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A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on syn-
chronization of neural networks by mutual learning, has been recently shown to be secure under different
attack strategies. The success of the advanced attacker presented here, called the “majority-flipping attacker,”
does not decay with the parameters of the model. This attacker’s outstanding success is due to its using a group
of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known.
An analytical description of this attack is also presented, and fits the results of simulations.
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The use of neural networks in the field of cryptography The following is the model we use: The networks are tree
has recently been suggestdd and has since been a source parity machines(TPM) with K hidden unitso;=+1, i

of interest for researchers from different fie[d. The neu- =1,. .. K feeding a binary output;:HiK:l oy, as shown in
ral cryptosystem is based on the ability of two neural netrig. 1. We used=3. The networks consist of a discrete
works to synchronize. The two networks undergo an onlingoupling vectorw,=W,,, . . ., W, and disjointed sets of in-

learning procedure callechutual learning in which they  pytsx, =X, ... Xy containingN elements each. The input
learn from each other simultaneously, i.e., every network actgjements are random variablgs=+1. Each component of

both as a teacher and as a student. At every time step thge \yeight vector can take certain discrete valuals
networks receive a common input vector, calculate their out= , | +(L-1),...,+1,0, and isnitiated randomly from a

puts, and update their weight vectors according to the matcﬁa_t
between their mutual outpuf8]. The input/output relations

are exchanged through a public channel until their weight
vectors are identical and can be used as a secret key for
encryption and decryption of secret messages. Thus we have

a public key-exchange protocol which is not based on num- : L - .
ber theory nor does it involve long numbers and irreversiblétd the output in théh hidden unit is the sign of the local

functions, and is essentially different from any other crypto-f'e|d- The output of the tree parity machine is therefore given
graphic method known before. by

The question is whether this system is secure, and to what
degree? Since the data are transferred through a public chan- K K
nel, any attacker who eavesdrops might manage to synchro- =[] sgn(hy) = I1 0j.
nize with the two parties, and reveal their key. Yet the at- =1 i=1
tacker is in a positi_on of disadvantage: while the parties During the mutual learning process, the two machies
perform mutual Iearmng_ and approach one another, the atynqp exchange their output valued’®. They update their
tacker performs dynamic learning and “chases” them, thereyeights using the Hebbian learning rule only in cases in

fore they have an advantage over him. The system's securityhich their outputs agree and only in hidden units which
depends on whether they manage to exploit this advantage $Qree with the output

that the attacker will forever stay behind.
The synchronization is based on a competition between
attractive and repulsive stochastic forces between the parties.
Attractive forces bring them closer to each other, and repul-
sive forces drive them apart and delay the synchronization.
Synchronization is possible only if the attractive forces are
stronger than the repulsive forcés>R). On the one hand,
if the attractive forces are too strong, synchronization is rela-
tively fast and easy, so that an attacker eavesdropping on the o 02 G3
line and trying to synchronize will manage to do so easily.
On the other hand, if the repulsive forces are too strong,
synchronization will be hard for the attacker, but also for the
two parties. A secure system is one which manages to bal- 44 4 412 2 42
ance these forces so that the net force between the parties is 12 N 12 N 12
positive and stronger than for the attackék—R)paries™ (A
=R attacked- FIG. 1. Atree parity machine witk=3.

distribution.
The local field in theith hidden unit is defined as

hi =w; - X;, (1)

z »
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wi(t+ 1) =wi() + xR0l 64 P), 0 2 4 6 s 0 12

wWE(t+ 1) =wl(t) + x,7260(PaP) 6(A7P). 2)

This leads them to a parallel state in whigf'=WE. The 0.1 -
attackerC tries to learn the weight vector of one of the two
machines, say, yet unlike the simple teacher-student sce- p
nario [4,5], the teacher’'s weights in this case are time-
dependent, therefore the attacker must use some attack stre

egy in order to follow the teacher’s steps. il o Flipping attack

The following are possible attack strategies, which were ® Majority-Flipping attack
suggested by Shamat al. [2]. The genetic attackin which —P=1.55exp(-0.4335L)
a large population of attackers is trained, and at every new
time step each attacker is multiplied to cover tie*2pos- 0.001
sible internal representations ff;} for the current output. L

As the dynamics proceed, successful attackers stay while the
unsuccessful ones are removddhe probabilistic attackin

Wh?Ch the attacker tries to .fOHOW th‘? p_mb_abi”ty of every for the flipping attack and the majority-flipping attack, with
weight element by calculating the distribution of the local _ ;509 M=100 averaged over 1000 samples. To avoid fluctua-

field of every input and using the output, which is publicly tions we define the attacker as successful if he found out 98% of
known. The naive attackerin which the attacker imitates e weights.

one of the parties. The most successful attacker suggested so

far is the flipping attack (geometric attack in which the

attacker imitates one of the parties, but in steps in which hign approach which has not been done before. The majority

output disagrees with the imitated party’s output, he negatestrategy is the following: we start with a group ldf random

(“flips”) the sign of one of his hidden units. The unit most attackers. Instead of letting them work independently and

likely to be wrong is the one with the minimal absolute valuehope for one to be successful, we let them cooperate—when

of the local field, therefore that is the unit which is flipped. updating the weights, instead of each machine being updated
While the synchronization time increases with[6], the ~ according to its own result, all are updated according to the

probability of finding a successful flipping attacker decreasegnajority’s result. This “team-work” approach improves the
exponentially withL, attacker’s performance. Naturally, we chose to apply it to the

most successful attacker, the “flipping attacker,” thus creat-
PoegVt ing the “majority-flipping attacker.”

