given by the same expressions as in the case of ordinary
survival probability equals the local order parameter. Thisscaling. (We shall explicitly show the construction of rare
“duality” relation also holds in the disordered case. Moreevents for random directed perco|ation in Sec. Il B 2.

generally, it is expected that if there is only one absorbing pue to the ultraslow dynamical behavior the scaling rela-
state, the two quantities are expected to obey the same sc&bn (3) is modified into

ing behavior{2]. Thus from Eq(2) we then immediately get
P«(8, 1/, 1/L) = b™Py( b+ bt b/L). (5)

For b=t we obtain at the critical poinfPg(t) ~t=? with 6 thus in a finite system the appropriate scaling combination is
=x/z=B/(v,z). Generally we haveG(t)~P§(t). The total (In eL”. ) .
number of particles is proportional to the integral of the To calculate the average autocorrelation function one

density—density correlation function and obeys the scalinghould keep in mind that disorder in the time-direction is
relation trictly correlated; thus in a rare event the autocorrelation

function is of O(1) and (almos) zero otherwise. Thus the
N(8, 1/, 1/L) = b 2N(sb"+,b%t,b/L). (6) average autocorrelation function is proportional to the frac-
tion of rare eventsz~ f, and scales at the critical point:

Here, takingb=t? we obtain in the thermodynamic limit

In e(8,1/Int,1L) =b ¥In (b1, b%/In t,b/L); (11)

It therefore behaves at the critical point &) ~t”, with »
=(d-2x)/z Finally, R? scales similarly a$?: G(6=0,1/Int,1L) =b~G(8=0,b%In t,b/L). (12)

2 — h2p2 1/v z
RY(8, 1/, 11L) = b"RA(b™+, b, b/L), (7 Thus in the thermodynamic limitG(t) ~ (In t)™¥. We can

and at the critical point we hav@?(t) ~t%Z We note that in also determine the scaling behavior of other dynamical quan-
the general situation, i.e., when several absorbing states efities such a®s, N, andR?, in the strong disorder fixed point
ist, the scaling relations in Eq&5)—(7) involve a new expo- N @ similar way. It is therefore sufficient to replace in the
nent,x’, instead ofx. conventional scaling relations in Eq®)<7) t by Int andz

For further comparisons, we quote the current estimateBY #- AS a consequence the time-dependence of the dynami-
of the various critical exponents for the case of the homoge¢@l quantities will also be logarithmic at the critical point:
neous, one-dimensional contact proc¢®s32: x=0.2524, -
v, =1.0972,z=1.582 andx;=0.669. P(t)~(nt)™% 6o=x1y,
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N(D) ~ (In 07, 7= (d- 2X)/4, lIl. THE RENORMALIZATION GROUP FRAMEWORK
5 _ 13 In this section we apply a real space renormalization
Rt ~ (In )7, o=2/4. group method for random stochastic particle systems, which

) ) o is a variant of the Ma-Dasgupta-Hu method originally devel-
This type of Ioganthmp time dependen_ce has be(_en observe&bed to study random quantum spin chdi2§]. The essence
by Dickman and Moreirg15] by analyzing numerical data of the method can be summarized in the following points.
on the diluted 2d contact process, and were interpreted as a (j) sart with the initial distribution of the random reac-
“violation of scaling.” The measured exponertisy, ando tion rates,Pi,(x) andRj,(\) and sort the rates in descending
were found to be dilution, i.e. disorder, dependent. order. The largest rate, i.e. the fastest process, sets the energy
In the following, using a real space renormalization groupscale,(}, in the problem.
method we(i) shall give a natural explanation of the ob- (i) Integrate out the fastest local process, i.e. eliminate
served logarithmic time dependence aiid shall calculate  the rate,(). This amounts to decimate out one site of the
the critical exponents, which—in the one-dimensionallattice or to replace a pair of sites with a new effective one.

case—are presumably exact. Renormalized couplings are then determined using a second
order perturbation calculation. It is interesting to remark that
C. Scaling in the Griffiths-phase for stochastic systems this step corresponds to a fast rate

. . o expansion as discussed in Sec. 4.3 of R2f].
~ In a disordered nonequilibrium system, which is globally i) |terate the decimation process. This will result in a
in one stationary phase, say in the nonactive phase withaqyction of the energy-scal€, and a modification of the
6>0, there are specific local regions of sike in which  gistribution of the(effective) rates:P(x, Q) andR(\,€).
strong fluctuations of the local rates prefer the existence of (iv) At the fixed point of the transformatiofwhich is at
the other phase, say the active phase. These rare regiong- " =) the distributions of the rates become singular and

which are localized and have an exponentionally small probgom these singularities the value of the critical exponents
ability of occurrencep(lc) ~exp(-alc), contribute to an ex- 5.0 calculated.

ponentially large relaxation img35], t,~exploly). (In a In the following we construct and solve the RG equations
d-dimensional syster, should be replaced bif.) Then the  expiicitly for the random contact process.

distribution of large relaxation times has an algebraic tail:

p(t) ~t- Y271 with 1/z =B/o and the average autocorrela- A. The random contact process

tion function:
1. The Hamiltonian formalism

1 In the contact process each site of the lattice can be either
G ~ f dtrp(t)exp(=/t;) ~ t (14) vacant(d) or occSpied by at most one partidl8), and thus
can be characterized by an Ising-spin varialbtes 1 for @
also decays algebraically. Consequently in this so calleéindo,=-1 for A. The state of thesystem is then given by the
Griffiths phase[36] dynamical correlations are quasi-long- vectorP(o,t) which gives the probability that the system is
ranged, whereas spatial correlations are short ranged. The the stater={...,o;, ...} at timet. A particle can be created
dynamical exponent is a continuously varying function of theat an empty sitd with a rate P)A\i/Po. where p(p) is the

distance from the critical point’=2'(4). number of occupied neighborthe coordination number of

