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First-order phase transition of fixed connectivity surfaces
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We report numerical evidence of the discontinuous transition of a tethered membrane model which is defined
within a framework of the membrane elasticity of Helfrich. Two kinds of phantom tethered membrane models
are studied via the canonical Monte Carlo simulation on triangulated fixed connectivity surfaces of spherical
topology. One surface model is defined by the Gaussian term and the bending energy term, and the other, which
is tensionless, is defined by the bending energy term and a hard wall potential. The bending energy is defined
by using the normal vector at each vertex. Both models undergo the first-order phase transition characterized
by a gap of the bending energy. The phase structure of the models depends on the choice of discrete bending
energy.
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I. INTRODUCTION normal vector at each vertex, we define a bending energy

o . which is different from the ordinary one. We will study two
Tethered membrane modg$-4] are ordinarily defined kings of models: one is a model that has the Gaussian term
by a Hamiltonian that is a linear combination of discretefo syrface tension and the other is a tensionless model that
bending energy and surface tension enef§y6]. Hence, nas no surface tension term but has a hard wall potential. It

there may be a variety of statistical models of membranesyj|| pe shown that both models undergo a first-order phase
since discrete Hamiltonians can be chosen arbitrarily evegansition.

within the Helfrich or Polyakov-Kleinert prescription of

membranes. As a consequence, it is natural to ask whether

the phase structur§7—11 of the model depends on the Il. MODEL AND MONTE CARLO TECHNIQUES

Hamiltonian. o ) :
However, little attention has been given to the dependencE| M(_amb_rane_models are ordme}rlly Qr-;fl_ned by the d|_screte

of the phase transition on the Hamiltonian of tethered sur: amﬂtomanS-Sﬁsz with bendmg r|g|d|typ, wheres, is

faces both for models that have surface ten$ii?-21 and the syrface ter_13|on energy afigis the bending energy, re-

for tensionless modelR2-27. Almost all numerical studies spectively, defined by

done so far utilize the bending energy of the ordinary form - _x)2 - —n ..

1-n;-n;, wheren; is the normal vector of triangle S1= (IEJ) (= X))", Sz_(izj) (L=n;-ny). @
One other discrete bending energy that has been utilized ] B

by Gompper and Krol[28] is based on the discretization of =j) iN Eq. (1) is over all bonds(ij), and n;, n; are the

the Laplacian in the dual lattice formulation of discrete me-unit normal vectors of the triangles sharing the bdijd.

chanics by Leg[29]. Similar discrete bending energy was X

adopted in Refs[14,17,3Q. Both discrete bending energies (€R®) in S, is the position of the vertek

give results compatible with the continuous phase transition The other possible bending ener§ycan be obtained by

of the model[7-11]. using the normal vector of the vertéxsuch as

Recently, it was reportefB1] that a tethered membrane N
model with ordinary bending energy undergoes the discon- ni)=—-, N,=> nj(i)AA-(i)a 2)
tinuous phase transition predicted [82], although the INi| 0 J

Lennard-JonegqLJ) potential is assumed to serve as the : . -
Gaussian term. Hence, we thinkit is worthwhile to show thatWhereZi(i) denotes the summation over triang|és linked

the discontinuous phase transition can be seen in a tether&d the vertexi. The vectorn;, is the unit normal of the
membrane model when the Hamiltonian is defined only by drianglej(i), andA,, s the area of(i).
discretization of the Helfrich Hamiltonian. The new discrete bending energy can be obtained by us-
The purpose of this paper is to show numerical evidencéng the normal vector of Eq2). Thus, we have
that the phase structure of phantom tethered models depends
on the choice of the discrete bending energy. By using the S, =2 2 [1-n() -njg], (3)
0}
which is clearly different from that of Eql). It should be
*Electronic address: koibuchi@mech.ibaraki-ct.ac.jp noted thasSy(illdef) =% ;[1-n(i) -n(j)] defined only by using

1539-3755/2004/68)/06613%6)/$22.50 69 066139-1 ©2004 The American Physical Society



KOIBUCHI et al.

(a) (b)

FIG. 1. (a) Ranges of interaction between normal vectors of

triangles forS,; in Eq. (3) and(b) those forS; in Eq. (1). The normal

vector of the shaded triangle interacts with those of the surroundin

triangles in(a) and(b). Small spheres represent vertices.

the normal vectors(i) in Eq.(2) is not well defined. This ill

definedness comes from the fact that there exist two surfac
locally different from each other that have the same value o

S,(illdef). Two normal vectors at the ends of a bagd) can
be parallel for surfaces that are not smooth.

