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We consider the discrete-time evolution of a finite number of particles obeying the totally asymmetric
exclusion process with backward-ordered update on an infinite chain. Our first result is a determinant expres-
sion for the conditional probability of finding the particles at given initial and final positions, provided that they
start and finish simultaneously. The expression has the same form as the one obtained by Schütz[J. Stat. Phys.
88, 427 (1997)] for the continuous-time process. Next we prove that under some sufficient conditions the
determinant expression can be generalized to the case when the particles start and finish at their own times. The
latter result is used to solve a nonstationary zero-range process on a finite chain with open boundaries.
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I. INTRODUCTION

The one-dimensional asymmetric simple-exclusion pro-
cess(ASEP) has been intensively studied over decades by
both physicists[1–3], and mathematicians[4,5]. The model
can be used to describe such different physical problems,
including kinetics of biopolymerization[1], traffic flow [6],
surface growth[7,8], and shock structures[9]. For a more
complete list of works we refer the reader to the reviews
[10,11].

The totally asymmetric version(TASEP) is one of the
simplest examples of driven lattice-gas systems with hard-
core exclusion. Most often, the evolution of the system is
considered as a continuous-time stochastic process in which
particles jump randomly and independently at a unit rate to a
neighboring vacant site on the right. In the case of a finite
chain with open boundaries, particles are injected and re-
moved with specified rates at the ends. The probabilistic cel-
lular automaton analog of the continuous-time ASEP is the
discrete-time ASEP, which is defined by update rules of the
system configurations(for a description of the basic update
rules, see[12]).

By now, the steady state properties of the continuous- and
discrete-time ASEP are well understood and some of them
have been calculated exactly for both infinite and finite
chains under different boundary conditions. The matrix-
product ansatz(MPA) has been successfully applied for con-
structing the stationary states of the TASEP with open
boundaries for all basic types of stochastic dynamics:
random-sequential[13], forward- and backward-ordered se-
quential [14], sublattice parallel[15], and fully parallel up-
date[16,17]. One of the most important findings is the exis-
tence of boundary induced phase transitions between steady
states driven out of equilibrium by nonvanishing currents of
particles. Other interesting phenomena concern the time-

dependent properties of the ASEP, e.g., the strong depen-
dence of the fluctuations on the initial conditions(see[9] and
references therein). In contrast, almost all the dependence on
the initial conditions is eliminated in the stationary states.

The structure of transient states is more complicated and
the description of their time evolution is much harder to
obtain [18,19]. The MPA approach, extensively used for the
description of the stationary states of ASEP, has been gener-
alized to the full dynamic problem by Stinchcombe and
Schütz[20,21]. Later, a new type of dynamic MPA, which
differs from the former in the time dependence of the matri-
ces, has been suggested by Sasamoto and Wadati[22].

A different approach to the time-dependent properties of
the ASEP has been proposed by Schütz[23]. It is based on
the explicit solution of the master equation for the condi-
tional probabilityPsndsux1, . . . ,xn; tux1

0, . . . ,xn
0;0d of finding a

finite numbern of particles on lattice sitesx1, . . . ,xn at time
t, provided that initially they have occupied the set of sites
x1

0, . . . ,xn
0. In the case of an infinite chain the solution has

been obtained in the form of determinant of an3n matrix.
Among a variety of interpretations of the TASEP, the for-

mulation of the process in terms of traffic flow in discrete
time is one of the most transparent(see, e.g.[24]). Despite
the spatial discretization, the exclusion interaction between
particles mimics the motion of cars on a single lane. On the
other hand, the traffic analogy supplies the theory of the
TASEP with some new problems. Firstly, traffic is most ad-
equately represented by the stochastic discrete-time parallel
update, not to mention the need for more sophisticated up-
date rules[6,24]. Our first aim in this paper is to show that
the conditional probabilityPsndsx1, . . . ,xn; tux1

0, . . . ,xn
0;0d for

the discrete-timeTASEP with backward-ordered update[12]
on an infinite chain can be obtained in a determinant form
quite similar to that found by Schütz[23].

Secondly, realistic traffic takes place on roads with local
inhomogeneities such as road crossings, on- and off-ramps,
changing number of lanes, etc. Recent investigations have
focused on the various nonequilibrium phases of congested*Electronic address: brankov@bas.bg
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traffic (e.g., localized clusters, stop-and-go waves, different
kinds of “synchronized” traffic) caused by inhomogeneities
in the bulk. The existence of such phases has been predicted
by appropriate cellular automaton models(see[25–27]), and
some of them have been empirically observed[27,28]. Here,
we emphasize that the appearance and disappearance of cars
at given sites of the road, at given moments of time, corre-
spond in the TASEP to a generalized(unequal-time) condi-
tional probability Psndsx1,t1; . . . ;xn,tnux1

0,t1
0; . . . ;xn

0,tn
0d with

different pairs of discrete space-time coordinatessxi
0,ti

0d and
sxi ,tid of creation and annihilation, respectively, of the differ-
ent particles.

