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We present two classes of improved estimators for mutual informatiox, Y), from samples of random
points distributed according to some joint probability dengif,y). In contrast to conventional estimators
based on binnings, they are based on entropy estimatesfra@arest neighbor distances. This means that they
are data efficientwith k=1 we resolve structures down to the smallest possible gcaldaptivethe resolution
is higher where data are more numenusd have minimal bias. Indeed, the bias of the underlying entropy
estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically sys-
tematic errors which scale as functionskdfN for N points. Numerically, we find that both families become
exact for independent distributions, i.e. the estimatal(X,Y) vanishes(up to statistical fluctuationsif
u(X,y)=u(x)u(y). This holds for all tested marginal distributions and for all dimensionx @findy. In
addition, we give estimators for redundancies between more than two random variables. We compare our
algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for
assessing the actual independence of components obtained from independent component|&#aly $is
improving ICA, and for estimating the reliability of blind source separation.
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I. INTRODUCTION will use natural logarithms. The aim is to estimadtX,Y)

Among the measures of independence between randogg;n the set(z} alone, without knowing the densitigs, 1y,

variables, mutual informatioMI) is singled out by its in- - .

formation theoretic background]. In contrast to the linear One of the main f|e|d_s V\_/here MI plays an important role,_

correlation coefficient, it is senéitive also to dependenceat least conceptually,lls independent component ar_1a|y5|s
' JICA) [3,4]. In the ICA literature, very crude approximations

e o e s 1 i ased on cumulant expansion ae papar because o
y Y their ease of use. But they are valid only for distributions

independent. The latter is also true for quantities based on | d v b df kina dif

Renyi entropie$2], and these are often easier to estimate close to Gaussians and can mainly be used for ranking dif-
articular if their order is 2 or some other intege®). Nev- ferent distributions by interdependence, and much less for

P gee). estimating the actual dependences. Expressions obtained by

ZEQ?LeesfheMolrelicl;rllIgcljj\?aﬂaltseglcc)izi\}fcjs fﬁgn?rtﬁ anzrigtﬁ ntropy maximalization using averages of some functions of
9 he sample data as constraift§ are more robust, but are

known properties of MI and some simple CONSEqUenCezy very crude approximations. Finally, estimates based on

thereof are collected in the Appendix. i fthe d ht b ful b
But it is also true that estimating Ml is not always easy. explicit paramef[rl_zanons ofthe _er]smes might be useful but
"are not very efficient. More promising are methods based on

1_')(/);:().|ca_1;Iyi,_olne has v?hisceht znge gg’saur:ﬁte% rtr;esgui.r(gjrggnéxr:_ kernel density estimatof$,6]. We will not pursue these here
=Xy, =4, ., P either, but we will comment on them in Sec. IV A.

g(in;d\((ennq{ak:hgd|stqbuteﬂe)allliatlons ij randort;] va_rt|r?ble The most straightforward and widespread approach for
=(X,Y) wi ensity u(x,y). Here,x andy can be either stimating Ml more precisely consists in partitioning the

scalars or can be_ elements of some hlgher-d|men3|qn upports ofX andY into bins of finite size, and approximat-
space. In the following, we shall assume that the density is ﬂlg Eq. (1) by the finite sum

proper smooth function, although we could also allow more
singular densities. All we need is that the integrals written o(i.)
below exist in some sense. In particular, we will always as- I(X,Y) = lginned X, Y) = 2 p(i,j)log————— ]
sume that 0 lo@)=0, i.e., we do not have to assume that Py(i )Py(J)
densities are strictly positive. The marginal densitiesXof

andY are u,(x) = fdyu(x,y) and uy(y)=fdxu(x,y). The Ml where py(i)=[idx ux(x), py(j)=J;dy m,(y), and p(i,j)

(2)

is defined as =[ifjdxdy u(x,y), and [; means the integral over binAn
estimator ofl yi,,ed X, Y) is obtained by counting the numbers

w(X,y) of points falling into the various bins. (i) [n,(j)] is the

1(X,Y) = fdedy“(X y)log—— ==~ 1y (y) (1) humber of points falling into théth bin of X [jth bin of Y],

andn(i,j) is the number of points in their intersection, then
The base of the logarithm determines the units in which inwe approximatep,(i) ~ny(i)/N, py(j)=ny(j)/N, and p(i, )
formation is measured. In particular, taking base 2 leads te=n(i,j)/N. It is easily seen that the right-hand side of Eq.
information measured in bits. In the following, we always (2) indeed converges tidX, Y) if we first letN— and then

1539-3755/2004/68)/06613816)/$22.50 69 066138-1 ©2004 The American Physical Society



KRASKOV, STOGBAUER, AND GRASSBERGER PHYSICAL REVIEW &9, 066138(2004

let all bin sizes tend to zero, if all densities exist as proper . 3
(not necessarily smoogHunctions. If not, i.e., if the distri- °
butions are, e.g.¢multifractal, this convergence might no . o
longer be true. In that case, E&) would define resolution- : !
dependent mutual entropies which diverge in the limit of o . .
infinite resolution. Although the methods developed below &)
could be adapted to apply also to that case, we shall not do
this in the present paper. . . o . . o
The bin sizes used in E@2) do not need to be the same
for all bins. Optimized estimator&,8] use indeed adaptive o efi . efi
bin sizes which are essentially geared to having equal num-
bersn(i,j) for all pairs(i,j) with nonzero measure. While . .
such estimators are much better than estimators using fixed 5000 S0,
bin sizes, they still have systematic errors which result on the o ) _ o
one hand from approximatingX,Y) by lpinnedX,Y), and on _ FIG. 1._ Panela): Determination pfe(l), nx(l)_, andny(i) in the
the other hand by approximatiripgarithms of probabilities ~ first algorithm, fork=1 and some fixed. In this examplen(i)
by (logarithms of frequency ratios. The latter could be pre- ~> 1dny(1)=3. Panelgb),(c): Determination ofey(i), €(i), ni),
sumably minimized by using corrections for finitg(i) and anqny(') n the segond algonthr_n fde=2. Panetb) ShO.WS acasein
. . . . which €(i) ande,(i) are determined by the same point, while panel
n(i.j), res_peCt“_/ely[g]'_ The_se Correcthns are in the for_m of (c) shows a case in which they are determined by different points.
asymptotic series which diverge for finidg but whose first

two terms improve the estimates in typical cases. The first . . .
correction term—which often is not sufficient—was taken andY. The basic idea df20-27 is to estimateH(X) from the

into account in[6,10]. average distance to thenearest neighbor, averaged over all
In the preseni paper we will not follow these lines, but*- Details will be given in Sec. Il. Mutual information could

rather estimate MI fronk-nearest neighbor statistics. There P& obtained by estimating in this wal(X), H(Y), and

exists an extensive literature on such estimators for th&!(X,Y) separately and usind]

simple Shannon entropy

1(X,Y) =H(X) + H(Y) = H(X,Y). (5)

H(X) = _f dxu(x)log u(x), (3 But this would mean that the errors made in the individual

estimates would presumably not cancel, and therefore we
dating back at least tf11,12. But it seems that these meth- proceed differently.

ods have hardly ever been used for estimating (MF an Indeed we will present two slightly different algorithms,
exception se¢l3], where they were used to estimate transferhboth based on the above idea. Both use for the sgace
entropies. In [12,14-19 it is assumed thax is one- =(X,Y) the maximum norm,
dimensional, so that the can be ordered by magnitude and
Xi+1—X—0 for N—o. In the simplest case, the estimator lz=2'|| = max{]jx - x'|l,Ily - y'[I}, (6)
based only on these distances is

