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We consider the discrete-time evolution of a finite number of particles obeying the totally asymmetric
exclusion process with backward-ordered update on an infinite chain. Our first result is a determinant expres-
sion for the conditional probability of finding the particles at given initial and final positions, provided that they
start and finish simultaneously. The expression has the same form as the one obtained by SSkditzZPhys.

88, 427 (1997)] for the continuous-time process. Next we prove that under some sufficient conditions the
determinant expression can be generalized to the case when the particles start and finish at their own times. The
latter result is used to solve a nonstationary zero-range process on a finite chain with open boundaries.
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I. INTRODUCTION dependent properties of the ASEP, e.g., the strong depen-
dence of the fluctuations on the initial conditiaisee[9] and

The one-dimensional asymmetric simple-exclusion PrOteferences therejnin contrast, almost all the dependence on

cess(ASEP) has been intensively studied over decades byyg jnitial conditions is eliminated in the stationary states.
both physicistd1-3], and mathematicianit,5]. The model The structure of transient states is more complicated and
can be used to describe such different physical problemspe description of their time evolution is much harder to
including kinetics of biopolymerizatiofl], traffic flow [6], obtain[18,19. The MPA approach, extensively used for the
surface growth(7,8], and shock structuref9]. For a more  gescription of the stationary states of ASEP, has been gener-
complete list of works we refer the reader to the reviews,jized to the full dynamic problem by Stinchcombe and
[10,17. _ _ _ Schiitz[20,21]. Later, a new type of dynamic MPA, which

_ The totally asymmetric versiolTASEP) is one of the ifers from the former in the time dependence of the matri-
simplest examples of driven lattice-gas systems with hardces’ has been suggested by Sasamoto and Wa@ti
core exclusion. Most often, the evolution of the system is A gjfferent approach to the time-dependent properties of
considered as a continuous-time stochastic process in whiGhe ASEP has been proposed by Schi2@. It is based on
particles jump randomly and independently at a unit rate to ghe explicit solution of the master equation for the condi-
neighboring vacant site on the right. In the case of a finitgjgng) probability P™( xy, ... ,xn;t|x2, ... x%;0) of finding a
chain with open boundaries, particles are injected and regnite numbem of particles on lattice sites,, ... x, at time

moved with specified rates at the ends. The. probabilist?c celf’ provided that initially they have occupied the set of sites
lular automaton analog of the continuous-time ASEP is thg0 0 |n the case of an infinite chain the solution has
discrete-time ASEP, which is defined by update rules of th§yeen obtained in the form of determinant of & n matrix.
system configurationdor a description of the basic update Among a variety of interpretations of the TASEP, the for-
rules, seg12]). _ , mulation of the process in terms of traffic flow in discrete
By now, the steady state properties of the continuous- ange is one of the most transparesee, e.g[24]). Despite
discrete-time ASEP are well understood and some of therfe spatial discretization, the exclusion interaction between
have been calculated exactly for both infinite and finitep ticles mimics the motion of cars on a single lane. On the
chains under different boundary conditions. '_I'he matriX-gther hand, the traffic analogy supplies the theory of the
product ansategMPA) has been successfully applied for con- tagep with some new problems. Firstly, traffic is most ad-
structing the stationary states of the TASEP with opengqately represented by the stochastic discrete-time parallel

boundaries for all basic types of stochastic dynamics;,qate not to mention the need for more sophisticated up-
random-sequentigll3], forward- and backward-ordered se- yate ryleq6,24). Our first aim in this paper is to show that
quential[14], sublattice paralle[15], and fully parallel up- e conditional probabilitP™(xy, ... xu;thx2, ... x%;0) for
date[16,17. One of the most important findings is the exis- e discrete-timeTASEP with backward-ordered unpda[lb2]
tence of boundary induced phase transitions between stea&/] an infinite chain can be obtained in a determinant form

states driven out of equilibrium by nonvanishing currents quuite similar to that found by Schiif23].