It is the second goal of this paper to present an exact
expression for the unequal-time conditional probability
Psndsx1,t1; . . . ;xn,tnux1

0,t1
0; . . . ;xn

0,tn
0d similar to the determi-

nant formula obtained in[23]. In principle, the domain of
validity of the determinant formula derived here could be
obtained by dissecting the relevant time interval into sub-
intervals with a fixed number of particlesk and then applying
the equal-time probabilitiesPskdsx1, . . . ,xk; tux1

0, . . . ,xk
0;0d to

each subinterval. This procedure implies, however, interme-
diate summations over the coordinates of all the particles on
the common boundaries of the adjacent subintervals; hence,
it seems rather cumbersome and cannot be realized for arbi-
trary arrangements of the starting and ending points of the
trajectories. We can prove our new result for the TASEP with
backward-ordered update under somesufficient conditions
on the space-time endpoints of the particle trajectories.

The unequal-time probability allows one to consider a
number of kinetic problems with a variable number of par-
ticles entering and leaving the system. The most interesting
problem of such a kind is the TASEP on a finite chain, with
prescribed moments of timet1

0,t2
0, . . . ,tn

0 at which the par-
ticles enter the system at its left end, and prescribed moments
of time t1,t2, . . . ,tn at which they leave the system at its right
end. As it is seen from the conditions of Theorem 2, this case
is out of the range of validity of the proof of the determinant
formula. Nevertheless, there is an important stochastic pro-
cess, the so-called zero-range process(ZRP) [4], which can
be considered on a finite chain and solved by mapping on a
TASEP problem with known unequal-time conditional prob-
ability. It is the third goal of our paper to consider time-
dependent properties of such a discrete-time ZRP. The ZRP
is one of the basic models of queueing theory; it is also
widely used for the description of sandpile dynamics[29],
drop-push dynamics of a fluid in a porous medium[30],
surface growth phenomena, etc. The unequal-time probabili-
ties for the ZRP open new prospects for the exact evaluation
of various time-dependent correlations which cannot be ob-
tained by the existing methods.

The continuous-time results follow from our expressions
by taking a straightforward limit, which amounts to the sub-
stitution of the Bernoulli distribution by the Poisson one.

The structure of the paper is as follows. In Sec. II we
define the discrete-time TASEP with backward-ordered dy-
namics for a finite number of particles and prove Theorem 1
which yields an extension of the determinant formula[23]
for the equal-time conditional probabilities. In Sec. III we
further generalize the consideration to the case of different

times of injection and removal of each particle. The main
result of this section, Theorem 2, establishes the existence of
a generalized determinant formula under some sufficient
conditions. The utility of our results is illustrated by an ap-
plication to the study of the stochastic dynamics of the ZRP
on a finite chain in Sec. IV. The paper closes with Sec. V,
where we discuss the difference between determinant expres-
sions enumerating mutually, avoiding trajectories in the class
of free-fermion models and in the ASEP models studied here.

II. THE DISCRETE-TIME TASEP ON INFINITE
CHAIN

In this section, instead of explicitly solving the discrete-
time master equation, we make use of the geometrical treat-
ment of the Bethe ansatz developed in[31] to analyze en-
tangled systems of allowed and forbidden trajectories of
interacting particles on the infinite chain.

The discrete space-time version of the TASEP is defined
as follows. Consider the infinite triangular latticeL obtained
from the square lattice by adding a diagonal between the
upper left and lower right corners of each elementary square.
Let sx,td be the integer space-time coordinates of a particle
on L, where the vertical time axis is directed down and the
horizontal space axis is directed to the right. A trajectory of a
particle is a sequence of connected vertical and diagonal
bonds ofL. Each diagonal bond corresponds to a jump of the
particle to its nearest neighbor on the right for unit time and
has a statistical weightz. Each vertical bond corresponds to a
stay of the particle at the site corresponding to its spatial
coordinate during the unit time interval and has a statistical
weight y. The statistical weight of all the one-particle trajec-
tories starting at the pointsx0,t0d and ending at the point
sx,td is

B0sN;Td = ST

N
DzNyT−N, s1d

whereN=x−x0 is the distance traveled for timeT= t− t0. Ob-
viously, for the totally asymmetric process,B0sN;TdÞ0 if
and only if 0øNøT. To provideB0sN;Td with probabilistic
meaning, we put 0,z,1 for the probability of one spatial
step to the right, hencey=1−z becomes the probability of an
isolated particle to stay at the same site during unit time
interval. ThenB0sN,Td is the probability to reach the point
sN,Td from the origins0,0d. To obtain the continuous-time
limit, we setT=Mt, z=1/M, and pass to the limitM→`,

lim
M→`

uB0sN;Mtduz=1/M =
tN

N!
e−t: = F0sN;td, s2d

wheret is the rescaled continuous time. Thus, the above limit
leads to replacement of the Bernoulli distribution by its Pois-
son analog.