This re;ult can be mcorporqted Into a scallng_theory 43he lattice and at an occupied site the particle is annihilated
follows. Since a rare event, which brings the dominant cong iy, 5 rateu;. The time evolution is governed by a master
tribution to the average autocorrelation function is Iocallzed,equation WhliCh can be written in the form

its probability of occurrence is inversely proportional with

the size of the systenh,. Consequently the average autocor- dP(o)
relation function obeys the scaling law dt =~ HcpP(0). 1
G(8,1,1/L) = b 2G(8,b7 It,biL), (15)  Here the generatdficp of the Markov process is given by:
1) . o N
and _\Nlthb—t”Z we recover in the thermodynamic limit the Hep= 2 M + >, “(nQ+Qn), (18)
relation in Eq.(14). Finally, scaling of the lowest gaps follow i Gjy Po
the rule ) )
in terms of the matrices
e(8,1,1/L) = b7 (8,07 It,biL); (16) " (o - 1) (o o) ( 1 o)
o 1/ " \o 1)t T \-1 0/

thus in a finite system the appropriate scaling combination is
eL?. We note that in the Griffiths phase the power-law sin-and(ij) stands for nearest neighbors. It is well knoy21i]

gularities are often supplemented by logarithmic correctionshat the steady state probability distribution of a stochastic
[38,39, which are related to the fact that the size of the rareprocess coincides with the ground state of its generator
event grows logarithmicallyl.~In L, sincep(l,) ~1/L. (sometimes also called quantum Hamiltonian of the stochas-
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tic process while relaxation properties can be determinedremaining sites 1 and 3 can be obtained by studying the
from its low lying spectrum. eigenvalues of the three-site Hamiltonidﬂéz;’. As shown in
For nonrandom couplings there is a nonequilibrium phasehe Appendix A out of the eight eigenvalues there are four of
transition in the contact process which belongs to the univero(u,), which are discarded. The remaining lowest four lev-
sality class of directed percolatig,3]. In one dimension it els are identified as the spectrum of a two-site cluster with an
is at (u/N\),=0.3032 and the critical exponents are given byeffective branching rate:
B=0.2765,8,=0.7337,v, =1.097 andz=1.581. In two di-
mensions (u/\),=0.6065 and =0.584, B.=1.03, v, Y= h2hs (21)
=0.734 andz=1.76. In the following we often use the vari- Mo
ableN=\/p, to characterize the creation rate.
As in the previous case one can obtain the renormalized
2. Decimation rules of the random process value of the branching rate with a simple reasoning, which

For the random contact process the transition ratend ~ Works as follows. Let us have the configuration of the three-
\; are independent and identically distributed variables andsite cluster in the original representation@. The effec-
as described in the previous section, the largest One tive branching rate between sites 1 and 3 is generated by a
=max{\;},{u;}) sets the energy scale in the system. Thusyirtual process, in which first a particle is created at site 2
the largest rate can be either one of the death rates be (rate \,), and then one at site Probability N3/ (N3+uy)].
one of the branching rates. For each a different way of Hence, we get for very strong disorder the branching rate
decimation should be used. given in Eq.(22).

(i) The largest term is a branching rat€2 =A,. If the The renormalization equations in Eq49) and(21) can
largest rate is a branching, say, which connects sites  be transformed into a symmetric form in terms of the vari-
=2 andj=3, the two-site cluste(2,3) spends most of the able,J:A/K:X/(poK) with k=12 as
time in the configuration8A or @@ and can be rarely found
in one of the other two configurationa@ and @A. Conse- ~ouu o~ '
quently for large times the two sites behave as a cluster with p=Kym, mEmEm, J= K:- (22)

a moment ofm=2 and with an effective death raté,,

Which_ can be_z ca_lculated from the energy spectrum of thene can see from Eq22) that for a weak disorder the gen-
two-site HamiltonianHZp. As shown in Appendix A the tWo  erated new rates can be occasionally larger than the deci-
lowest energy levels of the cluster are separated from the tWg,ateq ones; thus in these steps the energy-scale does not
others by a distance o, therefore in a good approximation |qwer. For a strong enough disorder, however, these non-
just tbe _two_lowest levels can be retained. The effective death,onotonic steps are expected to be so rare that they do not
rate, u, is given from the value of the lowest gap as influence the behavior of the RG flow. With this assumption
2ptopts we ar_1a|yze in. the fpllowing the properties of the RG equa-

N (19 tions in one dimension. The results are then confronted with

2 numerical calculations in Sec. IV.

22:

wherew, and w3 are the original death rates at site2 and
j=3, respectively. The renormalization equation in ELD) 3. Renormalization in one dimension
should be extended by the renormalization of moméires,

the number of original sites in the clusker In one dimension the topology of the lattice does not

change under renormalization which makes it possible to

f=m, +m;, (20) treat the problem analytically. First we note that after re-
_ S peated use of the transformations in E22) the generated
where in the initial situationm,=ms=1. branching(death rates are in the form of a ratio of products

The renormalized value of the death rate can also be olpf original branching (death rates and original death
tained with the following reasoning. Let us start with the (branching rates. The control parametet, is defined as
original representation, when the two-site cluster is in the
occupied stateAA. In the effective decay process first the [N wlay =[N Jay
particle at site 2 should decawith rate u,), which is then - vafin u]+vafln J]’ 23
followed by the decay of the particle at 3. This second pro-
cess has a very low probability gfs/(\+us). Since the  and at the fixed point§=0, which follows from duality of
same processes can also occur with the role of 2 and 3 intefhe RG equations in Eq22) (here[-],, denotes the average
changed, we find that for,> 1, u3 the effective decay rate gyer the disorder
is given in Eq.(19). At a given energy scalé), we have the distribution func-

(ii) The largest term is a death raté2 = ,. In this case tion of the death rates?(u,Q)), and that of the branching
the site(2) is almost always empty?, therefore it does not rates, R(J,()). Changing the energy scal€)—Q-dq,
contribute to the fractal properties of tAecluster and can be amounts to eliminate a fraction of P(Q,Q)+R(Q,Q)]
decimated out. The effective branching ratebetween the  sites. The distribution of the branching rates changes as:
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Q 1 -
R(J,Q-dQ) = {R(J,Q) P(a) = J P(J,Q)dJ=RQ f xR dx = RQ In(1/a),
aQ) a
Q Q (29
+dQP(Q,Q) f dJ, f dJ3R(J1, Q)R(I3,Q)
0 0 which indeed goes to zero as the iteration proceeds, since

P RO —0. Consequently the RG transformation becomes as-
1v3 . . ... .
X J- o ) AJ=Jy) - 6J-J3) ymptotically exact and the singularities, calculated by this

method at the critical point, are also very probably exact.
x{1-dQ[P(Q,0Q) +R(Q,Q)]} L. (24 We start to determine the relation between the energy
scale ), and the length scalé, by studying the fraction of

Here on the r.h.s. the three delta functions represent the ongyndecimated sitesi,. When the energy scale is decreased
generated new branching rate and the two decimated branch- an amount of & a fraction of sites. dy=n [|~3(Q)
- 0o=Nq

ing rates during one RG step and the second factor ensureL. . . ] i .