particles. Other interesting phenomena concern the time- Secondly, realistic traffic takes place on roads with local

inhomogeneities such as road crossings, on- and off-ramps,
changing number of lanes, etc. Recent investigations have
*Electronic address: brankov@bas.bg focused on the various nonequilibrium phases of congested
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traffic (e.g., localized clusters, stop-and-go waves, differentimes of injection and removal of each particle. The main
kinds of “synchronized” traffir caused by inhomogeneities result of this section, Theorem 2, establishes the existence of
in the bulk. The existence of such phases has been predicted generalized determinant formula under some sufficient
by appropriate cellular automaton modé&dee[25—-27), and  conditions. The utility of our results is illustrated by an ap-
some of them have been empirically obsery2d,28. Here,  plication to the study of the stochastic dynamics of the ZRP
we emphasize that the appearance and disappearance of cansa finite chain in Sec. IV. The paper closes with Sec. V,
at given sites of the road, at given moments of time, correwhere we discuss the difference between determinant expres-
spond in the TASEP to a generalizaghequal-timg condi-  sions enumerating mutually, avoiding trajectories in the class
tional probability P™(xy,ty; ... X, t3,19; ... 32,19 with  of free-fermion models and in the ASEP models studied here.
different pairs of discrete space-time coordinatést’) and
(x,t;) of creation and annihilation, respectively, of the differ- Il. THE DISCRETE-TIME TASEP ON INFINITE
ent particles. CHAIN

It is the second goal of this paper to present an exact
expression for the unequal-time conditional probability

PO(xq,ty; . X talx3, 135 .. 38,10 similar to the determi-

In this section, instead of explicitly solving the discrete-
time master equation, we make use of the geometrical treat-
nant formula obtained ifi23]. In principle, the domain of {nenr c(;f thetBethe ?ns"atz ddevelgp(fed[t?_'(lj]dto atnallyz;e en- ¢
validity of the determinant formula derived here could pelandied systems of aflowed and forbidden trajectories o

interacting particles on the infinite chain.

obtained by dissecting the relevant time interval into sub- ) . X . )
intervals with a fixed number of particl&sand then applying The discrete space-time version of the TA.SEP IS defined
the equal-time probabilitie®™ (x, X 1 x2:0) to as follows. Consider the infinite triangular lattideobtained
yerny ’ 1y =N - . .
each subinterval. This procedure implies, however, intermef—rom the square Iattl_ce by adding a diagonal between the
pper left and lower right corners of each elementary square.

diate summations over the coordinates of all the particles oiet (x.1) be the integer space-time coordinates of a particle
the common boundaries of the adjacent subintervals; henc ' ger sp L P
h A, where the vertical time axis is directed down and the

it seems rather cumbersome and cannot be realized for artfi" * L . .
trary arrangements of the starting and ending points of th orlgontgl space axis is directed to the nght.. Atrajectory ofa
trajectories. We can prove our new result for the TASEP wit article is a sequence of connected vertical and diagonal

backward-ordered update under soswdficientconditions on(_js OfA'. Each diagone_ll bond corresppnds to ai_“”?p of the
on the space-time endpoints of the particle trajectories. particle to its nearest neighbor on the right for unit time and

The unequal-time probability allows one to consider ahasastatistical weiglzt Each vertical bond corresponds to a
number of kinetic problems with a variable number of IOar_stay of the particle at the site corresponding to its spatial

ticles entering and leaving the system. The most interestin oqrdinate during_ the unit _time interval and has a statistical
problem of such a kind is the TASEP on a finite chain, with eighty. The statistical We'gohtOOf all the one-particle trajec-
prescribed moments of tim#,t2, ... 0 at which the par- tories starting at the pointx”,t”) and ending at the point
ticles enter the system at its left end, and prescribed moment&:V 1
of timety,t,, ... t, at which they leave the system at its right T

end. As it is seen from the conditions of Theorem 2, this case Bo(N;T) = ( )zNyT‘N, (1)

is out of the range of validity of the proof of the determinant N

formula. Nevertheless, there is an important stochastic proyhereN=x-x° is the distance traveled for tinfe=t—t°. Ob-
cess, the so-called zero-range proc@RP) [4], which can  viously, for the totally asymmetric procesBy(N;T)+#0 if

be considered on a finite chain and solved by mapping on gnd only if 0<N<T. To provideBo(N; T) with probabilistic
TASEP problem with known unequal-time conditional prob- meaning, we put &:z<1 for the probability of one spatial
ability. It is the third goal of our paper to consider time- siep to the right, henog=1-z becomes the probability of an
dependent properties of such a discrete-time ZRP. The ZRRojated particle to stay at the same site during unit time
is one of the basic models of queueing theory; it is alsqnterval. ThenBy(N,T) is the probability to reach the point
widely used for the description of sandpile dynamiS], (N T) from the origin(0,0). To obtain the continuous-time

drop-push dynamics of a fluid in a porous medijg0], limit, we setT=Mt, z=1/M, and pass to the limil — o,
surface growth phenomena, etc. The unequal-time probabili-

ties for the ZRP open new prospects for the exact evaluation
of various time-dependent correlations which cannot be ob-
tained by the existing methods.

