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We present two classes of improved estimators for mutual informationMsX,Yd, from samples of random
points distributed according to some joint probability densitymsx,yd. In contrast to conventional estimators
based on binnings, they are based on entropy estimates fromk-nearest neighbor distances. This means that they
are data efficient(with k=1 we resolve structures down to the smallest possible scales), adaptive(the resolution
is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy
estimates is mainly due to nonuniformity of the density at the smallest resolved scale, giving typically sys-
tematic errors which scale as functions ofk/N for N points. Numerically, we find that both families become

exact for independent distributions, i.e. the estimatorM̂sX,Yd vanishes(up to statistical fluctuations) if
msx,yd=msxdmsyd. This holds for all tested marginal distributions and for all dimensions ofx and y. In
addition, we give estimators for redundancies between more than two random variables. We compare our
algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for
assessing the actual independence of components obtained from independent component analysis(ICA), for
improving ICA, and for estimating the reliability of blind source separation.
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I. INTRODUCTION

Among the measures of independence between random
variables, mutual information(MI ) is singled out by its in-
formation theoretic background[1]. In contrast to the linear
correlation coefficient, it is sensitive also to dependences
which do not manifest themselves in the covariance. Indeed,
MI is zero if and only if the two random variables are strictly
independent. The latter is also true for quantities based on
Renyi entropies[2], and these are often easier to estimate(in
particular if their order is 2 or some other integer.2). Nev-
ertheless, MI is unique in its close ties to Shannon entropy
and the theoretical advantages derived from this. Some well-
known properties of MI and some simple consequences
thereof are collected in the Appendix.

But it is also true that estimating MI is not always easy.
Typically, one has a set ofN bivariate measurements,zi
=sxi ,yid , i =1, . . . ,N, which are assumed to be iid(indepen-
dent identically distributed) realizations of a random variable
Z=sX,Yd with densitymsx,yd. Here,x and y can be either
scalars or can be elements of some higher-dimensional
space. In the following, we shall assume that the density is a
proper smooth function, although we could also allow more
singular densities. All we need is that the integrals written
below exist in some sense. In particular, we will always as-
sume that 0 logs0d=0, i.e., we do not have to assume that
densities are strictly positive. The marginal densities ofX
andY aremxsxd=edymsx,yd andmysyd=edxmsx,yd. The MI
is defined as

IsX,Yd =E E dxdymsx,ydlog
msx,yd

mxsxdmysyd
. s1d

The base of the logarithm determines the units in which in-
formation is measured. In particular, taking base 2 leads to
information measured in bits. In the following, we always

will use natural logarithms. The aim is to estimateIsX,Yd
from the sethzij alone, without knowing the densitiesm ,mx,
andmy.

One of the main fields where MI plays an important role,
at least conceptually, is independent component analysis
(ICA) [3,4]. In the ICA literature, very crude approximations
to MI based on cumulant expansions are popular because of
their ease of use. But they are valid only for distributions
close to Gaussians and can mainly be used for ranking dif-
ferent distributions by interdependence, and much less for
estimating the actual dependences. Expressions obtained by
entropy maximalization using averages of some functions of
the sample data as constraints[4] are more robust, but are
still very crude approximations. Finally, estimates based on
explicit parametrizations of the densities might be useful but
are not very efficient. More promising are methods based on
kernel density estimators[5,6]. We will not pursue these here
either, but we will comment on them in Sec. IV A.

The most straightforward and widespread approach for
estimating MI more precisely consists in partitioning the
supports ofX andY into bins of finite size, and approximat-
ing Eq. (1) by the finite sum

IsX,Yd < IbinnedsX,Yd ; o
i j

psi, jdlog
psi, jd

pxsidpys jd
, s2d

where pxsid=eidx mxsxd, pys jd=e jdy mysyd, and psi , jd
=eie jdxdymsx,yd, andei means the integral over bini. An
estimator ofIbinnedsX,Yd is obtained by counting the numbers
of points falling into the various bins. Ifnxsid fnys jdg is the
number of points falling into theith bin of X f j th bin of Y],
andnsi , jd is the number of points in their intersection, then
we approximatepxsid<nxsid /N, pys jd<nys jd /N, and psi , jd
<nsi , jd /N. It is easily seen that the right-hand side of Eq.
(2) indeed converges toIsX,Yd if we first let N→` and then
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let all bin sizes tend to zero, if all densities exist as proper
(not necessarily smooth) functions. If not, i.e., if the distri-
butions are, e.g.,(multi)fractal, this convergence might no
longer be true. In that case, Eq.(2) would define resolution-
dependent mutual entropies which diverge in the limit of
infinite resolution. Although the methods developed below
could be adapted to apply also to that case, we shall not do
this in the present paper.

The bin sizes used in Eq.(2) do not need to be the same
for all bins. Optimized estimators[7,8] use indeed adaptive
bin sizes which are essentially geared to having equal num-
bersnsi , jd for all pairs si , jd with nonzero measure. While
such estimators are much better than estimators using fixed
bin sizes, they still have systematic errors which result on the
one hand from approximatingIsX,Yd by IbinnedsX,Yd, and on
the other hand by approximating(logarithms of) probabilities
by (logarithms of) frequency ratios. The latter could be pre-
sumably minimized by using corrections for finitenxsid and
nsi , jd, respectively[9]. These corrections are in the form of
asymptotic series which diverge for finiteN, but whose first
two terms improve the estimates in typical cases. The first
correction term—which often is not sufficient—was taken
into account in[6,10].

In the present paper we will not follow these lines, but
rather estimate MI fromk-nearest neighbor statistics. There
exists an extensive literature on such estimators for the
simple Shannon entropy

HsXd = −E dxmsxdlog msxd, s3d

dating back at least to[11,12]. But it seems that these meth-
ods have hardly ever been used for estimating MI(for an
exception see[13], where they were used to estimate transfer
entropies). In [12,14–19] it is assumed thatx is one-
dimensional, so that thexi can be ordered by magnitude and
xi+1−xi →0 for N→`. In the simplest case, the estimator
based only on these distances is

HsXd <
1

N − 1o
i=1

N−1

logsxi+1 − xid + c s1d − c sNd. s4d

Here,c sxd is the digamma function,c sxd=Gsxd−1dGsxd /dx.
It satisfies the recursionc sx+1d=c sxd+1/x and c s1d=
−C, whereC=0.577 215 6. . . is the Euler-Mascheroni con-
stant. For largex, c sxd< log x−1/2x. Similar formulas exist
which usexi+k−xi instead ofxi+1−xi, for any integerk,N.

Although Eq.(4) and its generalizations tok.1 seem to
give the best estimators ofHsXd, they cannot be used for MI
because it is not obvious how to generalize them to higher
dimensions. Here we have to use a slightly different ap-
proach, due to[20] [see also[21,22]; the latter authors were
only interested in fractal measures and estimating their infor-
mation dimensions, but the basic concepts are the same as in
estimatingHsXd for smooth densities].

Assume some metrics to be given on the spaces spanned
by X,Y and Z=sX,Yd. We can then rank, for each pointzi

=sxi ,yid, its neighbors by distancedi,j =izi −zji: di,j1
ødi,j2

ødi,j3
ø¯. Similar rankings can be done in the subspacesX

andY. The basic idea of[20–22] is to estimateHsXd from the
average distance to thek-nearest neighbor, averaged over all
xi. Details will be given in Sec. II. Mutual information could
be obtained by estimating in this wayHsXd, HsYd, and
HsX,Yd separately and using[1]

IsX,Yd = HsXd + HsYd − HsX,Yd. s5d

But this would mean that the errors made in the individual
estimates would presumably not cancel, and therefore we
proceed differently.

Indeed we will present two slightly different algorithms,
both based on the above idea. Both use for the spaceZ
=sX,Yd the maximum norm,

iz− z8i = maxhix − x8i,iy − y8ij, s6d

while any norms can be used forix−x8i and iy−y8i (they
need not be the same, as these spaces could be completely
different). Let us denote byesid /2 the distance fromzi to its
kth neighbor, and byexsid /2 and eysid /2 the distances be-
tween the same points projected into theX andY subspaces.
Obviously,esid=maxhexsid ,eysidj.