N-1 while any norms can be used fix—x’| and|y-y’[| (they

- 1 . _ need not be the same, as these spaces could be completely
HO9 N- 1,21 10906 =x) + 9 (D =y (N). - (4) different. Let us denote by(i)/2 the distance frong to its
. . _ kth neighbor, and by,(i)/2 and ¢/(i)/2 the distances be-
Here, ¢ (x) is the digamma functiony (x)=I'()*dl'(x)/dX. tween the same points projected into ®andY subspaces.
It satisfies the recursion (x+1)=¢ (X)+1/x and (1)=  Obviously, e(i)=maxe,(i), &(i)}.
-C, whereC=0.577 215 6... is the Euler-Mascheroni con- |n the first algorithm, we count the numbey(i) of points
stant. For largex, ¢ (x) ~log x~1/2x. Similar formulas exist . whose distance fron, is strictly less thane(i)/2, and
which usex;,—x; instead ofx;,;—x;, for any integek<N.  gimjlarly for y instead ofx. This is illustrated in Fig. ().
_ Although Eq.(4) and its generalizations o>1 seem t0  Npotice thate(i) is a random(fluctuating variable, and there-
give the best estimators &f(X), they cannot be used for Ml 40 alson,(i) andn,(i) fluctuate. We denote by --) aver-

because it is not obvious how to generalize them to highefgeg hoth over aile[1, ... N] and over all realizations of
dimensions. Here we have to use a slightly different ap

proach, due t¢20] [see alsd21,22; the latter authors were
only interested in fractal measures and estimating their infor- N
mation dimensions, but the basic concepts are the same as in ¢-y=NS E[-(0)]. 7)
estimatingH(X) for smooth densitigs i1
Assume some metrics to be given on the spaces spanned
by X,Y andZ=(X,Y). We can then rank, for each point  The estimate for Ml is then
=(x;,¥)), its neighbors by distance;;=[z-z]: di; <d;,
<dj;,<--. Similar rankings can be done in the subspates IDX,Y) = (k) = (pne+ 1) + p(ny + 1)) + p(N).  (8)

the random samples,
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0.01 - r=09 —— | The most conspicuous feature seen in Fig. 2, apart from
=08 — the fact that indeed®(X,Y)—lgauséX,Y)—0 for N— oo, is
°E 0.005 | r=00 —e— | that the systematic error is compatible with zerorfe, i.e.,
= when the two Gaussians are uncorrelated. We checked this
= 0 g ] with high statistics runs for many different valueskodndN
= e (a priori one should expect that systematic errors become
x o005k N T x| large for very smallN), and for many more distributions
;— ' (exponential, uniform, etg. In all cases we found that both
8 001 ] ID(X,Y) and I?(X,Y) become exact for independent vari-
ables. Moreover, the same seems to be true for higher-order
0015 . . , . redundancies. We thus have the following conjecture.
0.01 0.02  0.03 004  0.05 Conjecture Equations(8) and (9) are exact for indepen-
1/N dent X and Y, i.e., IY(X,Y)=19(X,Y)=0 if and only if
I(X,Y)=0.

FIG. 2. Estimates 0of@(X,Y)—lqyacfX,Y) for Gaussians with . -
unit variance and covariances0.9,0.6,0.3, and 0.(from top to We have no proof for this very surprising result. We have

bottom), plotted against IM. In all casesk=1. The number of trials numerical indications that moreover
is >2x10° for N<1000 and decreases to10° for N=40 000. 12 _
_ [1E2(X,Y) = 1(X,Y)|
Error bars are smaller than the sizes of the symbols. 1XY) =< const (12
Alternatively, in the second algorithm, we replaogi) asX andY become more and more independent, but this is
andn,(i) by the number of points Wit”p(i—xj”s €(i)/2 and much less clean and therefore much less sure. '
lyi=y;ll=< &(i)/2 [see Figs. (b) and Xc)]. The estimate for In Sec. Il we shall give formal arguments for our estima-
Ml is then tors, and for generalizations to higher dimensions. Detailed
numerical results for cases where the exact Ml is known will
12(X,Y) = (k) = Lk = ((n) + gny)) + p(N).  (9) be given in Sec. lll. In Sec. IV A we give two preliminary
applications to gene expression data and to ICA. Conclusions
The derivations of Eqg8) and(9) will be given in Sec. II. ~ are drawn in the final section, Sec. V. Fl_nally, some general
There we will also give formulas for generalized redundan-2spects of Ml are recalled in an Appendix.
cies in higher dimensions,

Il. FORMAL DEVELOPMENTS
I(X]JXZ! . ,Xm) = H(Xl) + H(Xz) 4+ o0+ H(Xm)

A. Kozachenko-Leonenko estimate for Shannon entropies
=~ H(Xp, Xa, - X« (10

We first review the derivation of the Shannon entropy
In general, both formulas give very similar results. For thesst'ma}ﬁlz()r_zs’ ?TI]nCnet the estimators for Ml are obtained by
samek, Eq. (8) gives slightly smaller statistical errofbe- elile\:, X l?e 6:zlggonﬁnusc.)us random variable with values in
causen,(i) andny(i) tend to be larger and have smaller rela- some metric space, i.., there is a distance fundbion<|
tive fluctuation$, but have larger systematic errors. The lat- pace, 1.e., porX

ter is only severe if we are interested in very high dimensionsbetween any two realizations o, and let the density.(x)

where (i) tends typically to be much larger than the mar- exist as a proper function. Shannon entropy is defined as
ginal ij(i)- In that case the second algorithm seems prefer-
able. Otherwise, both can be used equally well. H(X) = —fdx,u(x)log m(x), 13
A systematic study of the performance of E¢®.and(9)
and comparison with previous algorithms will be given in where “log” will always mean natural logarithm so that in-

Sec. Ill. Here we will just show results df?(X,Y) for  formation is measured in natural units. Our aim is to estimate
Gaussian distributions. Let and Y be Gaussians with zero H(X) from a random samplex;- - -xy) of N realizations oiX.
mean and unit variance, and with covariamcén this case The first step is to realize that E@L3) can be understood
[(X,Y) is known exactly{8], (up to the minus signas an average of log(x). If we had

unbiased estimators lqg(x) of the latter, we would have an
1 unbiased estimator
IGausgny) == 5'09(1 - rz)- (11) \

HX) =-N1X | ). 14
In Fig. 2, we show the erron$?(X,Y) -l gauskX,Y) for vari- ) ,;1 0g 4(x) (14

ous values ofr, obtained from a large numbétypically .

10°-10") of realizations ofN-tuples of vectorsx;,y;). We  In order to obtain the estimate lpgx), we consider the
show only results fok=1, plotted against IM. Results for  probability distributionP,(e) for the distance betweef and
k>1 are similar. To a first approximatiof”(X,Y) and1® its kth nearest neighbor. The probabiliBy(e)de is equal to
X(X,Y) depend only on the ratik/N. the chance that there is one point within distance
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e [€l2,el2+del 2] from x;, that there ar&—1 other points at B. Mutual information: Estimator |®(X,Y)
smaller distances, and that—-k-1 points have larger dis- Let us now consider the joint random variallle (X,Y)

tances fromx,. Let us denote byp; the mass of the ball - \ith maximum norm. Again we take one of thepoints z
centered ak;, Pi(€)=J|x|<a2 d&u(£). Using the trinomial  5ng consider the distaned2 to its kth neighbor. Again this

formula we obtain is a random variable with distribution given by E€L6).
| Also Eg. (17) holds without changes. The first difference
P (e)de= (N-1) dQ(e)dE X pit from the previous subsection is in E48), where we have to

11(k=D!'(N-k=-1)! de ' replaced by dz=dyx+dy, ¢4 by 4y, and of course by

X (1-p)NK1 (15) z=(x;,Y;). With these modifications we obtain therefore
dly + dy <

o HX,Y) = = (k) + (N) +log(cy,Ca) + — = 2 log e(i).
N-1\dp(e) . » i=1

P(e) = k( . )%p!‘ L-pNt (19 (21)

In order to obtainl(X,Y), we have to subtract this from
estimates foH(X) andH(Y). For the latter, we could use Eq.
(20) directly with the sameé. But this would mean that we
would effectively use different distance scales in the joint
o and marginal spaces. For any fixkedthe distance to thkth
E(log p;) :f dePy(e)log pi(e) neighbor in the joint space will be larger than the distances to

0 the neighbors in the marginal spaces. The bias in(EQ)

One easily checks that this is correctly normalized,
fdeP(e)=1. Using Eq.(16), one can also compute the ex-
pectation value of log;(e),

N-1) (1 results from the nonuniformity of the density. Since the ef-
:k< ‘ )f dppi(1 -p)N*log p fect of the latter depends of course on #ik neighbor dis-
0 tances, the biases id(X), H(Y), and inH(X,Y) would be
=i(k) — y(N), 17) very different and would thus not cancel.