The continuous-time results follow from our expressionsWheret is the rescaled continuous time. Thus, the above limit
by taking a straightforward limit, which amounts to the sub-leads to replacement of the Bernoulli distribution by its Pois-
stitution of the Bernoulli distribution by the Poisson one.  son analog.

The structure of the paper is as follows. In Sec. Il we Nextwe formulate the standardparticle problem for the
define the discrete-time TASEP with backward-ordered dydiscrete space-time TASEP. Consider the set of trajectories of
namics for a finite number of particles and prove Theorem 1 particles on the latticeA which start at the points
which yields an extension of the determinant form(@8]  (,0),...,(x3,0), x}<x3<...<x? and end at the points
for the equal-time conditional probabilities. In Sec. Il we (X1,t),...,(Xy,1), X;<X;<...<X,. The exclusion rules read
further generalize the consideration to the case of differenas follows:

tN
n|/|im Bo(N; Mt)|,zam = We_ti =Fo(N;t), (2
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FIG. 1. The interaction be-
tween two trajectoriegsee text

(@ (i) (ii) (b) (i) (ii)

(a) Trajectories of particles do not intersect. ing sites at a momertt, when one trajectory reaches the site

(b) If the two vertical bonds of any elementary square(x,t’) from (x‘f,O) and the other reaches the sitet+1,t")
of A are occupied by adjacent trajectories, the weight of thérom (xg,O). To ensure the correct weights of the steps after
left bond is changed from 1zto 1. the moment of time’, we have to exclude two possibilities
from all continuations of the interacting trajectorisge Fig.
1(a)], namely:

(i) For the first particle, the step froiix,t’) to (x+1,t’

+1) with weightz, and then from(x+1,t'+1) to (x;,t). For

Rule(a) is the usual condition for occupation of every site
by at most one particle. Rulé) implies that the particle
stays at the given site with probability 1 if the target site is
occupied by a standing particle.

The equal-time conditional probability the second particle, the step frope+1,t') to (x+1,t'+1)
Po(X1, ... XnithxO, ... x2;0) of the discrete TASEP is given With weighty=1-z and then fromx+1,t'+1) to (x;,1).
by the weighted sum over all trajectoriesroparticles, start- (i) For the first particle, the step frortx,t’) to (x,t’

ing from the given set of sites at time 0 and ending at the,_l) with weighty—1=—-z, and then from(x,t’ +1) to (x;,1).
given set of sites at timg which are allowed by the exclu- £q; the second particle, the step fram+1,t') to (x+1,t’
ski)on rule (a) and have weights corrected according to rule+1) with weight y=1-z, and then from(x+1,t'+1) to
(D). ' '
, . . . (X9,1).

an;%ggrmﬁéeffﬁcrﬁgﬁ :r?tsr lcj)gyuzveed c[lizeg]rlle the discrete-time Case(i) is the forbidden step of the first particle toward

' the site of the standing second particle. C@bes a correc-
tion of the weight of the vertical step of the first particle,

By(N;T) =, (k+ m= l)BO(N +k:T) (3)  Which must be 1 instead 9f=1-z, according to the TASEP
ko\ mM-1 rule (b). The generating function of paths of the first particle
_ in case(i) is a product of three factor®8y(x—x2,t")zBy(x,
for integerm>0, and -x-1,t-t'-1). LetW(a,X|zjx+1,b) be the generating func-
“m tion of all the one-particle trajectories passing through the
T — _ak ™M . sitesa,x,x+1,b at moments of time @},t'+1,t, respec-
Bn(N:T) = kE_O( b ( k )BO(N *kT) @ tively, and making a diagonal step with weighbetweent’

andt’+1. Similarly, letW(a, x|y|x,b) be the generating func-

for integerm< 0; for m=0, By(N, T) is given by Eq.(1). tion of all the one-particle trajectories passing through the

The derivation of this result is based on a common propsitesa,x,x,b at moments of time @},t’+1,t, respectively,
erty of integrable models admitting a two-dimensionaland making a vertical step with weightbetweent’ andt’
graphic representation: interchanging the endpoints of twd 1. Then, the contribution from diagrar) can be written in
trajectories leads to their crossing. The idea of the Beth¢he form
ansatz is to represent trajectories of interacting particles by a
set of free trajectories with probabilities given by Eiy) or 0 0
Eq. (2). Then, using the one-to-one correspondence between Wy = WIXg, X|Zlx + 1x) WO, X + 1ly[x + 1,x5).  (5)
intersections and permutations, one can reduce the enumera-
tion of all the interacting trajectories to a proper choice of th
signs of permutations.