In the first algorithm, we count the numbernxsid of points
xj whose distance fromxi is strictly less thanesid /2, and
similarly for y instead ofx. This is illustrated in Fig. 1(a).
Notice thatesid is a random(fluctuating) variable, and there-
fore alsonxsid and nysid fluctuate. We denote byk¯l aver-
ages both over alli P f1, . . . ,Ng and over all realizations of
the random samples,

k¯l = N−1o
i=1

N

Ef¯sidg. s7d

The estimate for MI is then

I s1dsX,Yd = cskd − kcsnx + 1d + csny + 1dl + csNd. s8d

FIG. 1. Panel(a): Determination ofesid, nxsid, andnysid in the
first algorithm, fork=1 and some fixedi. In this example,nxsid
=5 andnysid=3. Panels(b),(c): Determination ofexsid, eysid, nxsid,
andnysid in the second algorithm fork=2. Panel(b) shows a case in
which exsid andeysid are determined by the same point, while panel
(c) shows a case in which they are determined by different points.
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Alternatively, in the second algorithm, we replacenxsid
andnysid by the number of points withixi −xjiøexsid /2 and
iyi −yjiøeysid /2 [see Figs. 1(b) and 1(c)]. The estimate for
MI is then

I s2dsX,Yd = cskd − 1/k − kcsnxd + csnydl + csNd. s9d

The derivations of Eqs.(8) and (9) will be given in Sec. II.
There we will also give formulas for generalized redundan-
cies in higher dimensions,

IsX1,X2, . . . ,Xmd = HsX1d + HsX2d + ¯ + HsXmd

− HsX1,X2, ¯ ,Xmd. s10d

In general, both formulas give very similar results. For the
samek, Eq. (8) gives slightly smaller statistical errors[be-
causenxsid andnysid tend to be larger and have smaller rela-
tive fluctuations], but have larger systematic errors. The lat-
ter is only severe if we are interested in very high dimensions
whereesid tends typically to be much larger than the mar-
ginal exj

sid. In that case the second algorithm seems prefer-
able. Otherwise, both can be used equally well.

A systematic study of the performance of Eqs.(8) and(9)
and comparison with previous algorithms will be given in
Sec. III. Here we will just show results ofI s2dsX,Yd for
Gaussian distributions. LetX andY be Gaussians with zero
mean and unit variance, and with covariancer. In this case
IsX,Yd is known exactly[8],

IGausssX,Yd = −
1

2
logs1 − r2d. s11d

In Fig. 2, we show the errorsI s2dsX,Yd− IGausssX,Yd for vari-
ous values ofr, obtained from a large number(typically
105−107) of realizations ofN-tuples of vectorssxi ,yid. We
show only results fork=1, plotted against 1/N. Results for
k.1 are similar. To a first approximationI s1dsX,Yd and I s2d

3sX,Yd depend only on the ratiok/N.

The most conspicuous feature seen in Fig. 2, apart from
the fact that indeedI s2dsX,Yd− IGausssX,Yd→0 for N→`, is
that the systematic error is compatible with zero forr =0, i.e.,
when the two Gaussians are uncorrelated. We checked this
with high statistics runs for many different values ofk andN
(a priori one should expect that systematic errors become
large for very smallN), and for many more distributions
(exponential, uniform, etc.). In all cases we found that both
I s1dsX,Yd and I s2dsX,Yd become exact for independent vari-
ables. Moreover, the same seems to be true for higher-order
redundancies. We thus have the following conjecture.

Conjecture. Equations(8) and (9) are exact for indepen-
dent X and Y, i.e., I s1dsX,Yd= I s2dsX,Yd=0 if and only if
IsX,Yd=0.

We have no proof for this very surprising result. We have
numerical indications that moreover

uI s1,2dsX,Yd − IsX,Ydu
IsX,Yd

ø const s12d

asX andY become more and more independent, but this is
much less clean and therefore much less sure.

In Sec. II we shall give formal arguments for our estima-
tors, and for generalizations to higher dimensions. Detailed
numerical results for cases where the exact MI is known will
be given in Sec. III. In Sec. IV A we give two preliminary
applications to gene expression data and to ICA. Conclusions
are drawn in the final section, Sec. V. Finally, some general
aspects of MI are recalled in an Appendix.

II. FORMAL DEVELOPMENTS

A. Kozachenko-Leonenko estimate for Shannon entropies

We first review the derivation of the Shannon entropy
estimate[20–23], since the estimators for MI are obtained by
very similar arguments.

Let X be a continuous random variable with values in
some metric space, i.e., there is a distance functionix−x8i
between any two realizations ofX, and let the densitymsxd
exist as a proper function. Shannon entropy is defined as

HsXd = −E dxmsxdlog msxd, s13d

where “log” will always mean natural logarithm so that in-
formation is measured in natural units. Our aim is to estimate
HsXd from a random samplesx1¯xNd of N realizations ofX.

The first step is to realize that Eq.(13) can be understood
(up to the minus sign) as an average of logmsxd. If we had

unbiased estimators logm̂sxd of the latter, we would have an
unbiased estimator

ĤsXd = − N−1o
i=1

N

log m̂sxid. s14d

In order to obtain the estimate logm̂sxid, we consider the
probability distributionPksed for the distance betweenxi and
its kth nearest neighbor. The probabilityPksedde is equal to
the chance that there is one point within distancer

FIG. 2. Estimates ofI s2dsX,Yd− IexactsX,Yd for Gaussians with
unit variance and covariancesr =0.9,0.6,0.3, and 0.0(from top to
bottom), plotted against 1/N. In all casesk=1. The number of trials
is .23106 for Nø1000 and decreases to<105 for N=40 000.
Error bars are smaller than the sizes of the symbols.
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P fe /2 ,e /2+de /2g from xi, that there arek−1 other points at
smaller distances, and thatN−k−1 points have larger dis-
tances fromxk. Let us denote bypi the mass of thee ball
centered atxi, pised=eij−xii,e/2 djmsjd. Using the trinomial
formula we obtain

Pksedde =
sN − 1d!

1 ! sk − 1d ! sN − k − 1d!
dpised

de
de 3 pi

k−1

3 s1 − pidN−k−1 s15d

or

Pksed = kSN − 1

k
Ddpised

de
pi

k−1s1 − pidN−k−1. s16d

One easily checks that this is correctly normalized,
edePksed=1. Using Eq.(16), one can also compute the ex-
pectation value of logpised,

Eslog pid =E
0

`

dePksedlog pised

=kSN − 1

k
DE

0

1

dppk−1s1 − pdN−k−1log p

=cskd − csNd, s17d

where csxd is the digamma function. The expectation is
taken here over the positions of all otherN−1 points, withxi
kept fixed. An estimator for logmsxd is then obtained by
assuming thatmsxd is constant in the entiree ball. The latter
gives

pised < cdedmsxid, s18d

whered is the dimension ofx and cd is the volume of the
d-dimensional unit ball. For the maximum norm one has
simply cd=1, whilecd=pd/2/Gs1+d/2d /2d for the Euclidean
norm.

Using Eqs.(17) and (18), one obtains

log msxid < cskd − csNd − dEslog ed − log cd, s19d

which finally leads to

ĤsXd = − cskd + csNd + log cd +
d

N
o
i=1

N

log esid, s20d

whereesid is twice the distance fromxi to its kth neighbor.
From the derivation it is obvious that Eq.(20) would be

unbiased, if the densitymsxd were strictly constant. The only
approximation is in Eq.(18). For points on a torus(e.g.,
when x is a phase) with a strictly positive density one can
easily estimate the leading corrections to Eq.(18) for large
N. One finds that they areOs1/N2d and that they scale, for
large k and N, as ,sk/Nd2. In most other cases(including,
e.g., Gaussians and uniform densities in bounded domains
with a sharp cutoff) it seems numerically that the error is
,k/N or ,k/N logsN/kd.