The main result of this paper is the improvement of the
as seen in Fig. 2. Therefore, for larfevalues the systemis syccess rate of the flipping attacker when using the majority
secure[6]. This can be supported also by the fact that closescheme: The regular flipping attacker, although relatively
to synchronization, the probability for a repulsive step in thesyccessful, is weakened by increasingand the probability
mutual learning betweeA and B scales like(e)?, while in o g successful attackeP, drops exponentially with. [6].
the dynamic learning between the naive attacdReandA it When using the majority scheme, this probability seems to
scales likee, where we define=prolof # o) [9]. approach a constant value0.5 independent of [7].

The attackers mentioned above try to imitate the parties, When applying the majority strategy to the flipping at-
each using different heuristics. They use an ensemble of inack, we creaté flipping attackers. In the beginning of the
dependent attackers. These attackers all develop an overlgpocess, during a certain time, the regular flipping attack is
with the parties during the synchronization process and alsperformed; those among th¢ machines that disagree with
an overlap between themselvgst each attacker evolves party A have one of their hidden unit's signs negated, and
independently, and is not influenced by the state of the othahen their weights’ vectors updated according to their new
attackers internal representations.

It has been shown that among a group of Ising vector After a certain time, we start to perform the majority pro-
students which perform learning, and have an oveRayth  cedure: In every odd time step we perform the regular flip-
the teacher, the best student is the center-of-mass vectping attack, and in every even time step we perform a
(which was shown to be an Ising vector as welNhich has  majority-flipping procedure, which consists of the following
an overlapR. VR for Re[0:1] [10]. Therefore, letting two steps.
the attackers cooperate throughout the process may be to (i) All attackers who disagree with part4 flip one of
their advantage. their hidden units, according to the regular flipping attack

The new “majority flipping attacker” presents a generalprocedure.
strategy which can be applied to some of the heuristic attack- (ii) Now all the M attackers have the same output but
ers mentioned, and can improve their results, and it uses ttdifferent internal representations ff;}. We check which of
attackers as aooperating group rather than as individuals the four possible internal representations appears the most.

FIG. 2. The attacker’s success probabilRyas a function oL,
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Then, instead of updating every attacker according to its own !
internal representation, all are updated according to the sam ose-
internal representation—the majority’s representation. Itis as g |
if we let the machines “vote,” and all must use the internal
representation that was “elected.”

When the attackers perform the majority step, they all
perform the same step, therefore an overlap is developefa0s
between them. The larger the overlap between them, the les ¢4 |
effective they are, because effectively there are fewer attack

0.7 4

0.6 |

ers. In the limit when all the attackers are identical, there is - — Flipping Attacker

effectively only one attacker. There is no way to avoid this %]

similarity between them. We rather prevent it from develop- ot{ | = Majority-Flipping Attacker

ing too quickly, and we do so by performing the majority 0 : : , ‘

step only on even time steps, and not from the beginning of 0 02 4 e e b s
the process but after a waiting time of ab@uof the entire p

synchronization timg11]. FIG. 3. The probability of attackeE to have a correct internal

The result of using this scheme is shown in Fig. 2. Whenyepresentation as a function of the average overlap between the
comparing the success of the flipping attacker with and withattackers and one of the parties, for flipping and majority-flipping
out the majority strategy, we see that for the latter the successtacks, measured in simulations wi+1000,M =300, averaged
probability drops exponentially with, while for the former  over 1¢ samples.
it remains around 0.5 even whénis increased. Similar re-
sults of the majority-flipping attack success were obtained in L L
the case of the chaotic neural network mofil R= X arfy, Qa= X 0Py (3)

Why is the majority-flipping attack so successful? Every qr=-L g=-L
update of the weights can either bring every attacker closer

to partyA (an “attractive step’or farther awaya “repulsive  and the overlapas=Ras/ VQaQs. There are three matrices
step’). A repulsive step between the attacker aaccurs  representing the mutual overlap between a pair of hidden
when there is a difference in their internal representations  units amongA, B, andC (we omitted the hidden unit's index
steps wheré\ andB perform an updateA good attack strat-  for the sake of simplicity We do not creat® attackers but
egy is one that manages to reduce the probability for a rerather one that represents one of Mettackers in the simu-
pulsive step, and the majority-flipping attacker does this byjations.