To avoid this, we notice that E§20) holds forany value
where (x) is the digamma function. The expectation is of k, and that we do not have to choose a fixedvhen
taken here over the positions of all othér 1 points, withx; estimating the marginal entropies. Assume, as in Fg), 1
kept fixed. An estimator for logu(x) is then obtained by that thekth neighbor ofx; is on one of the vertical sides of
assuming thaj(x) is constant in the entire ball. The latter the square of size(i). In this case, if there are altogether
gives n,(i) points within the vertical linegs=x;+ €(i)/2, thene(i)/2
is the distance to then(i)+1]st neighbor ofx;, and

pi(e) = CdeM(Xi). (18) N N
~ -1 d
whered is the dimension ok andcy is the volume of the  H(X) = —, y{n,(i) + 1] + (N) + log Ca, + X3 log €li).
d-dimensional unit ball. For the maximum norm one has i=1 N1
simply cq=1, while cg=7%?/T'(1+d/2)/2% for the Euclidean (22)
norm.
Using Eqs.(17) and(18), one obtains For the other directiofthey direction in Fig. 1a)] this is not

exactly true, i.e. (i) is not exactly equal to twice the dis-
log u(x) = {K) — ¢AN) —dE(log €) - log cg, (19)  tance to theny(i)+1]st neighbor, ifn,(i) is analogously de-
fined as the number of points witly; -y <e(i)/2. Never-
which finally leads to theless, we can consider Eq22) also as a good
approximation foH(Y), if we replace everywher¥ by Y in
N d . its right-hand siddthis approximation becomes exact when
H(X) == (k) + ¢(N) +log ¢4+ Nz log €(i), (20 n,(i) — o=, and thus also wheN— =]. If we do this, subtract-
N _ _ _ _ ing H(X,Y) from H(X)+H(Y) leads directly to Eq(8).
wheree(i) is twu?e the (J!|s'tance 'fromi to its kth neighbor. We should stress that the errors FH(X), H(Y), and in
From the derivation it is obvious that E(RO) would be
unbiased, if the density(x) were strictly constant. The only
approximation is in Eq(18). For points on a toruge.g.,

N

I:|(X,Y) will not cancel eactly in general. But the chances
that they will do so approximately are bigger with the above

whenx is a phasgwith a strictly positive density one can procedur_e- than if we had used different length scalgs in th‘?
easily estimate the leading corrections to ELB) for large three estimates. The real proof that our proposed estimator is

N. One finds that they ar@(1/N?) and that they scale, for better than that obtained when using the saaia H(X),
large k and N, as ~(k/N)2. In most other case@ncluding,  H(Y), andH(X,Y) comes of course from detailed numerical
e.g., Gaussians and uniform densities in bounded domairtssts.

with a sharp cutoff it seems numerically that the error is  These arguments can be easily extendednteandom
~k/N or ~k/N log(N/k). variables and lead to
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1D(Xy, Xz - Xo) = (K) + (M= (N) = (gny,)) + gy,
ook ylng)). (23)

C. Mutual information: Estimator 1@(X,Y)

The main drawback of the above derivation is that the
Kozachenko-Leonenko estimator is used correctly in only
one marginal direction. This seems unavoidable if one wants

to stick to “balls,” i.e., to(hyper) cubes in the joint space. In
order to avoid it we have to switch {typen rectangles.

Let us first discuss the case of two marginal variaties
and Y, and generalize later tm variablesXy, ... X, As
illustrated in Figs. tb) and Xc), there are two cases to be
distinguished[all other cases, where more points fall onto
the boundariesq+¢,(i)/2 andy;+¢/i)/2, have zero prob-
ability; see, however, the third paragraph of Sed: Hither
the two sides,(i) ande (i) are determined by the same point
[Fig. 1(b)], or by different pointgFig. 1(c)]. In either case
we have to replac®,(e) by a two-dimensional density,

Pu(ex &) = P (& 6) + PO (6 €) (24)
with
N-1) ]
P(b) - ( ) [ 1-n N-k-1 25
k (GXIGy) K dEXde( pl) ( )
and

N—w&w]
k /dede,
Here, g;=qj(e, €y) is the mass of the rectangle of sizg

X €, centered atx;,y;), andp; is, as before, the mass of the
square of size&e=maxe,, €,}. The latter is needed since by

P(kC)(Exa Ey) = (k - 1)( (1 - pi)N_k_l- (26)

PHYSICAL REVIEW E 69, 066138(2004)

........... I_._-_-_..I _-_-..--_-_}.
oi Sy(l)
___________________ ot
e o
e |

FIG. 3. There cannot be any points inside the shaded rectangles.
For method 2, this means that the estimates of the marginal entropy
H(X)[H(Y)] should be modified, since part of the area outgide
side] the stripe of withe, [€,] is forbidden. This is neglected in Eq.

9).

by simply demanding that the sum is correctly normalized.

This gives

N-1
k

) d"al]
de --dexm

X1

Pk(&'xl, e ,GXm) = km_l< X (l - pi)N_k_l.

(29)

Calculating agairE(log q;) = ¢(k)—(m-1)/k—¢(N) analyti-
cally and approximating the density by a constant inside the
hyper-rectangle, we obtain finally

1D(X, X+ X = (k) = (M= 1)/k + (M= 1)(N)
- <¢(nx1) + 'r//(nxz) + o+ w(nxm»-
(30)

using the maximum norm we guarantee that there are no Before leaving this section, we should mention that we

points in this square which are not inside the rectangle.
Again we verify straightforwardly thalP, is normalized,
while we have now instead of E¢L7)

E(logq) = J f dede Pyl €,)l0g (€, €)
0

= (k) — 1Kk - (N). (27)

Denoting now byn,(i) andny(i) the number of points with
distance less thaor equalto €,(i)/2 and ¢/(i)/2, respec-
tively, we arrive at Eq(9).

For the generalization tm variables we have to consider
m-dimensional densitieBy(ey, , ... & ). The number of dis-
tinct caseqanalogous to the two cases shown in Figd) 1
and Xc)] proliferates asn grows, but fortunately we do not

cheated slightly in deriving@(X,Y) (and its generalization

to m>2). Assume that in a particular realization we have
(i) <¢(i), as in Figs. tb) and Xc). In that case we know
that there cannot be any point in the two rectangles
[Xi—ei)/2,%— (i) 2] X [yi—€/(i)/2,y;+€,i)/ 2] and
[Xi+e(i)/2,x+€,(1) 2] X [yi—€/(i)/2,y;+€,(i) /2] (see Fig.

3). While we have taken this correctly into account when
estimatingH(X,Y) (where it was crucig) we have neglected

it in H(X) andH(Y). There, the corrections af@(1/n,) and
O(1/ny), and should vanish foX— <. It could be that their
net effect vanishes, because they contribute with opposite
signs toH(X) and H(Y). But we have no proof for it. Any-
how, due to the approximation of constant density within
each rectangle, we cannot expect our estimates to be exact
for finite N, and any justification ultimately relies on numer-

have to consider all these cases explicitly. One sees easil§s:

that each of them contributes B a term

d"a]

dEX1 e dexm

* (1-p)"t. (28)

The direct calculation of the proportionality factors would be
extremely tediouswe did it for m=3), but it can be avoided