We study two kinds of models in this paper. The first,

which will be denoted by model 1, is a model defined by

N
z,= | [Idxexd- (S +bS)], (model D,
i=1

Si=2 (X% - X)), S, =2 X [1-n) Nl

(i) i

(4)
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FIG. 2. (8) S;/Ng vs b of model 1 andb) S;/Ng vs b of model
%, whereNg is the total number of bond&=1500.

the one of a given triangle, which is shaded in Figs) &And

eléb)' The number of triangles fd8, in Eq. (3) is dependent

pn a given triangle and hence locally changes, while the
number forS, in Eq. (1) is always 3.

We use the canonical Metropolis Monte Carlo technique.
Spheres are triangulated by linking uniformly scattered
points. The histograms of coordination number of surfaces
are identical with those shown in R¢fL5].

The positionX of vertices is updated with the MC tech-
nigue by moving the current positiod to a new position
X'=X+6X, where 6X is chosen in a small sphere by using
uniform random numbers. The radiRg of the small sphere
is fixed toRy=€ly, wherel, is the mean bond length which is
computed at every 250 MC@Vonte Carlo sweepsand a
constante is fixed at the beginning of the simulation to main-

where the center of the surface is fixed to remove the transzin 509 —55% acceptance rate for model 1 and 55% —65%

lational zero modesS, is identical with Eq.(3).

for model 2. The radiuR, becomes almost constant, because

The second model, which will be denoted by model 2, IS|, is constant in the equilibrium configurations.

a tensionless model defined by

N
Z,= f I1 dxexd- (bS+V)], (model 2,
i=1

S, =2 2 [1-n() -nj],

iy
wheresS,; is identical with that of model 1 in Eq4) andV is
the hard wall potential defined by

5

0 (O<|Xi—Xj|<l‘0),
o0 (otherwise.

V(X = X)) :{ (6)

The value ofry on the right-hand side of E¢6) is fixed to
ro=v1.15. As a consequence we ha®X;-X;)?)/N=3/2,

We impose the lower bound 1%\, on the area of tri-
angles, where\, is the mean area of triangles computed at
every 250 MCS. As a consequence, updateX @fre con-
strained so that the resulting area of the triangles becomes
larger than 1CPA,. However, the areas of almost all triangles
are larger than I6A, in our MC simulations without the
lower bound; hence, it seems that the areas are almost free
from such a constraint. No constraint is imposed on the bond
length.

Ill. RESULTS

We first showS;/Ng of model 1 and model 2, respec-
tively, in Figs. 2a) and 2b), whereNg is the total number of
bonds. It should be noted th&t/Ng is the mean bond length
squaredg. S,/Ng in Fig. 2(@) of model 1 is completely com-

which holds for model 1 which contains the Gaussian ternmrpatible with the expected resuB;/N=3/2, since Ng=3N
S,. It should be noted that model 2 is considered to be inde=6(=3N) on the spherical surfaces. In fact, a typical sample

pendent of the hidden length introduced ly The Monte
Carlo (MC) results are independent of the valuergf This
was, in fact, precisely checked in R¢15].

in Fig. 2@) is S;/Ng=0.500 15+0.000 12 di=0.476. More-
over, S;/Ng in Fig. 2(b) of model 2 is also compatible with
our expectationS;/N=3/2 as already stated in the para-

Figures 1a) and 1b) show the range of interactions de- graph below Eq(6), although the Gaussian ter§) is not

scribed byS; in Eqg. (3) and the ordinans, in Eg. (1). A

difference betweef, in (3) andS, in Eq. (1) can be seen in

included in the Hamiltonian of model 2. Thus, we confirmed
thatl, is constant in the equilibrium configurations in both

the number of triangles whose normal vectors interact wittmodels.
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FIG. 3.(a) Cs, vs b and(b) Cg*vs N in log-log scale. Botfa) FIG. 4. (a) Variation of S,/Ng against the number of MCS and

and(b) are obtainemda by model 1 whose HamiltoniarBis-bS;. (¢)  (b) the histogramh(S,/Ng), obtained by model 1. The results ob-
Cs, vsb and(d) Cg “vs N in log-log scale. Both(c) and(d) are  tained by model 2 are shown iig) and(d).
obtained by model 2 whose Hamiltonianid§,+V.