B. Mutual information: Estimator I „1…„X ,Y…

Let us now consider the joint random variableZ=sX,Yd
with maximum norm. Again we take one of theN pointszi
and consider the distancee /2 to its kth neighbor. Again this
is a random variable with distribution given by Eq.(16).
Also Eq. (17) holds without changes. The first difference
from the previous subsection is in Eq.(18), where we have to
replaced by dZ=dX+dY, cd by cdX

cdY
, and of coursexi by

zi =sxi ,yid. With these modifications we obtain therefore

ĤsX,Yd = − cskd + csNd + logscdX
cdY

d +
dX + dY

N
o
i=1

N

log esid.

s21d

In order to obtainIsX,Yd, we have to subtract this from
estimates forHsXd andHsYd. For the latter, we could use Eq.
(20) directly with the samek. But this would mean that we
would effectively use different distance scales in the joint
and marginal spaces. For any fixedk, the distance to thekth
neighbor in the joint space will be larger than the distances to
the neighbors in the marginal spaces. The bias in Eq.(20)
results from the nonuniformity of the density. Since the ef-
fect of the latter depends of course on thekth neighbor dis-

tances, the biases inĤsXd, ĤsYd, and in ĤsX,Yd would be
very different and would thus not cancel.

To avoid this, we notice that Eq.(20) holds foranyvalue
of k, and that we do not have to choose a fixedk when
estimating the marginal entropies. Assume, as in Fig. 1(a),
that thekth neighbor ofxi is on one of the vertical sides of
the square of sizeesid. In this case, if there are altogether
nxsid points within the vertical linesx=xi ±esid /2, thenesid /2
is the distance to thefnxsid+1gst neighbor ofxi, and

ĤsXd =
− 1

N
o
i=1

N

cfnxsid + 1g + csNd + log cdX
+

dX

N
o
i=1

N

log esid.

s22d

For the other direction[they direction in Fig. 1(a)] this is not
exactly true, i.e.,esid is not exactly equal to twice the dis-
tance to thefnysid+1gst neighbor, ifnysid is analogously de-
fined as the number of points withiyj −yii,esid /2. Never-
theless, we can consider Eq.(22) also as a good
approximation forHsYd, if we replace everywhereX by Y in
its right-hand side[this approximation becomes exact when
nysid→`, and thus also whenN→`]. If we do this, subtract-

ing ĤsX,Yd from ĤsXd+ĤsYd leads directly to Eq.(8).

We should stress that the errors inĤsXd, ĤsYd, and in

ĤsX,Yd will not cancel eactly in general. But the chances
that they will do so approximately are bigger with the above
procedure than if we had used different length scales in the
three estimates. The real proof that our proposed estimator is

better than that obtained when using the samek in ĤsXd,
ĤsYd, andĤsX,Yd comes of course from detailed numerical
tests.

These arguments can be easily extended tom random
variables and lead to
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I s1dsX1,X2, . . . ,Xmd = cskd + sm− 1dcsNd − kcsnx1
d + csnx2

d

+ ¯ + csnxm
dl. s23d

C. Mutual information: Estimator I „2…„X ,Y…

The main drawback of the above derivation is that the
Kozachenko-Leonenko estimator is used correctly in only
one marginal direction. This seems unavoidable if one wants
to stick to “balls,” i.e., to(hyper-) cubes in the joint space. In
order to avoid it we have to switch to(hyper) rectangles.

Let us first discuss the case of two marginal variablesX
and Y, and generalize later tom variablesX1, . . . ,Xm. As
illustrated in Figs. 1(b) and 1(c), there are two cases to be
distinguished[all other cases, where more points fall onto
the boundariesxi ±exsid /2 and yi ±eysid /2, have zero prob-
ability; see, however, the third paragraph of Sec. III]: Either
the two sidesexsid andeysid are determined by the same point
[Fig. 1(b)], or by different points[Fig. 1(c)]. In either case
we have to replacePksed by a two-dimensional density,

Pksex,eyd = Pk
sbdsex,eyd + Pk

scdsex,eyd s24d

with

Pk
sbdsex,eyd = SN − 1

k
D d2fqi

kg
dexdey

s1 − pidN−k−1 s25d

and

Pk
scdsex,eyd = sk − 1dSN − 1

k
D d2fqi

kg
dexdey

s1 − pidN−k−1. s26d

Here, qi ;qisex,eyd is the mass of the rectangle of sizeex

3ey centered atsxi ,yid, andpi is, as before, the mass of the
square of sizee=maxhex,eyj. The latter is needed since by
using the maximum norm we guarantee that there are no
points in this square which are not inside the rectangle.

Again we verify straightforwardly thatPk is normalized,
while we have now instead of Eq.(17)

Eslogqid =E E
0

`

dexdeyPksex,eydlog qisex,eyd

= cskd − 1/k − csNd. s27d

Denoting now bynxsid and nysid the number of points with
distance less thanor equal to exsid /2 and eysid /2, respec-
tively, we arrive at Eq.(9).

For the generalization tom variables we have to consider
m-dimensional densitiesPksex1

, . . . ,exm
d. The number of dis-

tinct cases[analogous to the two cases shown in Figs. 1(b)
and 1(c)] proliferates asm grows, but fortunately we do not
have to consider all these cases explicitly. One sees easily
that each of them contributes toPk a term

~
dmfqi

kg
dex1

¯ dexm

s1 − pidN−k−1. s28d

The direct calculation of the proportionality factors would be
extremely tedious(we did it for m=3), but it can be avoided

by simply demanding that the sum is correctly normalized.
This gives

Pksex1
, . . . ,exm

d = km−1SN − 1

k
D dmfqi

kg
dex1

¯ dexm

3 s1 − pidN−k−1.

s29d

Calculating againEslog qid=cskd−sm−1d /k−csNd analyti-
cally and approximating the density by a constant inside the
hyper-rectangle, we obtain finally

I s2dsX1,X2, . . . ,Xmd = cskd − sm− 1d/k + sm− 1dcsNd

− kcsnx1
d + csnx2

d + ¯ + csnxm
dl.

s30d

Before leaving this section, we should mention that we
cheated slightly in derivingI s2dsX,Yd (and its generalization
to m.2). Assume that in a particular realization we have
exsid,eysid, as in Figs. 1(b) and 1(c). In that case we know
that there cannot be any point in the two rectangles
fxi −eysid /2 ,xi −exsid /2g3 fyi −eysid /2 ,yi +eysid /2g and
fxi +exsid /2 ,xi +eysid /2g3 fyi −eysid /2 ,yi +eysid /2g (see Fig.
3). While we have taken this correctly into account when
estimatingHsX,Yd (where it was crucial), we have neglected
it in HsXd andHsYd. There, the corrections areOs1/nxd and
Os1/nyd, and should vanish forN→`. It could be that their
net effect vanishes, because they contribute with opposite
signs toHsXd andHsYd. But we have no proof for it. Any-
how, due to the approximation of constant density within
each rectangle, we cannot expect our estimates to be exact
for finite N, and any justification ultimately relies on numer-
ics.

III. IMPLEMENTATION AND RESULTS

A. Some implementation details

Mutual information is invariant under reparametrization
of the marginal variables. IfX8=FsXd andY8=GsYd are ho-

FIG. 3. There cannot be any points inside the shaded rectangles.
For method 2, this means that the estimates of the marginal entropy
HsXdfHsYdg should be modified, since part of the area outside[in-
side] the stripe of withex feyg is forbidden. This is neglected in Eq.
(9).
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meomorphisms, thenIsX,Yd= IsX8 ,Y8d (see the Appendix).
This is in contrast toHsXd, which changes in general under a
homeomorphism. This can be used to rescale both variables
first to unit variance. In addition, if the distributions are very
skewed and/or rough, it might be a good idea to transform
them such as to become more uniform(or at least single-
humped and more or less symmetric). Although this is not
required, strictly speaking it will reduce errors in general.
One example is theG-exponential distribution in two vari-
ables,msx,yd=xu exps−x−xyd /Gsud for x,y.0 [24], when
u,1. Foru→0, the marginal distributions develop 1/x and
1/y singularities(for x→0 and fory→`, respectively), and
the joint distribution is nonzero only in a very narrow region
near the two axes. In this case our algorithm failed when
applied directly, but it gave excellent results after transform-
ing the variables tox8=log x andy8=log y.