Let us start with the case of two particles; 2. According
to t_he Bethe ansatz, we try to represent éhe motion of-inter- W, = = WO, X[Z%, X)) WS, X + A]y|x + 1,%,) . (6)
acting particles by free trajectories frofr’,0) to (x;,t), i
=1,2.Consider an elementary square/ofwith space coor-
dinatex of the left-hand side ang+1 of the right-hand side. Consider now the trajectories with interchanged endpoints
Assume that the particles come for the first time to neighborf{see Fig. 1b)]. The contribution from these diagrams is

®The contribution from diagrarii) is
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WO, X|Zx + 1,%) WO, X + 1]y|x + 1,,) the second term, starting from the sités-k, k=0,1,2, ...,
0 o orxg—l, I=0,1,approaches at least once the space-time point
= WIxg, X|ZIX, Xo) WXz, X + 1]y[X + 1,x1).. (x,t') or (x+1,t"), where it participates in the cancellation

We are going to take the diagrams in Figbjlwith opposite ~ Procedure. . . . .

signs to canceW, +W,. The left-hand side diagrams in Figs. ~ Next, each free trajectory from site to site b which

1(a) and b) are equivalent, however the right ones are dif-makes the vertical step at sitecan be decomposed into two
ferent. To cancel all unwanted diagrams, we add to the diaParts:W(a,x/1|x,b)+W(a,x|-zx,b). The second part is un-
grams in Fig. {b) a set of auxiliary trajectories. Namely, we Wanted and cancelled, but the first one corresponds to trajec-
add to the trajectories of the second particle those startintpries which continue with the correct weights up to the next
from sitex3—1 taken with a minus sign. Also, we add to the collision. As the second term in E¢L3) contains intersect-
trajectories of the first particle a set of trajectories startingnd trajectories only, all of them cancel out eventually, and

from the sites shifted in the negative direction of the infiniteonly the allowed trajectories from the first term survive.
chain:x3-1, x9-2, x¢-3, .... Then, the contribution from Let us consider now the case when the number of par-

diagram(i) in Fig. 1(b) will be ticles n=3. First, note that any two intersecting trajectories
are nonequivalent: one of them belongs to the overtaking
\7V1:WIWL (7) particle and we call it “active,” while the trajectory of the
overtaken particle we call “passive.” In the case of an infinite
where lattice, the active and passive trajectories are ordered: for
o each pair of consecutive labélg+1, the trajectory of théh
Wi= > W(xg —k,x—Kzx+1-kx) (8) particle with respect to the trajectory of tkier 1)-st particle
k=0 on its right-hand side is always active.
Assume that the trajectory of a given particle haactive
intersections. It means that it participatagimes in the can-
W = W(xg,x +1)y|x+ 1,%)) - W(xg —1x|y|xx). (9 cellation procedure and its starting point is shiftadimes to
. o ) o an arbitrary number of lattice spacings in the negative direc-
Correspondingly, for the contribution of diagrai) in Fig.  tjon of the chain. As a result, the auxiliary set associated with

and

1(b) we have the free trajectory between site$ andx; becomes
Wo= W, 0 b Gfkemo1)
where Bo(xj —,t) — kzzo _1 Bo(xj =% +kt), (14)

o

WE=— S WO kx— Kizlx— k 11 because the shift by positions form attempts can be done in
2= & (0 = kx = KlzZx = kxp) (1) (k+m-1)!/(m-1)'K ways. The above result can be ex-
pressed in the operator form
and W,=W,. Taking into account that the generating func-

tions of trajectories frorr(x?—lf,O),' i:1',2, to (x—k,t’) are Bo(X; — xio,t) . ;AmBO(Xj —.t) (15)
equal for allk due to translation invariance, one can check 1-&)
the identity A 0 . .
where the operatod shifts x;' by one step in the negative
W, + W, — W, - W, =0, (12)  direction. Similarly, for the trajectories witim passive inter-

. " _ sections we obtain
by comparing all positive and negative terms.

Consider now the evaluation of the two-particle equal- 0 m M o
time conditional probability P(x1,%;t}x3,x3;0). In this Bo(X; = X\,t) — 2 (= 1) K Bo(xj =% +kt), (16)
case, we have k=0
P, = By(X; — X°,1)Bo(X» — X2,1) = [Bo(X; —C,t because theA right-hand side results from the action of the
= Bolx, = X, DBo(, ~ 3.0) = [Bo(xy 3.0 onoratodL B
o - o When the number of particles=3, the elementary
‘Bo(Xl‘XzJ’l:t)]; Bole =X + ki) squares shown in Fig. 1 may occur several times in one
k=0 horizontal strip ofA. If the squares filled by interacting tra-
= Bo(X, — X3, 1) Bg(%p = X9,1) = B_q(Xg — X3, 1) B (%, — x0,1). jectories are separated from one another by a gap of empty