Next we formulate the standardn-particle problem for the
discrete space-time TASEP. Consider the set of trajectories of
n particles on the latticeL which start at the points
sx1

0,0d , . . . ,sxn
0,0d, x1

0,x2
0, . . .,xn

0 and end at the points
sx1,td , . . . ,sxn,td, x1,x2, . . .,xn. The exclusion rules read
as follows:
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(a) Trajectories of particles do not intersect.
(b) If the two vertical bonds of any elementary square

of L are occupied by adjacent trajectories, the weight of the
left bond is changed from 1−z to 1.

Rule(a) is the usual condition for occupation of every site
by at most one particle. Rule(b) implies that the particle
stays at the given site with probability 1 if the target site is
occupied by a standing particle.

The equal-time conditional probability
Pnsx1, . . . ,xn; tux1

0, . . . ,xn
0;0d of the discrete TASEP is given

by the weighted sum over all trajectories ofn particles, start-
ing from the given set of sites at time 0 and ending at the
given set of sites at timet, which are allowed by the exclu-
sion rule (a) and have weights corrected according to rule
(b).

To formulate our first result, we define the discrete-time
analogs of the functions introduced in[23]:

BmsN;Td = o
k=0

` Sk + m− 1

m− 1
DB0sN + k;Td s3d

for integerm.0, and

BmsN;Td = o
k=0

−m

s− 1dkS− m

k
DB0sN + k;Td s4d

for integerm,0; for m=0, B0sN,Td is given by Eq.(1).
The derivation of this result is based on a common prop-

erty of integrable models admitting a two-dimensional
graphic representation: interchanging the endpoints of two
trajectories leads to their crossing. The idea of the Bethe
ansatz is to represent trajectories of interacting particles by a
set of free trajectories with probabilities given by Eq.(1) or
Eq. (2). Then, using the one-to-one correspondence between
intersections and permutations, one can reduce the enumera-
tion of all the interacting trajectories to a proper choice of the
signs of permutations.

Let us start with the case of two particles,n=2. According
to the Bethe ansatz, we try to represent the motion of inter-
acting particles by free trajectories fromsxi

0,0d to sxi ,td, i
=1,2.Consider an elementary square ofL with space coor-
dinatex of the left-hand side andx+1 of the right-hand side.
Assume that the particles come for the first time to neighbor-

ing sites at a momentt8, when one trajectory reaches the site
sx,t8d from sx1

0,0d and the other reaches the sitesx+1,t8d
from sx2

0,0d. To ensure the correct weights of the steps after
the moment of timet8, we have to exclude two possibilities
from all continuations of the interacting trajectories[see Fig.
1(a)], namely:

(i) For the first particle, the step fromsx,t8d to sx+1,t8
+1d with weight z, and then fromsx+1,t8+1d to sx1,td. For
the second particle, the step fromsx+1,t8d to sx+1,t8+1d
with weight y=1−z, and then fromsx+1,t8+1d to sx2,td.

(ii ) For the first particle, the step fromsx,t8d to sx,t8
+1d with weight y−1=−z, and then fromsx,t8+1d to sx1,td.
For the second particle, the step fromsx+1,t8d to sx+1,t8
+1d with weight y=1−z, and then fromsx+1,t8+1d to
sx2,td.

Case(i) is the forbidden step of the first particle toward
the site of the standing second particle. Case(ii ) is a correc-
tion of the weight of the vertical step of the first particle,
which must be 1 instead ofy=1−z, according to the TASEP
rule (b). The generating function of paths of the first particle
in case(i) is a product of three factors:B0sx−x1

0,t8dzB0sx1

−x−1,t− t8−1d. Let Wsa,xuzux+1,bd be the generating func-
tion of all the one-particle trajectories passing through the
sites a,x,x+1,b at moments of time 0,t8 ,t8+1,t, respec-
tively, and making a diagonal step with weightz betweent8
andt8+1. Similarly, letWsa,xuyux,bd be the generating func-
tion of all the one-particle trajectories passing through the
sitesa,x,x,b at moments of time 0,t8 ,t8+1,t, respectively,
and making a vertical step with weighty betweent8 and t8
+1. Then, the contribution from diagram(i) can be written in
the form

W1 = Wsx1
0,xuzux + 1,x1dWsx2

0,x + 1uyux + 1,x2d. s5d

The contribution from diagram(ii ) is

W2 = − Wsx1
0,xuzux,x1dWsx2

0,x + 1uyux + 1,x2d. s6d

Consider now the trajectories with interchanged endpoints
[see Fig. 1(b)]. The contribution from these diagrams is

FIG. 1. The interaction be-
tween two trajectories(see text).
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Wsx1
0,xuzux + 1,x2dWsx2

0,x + 1uyux + 1,x1d

− Wsx1
0,xuzux,x2dWsx2

0,x + 1uyux + 1,x1d.