normalization.[37]. A similar equation is obtained for the *R({)], is decimated out, so that we obtain the differential

distribution of the death rates. From the duality of the RGequation:

equations, it follows that one should only make the inter- q

changeu«—J andP—R. o _ B+ RO 30
Expanding R(J,Q1-d()) one arrives at the integro- dQ ol P) +RE)], (30

differential equation: ) .
which can be rewritten as

drR
i RJ,O[P(Q,Q) - R(Q,0)] dInng = =
" g - AP@FROI=-@). (3D
0
! ! J Q
- P(Q,9) e dJ'R(I 'Q)R<JfKQ’Q>J'K’ Using the solution tg/(Q)) in Eq. (B8) one can integrate Eq.
(25) (31) with the result
and similarly one obtains for the distributid®(u,(), no = {1 v In%}_2~ {In%}—z' 5=0. (32
dpP
a0 = P ORQ.Q) - P(Q.0)] Thus from Eq.(32) we get for the typical distance between
0 0 remaining spinsl, as
~RO,0) f dM'P(M'-Q)P(L,Q'Q>_,- 1T ol
e 'K s |_Q~—~{In—°] , 8=0. (33

A solution of these equations can be obtained analytically alhis is equivalent with a logarithmic dynamical scaling as
the fixed point,2=0, at §=0, in which the distributions Written in Eq.(8) with an exponenty=1/2.

R(J,Q) andP(u,Q) are asymptotically identical. The calcu- In order to calculate the singularity of other quantities,
lations can be found in Appendix B. According to these re-such as the correlation length and the order-parameter, at the

sults the appropriate scaling variable is in logarithmic formfixed point we should study scaling of the lengths and the
7==(In Q=In J3)/In Q=—(In Q~In w)/In Q, and its distri- cluster moments. As we have shown in the Appendix C, at

bution is given from Eqs(B1) and (B8) as the fixed point these calculations are equivalent to that for
the random transverse Ising spin chain. Therefore here we
p(n)dn=exp— n)dy. (27)  quote only the results. For a detailed derivation we refer to

the original literaturg26,39.

We are reminded first that a renormalized site is com-
posed from parts of the original lattice and the renormalized
length is given by the sum of the lengths in the original
= (28) lattice. In the paramagnetic phase the average length of sites

IN(Q/ ) approach a finite value¢,, during renormalization as)

— 0. In the vicinity of the fixed point the RG-equations lead
Mo a singularity:

The distribution in terms of the original variables(and w)
in Eq. (B2), is given by

e 1-RQ -
R(J,Q):R<j> . RQ

where (), is a reference energy scale, and the distributio
becomes singular at the fixed point, 8s—0. Due to this
singularity the decimation transformation in E@®2) be- &~ o, v =2 (34)
comes exact at the fixed point. This can be shown by calcu- + T

lating the probability that one of the neighboring death rates, To study scaling of the order-parameter one should inves-
besides the largest branching rate with(), has a value of tigate the average cluster moment, which at the critical point
pu>af), with a<1: behaves as
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Then the order-parameter can be calculatedpasn/Ly,,
which behaves asymptotically as

(35)

p~L7 (36)

and the scaling dimensionr, is given by Eqs(33) and(35)
as

(37)

Finally, scaling of the surface order-parameter is related t

the average cluster moment of the surface sitg, This is

naturally smaller than for a bulk site, since the surface mo-
ment can accumulate from original sites only in one direc-

tion. According to an analysis of the RG results we have
2]
rns - mSO o) ’

xs=1/2.

(38)

thus

ps~ L7, (39

4. Renormalization in two dimensions

PHYSICAL REVIEW E 69, 066140(2004)

sites follows a given preferential direction. Equivalently, di-
rected percolation can be interpreted as a dynamical process,
in which the spreading of a nonconserved agent is studied. In
the random version of the problem the occupation probabili-
ties are random variables, which are strictly correlated along
the preferential(time) direction, corresponding to random
reaction rates in the dynamical interpretation.

1. Random Reggeon field theory

The field theory, which is expected to describe the critical
behavior of directed percolation is the Reggeon field theory.
In (1+1)-dimension in the Hamiltonian limit the time-

@volution of the process is governed by the Hamiltorji]

HRFZEiHi with
Hi= = hor = 210 - 201)(1 - 207,) - oFof], (40

where o7Y* are Pauli matrices at sité, and o] =(o}
+ioY)/2. The structure ofHg is similar to the Hamiltonian
of the random transverse-field Ising model in E8): it
consists of an interactionterfwhich is non-Hermitian in
Hgrp) and a transverse field term. The order in the system is
measured by the asymptotic limit of the autocorrelation func-
tion, G(t)=[(0|d7(t)a7(1)|0)]a: it is zero in the paramagnetic
phase and finite in the ordered phase.

The renormalization of the random Reggeon-field theory

In higher dimensions the topology of the lattice changescan be made in a way that is completely similar to that for

under renormalization: contacts and therefore reactions ali®e random contact proceSgr the random transverse-field
generated between remote sites, too. However, the renormaking mode). A very strong couplingg,=, will result in a

ization does not introduce new types of reactions. Thereforgyo-site cluster in a renormalized field which is given by
the renormalization process, which is summarized in the
2h,h,

decimation equations in Eq22) can be implemented nu- h=
merically. As in one dimension for a weak disorder the gen- 0
erated new couplings are frequently larger than the deci- ) ) i
mated ones: therefore the RG scheme does not work arfd the other hand a site on which a very strong fi¢ig,
scaling in the random system is most probably conventionaf-{}» acts is decimated out and a new coupling is generated
as described in Sec. Il A. For a stronger disorder, howeve?€tWeen remaining sites, as
the situation could change and strong disorder scaling could 0,03
set in. If the critical behavior of the system is indeed at- g= h
tracted by a strong disorder fixed point, then, as in one di- 2
mension, the value of a finite pre-factar>0 in Eq.(22) ~ Comparing the decimation equations in E¢l) and (42)
does not matter. Numerical renormalization group calculawith those for the random contact process in §d$) and
tions for the random transverse-field Ising model, for which(21) we can see that they are equivalent. This is not surpris-
k=1, have shown the existence of a strong disorder fixedhg, since the two Hamilton operators in E¢$8) and (40)
point in two-dimensiong40,4]. The numerically observed are related through a unitary transformatif8), if u;< h;
critical exponents arx=1.0, v, =1.07 and=0.42[40].  and\;« g;. Consequently the singular behavior of the ran-
Karevskiet al.[41] use a somewhat different numerical tech- dom contact process and the random Reggeon field theory
nigue and findk=0.97,v, =1.25 and=0.5. In light of the  are equivalent.

above arguments we expect also for the two-dimensional Next, we consider the geometrical interpretation of di-

random contact process strong disorder scaling with theected percolation and study its critical behavior in the very
above exponents in Eq10) if the strength of disorder is strong disorder limit.

sufficiently large. To verify this scenario we shall reanalyze
the numerical results of Moreira and Dickm@bb] in Sec
IV B.