When implemented straightforwardly, the algorithm
spends most of the CPU time searching for neighbors. In the
most naive version, we need two nested loops through all
points which gives a CPU timeOsN2d. While this is accept-
able for very small data sets(say Nø300), fast neighbor
search algorithms are needed when dealing with larger sets.
Let us assume thatX and Y are scalars. An algorithm with
complexityOsNÎk Nd is then obtained by first ranking thexi

by magnitude(this can be done by any sorting algorithm
such asQUICKSORT), and coranking theyi with them [25].
Nearest neighbors ofsxi ,yid can then be obtained by search-
ing x neighbors on both sides ofxi and verifying that their
distance in they direction is not too large. Neighbors in the
marginal subspaces are found even easier by ranking bothxi
and yi. Most results in this paper were obtained by this
method, which is suitable forN up to a few thousand. The
fastest(but also most complex) algorithm is obtained by us-
ing grids (“boxes”) [26,27]. Indeed, we use three grids: A
two-dimensional one with box sizeOsÎk/Nd and two one-
dimensional ones with box sizesOs1/Nd. First thek neigh-
bors in 2D space are searched using the 2D grid, then the
boxes at distances ±e from the central point are searched in
the 1D grids to findnx andny. If the distributions are smooth,
this leads to complexityOsÎkNd. The last algorithm is com-
parable in speed to the algorithm of[8]. For all three ver-
sions of our algorithm it costs only little additional CPU time
if one also evaluates, together withIsX,Yd for somek.1,
the estimators for smallerk.

Empirical data usually are obtained with few(e.g., 12 or
16) binary digits, which means that many points in a large set
may have identical coordinates. In that case, the numbers
nxsid andnysid need no longer be unique(the assumption of
continuously distributed points is violated). If no precautions
are taken, any code based on nearest-neighbor counting is
then bound to give wrong results. The simplest way out of
this dilemma is to add very low-amplitude noise to the data
(<10−10, say, when working with double precision) which
breaks this degeneracy. We found this to give satisfactory
results in all cases.

Often, MI is estimated afterrank ordering the data, i.e.,
after replacing the coordinatexi by the rank of theith point
when sorted by magnitude. This is equivalent to applying a
monotonic transformationx→x8 ,y→y8 to each coordinate,

which leads to a strictly uniform empirical density,mx8sx8d
=my8sx8d=s1/Ndoi=1

N dsx8− id. ForN→` andk@1 this clearly
leaves the MI estimate invariant. But it is not obvious that it
leaves invariant also the estimates for finitek, since the trans-
formation is not smooth at the smallest length scale. We
found numerically that rank ordering gives correct estimates
also for smallk, if the distance degeneracies implied by it are
broken by adding low-amplitude noise as discussed above. In
particular, both estimators still gave zero MI for independent
pairs. Although rank ordering can reduce statistical errors,
we did not apply it in the following tests, and we did not
study in detail the properties of the resulting estimators.

B. Results: Two-dimensional distributions

We shall first discuss applications of our estimators to
correlated Gaussians, mainly because we can in this way
most easily compare with analytic results and with previous
numerical analyses. In all cases we shall deal with Gaussians
of unit variance and zero mean. Form such Gaussians with
covariance matrixsiki ,k=1¯m, one has

IsX1, . . . ,Xmd = −
1

2
logfdetssdg. s31d

For m=2 and using the notationr =sXY, this gives Eq.(11).
First results forI s2dsX,Yd with k=1 were already shown in

Fig. 2. Results obtained withI s1dsX,Yd are very similar and
would indeed be hard to distinguish in this figure. In Fig. 4
we compare values ofI s1dsX,Yd (left panel) with those for
I s2dsX,Yd (right panel) for different values ofN and for r
=0.9. The horizontal axes showk/N (left) and sk−1/2d /N
(right). Except for very small values ofk andN, we observe
scaling of the form

I s1dsX,Yd < FS k

N
D, I s2dsX,Yd < FSk − 1/2

N
D . s32d

This is a general result and is found also for other distribu-
tions. The scaling withk/N of I s1dsX,Yd results simply from
the fact that the number of neighbors within a fixed distance
would scale~N, if there were no statistical fluctuations. For
largek these fluctuations should become irrelevant, and thus
the MI estimate should depend only on the ratiok/N. For
I s2dsX,Yd this argument has to be slightly modified, since the
smaller one ofex andey is determined[for largek, where the
situation illustrated in Fig. 1(c) dominates over that in Fig.
1(b)] by k−1 instead ofk neighbors.

The fact thatI s2dsX,Yd for a given value ofk is between
I s1dsX,Yd for k−1 andI s1dsX,Yd for k is also seen from the
variances of the estimates. In Fig. 5 we show the standard
deviations, again for covariancer =0.9. These statistical er-
rors depend only weakly onr. For r =0 they are roughly 10%
smaller. As seen from Fig. 5, the errors ofI s2dsX,Y;kd are
roughly halfway between those ofI s1dsX,Y;k−1d and
I s1dsX,Y;kd. They scale roughly as,ÎN, except for very
largek/N. Their dependence onk does not follow a simple
scaling law. The fact that statistical errors increase whenk
decreases is intuitively obvious, since then the width of the
distribution ofe increases too. Qualitatively the same depen-
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dence of the errors was observed also for different distribu-
tions. For practical applications, it means that one should use
k.1 in order to reduce statistical errors, but too large values
of k should be avoided since then the increase of systematic

errors outweighs the decrease of statistical ones. We propose
to use typicallyk=2–4, except when testing for indepen-
dence. In the latter case we do not have to worry about
systematic errors, and statistical errors are minimized by tak-
ing k to be very large(up to k<N/2, say).

The above shows thatI s1dsX,Yd andI s2dsX,Yd behave very
similarly. Also CPU times needed to estimate them are nearly
the same. In the following, we shall only show data for one
of them, understanding that everything holds also for the
other, unless the opposite is said explicitly.

For N→`, the systematic errors tend to zero, as they
should. From Figs. 2 and 4 one might conjecture thatI s1,2d

3sX,Yd− IexactsX,Yd,N−1/2, but this is not true. Plotting this
difference on a double logarithmic scale(Fig. 6), we see a
scaling,N−1/2 for N<103, but faster convergence for larger
N. It can be fitted by a scaling,1/N0.85 for the largest values
of N reached by our simulations, but the true asymptotic
behavior is presumably just,1/N.

As said in the Introduction, the most surprising feature of
our estimators is that they seem to be exact for independent
random variablesX andY. In Fig. 7 we show how therela-
tive systematic errors behave for Gaussians whenr →0.
More precisely, we showI s1,2dsX,Yd / Iexact

s1,2dsX,Yd for k=1,
plotted againstN for four different values ofr. Obviously
these data converge, whenr →0, to a finite function ofN. We

FIG. 4. Mutual information estimatesI s1dsX,Yd (left panel) and
I s2dsX,Yd (right panel) for Gaussian deviates with unit variance and
covariancer =0.9, plotted againstk/N (left panel) and sk−1/2d /N
(right panel), respectively. Each curve corresponds to a fixed value
of N, with N=125,250,500,1000,2000,4000,10 000, and 20 000,
from bottom to top. Error bars are smaller than the size of the
symbols. The dashed line indicates the exact valueIsX,Yd
=0.830 366.