IIl. IMPLEMENTATION AND RESULTS

A. Some implementation details

Mutual information is invariant under reparametrization
of the marginal variables. IK'=F(X) andY’'=G(Y) are ho-
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meomorphisms, theh(X,Y)=I(X",Y’) (see the Appendjx  which leads to a strictly uniform empirical density,(x’)
This is in contrast td1(X), which changes in general under a =M§(X')=(1/N)Ei'\il5(x' -i). ForN— o andk> 1 this clearly
homeomorphism. This can be used to rescale both variablgsaves the M| estimate invariant. But it is not obvious that it
first to unit variance. In addition, if the distributions are very |eaves invariant also the estimates for fikifsince the trans-
skewed and/or rough, it might be a good idea to transformormation is not smooth at the smallest length scale. We
them such as to become more unifotor at least single-  found numerically that rank ordering gives correct estimates
humped and more or less symmefridithough this is not 50 for smalk, if the distance degeneracies implied by it are
required, strictly speaking it will reduce errors in general.jyroken by adding low-amplitude noise as discussed above. In
One example s thé-exponential distribution in two vari- 5 icylar, both estimators still gave zero MI for independent
ables, pu(x,y)=x"exp-x=xy)/I'(6) for x,y>0 [24], when  i-s “Although rank ordering can reduce statistical errors,
#<1. For #—0, the marginal distributions develop@and e did not apply it in the following tests, and we did not

1/y singularities(for x— 0 and fory — o, respectively, and  gy,qy in detail the properties of the resulting estimators.
the joint distribution is nonzero only in a very narrow region

near the two axes. In this case our algorithm failed when

applied directly, but it gave excellent results after transform-

ing the variables to’ =log x andy’ =log y. We shall first discuss applications of our estimators to
When implemented straightforwardly, the algorithm correlated Gaussians, mainly because we can in this way

spends most of the CPU time searching for neighbors. In thg1ost easily compare with analytic results and with previous

most naive version, we need two nested loops through almumerical analyses. In all cases we shall deal with Gaussians

points which gives a CPU tim&(N?). While this is accept-  of unit variance and zero mean. Forsuch Gaussians with

able for very small data sei®ay N<300), fast neighbor ~covariance matrioyi,k=1---m, one has

search algorithms are needed when dealing with larger sets. 1

Let us assume that andY are scalars. An algorithm with [(Xq, ... Xy = - =log[det(o)]. (31

complexityO(Nvk N) is then obtained by first ranking the 2

by magnitude(this can be done by any sorting algorithm For m=2 and using the notatior= oy, this gives Eq(11).

such asQUICKSORYT), and coranking the; with them [25]. First results fol @(X,Y) with k=1 were already shown in

Nearest neighbors dk;,y;) can then be obtained by search- ig 2 Results obtained witH?(X,Y) are very similar and

ing x neighbors on both sides of and verifying that their \yould indeed be hard to distinguish in this figure. In Fig. 4

distance in they direction is not too large. Neighbors in the \ve compare values df¥(X,Y) (left pane) with those for

marginal subspaces are fqund even easier by ranking%pot'h 1(X,Y) (right pane} for different values ofN and forr

and y;. Most results in this paper were obtained by thIS:O_g_ The horizontal axes shok/N (left) and (k-1/2)/N

method, which is suitable fox up to a few thousand. The .
' . ) . (right). Except for very small values ¢fandN, we observe
fastest(but also most complgxalgorithm is obtained by us- scaling of the form

ing grids (“boxes”) [26,27. Indeed, we use three grids: A
two-dimensional one with box siz®&(vk/N) and two one-
dimensional ones with box siz&31/N). First thek neigh-
bors in 2D space are searched using the 2D grid, then the
boxes at distanceseffrom the central point are searched in This is a general result and is found also for other distribu-
the 1D grids to finch, andn,. If the distributions are smooth, tions. The scaling withk/N of IU(X,Y) results simply from
this leads to complexit(vkN). The last algorithm is com- the fact that the number of neighbors within a fixed distance
parable in speed to the algorithm [8]. For all three ver- would scalexN, if thgre were no statistica! fluctuations. For
sions of our algorithm it costs only little additional CPU time largek these fluctuations should become irrelevant, and thus
if one also evaluates, together withX,Y) for somek>1, the MI estimate should depend only on the ratidN. For
the estimators for smallés 12(X,Y) this argument has to be slightly modified, since the
Empirical data usually are obtained with fee.g., 12 or  Smaller one ok, ande, is determinedfor largek, where the
16) binary digits, which means that many points in a large sefituation |Ilusftrated in Fig. (_1:) dominates over that in Fig.
may have identical coordinates. In that case, the numberkP)] by k-1 '”SE%ad ok neighbors. .
ny(i) andn,(i) need no longer be uniquéhe assumption of 1The fact thatl (X,YZ for a given yalue ok is between
continuously distributed points is violatedf no precautions IW(X,Y) for k=1 andI™(X,Y) for k is also seen from the
are taken, any code based on nearest-neighbor counting \(griances of the estimates. In Flg 5 we show the standard
then bound to give wrong results. The simplest way out ofdeviations, again for covarianae=0.9. These statistical er-
this dilemma is to add very low-amplitude noise to the dataors depend only weakly an Forr=0 they are roughly 10%
(=101 say, when working with double precisipwhich ~ smaller. As seen from Fig. 5, the errors IP(X,Y;k) are
breaks this degeneracy. We found this to give satisfactoryoughly halfway between those ofM(X,Y;k-1) and
results in all cases. ID(X,Y:k). They scale roughly as-yN, except for very
Often, Ml is estimated afterank orderingthe data, i.e., largek/N. Their dependence dkdoes not follow a simple
after replacing the coordinate by the rank of theéth point  scaling law. The fact that statistical errors increase wken
when sorted by magnitude. This is equivalent to applying alecreases is intuitively obvious, since then the width of the
monotonic transformatior— x’,y—Yy’ to each coordinate, distribution ofe increases too. Qualitatively the same depen-

B. Results: Two-dimensional distributions

K k-1/2
@ ~ol X @ ~ ol X222
1D(X,Y) <I><N>, 12(X,Y) q)( N ) (32)
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0.78 . . . . . .
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0.0001 : '
k/N 100 1000 10000 100000
0.85 — N
0.84 | ] FIG. 6. Systematic errof?(X,Y) =l gl X,Y) for k=3 plotted
’_’\\ againstN on a log-log scale, for=0.9. The dashed lines apeN 0>
0.83 _
and N85

> o82f
ﬁé 0.81 | errors outweighs the decrease of statistical ones. We propose
= 7 to use typicallyk=2-4, except when testing for indepen-

08 | 1 dence. In the latter case we do not have to worry about

079 | systematic errors, and statistical errors are minimized by tak-

0.78 . L ing k to be very larggup tok=N/2, say.

"0 001 002 003 004 005 0.06 0.07 The above shows thaf(X,Y) andI®(X,Y) behave very
(k-0.5)/N similarly. Also CPU times needed to estimate them are nearly

) _ _ ) the same. In the following, we shall only show data for one

FIG. 4. Mutual information estimate$’(X,Y) (left pane} and  of them, understanding that everything holds also for the
1@(X,Y) (right pane) for Gaussian deviates with unit variance and other, unless the opposite is said explicitly.

covariancer =0.9, plotted against/N (left pane) and (k—=1/2)/N For N—o, the systematic errors tend to zero, as they

(right pane), respectively. Each curve corresponds to a fixed Valueshould. From Figs. 2 and 4 one might conjecture a?
of N, with N=125,250,500,1000,2000,4000,10 000, and 20 OOO’X(X,Y)—IexaC{X,Y) _ N_1/2, but this is not true. Plotting this

from bottom to top. Error bars are smaller than the size of thedifference on a double logarithmic scalig. 6), we see a
symbols. The dashed line indicates the exact val(X,Y) 9 9. 9,

= scaling~N~Y2for N~ 10?, but faster convergence for larger
=0.830 366. . ; 0.85

N. It can be fitted by a scaling 1/N”-°°for the largest values
) . of N reached by our simulations, but the true asymptotic
dence of the errors was observed also for different distribupanavior is presumably just1/N.
tlons._For practical apphcatl_on_s, it means that one should use aq said in the Introduction, the most surprising feature of
k>1 in order to reduce s_tatlst|cal errors, but too large value_%ur estimators is that they seem to be exact for independent
of k should be avoided since then the increase of systematic,nqom variableX andY. In Fig. 7 we show how theela-

tive systematic errors behave for Gaussians whenO.