(41)

(42)

2. Strong disorder: Mapping to random walks

Here we consider directed percolation on the square lat-
tice with random occupation probabilities which are, how-
ever, strictly correlated in the same layer, as shown in Fig. 1.

Directed percolation can be viewed as an anisotropic vari- For simplicity, we use a bimodal distribution, the occupa-
ant of percolation, in which the possible path of occupiedtion probability in thei-th layer can be eithep;=q with

B. Random directed percolation
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. typical number of sites in thk-th (i.e., surfacglayer which
are connected to the seed. It is evident from the duality prop-
erties that forn(k)>1 the probability that the seed is con-
nected to thek-th layer throughwhite bonds is p,,(Kk)
~1/n(k), since typically one out of(k) sites has this prop-
erty. We show by induction that(k) is either zero or given
by n(k) ~q*®, whereX(k) >0 is the number of layers with
a probabilityq minus the number of layers with a probability
g. First, our statement is trivially true fdr=1. Heren(1)
~1/2q [and thusp,(k)~q], for p,=q andn(1)=0, for p,
=q. Evidently, if in a given sampla(k)=0 for somek<L,
thenn(k’)=0 for anyk’ >k and the surface order-parameter
is zero. To complete our proof, in the second step we show
that, if X(k)=1, then X(k+1)=X(k)x1, where the upper
(lower) sign stands for a probabilitp,,,1=q(p1=0). The
proof of this statement follows from the fact that fpg,;
=q the number of black bonds in the cluster at lakeis
reduced by a factor of ¢, whereas fop,,,=q the probabil-

: ity pw(K) is reduced by a same facterq. Here, whenX(k)
=1 andpy;1=q, thusX(k+1)=0 the cluster is considered to

FIG. 1. Directed percolation on the square lattice with randombe terminated at this point; thys(L)=0.
bond occupation probabilities, which are perfectly correlated along To calculate the average value of the surface order-
the vertical diagonal direction. Occupied bonds are drawn in boldparameter we use a random walk picture, which has already
In the two columns on the left bonds are occupied with a largebeen applied in the isotropic problg@3]. To a given sample
probability g, while in the other three columns this probability is with a given probability distribution we assign a random
small and equalgl. The typical length-scale in the problemlis  \yalk which starts at positio’,=0 and makes it$-th step
~_1/q. The _direction_of timegt, is alsp in(_jicated which gives a ypwards(downwards for p,=q(p;=q). The position of the
reinterpretation of directed percolation in terms of a reaction-, . er in thek-th step is jusiX,. The existence of the finite
diffusion model. surface order-parameter in the given sample is then formu-
probability 7 or p,=1-g=g, with probability 7 (we takeq  lated by the conditiom(k)>0 fork=1,2, ... L; thusX,>0
<7). For isotropic percolation the critical point is located at for k=1,2,... L so that the random walk has a surviving
m=mw=1/2, which follows from self-duality[43]. Since di- character. The averagalue of the surface order-parameter
rected clusters generally contain less bonds than the isotropig given by the fraction of samples with finite surface order,
ones, for directed percolation at the critical point& 7. In  which is just the survival probability of the random walk:
the strong disorder limit we take— 0 in which case at the [psladL) ~P<(L) ~ L2 From this relation the value of the
critical point (7/7).— 1 as we shall show below. The effect surface order-parameter scaling dimensixys,1/2 follows,
of the same type of disorder for isotropic percolation haswhich is the same as for the random contact process in the
already been considered by one of{48]. The reasonings in strong disorder fixed point in Eq39). Note that the rare
the two problems are very similar and they lead to identicaevents introduced in Sec. Il B in this case are the samples
critical properties. Therefore, here we just briefly describewith a surviving characteristics in the probability distribu-
the method and emphasize the relations and differences btion. Furthermore in the critical situation, when the average
tween the directed and isotropic problems. For more detailsurface order-parameter decays as a power withe prob-
we refer to the original Ref43]. abilities, =11, as announced before.

The characteristic structure of the occupied bonds is very Other exponents can be deduced in an analogous way as
different for the two types of layers. In layers with a large for isotropic percolation. The typical temporal extent of the
probability, p;=q, almost all bonds are occupied, betweenpercolating cluster is given by the typical number of con-
two unoccupied bonds there is a characteristic distahce, nected sites in a layeg ~ ny,(L) ~ g v, where the typical
~1/q. On the other hand in layers with a small probability, excursion of a(surviving) random walk inL steps isX,
pi=q, there are only very few occupied bonds; two occupied~ L2 Thus we have the logarithmic scaling relation in Eq.
bonds are separated by the same characteristic distance(8) with y=1/2, as for theandom contact process. To cal-
~1/g. Note the duality: for layers witlp;=q the nonoccu- culate the bulk order-parameter the seed is put in the middle
pied (say white bonds play the same role as the occupiedof the lattice and in a given sampigL)=0(1) if the perco-
(say black bonds for layers withp,=q. lating cluster has an extent &f In the language of random

Now let us consider a system consistingrefl,2,... L  walks this property is related to the so called average persis-
layers with free boundary conditions, with the seeda0  tence[44]. From this, scaling of the averagbulk) order-
and determine the surface order-parametgl,), which is  parameter is given byp]l, (L) ~L™*, with x=(3-5)/4, as
given by the probability that the percolating cluster extenddor the random contact process in Eg§7). Finally, to deter-
up to the other surface atL. To calculatepsL) we con- mine the scaling exponent of the order-parameter in the vi-
sider strips of widthk=1,2,... L and estimaten(k), the  cinity of the critical point one should consider random walks