We are going to take the diagrams in Fig. 1(b) with opposite
signs to cancelW1+W2. The left-hand side diagrams in Figs.
1(a) and 1(b) are equivalent, however the right ones are dif-
ferent. To cancel all unwanted diagrams, we add to the dia-
grams in Fig. 1(b) a set of auxiliary trajectories. Namely, we
add to the trajectories of the second particle those starting
from sitex2

0−1 taken with a minus sign. Also, we add to the
trajectories of the first particle a set of trajectories starting
from the sites shifted in the negative direction of the infinite
chain: x1

0−1, x1
0−2, x1

0−3, . . .. Then, the contribution from
diagram(i) in Fig. 1(b) will be

W̃1 = W1
+W1

−, s7d

where

W 1
+ = o

k=0

`

Wsx1
0 − k,x − kuzux + 1 −k,x2d s8d

and

W1
− = Wsx2

0,x + 1uyux + 1,x1d − Wsx2
0 − 1,xuyux,x1d. s9d

Correspondingly, for the contribution of diagram(ii ) in Fig.
1(b) we have

W̃2 = W2
+W2

−, s10d

where

W2
+ = − o

k=0

`

Wsx1
0 − k,x − kuzux − k,x2d s11d

and W2
−=W1

−. Taking into account that the generating func-
tions of trajectories fromsxi

0−k,0d, i =1,2, to sx−k,t8d are
equal for allk due to translation invariance, one can check
the identity

W1 + W2 − W̃1 − W̃2 = 0, s12d

by comparing all positive and negative terms.
Consider now the evaluation of the two-particle equal-

time conditional probability P2sx1,x2; tux1
0,x2

0;0d. In this
case, we have

P2 = B0sx1 − x1
0,tdB0sx2 − x2

0,td − fB0sx1 − x2
0,td

− B0sx1 − x2
0 + 1,tdgo

k=0

`

B0sx2 − x1
0 + k,td

= B0sx1 − x1
0,tdB0sx2 − x2

0,td − B−1sx1 − x2
0,tdB1sx2 − x1

0,td.

s13d

Indeed, the first term in Eq.(13) generates all possible free
trajectories from the starting to the ending space-time point.
When one particle approaches another, the second term pro-
duces trajectories canceling the unwanted terms. On the
other hand, the order of the starting and ending sites in the
second term is interchanged. Therefore, each trajectory from

the second term, starting from the sitesx1
0−k, k=0,1,2, . . .,

or x2
0− l, l =0,1,approaches at least once the space-time point

sx,t8d or sx+1,t8d, where it participates in the cancellation
procedure.

Next, each free trajectory from sitea to site b which
makes the vertical step at sitex can be decomposed into two
parts:Wsa,xu1ux,bd+Wsa,xu−zux,bd. The second part is un-
wanted and cancelled, but the first one corresponds to trajec-
tories which continue with the correct weights up to the next
collision. As the second term in Eq.(13) contains intersect-
ing trajectories only, all of them cancel out eventually, and
only the allowed trajectories from the first term survive.

Let us consider now the case when the number of par-
ticles nù3. First, note that any two intersecting trajectories
are nonequivalent: one of them belongs to the overtaking
particle and we call it “active,” while the trajectory of the
overtaken particle we call “passive.” In the case of an infinite
lattice, the active and passive trajectories are ordered: for
each pair of consecutive labelsi , i +1, the trajectory of theith
particle with respect to the trajectory of thesi +1d-st particle
on its right-hand side is always active.

Assume that the trajectory of a given particle hasm active
intersections. It means that it participatesm times in the can-
cellation procedure and its starting point is shiftedm times to
an arbitrary number of lattice spacings in the negative direc-
tion of the chain. As a result, the auxiliary set associated with
the free trajectory between sitesxi

0 andxj becomes

B0sxj − xi
0,td → o

k=0

` Sk + m− 1

m− 1
DB0sxj − xi

0 + k,td, s14d

because the shift byk positions form attempts can be done in
sk+m−1d ! / sm−1d ! k! ways. The above result can be ex-
pressed in the operator form

B0sxj − xi
0,td → 1

s1 − âidmB0sxj − xi
0,td, s15d

where the operatorâi shifts xi
0 by one step in the negative

direction. Similarly, for the trajectories withm passive inter-
sections we obtain

B0sxj − xi
0,td → o

k=0

m

s− 1dkSm

k
DB0sxj − xi

0 + k,td, s16d

because the right-hand side results from the action of the
operators1−âidm.