-~ . . . transition of model 1 is considered to be of first order. While
The specific heaCS2 is a fluctuation of the bending en- & <1, the values,=0.914166) almost equals to 1 and

ergy and is given by hence suggests that model 2 undergoes a first-order phase
b2 transition.
(;S2 = N«g) —(S)?). (7) To clarify the order of the transition of model 1, we plot in

Fig. 4(a) the variation ofS,/Ng against the number of MCS.

Total number of MCS is about 0-81.0x1C for N  'he seriesS, shown in Fig. 4a) was obtained at every 5
=340 N=600, 1.5¢ 108 for N=1000, 3x 108 for N=1500, % 10* MCS at the transition poirtt=b.(N) on the surface of
and 2.2< 108 for N=2500 at the transition poinis,(N) for ~ Sizeé N=2500. The corresponding histograhiS,/Ng) is
model 1. The number of MCS ai+#Db,(N) is relatively ~drawn in Fig. 4b). Figures 4c) and 4d) are the results ob-
small. The total number of MCS for model 2 is smaller thant@ined by model 2 of sizél=1500.

that for model 1, since the speed of convergence of model 2 We cléarly see in Fig. @) that there are two distinct
is relatively faster than model 1. states which represent a discontinuous phase transition in

Figure 3a) showsCSz vs b of model 1. The peak values quel 1. The histogram in Fig.(H) shows more (;Iearly the
Cgax of model 1 are plotted in Fig.(B) againstN in a log- existence of the two states separated by a gef of model

. . 1. It is also easy to understand from Figécydand 4d) that
log scale. Figures(8) and 3d) are results obtained by model _— o .
2. The number of molecules =340, N=600, N=1000, model 2 undergoes a first-order phase transition character

ized by a gap of,.
andN=1500 for model 2. : -
) . — Th - , def
The slope of the straight lines in Figgb3 and 3d) rep- e mean-square si2€, defined by
resents the critical exponentdefined by

1 — — 1
max__ njo X2== X =X)2, X==> X, 9
I~ N, 8) Ng(. ) N; | (9)
The largest three data in each figure are included in the fit,
and we have is plotted in Fig. $a) against the number of MCS of model 1.
0,=0.79866) (model D), The corresponding histogramX?) is drawn in Fig. §b).

Figures %c) and gd) are the results obtained by model 2. We
-09141 19 see two different sizes at the transition point in each model
02=0.914166  (model 2 and hence consider that the phase transitions in both models
The valueo;=0.79866) is smaller than 1 and hence implies are characterized also by the discontinuityX3f The reason
that the order of the phase transition of model 1 is of seconavhy we usex? obtained ab=0.443 in Figs. &) and 5d) is
order. However, as we will see next, the order of the phaséhat the double peaks in the histogramX@fat b=0.443 are

066139-3



KOIBUCHI et al. PHYSICAL REVIEW E 69, 066139(2004)

XZ""I""I""I"" (]:'))INZSOO T X2_- T T T T T '_Xh T
a = S F = e - ~—N= E
ol 7 boar| | [ [bo0amr @ NI gy
151 Model-1 | B vosert] [ A Noroge] | B21B0D
A ’ 110} 1
1 } 1 10f N=60071 [ ]
| | 5f o)
10 - 1 5[ X ]
[ } ] crumpled
e T T . . 0. i N=340 1 H=3.7(11)
0 10 2 30 L 1 L 1 L 1 L 1 L1111 1
x? -05 T T 15|>< -10 R v T r T e (|)46 (|).48 I0.5 —— .1(.)(.)0 2000
« d — i i
'§ @ £I=_01 igg 201 © N=1500 1 L smooth (d) 1
20 B | ' H=2.16(30)
odel- —
- N=10000 0 _
/ III=6OO [ ]
I J 10} . I 1
10§ 0 5 :/O/O/Q/—
_ _ \ :
1.2 1.6 X108 0 10 X2 20 | ) | L II\I=3.4O L1111 ) ]
MCS 042 044 046 1000 2000

FIG. 5. (a) Variation of X2 against the number of MCS arid)
the histograrrh(X?), obtained by model 1. The results obtained by
model 2 are shown iic) and(d).

FIG. 6. (a) X? vs b of model 1 andb) X? vs N at the transition
point b=b.(N). The results obtained by model 2 are shown(an
and(d).