9 q q a q
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with finite bias, §,# 0, towards the absorbing walk anl  states, since each site could be in thfeee active and two
~ 8, From the scaling of the surviving probability of biased different inactive states, and calculate the lowest three
walks [34] one obtains for the correlation length, ~ |52 eigenstates along the lines presented in Appendix A for the
Thus we recover the same exponent=2, as for the ran- random contact process. Among the three lowest states,
dom contact process in E(B4). which are kept after decimation, two have eigenvalues, 0,
Hence we can conclude that the critical properties of ranand the third has an energy®=2u,us/\,. Thus after deci-
dom directed percolation can be deduced from a randommation we have an effective two-site cluster in the presence
walk mapping in the strong disorder limit. The critical be- of a renormalized death rate, which is given just in the same
havior is the same as for random isotropic percolation andorm as in the random contact process; see @§). The
corresponds to the RG results obtained for the random consalue of the effective death rate can be also obtained by a

tact process in the strong disorder fixed point. similar argument as for the random contact process. In order
to calculate the decay froMA— @&,d,,3,d, one should
C. The generalized contact process with disorder consider two second-order virtual processésA— A,

So far we have considered different variants of absorbin 212, and AA— @, — B8, which leads to Eq(19) by

» A . king into account the definition of the rates in E43).
state phase transitions which, in the _absenge of disorder, al For the case of a strong elimination rate=0, the three-
belong to the directed percolation universality class. We ob-. L . . ; o
; site Hamiltonian contains 27 eigenstates, which are divided
served that in the presence of strong enough quenched dis-

: : into 9 orthogonal sectors, each of which have 3 states. The
order all these processes show strong disorder scaling behay-
. o . " . . ighest levels of each sector have an energpgf,) and

ior with identical critical exponents. In this section we

consider other processes, which are not in the directed peg;fegar; (?v?/e?/l;fag:gdaiu?Ln%hieggn?gog;dzeo:‘emglnrlqri]t%dle8
colation universality class. ' ' g :

For a renormalization group treatment, one of the mOSThree sectors have ground state energy zero and first excita-

convenient models is the generalized contact process with2" EN€rGyAz+As. Two other sectors have the lowest ener-

several different absorbing states introduced by Hinrichsed'®S"

8]. In this model a site can be occupied by a partiélepr 123_ / 2_

E:a]n be in one oh empty state$?;,d,, p ,Qn.)/Fchhermore, €2 = [(Mha+ 409 £N(Thz+ 4hg)" = 180118, (44)

besides the rules known for the ordinary contact processand in another two we should exchange in E#), \, and

there is a competition between the different type of emptyx,. Finally the last two sectors are also degenerate with the

states. At the border of clusters with a different type of emptylowest eigenvalues:

states, particles can be created. As a consequence, in these

models, with increasing there is a preference for the active &23=[3(\2+ N3) £ VO, + Ag)?2 = 32,054, (45)

phase and the phase transitions is found to be in universalit& o

classes different from the directed percolation one. for Consequently the decimation does not work out here for a

=2, the model was shown to be in the parity conserving clasirge death rate, singé) one can only discard 9 out of the 27

[8], whereas fon=3 the model is always activig5)]. cell states, SO that t.he remaining states cannot be assigned to
Here we consider in particular the effect of a disorder on®n€ renormalized site arid) the remaining energy levels are

the model withn=2. For this case, the following processes of the same order as the original rates; thus the energy scale

are allowed: is not lowered during these steps. These features of the deci-
mation can be seen by the following argument, too. With a
AA— AD, AD, DA DA, rate wl2, large death ratey,=(), the sitei=2 is almost always inac-
tive, so that it is either id; or @, most of the time. Suppose
AD,, DA — D:D,; AD,D.A— DD, rate wu;, we decimate this site and calculate the effective rate for a
process in which in the original lattice at sites 1 and 3 there
AD,AD, DA DA — AA,  rate \, is A ar_1d_®1, respectiv_ely, which will change t& f'indA. In _
43) the original bases this process can most easily be realized

through A|@,|@, — A|@,|A, which (i) has a ratex, and (ii)
the effective rate does not depend on the fact that site 1 is
For nonrandom couplings the phase-transition in one dimensccupied. Consequently during renormalization new degrees
sion is located ajx/A=1.592 and the critical exponents are of freedom will appear and there is no systematic decrease of
v, =1.82,2=1.75,5=0.91 consistent with those of the parity the energy-scale.
conserving universality class. Note that the Harris-type cri- Thus we can conclude that the renormalization group
terion in Eq.(1) with the abover, predicts a relevant per- scheme does not work for the generalized contact process.
turbation for quenched disorder. Therefore, it is improbable that a strong disorder fixed point
Next, for the random system we try to apply the renor-with the scaling properties described in Sec. Il B could be
malization group method along the lines used for the randonpresent in this model for some finite value of the disorder.
contact process in Sec. Il A. We start with the decimationThe qualitative difference between the random contact pro-
scheme and consider the situation when the largest rate isc@ss and the generalized random contact process is due to the
branching rate, say,=(). As for the random contact process competition between the different absorbing states in the lat-
we take the two-site Hamiltonian, which contains now 9ter model. For this case a large death rate indirectly promotes

®1®2 — QlA,AQQ; szl — ®2A,A®1, rate )\i :
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particle branching, since the active phase intrudes between In any finite system, the stationary state of the contact

the different absorbing states. This is the reason why the pungrocess is the absorbing state, i.e., the lattice without any

model is always in the active phase for 3 [45]. This could  patrticles. In order to study the absorbing state phase transi-
also be true for the random model. tion within finite systems, we therefore worked with open

boundaries and put the death rate at the most right site of the

lattice, u, equal to zero. This ensures the presence of par-

IV. NUMERICAL INVESTIGATIONS ticles in the stationary state. It can be expected that for large

Here, we discuss the results of two numerical approache&nough systems and for sites that are deep in the bulk the
which allow us to investigate the disordered contact proces§ffect of this boundary will be negligible.
as a function of disorder strength. In this way, we will be _USing the DMRG we then first calculated the ground state
able to show that the predictions made in the previous se@' the generator18) with open boundaries. Within this
tion are consistent with the numerical results provided thédround state we calculated the density profile, .
disorder is strong enough. However, we also find that there ig (M) ]av
a regime at small to intermediate disorder in which the criti- In order to determine the location of the critical point and
cal exponents deviate from the strong disorder ones and idhe critical exponents, x;, andv, we investigated in detail
deed seem to vary continuously. This is evidence for a line othe behavior ofps=p, (surface densityand p;, (which we
fixed points. However, the numerical results available do notook as our estimate for the bulk dengigs a function of the
allow us to decide whether these are ordinary disorder fixe@farametersA andD.

points (finite ) or strong disorder onegnfinite z). A major problem of the contact process in comparison
with several well studied disordered quantum spin chains is

. _ that in the present case the location of the critical point is not
A. One-dimensional random contact process known exactly. The numerical inaccuracy in the location of

In our numerical work, we investigated the particular casethe critical point will in its turn influence the accuracy by
for which the ratey;=1 and the branching rate is distrib- ~ Which critical exponents can be determined.