When the number of particlesnù3, the elementary
squares shown in Fig. 1 may occur several times in one
horizontal strip ofL. If the squares filled by interacting tra-
jectories are separated from one another by a gap of empty
sites, the above arguments can be applied to each pair of
interacting trajectories separately. The crucial case for the
Bethe ansatz is a situation in which the elementary squares
are nearest neighbors. The specific property of the TASEP
with backward-ordered update is that, in each pair of inter-
acting trajectories, the right trajectory remains free and inter-
acts with the next trajectory on the right, independently of its
left neighbors. Therefore, we can analyze the interaction be-
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tween particles by successively considering the adjacent el-
ementary squares in each row from left to right, starting from
an arbitrary empty square, and then from top to bottom of the
lattice, until all unwanted trajectories onL are removed.

Thus, we obtain the following discrete-time generaliza-
tion of the determinant formula derived by Schütz[23]:

Theorem 1. Let the stochastic particle dynamics be given
by the TASEP with discrete-time backward-ordered update.
Then, the conditional probabilityPnsx1, . . . ,xn,tux1

0, . . . ,xn
0;0d

of finding n particles on the ordered set of sites
x1,x2, . . .,xn at time t, provided at the initial moment of
time they have occupied the set of sitesx1

0,x2
0, . . .,xn

0, is
given by the determinant of then3n matrix M:

Pn = det M, with Mij = Bi−jsxi − xj
0;td. s17d

The continuous-time result[23] follows from this expres-
sion in the limit(2), which amounts to the substitution of the
Bernoulli distribution by the corresponding Poisson distribu-
tion.

III. GENERALIZED UNEQUAL-TIME PROBABILITY

In the general case, particle trajectories on the latticeL
start from a set of different space-time points,
sx1

0,t1
0d , . . . ,sxn

0,tn
0d, and end up on a set of different space-

time points,sx1,t1d , . . . ,sxn,tnd. The generalized conditional
probability Psndsx1,t1; . . . ;xn,tnux1

0,t1
0; . . . ;xn

0,tn
0d is given by

the weighted sum of all such trajectories which obey the
exclusion rule(a) and have weights corrected according to
rule (b) (see Sec. II).

Let us turn again to the cancellation procedure described
in the previous section. The conditions under which the
above procedure works can be formulated as follows:

(1) The united trajectory set of every pair of particles
contains a subset of nonintersecting trajectories.

(2) The interacting trajectories produce only two types of
unwanted diagrams shown in Fig. 1(a).

(3) Under permutation of the endpoints of two trajecto-
ries, one obtains crossing trajectories which produce only
two types of unwanted diagrams shown in Fig. 1(b).

We shall find restrictions on the positions of the different
starting and ending space-time points of the particles under
which the above conditions hold true.

To this end, we give some definitions which make condi-
tions (1)–(3) more transparent and convenient to work with.

For each particle,i =1,2, . . . ,n, all the possible free tra-
jectories with specified space-time endpoints,vi

0: =sxi
0,ti

0d
PL and vi : =sxi ,tidPL, are confined to a parallelogram
composed of vertical and diagonal lattice bonds only, whose
uppermost corner isvi

0, and the lowermost one isvi. This
parallelogram will be calledtrajectory setof particle i and
will be denoted byTsvi

0,vid, or in short notation,Ti.
Two parallelogramsTi and T j intersect if they have a

common space-time point.
Two parallelogramsTi andT j interact if they intersect or

if there is a pair of vertical bondsbi PTi andbj PT j belong-
ing to the same elementary square of the latticeL.

The interaction between two parallelograms is calledfatal
interaction if each trajectory from one parallelogram inter-
sects all the trajectories from the other.

We call the cone of a starting pointsxi
0,ti

0d the set of
space-time pointssx,td such that a free-particle trajectory
starting fromsxi

0,ti
0d can reachsx,td:

B0sx − xi
0,t − ti

0d Þ 0. s18d

The cone of an ending pointsxi ,tid is defined as the set of
space-time pointssx,td such that a free-particle trajectory
starting fromsx,td can reachsxi ,tid:

B0sxi − x,ti − td Þ 0. s19d

Consider now a pair ofinteracting trajectory setsTi and
T j. We say that two trajectory sets interactinvasivelyif the
starting or ending point of one of the sets belongs to the cone
of the starting or ending point, respectively, of the other set.

Finally, we define theconnectednessproperty of a finite
collection of trajectory sets in terms of their pairwise inter-
action. Any connected collection ofkù2 interacting trajec-
tory sets will be called aconnected clusterof trajectories.
Generally, the connectedness relation splits the collection
hTi , i =1, . . . ,nj of trajectory sets into noninteracting among
themselves(independent) components. Since the conditional
probability Psndsx1,t1; . . . ;xn,tnux1

0,t1
0; . . . ;xn

0,tn
0d factorizes

into a product of conditional probabilities describing each
independent component separately, it suffices to obtain the
expression for just one connected cluster of trajectory sets.