22 ) ' ' 'N}gAIg;EX,Q' ; More precisely, we showt®2(X,Y)/I-2(X,Y) for k=1,
2 X NTEATEXY) ] plotted againsN for four different values ofr. Obviously
. these data converge, when- 0, to a finite function ofN. We
S 18| .
= : 1.02 :
g‘_ 1.6 |+ ) 101 g --:-;;»__i&_:_j
< g4} =
a 4 X 1
z 12} +§§¥ %
gy, 3 099f
1t S -
+x*x+x+x+X+X+x“"*x+x+x+X+x+xixtxixww+g+? o 0.98
0.8 \ \ il e \ ;,
0 5 10 15 20 25 30 S 097t
k or k-1/2 =
0.96 |
FIG. 5. Standard deviations of the estimat€¥(X,Y)(+) and

1@(X,Y)(x) for Gaussian deviates with unit variance and covari- 0.95 0

ancer=0.9, multiplied by VN and plotted againsk[1'V(X,Y)] or
k=1/21@(X,Y)]. Each curve corresponds to a fixed valueNyf
with N=125,250,500,1000,2000,4000,10 000, and 20 000, from FIG. 7. Ratios!@(X,Y)/leadX,Y) for k=1 plotted against
bottom to top. 1/N, for four different values of.

0.04 0.05
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FIG. 8. Statistical error¢one standard deviatigrior Gaussian FIG. 9. Systematic errors for Gaussian deviates with

deviates withr=0.9, plotted againsi. Results froml @(X,Y) for  =0.0,0.3,0.6, and 0.9, plotted againsiJ. bbtained with the algo-
k=1 (full line) are compared to theoretically predictethshed ling rithm of [8]. These should be compared to the systematic errors
and actually measurediotted ling errors from[8]. obtained with the present algorithm shown in Fig. 2.

have observed the same also for other distributions, whicltrongly withr, because the partitionings are followed to less
leads to a conjecture stronger than the conjecture made in thg\d less depth. But, as we shall see, this comes with a risk
Introduction: Assume that we have a one-parameter familfor systematic errors.
of 2D distributions with densitieg.(x,y;r), with r being a Systematic errors dB] for Gaussians with various values
real-valued parameter. Assume also tjpafactorizes forr of r are shown in Fig. 9. Comparing with Fig. 2 we see that
=ro, and that it depends smoothly orin the vicinity of ro,  they are, forr #0, about an order of magnitude larger than
with du(x,y;r)/ar finite. Then we propose that for many ours, except for very larg, where they seem to decrease as
distributions(although not for ajl 1/N. Systematic errors of8] are also very small when
=0, but this seems to result from fine tuning the paraméter
1520 exael X, Y) = F(KN) (33 which governs the pruning of the partitioning treq . Bad
for r —r,, with some functiorF(k,N) which is close to 1 for ~ choices of & lead to wrong MI estimates, and optimal
all k and allN> 1, and which converges to 1 fot—o. We  choices should depend on the problem to be analyzed. No
have not found a general criterion for which families of dis- such fine tuning is needed with our method.
tributions we should expect E(33). As examples of non-Gaussian distributions we studigd
The most precise and efficient previous algorithm for esthel’-exponential distributiofi29], (ii) the ordered Weinman
timating Ml is that of Darbe”ay and Vajdw], and we will exponential distributior[29], and (III) the “circle distribu-
compare here 0n|y with their a|gorith(|30me less System- tion” of Ref. [28] For all these, both exact formulas for the
atic comparisons with a KDE method will be discussed inM! and detailed simulations using Darbellay-Vajda algorithm
Sec. IV A). As far as speed is concerned, it seems to be faste@Xist. In addition, we tested that! and ® vanish, within
than the present one, which might, however, be due to atatistical errors, for independent uniform distributions, for
more efficient implementation. In any case, also with theexponential distributions, and whetwas Gaussian and
present a|gorithm we were able to obtain extreme|y h|gh\NaS either uniform or eXponentia”y distributed. Notice that
statistics on work stations within reasonable CPU times. Touniform” means uniform within a finite interval and zero
compare our statistical and systematic errors with those dputside, so that the Kozachenko-Leonenko estimate is not
[8], we have used the codwesic.exefrom Ref.[42]. We used eXact for this case either.
the parameter settings recommended in its description. In all cases with independeX and Y we found that
This code provides an estimate of the statistical errorl™?(X,Y)=0 within the statistical errorgwhich typically
even if only one data set is provided. When running it withwere =10"3-10"%). We do not show these data.
many (typically =10% data sets, we found that these error TheI'-exponential distribution depends on a paraméter
bars are always underestimated, sometimes by rather largafter a suitable rescaling ofandy) and is defined29] as
margins. This seems to be due to occasional outliers which
point presumably to some numerical instability. Unfortu- (x y.e):ixee—x—xy (34)
nately, having no source code we could not pin down the 7 INC))
troubles. In Fig. 8 we compare the predictions of the statis-
tical errors provided by the code ¢8], the actual errors for x>0 andy>0, and u(x,y;6)=0 otherwise. The Ml is
obtained from the variance of the estimators provided by thi$29] 1(X,Y)exace #(6+1)—log 6. For 6>1 the distribution
code, and the error obtained frdf®(X,Y) with k=3. We see  becomes strongly peaked»at0 andy=0. Therefore, as we
that the latter is larger than the theoretical error fi@ but  already said, our algorithms perform poorly fé® 1, if we
smaller than the actual error. For Gaussians with smaller corsse x; and y; themselves. But using( =log x; and y/
relation coefficients, the statistical errors [#] decrease =logy; we obtain excellent results, as seen from Fig. 10.
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0.96 Mutual information estimates usiné?(X,Y) with k=1 are

shown in Fig. 12. Again we transformedx,y;)
—(log x;,log y;) since this improved the accuracy, albeit not
as much as for thd-exponential distribution. More pre-
FIG. 10. Ratios!(X,Y)esin/lexacX,Y) for the T-exponential ~ Cisely, we ploti @(X,Y)/1(X,Y)exaragainst 1N for the same
distribution, plotted against N. These data were obtained witd  four values ofé studied also in29], and we plot also the
usingk=1, after transforming; andy; to their logarithms. The five estimates obtained if29]. We see that MI was severely un-
curves correspond t6=0.1,0.3,1.0,2.0,10.0, and 10@feom bot-  derestimated ifi29], in particular for largef where the Ml is
tom to top. small (for 6—oo, one has I(X,Y)=[¢'(1)-1]/26
=0.32247#). Our estimates are also too low, but much less
There we plot again®(X’,Y')/1(X,Y)ewcfor k=1 against 0. Itis clearly seen that?(X’,Y")/1(X,Y)exacidecreases for
1/N for five values ofé. These data obviously support our #— in contradiction to the above conjecture. This repre-
conjecture that@(X’,Y")/1(X,Y)eac tends towards a finite Sents the only case where the conjecture does not hold nu-
function as independence is approached_ To Compare Wiwerica”y. As we already Said, we dO not knOW Wh|Ch feature
[29], we show in Fig. 11 our data together with thosg29] of the ordered Weinman exponential distribution is respon-
for the same four values of also studied there, namely  sible for this difference.
=0.1,0.3,2.0, and 100.0. We see that Ml was grossly under-
estimated in[29], in particular for larged wherel(X,Y) is . _ _
very small[for 6> 1, one had(X,Y)~1/26]. C. Higher dimensions
The ordered Weinman exponential distribution depends In higher dimensions we shall only discuss applications of
on two continuous parameters. Followifi29] we consider our estimators tan correlated Gaussians, because as in the
here only the case where one of these paramétetled §,  case of two dimensions this is easily compared to analytic