FIG. 5. Standard deviations of the estimatesI s1dsX,Yds+d and
I s2dsX,Yds3d for Gaussian deviates with unit variance and covari-
ancer =0.9, multiplied byÎN and plotted againstkfI s1dsX,Ydg or
k−1/2fI s2dsX,Ydg. Each curve corresponds to a fixed value ofN,
with N=125,250,500,1000,2000,4000,10 000, and 20 000, from
bottom to top.

FIG. 6. Systematic errorI s2dsX,Yd− IexactsX,Yd for k=3 plotted
againstN on a log-log scale, forr =0.9. The dashed lines are~N−0.5

and~N−0.85.

FIG. 7. Ratios I s2dsX,Yd / IexactsX,Yd for k=1 plotted against
1/N, for four different values ofr.
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have observed the same also for other distributions, which
leads to a conjecture stronger than the conjecture made in the
Introduction: Assume that we have a one-parameter family
of 2D distributions with densitiesmsx,y; rd, with r being a
real-valued parameter. Assume also thatm factorizes forr
=r0, and that it depends smoothly onr in the vicinity of r0,
with ]msx,y; rd /]r finite. Then we propose that for many
distributions(although not for all)

I s1,2dsX,Yd/IexactsX,Yd → Fsk,Nd s33d

for r → r0, with some functionFsk,Nd which is close to 1 for
all k and allN@1, and which converges to 1 forN→`. We
have not found a general criterion for which families of dis-
tributions we should expect Eq.(33).

The most precise and efficient previous algorithm for es-
timating MI is that of Darbellay and Vajda[8], and we will
compare here only with their algorithm(some less system-
atic comparisons with a KDE method will be discussed in
Sec. IV A). As far as speed is concerned, it seems to be faster
than the present one, which might, however, be due to a
more efficient implementation. In any case, also with the
present algorithm we were able to obtain extremely high
statistics on work stations within reasonable CPU times. To
compare our statistical and systematic errors with those of
[8], we have used the codebasic.exefrom Ref. [42]. We used
the parameter settings recommended in its description.

This code provides an estimate of the statistical error,
even if only one data set is provided. When running it with
many (typically <104) data sets, we found that these error
bars are always underestimated, sometimes by rather large
margins. This seems to be due to occasional outliers which
point presumably to some numerical instability. Unfortu-
nately, having no source code we could not pin down the
troubles. In Fig. 8 we compare the predictions of the statis-
tical errors provided by the code of[8], the actual errors
obtained from the variance of the estimators provided by this
code, and the error obtained fromI s2dsX,Yd with k=3. We see
that the latter is larger than the theoretical error from[8], but
smaller than the actual error. For Gaussians with smaller cor-
relation coefficients, the statistical errors of[8] decrease

strongly withr, because the partitionings are followed to less
and less depth. But, as we shall see, this comes with a risk
for systematic errors.

Systematic errors of[8] for Gaussians with various values
of r are shown in Fig. 9. Comparing with Fig. 2 we see that
they are, forr Þ0, about an order of magnitude larger than
ours, except for very largeN, where they seem to decrease as
1/N. Systematic errors of[8] are also very small whenr
=0, but this seems to result from fine tuning the parameterds
which governs the pruning of the partitioning tree in[8]. Bad
choices of ds lead to wrong MI estimates, and optimal
choices should depend on the problem to be analyzed. No
such fine tuning is needed with our method.

As examples of non-Gaussian distributions we studied(i)
theG-exponential distribution[29], (ii ) the ordered Weinman
exponential distribution[29], and (iii ) the “circle distribu-
tion” of Ref. [28]. For all these, both exact formulas for the
MI and detailed simulations using Darbellay-Vajda algorithm
exist. In addition, we tested thatI s1d and I s2d vanish, within
statistical errors, for independent uniform distributions, for
exponential distributions, and whenX was Gaussian andY
was either uniform or exponentially distributed. Notice that
“uniform” means uniform within a finite interval and zero
outside, so that the Kozachenko-Leonenko estimate is not
exact for this case either.

In all cases with independentX and Y we found that
I s1,2dsX,Yd=0 within the statistical errors(which typically
were<10−3–10−4). We do not show these data.

The G-exponential distribution depends on a parameteru
(after a suitable rescaling ofx andy) and is defined[29] as

msx,y;ud =
1

Gsud
xue−x−xy s34d

for x.0 andy.0, andmsx,y;ud=0 otherwise. The MI is
[29] IsX,Ydexact=csu+1d−log u. For u.1 the distribution
becomes strongly peaked atx=0 andy=0. Therefore, as we
already said, our algorithms perform poorly foru@1, if we
use xi and yi themselves. But usingxi8=log xi and yi8
=log yi we obtain excellent results, as seen from Fig. 10.

FIG. 8. Statistical errors(one standard deviation) for Gaussian
deviates withr =0.9, plotted againstN. Results fromI s2dsX,Yd for
k=1 (full line) are compared to theoretically predicted(dashed line)
and actually measured(dotted line) errors from[8].

FIG. 9. Systematic errors for Gaussian deviates withr
=0.0,0.3,0.6, and 0.9, plotted against 1/N, obtained with the algo-
rithm of [8]. These should be compared to the systematic errors
obtained with the present algorithm shown in Fig. 2.
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There we plot againI s2dsX8 ,Y8d / IsX,Ydexact for k=1 against
1/N for five values ofu. These data obviously support our
conjecture thatI s2dsX8 ,Y8d / IsX,Ydexact tends towards a finite
function as independence is approached. To compare with
[29], we show in Fig. 11 our data together with those of[29]
for the same four values ofu also studied there, namelyu
=0.1,0.3,2.0, and 100.0. We see that MI was grossly under-
estimated in[29], in particular for largeu where IsX,Yd is
very small[for u@1, one hasIsX,Yd<1/2u].

The ordered Weinman exponential distribution depends
on two continuous parameters. Following[29] we consider
here only the case where one of these parameters(calledu0
in [29]) is set equal to 1, in which case the density is

msx,y;ud =
2

u
e−2x−sy−xd/u s35d

for x.0 andy.0, andmsx,y;ud=0 otherwise. The MI is
[29]

IsX,Ydexact=5
log

2u

1 − 2u
+ cS 1

1 − 2u
D − cs1d, u ,

1

2

− cs1d, u =
1

2

log
2u − 1

u
+ cS 2u

2u − 1
D − cs1d, u .

1

2
.

s36d

Mutual information estimates usingI s2dsX,Yd with k=1 are
shown in Fig. 12. Again we transformedsxi ,yid
→ slog xi , log yid since this improved the accuracy, albeit not
as much as for theG-exponential distribution. More pre-
cisely, we plotI s2dsX,Yd / IsX,Ydexactagainst 1/N for the same
four values ofu studied also in[29], and we plot also the
estimates obtained in[29]. We see that MI was severely un-
derestimated in[29], in particular for largeu where the MI is
small (for u→`, one has IsX,Yd<fc8s1d−1g /2u
=0.32247/u). Our estimates are also too low, but much less
so. It is clearly seen thatI s2dsX8 ,Y8d / IsX,Ydexactdecreases for
u→` in contradiction to the above conjecture. This repre-
sents the only case where the conjecture does not hold nu-
merically. As we already said, we do not know which feature
of the ordered Weinman exponential distribution is respon-
sible for this difference.

C. Higher dimensions

In higher dimensions we shall only discuss applications of
our estimators tom correlated Gaussians, because as in the
case of two dimensions this is easily compared to analytic
results[Eq. (31)] and to previous numerical results[30]. As
already mentioned in the Introduction and as shown above
for 2D distributions(Fig. 7), our estimates seem to be exact
for independent random variables. We choose the same one-
parameter family of 3D Gaussian distributions with all the
correlation coefficients equal tor as in [30]. In Fig. 13 we
show the behavior of therelative systematic errors of both
proposed estimators. One can easily see that the data con-
verge forr →0, i.e., when all three Gaussians become inde-
pendent. This supports the conjecture made in the previous
subsection. In addition, in Fig. 13 one can see the difference
between the estimatorsI s1d and I s2d. For intermediate num-
bers of points,N,100−200, the “cubic” estimator has lower
systematic error. Apart from that,I s2d evaluated forN is
roughly equal toI s1d evaluated for 2N, reflecting the fact that
I s2d effectively uses smaller length scales as discussed al-
ready ford=2.