H.(]) andH,(]) seems come from the fact that there are a
clearer than ab=0.442 where the histogram &/Ng plot- few data points oiX? included in the fitting.

ted in Figs. 4c) and 4d) were obtained. We understand from the straight lines in Figgb)6and
The Hausdorff dimensiof33-39 is defined by 6(d) that the phase transition of model 2 is relatively stronger
than that of model 1, although both transition are of first
X2 ~ N2H. (100  order. The gap of atb=b. of model 2 is relatively larger
The gap ofX? at the transition point implies thad discon- - -

(a)

tinuously changes at that point.

We plot in Fig. §a) X? vs b of model 1. The mean square
size X? atb=b.(N) is plotted againsN in a log-log scale in
Fig. 6(b). The straight line denoted smoothis obtained by
fitting X2, each of which isthe largex? in the double peaks
shown in Fig. Bb). Another straight line denoted by
crumpledis obtained by fitting the smallexX? in the peaks. ‘
Errors of X2 were not included in the least-squares fitting,
since the fitting was done by using only the peak value$’of >
in the histogram shown in Fig.(B). Figures 6c) and &d) o
show the results of model 2.

From the slope of the straight lines in Figgbpand &d),
we have

(c)

H.(1)=2.1317), Hy(])=3.66107 (model 1),

Y

Ha(1) = 2.1630),  Hy(1)=7.84977) (model 2, W 0.7 b=0. 478
(17)

) ) ) o FIG. 7. Snapshots of model 1 surfaces obtained(aatb
H(T)[H(|)] is considered as the Hausdorff dimension in the-g 475 (crumpled phase (b) b=0.478 (smooth phase and the

smooth[crumpled phase atb>b, [b<b.] just above[be-  sections of the surfaces i@ and (b) are shown in(c) and (d),
low] b, in each model. The reason for the large errors in bothespectivelyN=2500.
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than that of model 1; this difference &f can be visible in IV. SUMMARY AND CONCLUSIONS
the slope of the straight lines in Figtb$ and §d).
There is no difference between the surfaces in the smootm

phase of the models in this paper and thosgL6f, while the

We have shown that the continuous phase transition seen
ordinary tethered membrane models is strengthened in two
) ) kinds of tethered membrane models, whose bending energy
surfaces in the disorderedr crumpled phase of the models s yefined by using the normal vectors at the vertices. One of
in this paper are more crumpled than those[15]. The  he models is defined by the Hamiltoni@+bS,, and the
Hausdorff dimension ab> b, of the models and those of giher is a tensionless model definedtf;+V, whereV is a
[15] are comparable, although the order of the transition ohard wall potential. It was shown by extensive MC simula-
the models in this paper is different from that [ibS]; the  tjons that both of the models undergo a first-order phase
models in[15] have a continuous phase transition. transition which is characterized by a gapSf The size of

We note also that botki;(T) and Hy(T) are compatible the spherical surfaces and the Hausdorff dimension discon-
with (or slightly smaller thapthe Flory predictionH=2.5, tinuously change at the phase transition in both models.
and they are almost compatible with an analytical rebult The definition of the Hamiltonian remains in the frame-
=2.3923) which corresponds to the scaling exponant work of the membrane elasticity of Helfrich. The bending
=0.84+0.04 in[36] where v=2/H. The valuesH,(1) and  energy in Eq.(3) utilize_d in thi_S paper appears to induce a
H,(1) in Eq.(11) imply that the surfaces are relatively swol- non-nearest-neighbor interaction bet_ween n_orn_1a| ve_ctors of
len and smooth in the smooth phaséath, in both models. the surface. In fact, _the range (_)f the interaction is a bltllarg_er

In order to see the surfaces, we show snapshots of siztlg'an that of the ordlna_try bendlng.energy as (_jep|cted in Fig.
N=2500 of model 1 in Figs. @ and Tb), one of which is . However, the bending energy in E®) is written by the

obtained in the crumpled phaselat0.475 and the other in norn;}e;)l vectors Ofl Eq(Z)darr:d the nor:jne}l vzctorls Obf tlhe |
~ T neighboring triangles, and hence it is defined only by loca
the smooth phase &=0.478. The sections of them are

. . . tri titi f th f just like th di
shown in Figs. ) and {d). The surface swells in the 822&?;?9“;2?;;#853&), € surface just fike fhe ordinary

smooth phase as expected. We also find that the surface in
Fig. 7(b) is smooth only at long-range scales and rough at
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