5 1 1 1 L 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
1/N

in [29]) is set equal to 1, in which case the density is results[Eqg. (31)] and to previous numerical result30]. As
> already mentioned in the Introduction and as shown above
w(x,y; ) = =g 2 y=lo (35) for 2D distributions(Fig. 7), our estimates seem to be exact
0 for independent random variables. We choose the same one-
for x>0 andy>0, and u(x,y; 6)=0 otherwise. The MI is Parameter family of 3D Gaussian distributions with all the
[29] correlation coefﬂ_ments equal_ toas in [30]_. In Fig. 13 we
show the behavior of theelative systematic errors of both
1.1 . , . . . , . proposed estimators. One can easily see that the data con-
| f— . _ verge forr— 0, i.e., when all three Gaussians become inde-
oo 6‘ pendent. This supports the conjecture made in the previous
;. ole subsection. In addition, in Fig. 13 one can see the difference
% Cf between the estimatoi$! and 1®. For intermediate num-
3 o7 bers of pointsN~ 100-200, the “cubic” estimator has lower
~ 06 1 systematic error. Apart from that!® evaluated forN is
;— 05 i roughly equal td ¥ evaluated for R, reflecting the fact that
E 04f ) . 1@ effectively uses smaller length scales as discussed al-
£ 03} 1@ ready ford=2.
02 e Darbellay etal. -~ To compare our results in high dimension with those pre-
0. . Ty . . . sented in[30], we shall calculate not the high-dimensional
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 redundancies  1(Xy,Xs, ... Xi) but the Ml
1/N [((X1,X%5, ... Xm-1), Xy between two variables, namely an

FIG. 11. Ratios!(X,Y)eqin/lexaclX,Y) for the T-exponential (m— 1)-dimensional vector and a scalar. For estimation of
distribution, plotted against N. Full lines are from estimataf?,  this MI'we can use the formulas as for the 2D cgisgs.(8)
dashed lines are frof29]. Our data were obtained wit=1 after ~ and(9), respectively wheren, would be defined as the num-
a transformation to logarithms. The four curves correspond to ber of points in them-1)-dimensional stripe of théhypep
=0.1,0.3,2.0, and 100@rom bottom to top for our data, from top cubic cross section. Using directly EGA3) would increase
to bottom for the data of29]). the errors in estimatiofisee the Appendix for the relation
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FIG. 12. Ratiod (X,Y)estin lexact X, Y) for the ordered Weinman FIG. 14. Averages ofl @2(Xy, (X, --Xy)) for k=1 plotted
exponential distribution, plotted againstNL/Full lines are from  againstm for three different values of=0.1,0.5,0.9. The sample
estimatorl®®, dashed lines are froif29]. Our data were obtained size is 50 000; averaging is done over 100 realizati@asne pa-
with k=1 after a transformation to logarithms. The four curves cor-rameters as ii30], Fig. 1). Full lines indicate theoretical values,
respond to§=0.1,0.3,1.0, and 100.0rom top to botton). pluses(+) are for1¥, and crosse¢x) are forl1®. Squares and

dotted lines are read off from Fig. 1 of R¢80].

betweenl (X, X, Xy) and (X, X, X1 Xir)] IV. APPLICATIONS: GENE EXPRESSION DATA AND
il ERLELILEE R 1) l il m— H .
In Fig. 14 we show the average valuesl8f?. They are INDEPENDENT COMPONENT ANALYSIS
in very good agreement with the theoretical ones for all three A. Gene expression
values of the correlation coefficiemt and all dimensions ] o
tested hergin contrast, in[30] the estimators of Ml signifi- In the first application to real world data, we study the

cantly deviate from the theoretical values for dimensionJ€n€ expression ratios frof81], and compare our MI esti-

>6). It is impossible to distinguiskon this scalg between ~Mators to kemel density estimatai#$DE) used in[6]. The
estimated @ and|®. authors of[31] consideredN=300 closely related yeast ge-

omes obtained by one or at most a few mutations from wild
ype, and indexed biy=1, ... N. The measured raw data are
expression ratiosr;,, of M~=6000 genes[open reading
frames(ORFg9 labeled by indexm=1, ... M] for each of the
genomes. These data form & M matrix which can be

In Fig. 15, statistical errors of our estimate are presente
as a function of the number of neighbdesMore precisely,
we plotted the standard deviation I6Y multiplied by VN/m
againstk for the case where all correlation coefficients are

r=0.9. Each curve corresponds loa different dimension  joiernreted either as a set NfvectorsX;, each of dimension
The data scale roughly asm/yN for large dimension. i and characterizing the expression activity of one genome,
Moreover, these statistical errors seem to converge to finitgy as M 300-dimensional vectory,, each characterizing
values fork— . This convergence becomes faster for in-gne ORF.

creasing dimensions. The same behavior is observeidor According to these two points of view, we can consider

two types of mutual information. Mutual information be-
tween two genomesandi’, quantifying the similarities of
their expression profiles, can be obtained by forminghe
two-dimensional vectorg,,=(rm.ri'm Which can be under-
stood as 2D projections of ,, and estimating the MI of this
cloud of M 2D points. Alternatively, one can estimate simi-
larities between two ORFRs andm’ by forming theN vec-
tors x;=(r;m,Mm’) @and estimating the Ml of the distribution

1.02

0.98
0.96

VXY, 2) / | ggaet(%,Y,2)

094 (1), r=0.90 +—- represented by them. These Mls can then be used instead of
0.92 1 8; ::8:28 —— covariance matrices to improve cluster analyses.
09 L gg :jg-;g e In the following, we shall only follow the second alterna-
088 | (2), 1=0.60 o b tive, i.e., we only estimate Mls between ORFs, simply be-
' gg =0.30 o cause we want to compare our results with thosgpivhere
0.86 - : : : the authors also considered only the Ml between ORFs. Bio-
0 0.01 0.02 0.03 0.04 0.05

logically of interest are both alternatives. We shall not dis-
cuss the subsequent cluster analysis, since this can be done
FIG. 13. RatiosI®2(X,Y,2)/leacX,Y,2) for k=1 plotted ~ With standard algorithmg31] (a clustering algorithm specific
against 1N, for four different values of. All Gaussians have unit t0 Ml used as adis) similarity measure will be discussed
variance and all nondiagonal elements in the correlation matrixelsewherg32]). In [6] it was found that kernel density esti-
aix.1# k (correlation coefficienystake the value. mators performed much better than estimators based on bin-

1/N
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FIG. 15. Standard deviations of the estim#fe for Gaussian Bs-0s-04-02 (.‘?(m,(r)r]% 04 06 08 1

deviates with unit variance and covariance0.9, multiplied by

VN/m and plotted againsk. Each curve corresponds to a fixed FIG. 16. Estimated ®(m,m’)-(1/2)In[1-C%m,m’)] for all

value of dimensiorm. Number of samples isl=10 000. pairs(m,m’) of ORFs, plotted againg&?(m,m’). According to Eq.

) . Ab5), this should be positive, which gives an indication of the errors
ning, but that the estimated Mls were so strongly correlateghyqoved in the estimation.

to linear correlation coefficients that they hardly carried more

useful information. L . .
Let us first reinvestigate the MI estimates of the four ORFadd't'on' it seems to be faster, although the precise CPU time