To compare our results in high dimension with those pre-
sented in[30], we shall calculate not the high-dimensional
redundancies IsX1,X2, . . . ,Xmd but the MI
I(sX1,X2, . . . ,Xm−1d ,Xm) between two variables, namely an
sm−1d-dimensional vector and a scalar. For estimation of
this MI we can use the formulas as for the 2D case[Eqs.(8)
and(9), respectively] wherenx would be defined as the num-
ber of points in thesm−1d-dimensional stripe of the(hyper)
cubic cross section. Using directly Eq.(A3) would increase
the errors in estimation[see the Appendix for the relation

FIG. 10. RatiosIsX,Ydestim/ IexactsX,Yd for the G-exponential
distribution, plotted against 1/N. These data were obtained withI s2d

usingk=1, after transformingxi andyi to their logarithms. The five
curves correspond tou=0.1,0.3,1.0,2.0,10.0, and 100.0(from bot-
tom to top).

FIG. 11. RatiosIsX,Ydestim/ IexactsX,Yd for the G-exponential
distribution, plotted against 1/N. Full lines are from estimatorI s2d,
dashed lines are from[29]. Our data were obtained withk=1 after
a transformation to logarithms. The four curves correspond tou
=0.1,0.3,2.0, and 100.0(from bottom to top for our data, from top
to bottom for the data of[29]).

ESTIMATING MUTUAL INFORMATION PHYSICAL REVIEW E 69, 066138(2004)

066138-9



betweenIsX1,X2, . . . ,Xmd and I(sX1,X2, . . . ,Xm−1d ,Xm)].
In Fig. 14 we show the average values ofI s1,2d. They are

in very good agreement with the theoretical ones for all three
values of the correlation coefficientr and all dimensions
tested here(in contrast, in[30] the estimators of MI signifi-
cantly deviate from the theoretical values for dimensions
ù6). It is impossible to distinguish(on this scale) between
estimatesI s1d and I s2d.

In Fig. 15, statistical errors of our estimate are presented
as a function of the number of neighborsk. More precisely,
we plotted the standard deviation ofI s1d multiplied byÎN/m
againstk for the case where all correlation coefficients are
r =0.9. Each curve corresponds to a different dimensionm.
The data scale roughly as,m/ÎN for large dimension.
Moreover, these statistical errors seem to converge to finite
values fork→`. This convergence becomes faster for in-
creasing dimensions. The same behavior is observed forI s2d.

IV. APPLICATIONS: GENE EXPRESSION DATA AND
INDEPENDENT COMPONENT ANALYSIS

A. Gene expression

In the first application to real world data, we study the
gene expression ratios from[31], and compare our MI esti-
mators to kernel density estimators(KDE) used in[6]. The
authors of[31] consideredN=300 closely related yeast ge-
nomes obtained by one or at most a few mutations from wild
type, and indexed byi =1, . . . ,N. The measured raw data are
expression ratiosr im of M <6000 genes[open reading
frames(ORFs) labeled by indexm=1, . . . ,M] for each of the
genomes. These data form anN3M matrix which can be
interpreted either as a set ofN vectorsX i, each of dimension
M and characterizing the expression activity of one genome,
or as M 300-dimensional vectorsYm, each characterizing
one ORF.

According to these two points of view, we can consider
two types of mutual information. Mutual information be-
tween two genomesi and i8, quantifying the similarities of
their expression profiles, can be obtained by forming theM
two-dimensional vectorsym=sr im,r i8md which can be under-
stood as 2D projections ofYm, and estimating the MI of this
cloud of M 2D points. Alternatively, one can estimate simi-
larities between two ORFsm andm8 by forming theN vec-
tors xi =sr im,r im8d and estimating the MI of the distribution
represented by them. These MIs can then be used instead of
covariance matrices to improve cluster analyses.

In the following, we shall only follow the second alterna-
tive, i.e., we only estimate MIs between ORFs, simply be-
cause we want to compare our results with those of[6] where
the authors also considered only the MI between ORFs. Bio-
logically of interest are both alternatives. We shall not dis-
cuss the subsequent cluster analysis, since this can be done
with standard algorithms[31] (a clustering algorithm specific
to MI used as a(dis) similarity measure will be discussed
elsewhere[32]). In [6] it was found that kernel density esti-
mators performed much better than estimators based on bin-

FIG. 12. RatiosIsX,Ydestim/ IexactsX,Yd for the ordered Weinman
exponential distribution, plotted against 1/N. Full lines are from
estimatorI s2d, dashed lines are from[29]. Our data were obtained
with k=1 after a transformation to logarithms. The four curves cor-
respond tou=0.1,0.3,1.0, and 100.0(from top to bottom).

FIG. 13. RatiosI s1,2dsX,Y,Zd / IexactsX,Y,Zd for k=1 plotted
against 1/N, for four different values ofr. All Gaussians have unit
variance and all nondiagonal elements in the correlation matrix
si,k, i Þk (correlation coefficients) take the valuer.

FIG. 14. Averages ofI s1,2d(X1,sX2¯Xmd) for k=1 plotted
againstm for three different values ofr =0.1,0.5,0.9. The sample
size is 50 000; averaging is done over 100 realizations(same pa-
rameters as in[30], Fig. 1). Full lines indicate theoretical values,
plusess+d are for I s1d, and crossess3d are for I s2d. Squares and
dotted lines are read off from Fig. 1 of Ref.[30].
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ning, but that the estimated MIs were so strongly correlated
to linear correlation coefficients that they hardly carried more
useful information.

Let us first reinvestigate the MI estimates of the four ORF
pairs “A” to “D” shown in Figs. 3, 5, and 7 of[6]. The claim
that KDE was superior to binning was based on a surrogate
analysis. For surrogates consisting of completely indepen-
dent pairs, KDE was able to show that all four pairs were
significantly dependent, while binning-based estimators
could disprove the null hypothesis of independence only for
two pairs. In addition, KDE had both smaller statistical and
systematic errors. Both KDE and binning estimators were
applied to rank-ordered data[6].

In KDE, the densities are approximated by sums ofN
Gaussians with fixed prescribed widthh centered at the data
points. In the limith→0 the estimated MI diverges, while it
goes to zero forh→`. Our main criticism of[6] is that the
authors used a very large value ofh (roughly 1

2 to 1
3 of the

total width of the distribution). This is recommended in the
literature [33], since both statistical and systematic errors
would become too large for smaller values ofh. But with
such a large value ofh one is insensitive to finer details of
the distributions, and should not be surprised to find hardly
anything beyond linear correlations.

With our present estimatorsI s1d and I s2d we found indeed
considerably larger statistical errors, when using small values
of k (k,10, say). But when usingk<50 (corresponding to
Îk/N<0.4, similar to the ratioh/s used in[6]), the statisti-
cal errors were comparable to those in[6]. Systematic errors
could be estimated by using the exact inequality Eq.(A5)
given in the Appendix[when applying this, one has of course
to remember that the estimate of the correlation coefficient
also contains errors which lead to systematic overestimation
of the right-hand side of Eq.(A5) [8]]. For instance, for pair
“B” one finds I .1.1 from Eq.(A5). While this is satisfied
for k,5 within the expected uncertainty, it is violated both
by the estimate of[6] sI <0.9d and by our estimate fork
=50 sI <0.7d. With our method and withk<50, we could
also show that none of the four pairs is independent, with
roughly the same significance as in[6].