Let us specify also the particle labeling rule. In each con-
nected cluster ofn particles, we label the particles in ascend-
ing order according to the rulei , j , where i , j
P h1,2, . . . ,nj, if xi

0,xj
0, or if xi

0=xj
0, thenti

0, tj
0.

Now we can formulate our main theorem:
Theorem 2. Let the stochastic particle dynamics be given

by the TASEP with discrete-time backward-ordered update.
Let, in addition, the trajectory setsTi, i =1,2, . . . ,n, of the
particles belong to a single connected cluster and obey the
conditions for nonfatal and noninvasive interaction between
any pair of trajectory setsTi andT j, 1ø i , j øn.

Then, the conditional probability

Psndsx1,t1; . . . ;xn,tnux1
0,t1

0; . . . ;xn
0,tn

0d

is given by the determinant of then3n matrix Msnd,

Psnd = det Msnd, with Mij
snd = Bi−jsxi − xj

0,ti − tj
0d.

s20d

Proof. First, we show that the conditions of the theorem
ensure the fulfillment of conditions(1)–(3):

(1) The condition for nonfatal interaction between any
pair of trajectory sets is equivalent to condition(1).

(2) The condition for noninvasive interaction excludes
the possibility of the formation of unwanted terms of other
types, different from those described in Sec. II. To clarify
this point, let us turn to Fig. 2.
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An example of two invasively interacting trajectory sets is
shown in Fig. 2(a). Trajectory sets corresponding to the term
B0sx2−x1

0,t2− t1
0dB0sx1−x2

0+1,t1− t2
0d, generated by the can-

cellation procedure, are shown in Fig. 2(b). These sets de-
scribe the auxiliary trajectories constructed under permuta-
tion of the space-time ending points of the particles and
shifted by one site to the left starting point of the right-hand
side particle(at that its trajectory set degenerates to a vertical
segment). As it is seen from the figure, in this case there exist
noncrossing particle trajectories which do not match any un-
wanted terms subject to cancellation. Therefore, the invasive
interaction violates condition(3) for applicability of the can-
cellation procedure. Note that if a starting or ending point of
one of the particles belongs to the trajectory set of another,
condition (2) will be violated as well. As it is readily seen,
conditions(2) and (3) hold true if the starting point of the
right-hand side particle does not belong to the cone of the
starting point of the left-hand side particle and, similarly, the
ending point of the left-hand side particle does not belong to
the cone of the ending point of the right-hand side one. In
summary, the condition for noninvasive interaction implies
the validity of conditions(2) and (3).

Consider now the case of two particles for which the con-
ditions of the theorem are fulfilled. Assume that their first
nearest neighborhood occurs atx and x+1 at time t. There
exist unwanted terms, similar to those considered in Sec. II
[see Fig. 1(a)], with the difference that the starting and end-
ing space-time points may have unequal times,

Wsx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

3Wsx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d, s21d

Wsx1
0,t1

0;x,tu− zux,t + 1;x2,t2d

3Wsx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d. s22d

The derivation of the terms canceling(21) and(22) is analo-
gous to one given in Sec. II:

W̃1 = W1
+W1

−, s23d

W̃2 = W2
+W2

−, s24d

where

W 1
+ = o

k=0

`

Wsx1
0 − k,t1

0;x − k,tuzux + 1 −k,t + 1;x2,t2d,

s25d

W 2
+ = − o

k=0

`

Wsx2
0 − k,t2

0;x − k,tuzux − k,t + 1;x1,t1d, s26d

and

W 1
− = W 2

− = Wsx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d

− Wsx2
0 − 1,t2

0;x,tuyux,t + 1;x1,t1d. s27d

Let us verify the identityW1+W2=W̃1+W̃2:

o
k=0

`

fWsx1
0 − k,t1

0;x − k,tuzux + 1 −k,t + 1;x2,t2d

− Wsx1
0 − k,t1

0;x − k,tuzux − k,t + 1;x2,t2dg

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d

= hWsx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

+ o
k=0

`

fWsx1
0 − k − 1,t1

0;x − k − 1,t; uzux − k,t + 1;x2,t2d

− Wsx1
0 − k,t1

0;x − k,tuzux − k,t + 1;x2,t2dgj

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d

= Wsx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d. s28d

These are exactly the unwanted terms represented graphi-
cally in Fig. 1(b). The expression

Wsx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

3Wsx2
0,t2

0;x + 1,tuyux + 1,t + 1;x1,t1d s29d

corresponds to case(i), and the expression

− Wsx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

3Wsx2
0 − 1,t2

0;x,tuyux,t + 1;x1,t1d s30d

to case(ii ).
Consider next a moment of timet8. t, when not only free

trajectories come to the neighboring sitesx8 and x8+1, but
trajectories which have already interacted at timet. Let us
write down the corresponding terms separately:

W +sx1
0,t1

0;x,tu1ux + 1,t + 1,x8,t8uzux8 + 1,t8 + 1;x2,t2d

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;x8 + 1,t8uyux8 + 1,t8

+ 1;x1,t1d, s31d

FIG. 2. An example of invasively interacting trajectory sets(a)
and corresponding auxiliary trajectory sets(b).
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W +sx1
0,t1

0;x,tu1ux + 1,t + 1,x8,t8u− zux8,t8 + 1;x2,t2d

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;x8 + 1,t8uyux8 + 1,t8

+ 1;x1,t1d, s32d

W̄ +sx1
0,t1

0;x8,t8uzux8 + 1,t8 + 1;x2,t2d

3W −sx2
0,t2

0;x8 + 1,t8uyux8 + 1,t8 + 1;x1,t1d, s33d

W̄ +sx1
0,t1

0;x8,t8u− zux8,t8 + 1;x2,t2d

3W−sx2
0,t2

0;x8 + 1,t8uyux8 + 1,t8 + 1;x1,t1d. s34d

The first two terms(31) and(32) describe trajectories which
have already interacted at timet, and the next two terms(33)
and (34) describe trajectories which have not interacted by
time t8. To distinguish the latter, the symbols of their gener-
ating functions are marked with a bar.

By adding up(31) and (32), as well as(33) and (34), we
obtain the necessary corrections to the free trajectories up to
time t8, when they come to the neighboring sitesx8 and x8
+1,

Wsx1
0,t1

0;x,tu1ux + 1,t + 1;x8,t8uzux8 + 1,t8 + 1;x2,t2d

3W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1,x8 + 1,t8uyux8 + 1,t8

+ 1;x1,t1d + W̄sx1
0,t1

0;x8,t8uzux8 + 1,t8 + 1;x2,t2d

3W −sx2
0,t2

0;x8 + 1,t8uyux8 + 1,t8 + 1;x1,t1d. s35d

Next, by moving down with time and successively consider-
ing the adjacent elementary squares in each row, we repeat
the analysis of the two-particle interaction until all the tra-
jectories are considered: those which have interacted earlier
in time, as well as the free noninteracting ones.

To demonstrate that all the unwanted contributions from
the free-particle trajectories are canceled out by the terms
entering into the expressionB1sx2−x1

0; t2− t1
0dB−1sx1−x2

0; t1
− t2

0d, we sum up over all the auxiliary trajectories that par-
ticipate in the cancellation. First, we note that, as in the
equal-time case considered in Sec. II, in each pair of inter-
acting particles, the particle on the right-hand side remains
free (and eventually interacts with the particles on the right,
independently of its left neighbor). Let the trajectory of the
second particle(with x2

0.x1
0) be such that the two particles

become nearest neighbors at the following set of space-time
points:

hsx,td,sx + 1,tdj;hsx8,t8d,sx8 + 1,t8dj; . . . ;

hsxsnd,tsndd,sxsnd + 1,tsnddj.

The corresponding contribution from the auxiliary trajecto-
ries of the second particle is

W −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;

x8 + 1,t8uyu . . . uyuxsnd + 1,tsnd + 1;x1,t1d.

This expression can be taken out as a common factor. The
auxiliary trajectories of the first particle contribute the fol-
lowing terms:

W +sx1
0,t1

0;x,tuzux + 1,t + 1;x2,t2d

+ W +sx1
0,t1

0;x,tu− zux,t + 1;x2,t2d

+ W +sx1
0,t1

0;x,tu1ux + 1,t + 1;x8,t8uzux8 + 1,t8 + 1;x2,t2d

+ W +sx1
0,t1

0;x,tu1ux + 1,t + 1;x8,t8u− zux8 + 1,t8 + 1;x2,t2d

+ W̄ +sx1
0,t1

0;x8,tuzux8 + 1,t + 1;x2,t2d

+ W̄+sx1
0,t1

0;x8,tu− zux8,t + 1;x2,t2d + . . . s36d

Adding up all these terms we obtainB1sx2−x1
0; t2− t1

0d. There-
fore, the contribution of the considered pairs of auxiliary
trajectories to the cancellation is given by the expression

B1sx2 − x1
0;t2 − t1

0dW −sx2
0,t2

0;x + 1,tuyux + 1,t + 1;

x8 + 1,t8uyu . . . uyuxsnd + 1,tsnd + 1;x1,t1d.

Summing up over all the auxiliary trajectories of the second
particle, we obtain the resultB1sx2−x1

0; t2− t1
0dB−1sx1−x2

0; t1
− t2

0d, which proves the determinant formula(20) for the case
of two particles.