pairs “A” to “D” shown in Figs. 3, 5, and 7 off6]. The claim depends on th_e accuracy of_the i_ntegration needed in KDE.
that KDE was superior to binning was based on a surrogatd! [6] also a simplified algorithm is givefEq. (33) of [6]]
analysis. For surrogates consisting of completely indepen¥here the integral is replaced by a sum. Although it is sup-
dent pairs, KDE was able to show that all four pairs werePosed to be faster than the algorithm involving numerical
significantly dependent, while binning-based estimatordntegration(on which were based the above estimptésis
could disprove the null hypothesis of independence only fomuch slower than our present estimatgitsis O(N*) and
two pairs. In addition, KDE had both smaller statistical andinvolves the evaluation of 82 exponential functioris This
systematic errors. Both KDE and binning estimators weresimplified algorithm(which is indeed just a generalized cor-
applied to rank-ordered dafé]. relation sum with the Heaviside step function replaced by
In KDE, the densities are approximated by sumsNof Gaussiansgives also rather big systematic errors, elg.,
Gaussians with fixed prescribed widticentered at the data =0.66 for pair “B.”
points. In the limith— 0 the estimated MI diverges, while it Only this simplified algorithm was used [6] to estimate
goes to zero foh—-ce. Our main criticism of(6] is that the  the Mis between alM(M~-1)/2 pairs of ORFs. When plot-
authors used a very large value tofroughly 5 to 5 of the  teg against théestimateql correlation coefficient€(m,m’),
total width of the distribution This is recommended in the g gave a narrow half-moon-shaped distribution whose
literature [33], since both statistical and systematic EITOrS,\idth was not significantly larger than the estimated uncer-
would become too large fqr ;maller .values.h)fBut W.'th tainty (see Fig. 8 of6]). In Fig. 16 we show our own results.
such a large value di one is insensitive to finer details of |\ \sad the estimatéf) with k=30. Since the experimental
the d|_str|but|ons, a_md should not be surprised 1o find hardlydata contained some outliers, we first transformed to uniform
anything beyond Imear.correlzic;ons. @ . density by rank-ordering the data. Without that, bbthand
W!th our present est!m_aton andI* we fqund indeed also the linear correlation would have been heavily biased
considerably larger statistical errors, when using small valueisOr some pairs. In view of the inequality EGA5) we actu-
of k (k<10, say. But when using<~50 (corresponding to ally plot 1D(m l.”ﬂ/)+l|n[1—C2(m s i
Vk/N=0.4, similar to the ratid/ o used in[6]), the statisti- From Fig ,16 We2 see sever:all thi.ngs Eirst of all. if the
cal errors were comparable to thosg@). Systematic errors ORFsm and.m’ were independent, we éhould ha}&@’zo
could be estimated by using the exact inequality &p) on average. This is not the case éven@«()m m)=0. Sec-

given in the Appendixwhen applying this, one has of course .1 5 , )
fo remember that the estimate of the correlation coefficienndly: the average ofi®+3In[1-C?(m,m")] for fixed

also contains errors which lead to systematic overestimatiofr(M:M’) is positive for allC(m,m’). Thus Ml is in general

of the right-hand side of EqAS5) [8]]. For instance, for pair NOt uniquely given byC(m,m’), and M carries more infor-
“B” one finds 1 >1.1 from Eq.(A5). While this is satisfied mation than linear correlations do. Third, from the violation
for k<5 within the expected uncertainty, it is violated both of the inequalityl ™(m,m’)+3In[1-C3(m,m’)]=0 one can

by the estimate of6] (1=0.9) and by our estimate fok  estimate statistical errors. They are0.03. Finally, while
=50 (1~0.7). With our method and wittk=50, we could 1®¥(m,m’)+3In[1-C3m,m’)] is roughly constant for
also show that none of the four pairs is independent, witHC(m,m’)<<0.3, it grows sharply for large positive correla-
roughly the same significance as[il. tions. This effect seems not to be due to systematic or statis-

Thus the main advantage of our method is that it does ndtical errors. Indeed, systematic errgvghich increase witlk)

deteriorate as quickly as KDE does for high resolution. Inwould bring these points down, and the effect would not be
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visible for k>50. It would be interesting to see what theseuniqueness and robustness. We will also show how our esti-
highly correlated ORF pairs are and why their Ml is evenmators can be used for improving the decomposition ob-
higher than suggested by linear correlations, but we shall ndained from a standard ICA algorithm, i.e., for finding com-

pursue this here. ponents which are more independent. Algorithms which use
our estimators for ICA from scratch will be discussed else-
B. ICA where.

) . It is useful to decompose the mat¥ into two factors,

Independent component analySiECA) is a statistical \y =Ry whereV is a prewhitening that transforms the co-
method for tran_sforming an obsgrved multic.omponent dat@ariance matrix intaC’ =VCV T=1, andR is a pure rotation.
set(e.g., a multivariate time series comprisingmeasure-  Finqing and applying/ is just a principal component analy-
ment channelsx(t) = (x,(t), Xx(1), ... X,(t)) into components  gjs (pCa) together with a rescaling, so the core of the ICA
that are statistically as independent from each other agroplem reduces to finding a suitable rotation after having
possible[4]. In the simplest casex(t) could be a linear the data prewhitened. In the following we always assume
superposition  of n independent  sources S(t)  that the prewhiteningPCA) step has already been done.

=(s1(1), (1), ... ,s(1)), Any rotation can be represented as a product of rotations
x(t) = As(t), (37) wﬂlé:rf; act only in some X2 subspaceR=Il;; R;j(¢),

whereA is a nonsingulan X n “mixing” matrix. In that case, ) ,
we know that a decomposition into independent components ~ Rij(#)(Xg, ==X ==+ Xj =+ Xp) = (X X =+ X5 -+ Xn)
is possible, since the inverse transformation (39)

s(t) =Wx(t) with W=A"1 (38  with

does exactly this. If Eq37) does not hold, then no decom- , . ;.
position into strictly independent components is possible by X{ = COS¢X; +sin ¢X;, x| =—sin ¢x + cos¢x;. (40)
a linear transformation like Eq38), but one can still se_arch For such a rotation one hasee the Appendix
for the least dependent components. In a slight misuse of
notation, this is still called ICA. . I(Rjj(#)X) = 1(X) = |(xi’,xj’) =1(X, X)), (42)

But even if Eq.(37) does hold, the problem of blind
source separatio(BS9, i.e., finding the matrixV without  i.e., the change df(X;---X,) under any rotation can be com-
explicitly knowing A, is not trivial. Basically, it requires that puted by adding up changes of two-variable MIs. This is an
x is such that all superpositiors=W'x with W’ #W are  important numerical simplification. It would not hold if Ml is
not independent. Since linear combinations of Gaussian varieplaced by some other similarity measure, and it indeed is
ables are also Gaussian, BSS is possible only if the source®t strictly true for our estimate$? and1?. But we found
are not Gaussian. Otherwise, any rotatiorthogonal trans- the violations to be so small that EGt1) can still be used
formation) s'=Rs would again lead to independent compo- when minimizing MI.

nents, and the original sourcescould not be uniquely re- Let us illustrate the application of our M| estimates to a

covered. fetal ECG recorded from the abdomen and thorax of a preg-
This leads to basic performance tests for any ICA prob-hant woman(eight electrodes, 500 Hz, 5.9We chose this

lem: data set because it was analyzed by several ICA methods
(i) How independent are the found “independent” compo{34,35 and is available on the wef87]. In particular, we

nents? will use bothl™® andl® to check and improve the output of
(i) How unique are these components? the JADE algorithm[36] (which is a standard ICA algorithm

(iii) How robust are the estimatedbpendencesgainst and was more successful with these data t8EP[38]; see
noise, against statistical fluctuations, and against outliers? [34]).

(iv) How robust are the estimatedmponent® The output ofJADE for these data, i.e., the supposedly

Different ICA algorithms can then be ranked by how well least dependent components, is shown in Fig. 17. Obviously
they perform, i.e., whether they find indeed the most indechannels 1-3 are dominated by the heartbeat of the mother,
pendent components, whether they declare them as uniqueahd channel 5 by that of the child. Channels 4 and 6 still
and only if they indeed are, and how robust are the resultszontain large heartbeat componeriits mother and child,
While questiongii) and(iv) have often been discussed in the respectively, but look much more noisy. Channels 7 and 8
ICA literature (for a particularly interesting recent study, see seem to be dominated by noise, but with rather different
[34]), the first(and most basic, in our opinipriest has not spectral composition. The pairwise Mls of these channels are
attracted much interest. This might seem strange since Ml ishown in Fig. 18(left pane) [39]. One sees that most Mls
an obvious candidate for measuring independence, and tlage indeed small, but the first three components are still
importance of Ml for ICA was noticed from the very begin- highly interdependent. This could be a failureJabe, or it
ning. We believe that the reason was the lack of good Micould mean that the basic model does not apply to these
estimators. We propose to use our Ml estimators not only focomponents. To decide between these possibilities, we mini-
testing the actual independence of the components found byized|(X;---Xg) by means of Eqs39—(41). For each pair
standard ICA algorithms, but also to use them for testing foii,j) with i,j=1---8 we found the angle which minimized
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FIG. 17. Estimated independent components USHIE. FIG. 19. Estimated independent components after minimizing

104 X) (X, X)), and repeated this altogetherlO times. 2

We did this both for® and|®, with k=1. We checked that o = —f del1 (R(4) (X, X)) = 106, X) 12, (42)
[(X;...Xg), calculated directly, indeed decreaséttom

190e=1.782 to 1Y =1.160 and froml%pe=2.264 to|?

min min where
=1.620. ,
The resulting components are shown in Fig. 19. The first B &
two components look now much cleaner; all the noise from 1%, %)) = 5~ dl (R() (X, X)) (43)

the first three channels seems now concentrated in channel 3.