Thus the main advantage of our method is that it does not
deteriorate as quickly as KDE does for high resolution. In

addition, it seems to be faster, although the precise CPU time
depends on the accuracy of the integration needed in KDE.
In [6] also a simplified algorithm is given[Eq. (33) of [6]]
where the integral is replaced by a sum. Although it is sup-
posed to be faster than the algorithm involving numerical
integration(on which were based the above estimates), it is
much slower than our present estimators[it is OsN2d and
involves the evaluation of 3N2 exponential functions]. This
simplified algorithm(which is indeed just a generalized cor-
relation sum with the Heaviside step function replaced by
Gaussians) gives also rather big systematic errors, e.g.,I
=0.66 for pair “B.”

Only this simplified algorithm was used in[6] to estimate
the MIs between allMsM −1d /2 pairs of ORFs. When plot-
ted against the(estimated) correlation coefficientsCsm,m8d,
this gave a narrow half-moon-shaped distribution whose
width was not significantly larger than the estimated uncer-
tainty (see Fig. 8 of[6]). In Fig. 16 we show our own results.
We used the estimatorI s1d with k=30. Since the experimental
data contained some outliers, we first transformed to uniform
density by rank-ordering the data. Without that, bothI s1d and
also the linear correlation would have been heavily biased
for some pairs. In view of the inequality Eq.(A5) we actu-
ally plot I s1dsm,m8d+ 1

2lnf1−C2sm,m8dg.
From Fig. 16 we see several things: First of all, if the

ORFsm and m8 were independent, we should haveI s1d<0
on average. This is not the case, even forCsm,m8d=0. Sec-
ondly, the average ofI s1d+ 1

2lnf1−C2sm,m8dg for fixed
Csm,m8d is positive for allCsm,m8d. Thus MI is in general
not uniquely given byCsm,m8d, and MI carries more infor-
mation than linear correlations do. Third, from the violation
of the inequalityI s1dsm,m8d+ 1

2lnf1−C2sm,m8dgù0 one can
estimate statistical errors. They are<0.03. Finally, while
I s1dsm,m8d+ 1

2lnf1−C2sm,m8dg is roughly constant for
Csm,m8d,0.3, it grows sharply for large positive correla-
tions. This effect seems not to be due to systematic or statis-
tical errors. Indeed, systematic errors(which increase withk)
would bring these points down, and the effect would not be

FIG. 15. Standard deviations of the estimateI s1d for Gaussian
deviates with unit variance and covariancer =0.9, multiplied by
ÎN/m and plotted againstk. Each curve corresponds to a fixed
value of dimensionm. Number of samples isN=10 000.

FIG. 16. EstimatesI s1dsm,m8d−s1/2dlnf1−C2sm,m8dg for all
pairssm,m8d of ORFs, plotted againstC2sm,m8d. According to Eq.
(A5), this should be positive, which gives an indication of the errors
involved in the estimation.
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visible for k.50. It would be interesting to see what these
highly correlated ORF pairs are and why their MI is even
higher than suggested by linear correlations, but we shall not
pursue this here.

B. ICA

Independent component analysis(ICA) is a statistical
method for transforming an observed multicomponent data
set (e.g., a multivariate time series comprisingn measure-
ment channels) xstd=(x1std ,x2std , . . . ,xnstd) into components
that are statistically as independent from each other as
possible [4]. In the simplest case,xstd could be a linear
superposition of n independent sources sstd
=(s1std ,s2std , . . . ,snstd),

xstd = Asstd, s37d

whereA is a nonsingularn3n “mixing” matrix. In that case,
we know that a decomposition into independent components
is possible, since the inverse transformation

sstd = Wxstd with W = A−1 s38d

does exactly this. If Eq.(37) does not hold, then no decom-
position into strictly independent components is possible by
a linear transformation like Eq.(38), but one can still search
for the least dependent components. In a slight misuse of
notation, this is still called ICA.

But even if Eq. (37) does hold, the problem of blind
source separation(BSS), i.e., finding the matrixW without
explicitly knowingA, is not trivial. Basically, it requires that
x is such that all superpositionss8=W8x with W8ÞW are
not independent. Since linear combinations of Gaussian vari-
ables are also Gaussian, BSS is possible only if the sources
are not Gaussian. Otherwise, any rotation(orthogonal trans-
formation) s8=Rs would again lead to independent compo-
nents, and the original sourcess could not be uniquely re-
covered.

This leads to basic performance tests for any ICA prob-
lem:

(i) How independent are the found “independent” compo-
nents?

(ii ) How unique are these components?
(iii ) How robust are the estimateddependencesagainst

noise, against statistical fluctuations, and against outliers?
(iv) How robust are the estimatedcomponents?
Different ICA algorithms can then be ranked by how well

they perform, i.e., whether they find indeed the most inde-
pendent components, whether they declare them as unique if
and only if they indeed are, and how robust are the results.
While questions(ii ) and(iv) have often been discussed in the
ICA literature(for a particularly interesting recent study, see
[34]), the first (and most basic, in our opinion) test has not
attracted much interest. This might seem strange since MI is
an obvious candidate for measuring independence, and the
importance of MI for ICA was noticed from the very begin-
ning. We believe that the reason was the lack of good MI
estimators. We propose to use our MI estimators not only for
testing the actual independence of the components found by
standard ICA algorithms, but also to use them for testing for

uniqueness and robustness. We will also show how our esti-
mators can be used for improving the decomposition ob-
tained from a standard ICA algorithm, i.e., for finding com-
ponents which are more independent. Algorithms which use
our estimators for ICA from scratch will be discussed else-
where.

It is useful to decompose the matrixW into two factors,
W =RV, whereV is a prewhitening that transforms the co-
variance matrix intoC8=VCV T=1, andR is a pure rotation.
Finding and applyingV is just a principal component analy-
sis (PCA) together with a rescaling, so the core of the ICA
problem reduces to finding a suitable rotation after having
the data prewhitened. In the following we always assume
that the prewhitening(PCA) step has already been done.

Any rotation can be represented as a product of rotations
which act only in some 232 subspace,R=pi,j Ri jsfd,
where

Ri jsfdsx1, ¯ xi ¯ xj ¯ xnd = sx1 ¯ xi8 ¯ xj8 ¯ xnd
s39d

with

xi8 = cosfxi + sin fxj, xj8 = − sin fxi + cosfxj . s40d

For such a rotation one has(see the Appendix)

I„Ri jsfdXd − IsXd = IsXi8,Xj8d − IsXi,Xjd, s41d

i.e., the change ofIsX1¯Xnd under any rotation can be com-
puted by adding up changes of two-variable MIs. This is an
important numerical simplification. It would not hold if MI is
replaced by some other similarity measure, and it indeed is
not strictly true for our estimatesI s1d and I s2d. But we found
the violations to be so small that Eq.(41) can still be used
when minimizing MI.

Let us illustrate the application of our MI estimates to a
fetal ECG recorded from the abdomen and thorax of a preg-
nant woman(eight electrodes, 500 Hz, 5 s). We chose this
data set because it was analyzed by several ICA methods
[34,35] and is available on the web[37]. In particular, we
will use bothI s1d andI s2d to check and improve the output of
the JADE algorithm [36] (which is a standard ICA algorithm
and was more successful with these data thanTDSEP[38]; see
[34]).

The output ofJADE for these data, i.e., the supposedly
least dependent components, is shown in Fig. 17. Obviously
channels 1–3 are dominated by the heartbeat of the mother,
and channel 5 by that of the child. Channels 4 and 6 still
contain large heartbeat components(of mother and child,
respectively), but look much more noisy. Channels 7 and 8
seem to be dominated by noise, but with rather different
spectral composition. The pairwise MIs of these channels are
shown in Fig. 18(left panel) [39]. One sees that most MIs
are indeed small, but the first three components are still
highly interdependent. This could be a failure ofJADE, or it
could mean that the basic model does not apply to these
components. To decide between these possibilities, we mini-
mized IsX1¯X8d by means of Eqs.(39)–(41). For each pair
si , jd with i , j =1¯8 we found the angle which minimized
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IsXi8 ,Xj8d− IsXi ,Xjd, and repeated this altogether<10 times.
We did this both forI s1d andI s2d, with k=1. We checked that
IsX1. . .X8d, calculated directly, indeed decreased(from
IJADE

s1d =1.782 to Imin
s1d =1.160 and fromIJADE

s2d =2.264 to Imin
s2d

=1.620).
The resulting components are shown in Fig. 19. The first

two components look now much cleaner; all the noise from
the first three channels seems now concentrated in channel 3.
But otherwise things have not changed very much. The pair-
wise MI after minimization is shown in Fig. 18(right panel).
As suggested by Fig. 19, channel 3 is now much less depen-
dent on channels 1 and 2. But the latter are still very strongly
interdependent, and a linear superposition of independent
sources as in Eq.(37) can be ruled out. This was indeed to be
expected: In any oscillating system there must be at least two
mutually dependent components involved, and generically
one expects both to be coupled to the output signal.