uted according to To locate the critical point we investigated the quantity
RO\ =[8N—Ny) + SN = X0)]/2, (46) din dp

with \,=exp(A++D). The main advantage of this distribu- Y, = dL_ (47

tion is that it allows an exact average over the disorder to be dinL

made, at least on lattices that are not too large. For thi]S:Or a homoaoeneous svstemreaches its laraé-value ex-
choice of R(\) the average value of IR equalsA whereas . 9 ystemreach 1arg
ponentially fast away from the critical point, and as a power

the variance iD. These can therefore be considered as suitr o : . .
able parameters to measure the activity and the disorder, rIaW atthe critical poinfsee(2) and(3) which are the same in

spectively the stg.tionary stajeAs a consequeqq\éL goes to <o for a
) noncritical system and to(2+x) at criticality. We can there-
_ fore expect that in a finite system, the quantity goes
1. DMRG studies through a maximum as a function @f/\ from which one
The density matrix renormalization groupDMRG)  can obtain a finite size estimate of the location of the critical
method is a numerical technique that was originally intro-point and ofx. In this way we have obtained the critical
duced to investigate the properties of quantum spin or fervalue ofA, denoted ag\. for different values of the disorder
mion systems. The method allows a precise determination dgitrengthD and for differentL-values. An extrapolation for
the propertiegenergy, magnetization profiles, correlations, L — o then gives our final estimates fé¢(D). The data for
...) of the ground state and low lying excitations of suchthe surface densitys can be analyzed in a completely simi-
models. The method is most successful in one dimensiorlar way and give an independent estimate for the location of
Given the formal similarity between quantum systems andhe critical point. From the analysis in Sec. I, we expect that
stochastic ones, several groups started to apply this techniqfier D — oo, the critical point obeys$in u],,=[In J], which
to interacting particle systems in recent yef28,43. The  for the present case leads to the prediction of the exact loca-
method is now known to work well also in these casestion of the critical point, afA.=Iny8=1.0397. Unfortunately,
though it cannot give as accurate results as for the spiwe are not able to investigate very laBevalues and hence
chains, mainly because at this moment algorithms to diagoeould not verify this prediction.
nalize non-Hermitian matrices are not as well developed as To determine the stationary state critical exponents we
those for the Hermitian case. next made scaling plots for the density and the surface den-
In our DMRG work we made calculations for systems sity assuming2) (taking t—c°). In Fig. 2 we show such a
with up to L=24 sites. FolL<14 we were able to perform scaling plot for the density and fd»=0.25 andA.=1.19.
an exact average over all possible realizations of the disordeffrom this we obtairx=0.24 andv, =1.25. Data for the bulk
For the larger systems sizes we considered typically aroundnd surface density for other valuesfcan be analyzed in
10* disorder realizations. These calculations were possibla completely similar way and they give rise to the DMRG
for D=<2. For largerD-values, we encountered numerical estimates for the exponents and x as shown in Fig. 3 of
difficulties in the DMRG algorithm. Ref. [31] and Fig. 6, respectively. From these we see ijat
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0.90 5 The exponent, is even more difficult to estimate since
its value is very sensitive to the precise location of the criti-
0.87 D=.25 = cal point. The values that we have determined are only rough
= estimates. We find that the value of increases from the
v pure system value with increasing disorder, and equals
2.544 .’ 1.67+0.08 atD=1.5.
- The exponent, or in case of a logaritmic scaling, can
in principle be determined from the distribution of the gap in
the spectrum of the generat@8). Using the DMRG, we
v therefore also calculated the distribution of gap sizes for dif-
0.78+ . ferent system sizes. In Fig. 3 we show the results of such an
Y. analysis at the critical point and fdp=0.5. In the upper
0.75 graph we show a plot assuming ordinary scaling and the
. . . . T . . value z=2, while in the lower part we have assumed loga-
9.2 LT I 0:4 rithmic scaling andy=0.35. As can be seen from this figure,
the DMRG-results do not allow us to discriminate between
FIG. 2. Scaling plot of the particle density B&=0.25 assuming  the two types of dynamical scaling. A similar conclusion
A.=1.19,x=0.24, andv, =1.25. The different symbols indicate =~ holds for otherD-values.
=12(0J), L=140), L=16(A), L=18V), L=20( ¢ ), L=22(), and
L=24(>).

P L.239

0.81 1

]

2. Monte Carlo simulations

assumes the value predicted for the strong disorder fixed |, 4, attempt to reach bigger system sizes and to get

point atD=1.5. For smalleD-values x; decreases continu-  ,yenendent estimates for the exponents we also performed
ously starting from its value for a homogeneous contact prog,sensjve numerical simulations taking a single seed particle
cess(x3~0.6.69.[32]). _— as an initial condition. In order to have a good comparison
A_rather s_|m|lar_ behavior is found for the bulk exponent . DMRG-data, we again put all death rates equal to one,
For increasingD, its value decreases from that for th? ho- while the branching rates are distributed according4tg).
mogenous contact processy 0.252, 10 a value 0k~0.21In 4 yarious values oD and A we calculated the survival
the region 1.5D<2. Here it has to be remarked that since probability P(t), the total number of particles in the system

the DMRG can only be performed for systems wiithup to . : o
24, it may very well be that our estimate of the bulk density:?li g dajr\)/vs)l tlfiéhzlr: da\t/;igaensg\;fgéé \(:\\//eeég(():“alclj)ils?:j]gr

pis stillinfluenced by the boundary conditions which we haOIrealizations. For each of these realizations we simulated one

to choose, and th|§ may very well be th? reason why t.h%istory of the stochastic process. In performing the simula-
exponeni reaches its value at the strong disorder fixed point. o starting from one seed particle at tits, there can be

more slowly. at most 2+1 occupied sites in the lattice after tiheln our
104 e simulations the size of the system grows with time to take
ot ’, account of this. So in fact, we can say that we simulate an
't"" : infinite system, at least for the particular initial conditions
v chosen. For larg®-values, it is difficult to obtain reliable
AR v simulation data since the dynamics becomes extremely slow.
13 - : For this reason we are not able to explore value® dhat
nrsssees . are much larger thar-1.5.
: : : , To analyze our data we first have to determine the loca-
) tion of the critical pointA,(D). While in homogeneous sys-
tems the critical point is the only one characterized by a
m power law decay oP(t), the same is not true in a disordered
o system as first pointed out by Bramson, Durrett, and Schon-
o . mann[17]. Power law behavior can indeed be found in the
o