Passing to the consideration of a connected cluster ofn
ù3 particles, we note that the casexi

0=xj
0, i Þ j , is excluded

by the condition for noninvasive interaction. Therefore, par-
ticles may not start from the same site at different times and
according to our particle labeling rules,x1

0,x2
0, ¯ ,xn

0.
Simple geometrical considerations show that a particle can-
not interact nonfatally and noninvasively with two or more
right (or left) neighbors existing in different time intervals.
Thus we can begin with the first(leftmost) particle and con-
sider its interaction with the second one(its right neighbor).
As in the case of equal times of start and finish, in each pair
of interacting trajectories the right one remains free and in-
teracts with the trajectory on its own right-hand side inde-
pendently of the left neighbors. The trajectory of thenth,
rightmost particle is free. Therefore, we can carry out the
above analysis by successively considering all the pairs of
interacting particles in the connected cluster until all un-
wanted trajectories are removed.

IV. ZERO-RANGE PROCESS

In this section we consider a zero-range discrete-time pro-
cess on a finite chain ofL sites with integer coordinatesi
=1, . . . ,L and open boundary conditions. The configuration
of the system is specified by the occupation numbersnistd,
i =1, . . . ,L, at discrete moments of timet=0,1, . . .. The
probabilistic dynamics of the system is given by the prob-
ability of particle hopping from sitei to the nearest-neighbor
site on the righti +1. We assume that the hopping probabili-
ties are independent ofi and t, but depend on the order in
which particles have arrived at the sitei. Namely, out of all
nistd particles on sitei, the particle that has arrived first
leaves that site with probabilityz. The remainingnistd−1
particles remain on sitei at the moment t. The hopping pro-
cess conserves the total number of particlesn. We assume
that particles are injected on the first sitei =1 of the chain at
given moments of timet1

0,t2
0, . . . ,tn

0 and leave the system
from the last sitei =L at given moments of timet1,t2, . . . ,tn.
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The probability of this event is denoted by
PLst1

0,t2
0, . . . ,tn

0ut1,t2, . . . ,tnd.
Theorem 3. Given the sets of timeshti

0j and htij, i
=1,2, . . . ,n, the conditional probability
PLst1

0,t2
0, . . . ,tn

0ut1,t2, . . . ,tnd is given by the determinant of
the n3n matrix Msnd,

PL = det Msnd, where Mij
snd = Bi−jsL − 1 + i − j ,ti − tj

0d.

s37d

Proof. Consider the TASEP forn particles starting at space-
time pointssxi

0,ti
0d and ending atsxi ,tid, i =1,2, . . . ,n where

xi
0= i andxi =L+ i −1. Shifting theith trajectory as a whole by

i −1 sites to the left, we obtain the ZRP shown in Fig. 3,
which is the object of Theorem 3. Then, Theorem 2 proves
Eq. (37).

In the continuous-time limit we obtain a standard ZRP
with constant hopping rates which are independent of the
occupation number of the sites.

V. DISCUSSION

Determinant expressions enumerating configurations of
nonintersecting trajectories have appeared in physical litera-
ture in the early sixties, in the context of exactly solvable
lattice models of statistical mechanics such as the dimer
model on the hexagonal lattice[32], the models of two-
dimensional biomembrane[33], and the free-fermion sector
of the six-vertex model[34,35]. In 1984, Fisher considered

this problem in a frame of the random walk theory and in-
troduced vicious walkers to coin the condition of nonmeeting
of different particles. This line was continued later by For-
rester[36].

Independently, the problem of mutually avoiding trajecto-
ries was considered in combinatorics, where the determinant
expression for the number of configurations is known as the
Gessel-Viennot theorem[37]. Recently, a connection be-
tween the statistical mechanics approach and the Gessel-
Viennot theorem has been established[38,39], and more gen-
eral cases of interaction between walkers have been
considered[40].

The difference between vicious walkers and the ASEP is
in the statistical weight of bundles of trajectories. A vicious
walker does not see neighboring walkers until it collides with
them. Therefore, the weights of parts of its trajectory do not
depend on neighboring trajectories during the whole survival
time interval. On the contrary, in the ASEP, the probability of
a step depends on a state of target site: if it is occupied, the
step is forbidden with probability one. This difference puts
two kinds of models into different classes. If the vicious
walkers belong to the class of free-fermion models, the
ASEP is the model of essentially interacting particles. Using
terminology of the Bethe ansatz, the free-fermion models are
solved by purely antisymmetric Bethe functions, whereas the
ASEP needs less trivial Bethe ansatz. Nevertheless, it has
been shown by Schütz that the specific form of the ASEP
interaction still allows a determinant representation, although
the simple binomial matrix elements in the Gessel-Viennot
determinant should be replaced by more complicated func-
tions (actually, by infinite sums of binomial coefficients). An
analytical derivation of the determinant formula for the
ASEP on an infinite lattice is given in[23]. In this paper, we
give a geometrical interpretation of this solution using a tra-
jectory analysis which has been presented first in[31] as a
part of solution of the ASEP on a ring.
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