To test for the uniqueness of the decomposition, we com-
puted the variances

si j =
1

2p
E

0

2p

dffI„RsfdsXi,Xjd… − IsXi,Xjdg2, s42d

where

IsXi,Xjd =
1

2p
E

0

2p

dfI„RsfdsXi,Xjd…. s43d

If si j is large, the minimum of the MI with respect to rota-
tions is deep and the separation is unique and robust. If it is
small, however, BSS cannot be achieved since the decompo-
sition into independent components is not robust. Results for
the JADE output are shown in Fig. 20(left panel), and those
for the optimized decomposition are shown in the right panel
of Fig. 20. The most obvious difference between them is that
the first two channels have become much more clearly dis-
tinct and separable from the rest, while channel 3 is less
separable from the rest(except from channel 5). This makes
sense, since channels 3, 4, 7, and 8 now contain mostly
Gaussian noise, which is featureless and thus rotation invari-
ant after whitening. Most of the signals are now contained in
channel 5(fetus) and in channels 1 and 2(mother).

FIG. 17. Estimated independent components usingJADE.

FIG. 18. Left panel: pairwise MIs between all ICA components
obtained byJADE, estimated withI s1d ,k=1. The diagonal is set to
zero. Right panel: pairwise MIs between the optimized channels
shown in Fig. 19.

FIG. 19. Estimated independent components after minimizing
I1.

FIG. 20. Square roots of variances,Îsi j , of I s1dfsXi ,Xjdg (with
k=1) from JADE output (left panel) and after minimization of MI
(right panel). Again, elements on the diagonal have been set to zero.
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These results are in good agreement with those of[34],
but are obtained with less numerical effort and can be inter-
preted more straightforwardly.

V. CONCLUSION

We have presented two closely related families of mutual
entropy estimators. Each family is parametrized by an inte-
gerkù1 and useskth neighbor distance statistics in the joint
space. In general they perform very similarly, as far as CPU
times, statistical errors, and systematic errors are concerned.
Choosing smallk reduces in general systematic errors, while
large k leads to smaller statistical errors. The choice of the
particular estimator depends thus on the size of the data
sample and on whether bias or variance is to be minimized.

Their biggest advantage seems to be in vastly reduced
systematic errors(in particular for smallk) when compared
to previous estimators. This allows us to use them on very
small data sets(even fewer than 30 points gave good results).
It also allows us to use them in independent component
analyses to estimate absolute values of mutual dependences.
Traditionally, contrast functions have been used in ICA
which allow us to minimize MI but not to estimate its abso-
lute value. We expect that our estimators will also become
useful in other fields of time series and pattern analysis. One
large class of problems is interdependences in physiological
time series, such as breathing and heartbeat, or in the output
of different EEG channels. The latter is particularly relevant
for diseases characterized by abnormal synchronization, such
as epilepsy or Parkinson’s disease. In the past, various mea-
sures of interdependence have been used, including MI. But
the latter was not employed extensively(see, however,[40]),
mainly because of the supposed difficulty in estimating it
reliably. We hope that the present estimators might change
this situation.
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APPENDIX

We collect here some well-known facts about MI, in par-
ticular for higher dimensions, and some immediate conse-
quences. The first important property ofIsX,Yd is its inde-
pendence with respect to reparametrizations. IfX8=FsXd and
Y8=GsYd are homeomorphisms(smooth and uniquely invert-
ible maps), andJX=i]X/]X8i and JY=i]Y/]Y8i are the Ja-
cobi determinants, then

m8sx8,y8d = JXsx8dJYsy8dmsx,yd sA1d

and similarly for the marginal densities, which gives

IsX8,Y8d =E E dx8dy8m8sx8,y8dlog
m8sx8,y8d

mx8sx8dmy8sy8d

=E E dxdymsx,ydlog
msx,yd

mxsxdmysyd
= IsX,Yd.

sA2d

The next important property, checked also directly from the
definitions, is

IsX,Y,Zd = I„sX,Yd,Z… + IsX,Yd. sA3d

This is analogous to the additivity axiom for Shannon entro-
pies[1], and says that MI can be decomposed into hierarchi-
cal levels. By iterating it, one can decomposeIsX1¯Xnd for
any n.2 and for any partitioning of the setsX1¯Xnd into
the MI between elements within one cluster and MI between
clusters.

Let us now consider a homeomorphismsX8 ,Y8d
=FsX,Yd. By combining Eqs.(A2) and (A3), we obtain

IsX8,Y8,Zd = I„sX8,Y8d,Z… + IsX8,Y8d = I„sX,Yd,Z… + IsX8,Y8d

= IsX,Y,Zd + fIsX8,Y8d − IsX,Ydg. sA4d

Thus, changes of high-dimensional redundancies under rep-
arametrization of some subspace can be obtained by calcu-
lating MIs in this subspace only. Although this is a simple
consequence of well-known facts about MI, it seems to have
not been noticed before. It is numerically extremely useful,
and would not hold in general for other interdependence
measures. Again it generalizes to any dimension and to any
number of random variables.

It is well known that Gaussian distributions maximize the
Shannon entropy for given first and second moments. This
implies that the Shannon entropy of any distribution is
bounded from above bys1/2dlog detC, whereC is the co-
variance matrix. For MI one can prove a similar result: For
any multivariate distribution with joint covariance matrixC
and variancessi =Cii for the individual(scalar) random vari-
ablesXi, the redundancy is bounded from below,

IsX1, ¯ ,Xmd ù
1

2
log

det C

s1 ¯ sm
. sA5d

The right-hand side of this inequality is just the redundancy
of the corresponding Gaussian, and to prove Eq.(A5) we
must show that the distribution minimizing the MI is Gauss-
ian.

In the following we sketch only the proof for the case of
two variablesX and Y, the generalization tom.2 being
straightforward. We also assume without loss of generality
that X andY have zero mean. To prove Eq.(A5), we set up
a minimization problem where the constraints[correct nor-
malization and correct second moments; consistency rela-
tions mxsxd=edy msx,yd and mysyd=edx msx,yd] are taken
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into account by means of Lagrangian multipliers. The “La-
grangian equation”dL /dmsx,yd=0 leads then to

msx,yd =
1

Z
mxsxdmysyde−ax2−by2−cxy, sA6d

whereZ, a, b, andc are constants fixed by the constraints.
Since the minimal MI decreases when the variancessx

=Cxx and sy=Cyy increase withCxy fixed, the constantsa
and b are non-negative. Equation(A6) is obviously consis-
tent with msx,yd being a Gaussian. To prove uniqueness, we
integrate Eq.(A6) over y and setx=−iz/c to obtain

Ze−az2/c2
=E dy eizyfmysyde−by2

g. sA7d

This shows thate−by2
mysyd is the Fourier transform of a

Gaussian, and thusmysyd is also Gaussian. The same holds
true of course formxsxd, showing that the minimizingmsx,yd
must be Gaussian, QED.

Finally, we should mention some possibly confusing no-
tations. First, MI is often also called transinformation or re-
dundancy. Secondly, what we call higher-order redundancies
are called higher-order MIs in the ICA literature. We did not
follow that usage in order to avoid confusion with cumulant-
type higher-order MIs[41].
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