Pln(L’)
3
i
»

whole subcritical regime and is a manifestation of the pres-
o ence of a Griffiths phase. Still, we expeadtt) to increase
Lo v aboveA; and to decrease below criticality. In this way we
obtain a first estimate of the location of the critical point. A
b 43 4o 45 40 4 Ao 48 second criterion which we used is that both for conventional
and for strong disorder scaling, at criticality, RfIn N be-

FIG. 3. Test of dynamical scaling form f@=0.5,A,=1.19. In  COMes a constant asymptotically. In Fig. 4 we show a typical
the upper graph, we have assumed ordinary dynamical scaling withet of data for this quantity taken Bt=0.5. From these we
z=2.0, while in the lower graph we used logarithmic scaling with determineA.(0.5=1.177. The values for the critical activi-
#=0.35. The different symbols correspond witte18(V), L  ties which we find in this way are clos@pproximately
=20(A), L=22(0O), andL=24(0). within 1%) to these found from the DMRG.
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FIG. 4. Plots of InP(t)/In N(t) as a function of It at D=0.5
and forA=1.179, 1.177, and 1.17%op to bottom. From this, we
estimateA.=1.177.

FIG. 6. A plot of the exponent versus disorder strengib. The
different symbols indicate the results obtained from the DMRG
(squarey and the simulations assuming ordinary scalingcles

In Fig. 5 we present log-log plots for the three quantitiesand logarithmic scalingtriangles. We also indicate the values for
of interest at the critical point witlD=1. These results are Stong disorder(dotted ling and for the homogeneous system
typical also for the otheb-values investigated. (dashed ling

As can be seen there is still some curvature visible in o
these figures, which could e.g. arise from the Iogarithmicour result; for these exponents are presented in Figs. 6 and
corrections which are ubiquitously present in these kind of/» respectively. , _
random “quantum” systems. Yet, the late time part can be Ve notice two interesting trends. First, we observe a de-

fitted quite well to a power law from which we can deter- créase ok from its homogenous system value to a value that
mine estimates of the exponenteindz as a function oD. is consistent with that at the infinite disorder fixed point. The

numerical values are moreover consistent with those found

10 - from the DMRG. Second, we observe that the dynamical
—_ exponentz seems to make a jump as soon as any disorder is
Jéf 8 present after which it increases with These results are then
= consistent with the idea of a line of ordinafgisordey criti-
cal points which ends at some critical value of the disorder
6 above which exponents assume precisely the values of the
strong disorder fixed point.
4 — In a regime governed by strong disorder fixed points we
4 expect that the dynamical quantities do not follow a power
law but scale logarithmically, i.e., as given {(&3). Indeed
—_ such a behavior was found in the simulationsdm?2. [15]
z 3 | We found that this kind of scaling can also describe our
c
0.7 1
% ~0.5
2 T T T 0.6+ ¢ —
0.9 - 1z ¢ 04
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FIG. 5. A plot of the survival probabilityP(t), the number of

particlesN(t) and their average spredf(t) (bottom to top as a
function oft for D=1, A,.=1.171.
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FIG. 7. A plot of the exponents Z/squaresand ¢ (circles as
a function of disorder strength.
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0.45

results for allD-values investigated. Assuming strong disor- ' .

der scaling, we can determine estimates for the exponents | $ 50
and ¢. These values are also shown in Figs. 6 and 7. We,, | g —= i
notice that the values for the exponenare not very sensi- i
tive to the type of scaling that we assumed. We also observe | : L 0.30
that the exponeni seems to increase towards its value ex- 1.3 v
pected at the strong disorder fixed point, i/es1/2. ] g _'0'25
We can thus see that, as was for the case for the DMRG -0.20
e . . . 1.2 L
it is not possible to rule out from the numerics that there is a - 5
line of strong disorder fixed points in the model. When we 1 % I
compare the estimates for the dynamical exponents coming 1 010
from the two numerical approaches, we find that those for | s

the logarithmic corrections are more self-consistent. There i< s
a rather large discrepancy between thealues as found '0+— T —— T —— T —— T —— T —— T—00
from the DMRG and the simulations. This could be due to a ’ ’ T op | |
lack of asymptoticity in time for the simulations and in size

for the DMRG. Assuming logarithmic scaling, the values FIG. 8. Values for the exponenigsquarepsand y(circles as a
which we find from the two approaches are almost the samdunction of dilutionp assuming logarithmic scaling. The values in
The ex|stence Of a ||ne Of Strong d|sorder f|xed p0|nts Wa§h|s table are fod=2 and are determined from the numbers giVen

not found so far in real quantum systems and could be alf Table I of the first paper in Ref15)].

essential new feature of stochastic models. Yet, at present We) .o models with absorbing state phase transitions. For
have no theoretical underpinning for the existence of such §,,qels in the directed percolation universality class, we have
line of disorder fixed points. Further numerical studies areyiven convincing evidence that, if the disorder is large

needed to obtain more insight on this point. enough, the universal behavior is that known from the RTIM
and some other disordered quantum spin chains. This result
B. Two-dimensional random contact process follows from calculations using a strong disorder renormal-

jzation approach and is consistent with numerical results in
ne dimension obtained with the DMRG and simulations. A
two-dimensional contact process with dilution where it Wasreana]ysis_of data for a diIuteq con.tacted process in two di-
mensions is also consistent with this conclusion. It therefore

gﬁgbidth\gfltﬁtflg; So(;a_l,lggfn ln_sthtieprr?aste r;;lwoonrlé \t':’)ebgage_seems that the effects of strong disorder lead to a new kind of
W IS Kind ng 1 - natu . Xuniversality between Hermitian and non-Hermitian quantum

pected at a strong disorder fixed point. In Rgf5] it was odels

assumed that the logarithmic scaling holds for all values of" )

the dilution. which here we will denot Since we do not For a weak and intermediate disorder our numerical re-
€ dilution, which here we wifl de ote by INCE WE dONOL o145 indicate the existence of a line of fixed points with
have the original dataset, it is not possible to investigat