But otherwise things have not changed very much. The pairf oy is large, the minimum of the MI with respect to rota-
wise Ml after minimization is shown in Fig. 1@ight pane).  tions is deep and the separation is unique and robust. If it is
As suggested by Fig. 19, channel 3 is now much less depermall, however, BSS cannot be achieved since the decompo-
dent on channels 1 and 2. But the latter are still very stronglition into independent components is not robust. Results for
interdependent, and a linear superposition of independenhe JADE output are shown in Fig. 2Qeft pane), and those
sources as in Eq37) can be ruled out. This was indeed to be for the optimized decomposition are shown in the right panel
expected: In any oscillating system there must be at least twof Fig. 20. The most obvious difference between them is that
mutually dependent components involved, and genericallyhe first two channels have become much more clearly dis-

one expects both to be coupled to the output signal. tinct and separable from the rest, while channel 3 is less
To test for the uniqueness of the decomposition, we comseparable from the reggxcept from channel)5This makes
puted the variances sense, since channels 3, 4, 7, and 8 now contain mostly

Gaussian noise, which is featureless and thus rotation invari-
ant after whitening. Most of the signals are now contained in

1 0.4 channel 5fetus and in channels 1 and @nothe.
: 0.3
8 1
4 0.3
0.2 2 0.25
5 3 :
6 4 0.2
7 0.1 5 0.15
8 0 6 0.1
12345678 ; -
1 0.4 2345678
2
0.3 1
0.3
2 2 0.25
02 3
5 4 0.2
g 0.1 5 0.15
7 6 10.1
8 0 7 10.05
12345678 3

o 2345678
FIG. 18. Left panel: pairwise MIs between all ICA components

obtained byJaDE, estimated with® k=1. The diagonal is set to FIG. 20. Square roots of variancedy;, of IV[(X;,X;)] (with
zero. Right panel: pairwise Mls between the optimized channelk=1) from JADE output (left pane) and after minimization of Ml
shown in Fig. 19. (right pane). Again, elements on the diagonal have been set to zero.
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These results are in good agreement with thosg34f, w' (x'y")
but are obtained with less numerical effort and can be inter-  1(X",Y") =f f dX'dY'M'(X',Y'NOgW
preted more straightforwardly. Ml Xy (Y
X!
- f f dxdyuey)log—Y Z 1. v).
V. CONCLUSION x(X) y(Y)

A2
We have presented two closely related families of mutual (A2)
entropy estimators. Each family is parametrized by an inte- . .
gerk=1 and use&th neighbor distance statistics in the joint Tgf?n?t?;;;n}gortant property, checked also directly from the
space. In general they perform very similarly, as far as CPL&i '
times, statistical errors, and systematic errors are concerned.
Choosing smalk reduces in general systematic errors, while [(X,Y,2) =1((X,Y),2) +1(X,Y). (A3)
large k leads to smaller statistical errors. The choice of the
particular estimator depends thus on the size of the datghjs is analogous to the additivity axiom for Shannon entro-
sample and on whether bias or variance is to be minimizedyjes[1], and says that MI can be decomposed into hierarchi-
Their biggest advantage seems to be in vastly reducegy| |evels. By iterating it, one can decompdg¥; - --X,,) for
systematic errorsin particular for smallk) when compared gnyn>2 and for any partitioning of the s€K,---X,) into
to previous estimators. This allows us to use them on Veryhe | petween elements within one cluster and MI between
small data seteeven fewer than 30 points gave good results sters.
It also allows us to use them in independent component | ot s now consider a homeomorphisrtX’,Y’)

analyses to estimate absolute values of mutual dependencg.ﬁz(x Y). By combining Eqs(A2) and (A3), we obtain
Traditionally, contrast functions have been used in ICA T ’

which allow us to minimize MI but not to estimate its abso-

lute value. We expect that our estimators will also becomd(X',Y’,2) =1((X",Y"),2) + (X", Y") = 1((X,Y),2) + (X", Y’)
useful in other fields of ti_m(_a series and pattern analygis. Qne =1(X,Y,2) + [1(X,Y') = 1(X,Y)]. (A4)

large class of problems is interdependences in physiological

time series, such as breathing and heartbeat, or in the output ) . _ .

of different EEG channels. The latter is particularly relevant! "US, changes of high-dimensional redundancies under rep-
for diseases characterized by abnormal synchronization, su@{@metrization of some subspace can be obtained by calcu-
as epilepsy or Parkinson's disease. In the past, various metting MIs in this subspace only. Although this is a simple
sures of interdependence have been used, including MI. Bensequence of well-known facts about M, it seems to have
the latter was not employed extensivebge, however40)), not been noticed befqre. It is numerically e_xtremely useful,
mainly because of the supposed difficulty in estimating itand would not hold in general for other interdependence

reliably. We hope that the present estimators might changB'€@sures. Again it generalizes to any dimension and to any
this situation. number of random variables.

It is well known that Gaussian distributions maximize the
Shannon entropy for given first and second moments. This
ACKNOWLEDGMENTS implies that the Shannon entropy of any distribution is
bounded from above b§l/2)log detC, whereC is the co-
One of us(P.G) wants to thank Georges Darbellay for yariance matrix. For MI one can prove a similar result: For
extensive and very fru_ltful e-mail discussions. We also waniny multivariate distribution with joint covariance mati@
to thank Ralph Andrzejak, Thomas Kreuz, and Walter Nadlegng variances; =C; for the individual(scalay random vari-

the manuscript.

[(Xgq, - Xm)>1|0 de_tC (A5)
APPENDIX b O e
We collect here some well-known facts about MI, in par- ] ] o S
ticular for higher dimensions, and some immediate conselhe right-hand side of this inequality is just the redundancy
quences. The first important property I§K,Y) is its inde- ~ Of the corresponding Gaussian, and to prove @&®) we
Y’ =G(Y) are homeomorphisnsmooth and uniquely invert- 'an.

ible mapg, and Jy=||aX/aX'|| and Jy=[aY/aY’| are the Ja- In the following we sketch only the proof for the case of
cobi determinants. then two variablesX and Y, the generalization tan>2 being

straightforward. We also assume without loss of generality
that X andY have zero mean. To prove E@5), we set up

W (X,Y") = Ix(X I (Y ) pl(x,Y) (A1) 4 minimization problem where the constraifitorrect nor-
malization and correct second moments; consistency rela-
and similarly for the marginal densities, which gives tions u(x)=Jdy u(x,y) and uy(y)=Jdx wu(x,y)] are taken
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into account by means of Lagrangian multipliers. The “La-
grangian equationdL/du(x,y)=0 leads then to

—axz—byz—cxy

1
m(x,y) = EMX(X)uy(y)e (AB)

whereZ, a, b, andc are constants fixed by the constraints.
Since the minimal MI decreases when the varianogs
=Cy and o,=C,, increase withC,, fixed, the constanta
andb are non-negative. Equatiai\6) is obviously consis-

PHYSICAL REVIEW E 69, 066138(2004)

eI = f dy €[ ,(y)e™]. (A7)

This shows thate‘byz,uy(y) is the Fourier transform of a
Gaussian, and thug,(y) is also Gaussian. The same holds
true of course fop,(x), showing that the minimizing(x,y)
must be Gaussian, QED.

Finally, we should mention some possibly confusing no-
tations. First, Ml is often also called transinformation or re-
dundancy. Secondly, what we call higher-order redundancies
are called higher-order Mls in the ICA literature. We did not

tent with u(x,y) being a Gaussian. To prove uniqueness, wefollow that usage in order to avoid confusion with cumulant-

integrate Eq(A6) overy and setx=-iz/c to obtain

type higher-order Mig41].
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