using the majority vote. Once an overlap is developed be- The procedure at every time step is as follows.

tween an attacker and machiAe the probability for a cor-

rect (attractive internal representatioR, is larger than the (i) We randomly choos& local fields for theK hidden
probability for a repulsive one. For a group lif>1 uncor-  ynits of machineA, from a Gaussian distribution with the
related attackers, which all have an overlag with A, the  mean 0 and the standard deviatioQ,.

probability that their majority is correct is 1. However, if the  (ji) we then randomly choosK local fields for thekK
attackers are correlated, which is the case heyec 1, yetit  pigden units of machinB, from a Gaussian distribution with
is larger tharP, of just one flipping attacker, as can be seenthe  mean R,gha/Q, and the standard deviation
in Fig. 3 (in our simulations we obtained similar results for VQg—RZ4/Qa (taking into accounB's overlap withA).

all M>50). The majority’s advantage over a random choice i) |f the outputs ofA and B disagree, they are not up-
is the essence of this attack, as shown also in the Bay&gted and we continue to the next time step. If they agree, we

optimal classification algorithm versus the Gibbs Iearningupdate the matrices representitgndB and then update the
algorithm, where choosing the majority proves to be betteL - ker as described in the next step.

than a random choicgl0]. _ _ (iv) We set the internal representation of the attacker. For
The semianalytical description of this process confirm§c=3 " there are eight possible internal representations. We
these results and gives us further insight into the majority,5cylate their probabilitie®, , . . . ,Pg, according to the at-

attacker’s success. In the semianalytical description, we dgzcyer's overlap withA andB and the local fields of andB.
scribe the system usin@L +1) X (2L.+1) order parameters, pqr example, the internal representation +++ has the prob-
and we manage to simulate the system in the thermodynamigjity

limit. We represent the state of the TPMs using a meirif
size(2L+1) X (2L+1), as described ifi9]. The elements of

F are fy, whereq,r=-L,...,-1,0,1,...L. The element

fy represents the fraction of components in a weight vector
in which theA’s components are equal ¢pand the matching
components oB are equal ta. Hence, the overlap between  For simplicity, we assume that there is no significant dif-
the two units and the norm of par#y, for instance, are given ference between the attacker’s overlap withnd its overlap
by with B and therefore we use only one of them so that

3
P(+ + +) =[] P(h$ > 0n%,he {R,Q}).

m=1
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—Rxrh 1
P(hF > OI*{R Q) = H(%) : 09 |
N QAQC - RA(:QA 0.8
0.7 - —
whereH(x) =[5 e 2t/ 2. 0.6 | A simulations
Next we simulate the flipping, when the eight possible P05 B~ analytics

states are reduced to four: either states Isthtes with 04 -
positive output flip to 5-8 (states with negative outpuor 03
vice versa, depending oM\'s output. We calculate the 02
probabilites of the states’ flipping. For example, the °-:)’
probability that state +++ flipped to state —-++ is ‘ ‘ ‘ ‘ ‘ ‘ ‘
P(+++)P(h$<hS,hf<hS), where ‘ A S

£ FIG. 4. The probability for one of th& attackers to be suc-
P(h$ < h$,hS < h$) :f P(h$|h,h%,)dhe- cessful as a function df, obtained from the analytical calculations
0 and simulations witiN=1000,M =100. Here we define synchroni-
zation when the average mutual overlap of the three hidden units
reaches 0.99. Results were averaged over 1000 samples.

C|1hA 1B C C|hA LB C
jhc P(hzlh ’h2’)dh2fhc P(hslhs, hs,)dh. To conclude, an important step in the field of neural cryp-
! 1 tography has been made, presenting an attacking approach

We now remain with probabilities for four possible internal under which the TPM cryptosystem is insecure. The question
P P is, can we create a more sophisticated system that will be

representations. In the case of a regular flipping step, Wego\re ynder the majority attack? A secure system will be
randomly choose one of these four states according 10 theffne or which the probability for a correct step of the major-
probabilities, but in the case of a majority step, the probabilyy, finning attacker will be near the flipping attacker’s curve

ity of choosing the correct internal presentation is higher. Wgy, Fig. 3, yet the synchronization time of the parties will still
do not calculate it, but rather measure it in the simulationsyemain polynomial with_. There can be many ideas for such
and use the measured probabil(pfesented by the dashed a System' for examp|e a System in whikb> 3, so that re-

line in Fig. 3 in the analytical procedure. Figure 4 shows thepulsive forces are stronger. Yet keeping the synchronization
success probability of one of thé attackers as a function of time polynomial withL is not easy when repulsive forces are
L. It shows a fairly good agreement between the analyticatoo strong, so these models are still under consideration, and
and the simulation resulisee[12]). the challenge still remains.
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