. -continuously varying exponents. Such behavior has been
whether the data of these authors are also consistent wi und previously in some quantum spin cha[ds]. Most

ordinary scaling in the smafi-regime. From the numerically interestingly, our data could be consistent with a scenario in

determined values of, », ando it is however possible to which this is a line of strong disorder fixed points. Such a
determine values for the exponemtsand ¢ in the two-  pehavior is also consistent with data obtained by Moreira and
dimensional case. The results are shown in Fig. 8. Dickman on a two-dimensional diluted contact process. Fur-
These numbers can now be compared with those expecteRer simulations are needed to confirm this picture. It would
to hold at the strong disorder fixed point of the RTIM in two pe especially interesting to develop techniques that can effi-
dimensions, which arg=1.0 andy=0.42. Note that for the  cjently simulate these kinds of systems for sufficiently large
largest disorder value, the exponeftis very close to this  disorder and long enough times. Moreover, it would be very
value. The exponent seems larger than expected. However,interesting to investigate whether the behavior that we find
in this respect it is interesting to remark that the authors otan also be seen for distributions of the transition rates dif-
Ref. [15] notice that the data oiN(t) are consistent with ferent from the ones that we used in our simulations. If the
ordinary scaling but withp=0 or with logarithmic scaling |ogarithmic dynamical behavior can be demonstrated, it be-
and a very small value of. This is consistent with our ideas comes a challenge to understand such behavior from analyti-
which predict that at the strong disorder fixed pointiin2  cal or RG arguments.
and forx=1,  equals zero. Hence, we believe that also in  For absorbing state phase transitions in other universality
two dimensions the strongly disordered contact process is iflasses we have fewer results. Our RG calculations indicate
the same universality class as the RTIM. that for the generalized contact process with disorder, it may
be possible that the model is always active, alsorfer2.
This prediction should be verifiable with simulations.
Whether this result also holds for other models in the same
In this paper, we have investigated the effect of quenchedniversality class is not clear yet. We believe that the effect
disorder in the transition rates on the critical behavior ofof quenched disorder on absorbing state phase transitions in

As already remarked above, in the second paper of Re
[15], the logarithmic scaling13) was first observed in the

V. CONCLUSIONS

066140-13
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particular, and on stochastic many-particle systems in gerditions. This operator can be represented by the matrix
eral, provides an interesting field of future research.
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APPENDIX A: DECIMATION EOR THE RANDOM Dlow keeping~in mind th<_':1t a one-site cIuster.With a death rate
CONTACT PROCESS Iz haszga gapu we obtaln for the renormalized death rate,
n>=Egp, as announced ifl9).

When the branching rate between two sitgeay 2 and 8 When the largest rate is a death rate, gagyone considers
is the largest rate in the system, we consider the Hamiltoniaa three site cluster whose Hamiltonigree boundary condi-
(18) restricted to these two sites and with free boundary contions) is represented by the matrix

0 - Mo 0 0 0 0 0 0
0 Mo + )\2 + )\3 0 0 0 0 0 O
0 0 )\2 - U2 O 0 0 0
0 -\ -\ +N; O 0 0 0
Hézp?’: 2 2 M2TA3 (A3)
0 0 0 0 N3~ Mo 0 0
0 - )\3 O 0 - )\3 Mo + )\2 0 0
0 0 0 0 0 0 )\2 + )\3 - M2
0 0 0 - )\3 0 - )\2 - )\2 - )\3 M2
[
The corresponding eigenvalue problem is reduced to the di- 1-ROQ.MQ
agonalization of four X 2 matrices. In each subspace there R(3.2) =R 7 - (B1)
is an eigenvalue dD(u,), which is discarded. Of the remain-
ing four lowest eigenvalues there are two zero and two with
the value 1-P(Q,0)0
o P(u,Q) = P(Q,Q) — (B2)
=" (A4) K
M2

N . . ) . Substituting(B1) and(B2) into (2 t
If we keep in mind that in a two-site cluster with an effective ubstituting(B1) and(B2) into (25) we ge

branching ratex the spectrum is given by 0, O\, A we

obtain for the renormalized rate=EX2 the result stated in 4R _dOR @ 1-OR = = =z, Ok oz
(2D. o do I Q ’
(B3)
APPENDIX B: SOLUTION OF THE RG EQUATIONS
AT THE CRITICAL POINT where we used the notatiorNB(Q)EP(Q,Q) and ~R(Q)
We look for a special solution of25) and (26) (in the  =R(,Q). For a moment we set=1. After a trivial rear-

fixed point{)— 0) of the form rangement, we obtain the relation

066140-14
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-~ dOoR|[ Q 1
{QRP——] In—-—1=0, (B4)
dQ) J 0oR
which leads to the ordinary differential equations

R__R ®9
- O ’
d__P, PR (B6)
o 0 '

These equations which hold just fai=1 can be solved
for general(nonsymmetrig distributions[39]. The solution

PHYSICAL REVIEW E 69, 066140(2004)

APPENDIX C: THE RANDOM TRANSVERSE-FIELD
ISING MODEL AND ITS DECIMATION RULES

The prototype of random quantum systems is the random
transverse-field Ising model which is defined by the Hamil-
tonian

H:—%Jijafof—zhiof. (C1)

i,j i

Here the sum runs over nearest neighbors afido? are
Pauli matrices at site. The exchange coupling®; and the
transverse-fieldsh; are independently distributed random
variables with distributionsr(J) and p(h), respectively. The
Hamiltonian in Eq.(C1) in one dimension is closely related
to the transfer matrix of a classical two-dimensional layered
Ising model, which was first introduced and studied by Mc-

gives information about the singular behavior of the systerrboy and Wu[47].

outside the critical point, i.e., in the Griffiths phase. This

general solution, however, does not apply fo£ 1. On the
contrary, the solution at the fixed point, wh&J,()) and

P(u,Q) are identical, thuR=P, holds for any finitex>0.

Indeed, in terms of the variablg,:~RQ:|~39, and the log-
energy scalel’=-In (), we obtain the differential equations

dy

+y?=0,
ar Y

(B7)

with the solution

1 1
I-Ty InQyQ)’

y:ﬁﬂ:ﬁﬂ: 6=0. (B8)

Herel'y=-In Qg is a referencélog) energy scale. Now, go-

ing back to(B3) we can see that at the fixed point the actual

value of x does not matter. The termk®R—1 and
In k/In(Q2/J) ~ kRO — 0.

In the renormalization scheme we have the following
decimation relations. If the largest term in the Hamiltonian is
a coupling, sayl=(}, then the two sites connected Byand
having transverse field®y andh’ and momentsn and m’,
behave as an effective composite cluster with momeint a

renormalized transverse field, which are given by

~ hh'
h=—,
J

m=m+m’. (C2

On the other hand, if the largest term is a transverse field, say
h=Q, then the site with this transverse field gives a negli-
gible contribution to the&longitudina) magnetic susceptibil-

ity, thus can be decimated out. This leads to a renormalized
coupling between the nearest neighbors of the decimated site
that is given by

JJ
h i)
which is related tqC2) through duality.

J= (C3)
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