(13) sites, the above arguments can be applied to each pair of

interacting trajectories separately. The crucial case for the

Indeed, the first term in Eq13) generates all possible free Bethe ansatz is a situation in which the elementary squares
trajectories from the starting to the ending space-time pointare nearest neighbors. The specific property of the TASEP
When one particle approaches another, the second term pradth backward-ordered update is that, in each pair of inter-
duces trajectories canceling the unwanted terms. On thacting trajectories, the right trajectory remains free and inter-
other hand, the order of the starting and ending sites in thacts with the next trajectory on the right, independently of its
second term is interchanged. Therefore, each trajectory froeft neighbors. Therefore, we can analyze the interaction be-
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tween particles by successively considering the adjacent el- The interaction between two parallelograms is cafbgdl
ementary squares in each row from left to right, starting frominteraction if each trajectory from one parallelogram inter-
an arbitrary empty square, and then from top to bottom of theects all the trajectories from the other.
lattice, until all unwanted trajectories ok are removed. We call thecone of a starting poin(x’,t°) the set of
Thus, we obtain the following discrete-time generaliza-space-time pointgx,t) such that a free-particle trajectory
tion of the determinant formula derived by Sch{i28]: starting from(xio,tio) can reach(x,t):
Theorem 1Let the stochastic particle dynamics be given
by the TASEP _V\_/ith discrete—_ti_me backward-ordered update. Bo(x —x0,t—10) # 0. (18)
Then, the conditional probabilitP,(xy, ... X%, tx, ... x2;0) e
of finding n particles on the ordered set of sites Thecone of an ending pointx;,t) is defined as the set of
X, <% < ...<X, at timet, provided at the initial moment of space-time pointgx,t) such that a free-particle trajectory
time they have occupied the set of sitds<x3<...<x% is  starting from(x,t) can reach(x;,t):
given by the determinant of thex n matrix M:

BO(Xi =Xt - t) # 0. (19)

Consider now a pair ointeractingtrajectory sets/; and
7;. We say that two trajectory sets interagvasivelyif the
starting or ending point of one of the sets belongs to the cone
of the starting or ending point, respectively, of the other set.

Finally, we define theconnectednesproperty of a finite
collection of trajectory sets in terms of their pairwise inter-
action. Any connected collection &f= 2 interacting trajec-
tory sets will be called aonnected clusteof trajectories.

In the general case, particle trajectories on the lattice Generally, the connectedness relation splits the collection
start from a set of different space-time points,{Z,i=1,... n} of trajectory sets into noninteracting among
(xg,tg), ,(xﬂ,tﬂ), and end up on a set of different space-themselvegindependentcomponents. Since the conditional
time points, (X,,t,), ... ,(X,,t,). The generalized conditional probability P™(xy,ty; ... %, tox3,t0; ... ;x3,t)  factorizes
probability PM(x,,t;; ... ;Xn,tn|X2,tg; ;xﬂ,tﬂ) is given by into a product of conditional probabilities describing each
the weighted sum of all such trajectories which obey thednhdependent component separately, it suffices to obtain the
exclusion rule(a) and have weights corrected according to€Xpression for just one connected cluster of trajectory sets.
rule (b) (see Sec. )l Let us specify also the particle labeling rule. In each con-

Let us turn again to the cancellation procedure describefected cluster ofi particles, we label the particles in ascend-
in the previous section. The conditions under which thedng order according to the rulei<j, where i,j
above procedure works can be formulated as follows: e{1,2,...n}, if XX <x7, or if x’=x, thent? <t

) , ) ) Now we can formulate our main theorem:

(1) The united trajectory set of every pair of particles  Thegrem 2Let the stochastic particle dynamics be given
contains a subset of nonintersecting trajectories. by the TASEP with discrete-time backward-ordered update.

(2) The mteractmg traject.orle's produce only two types OfLet, in addition, the trajectory set§, i=1,2, ... n, of the
unwanted diagrams shown in Figal _ particles belong to a single connected cluster and obey the
_ (3) Under permutation of the endpoints of two trajecto- oo gitions for nonfatal and noninvasive interaction between
ries, one obtains crossing trajectories which produce onl)ény pair of trajectory set§ and 7, 1<i,j<n.

two types of unwanted diagrams shown in Fi¢h)1 Then, the conditional probability

P,=detM, with M;=B(x—x"t). (17)

The continuous-time resulR3] follows from this expres-
sion in the limit(2), which amounts to the substitution of the
Bernoulli distribution by the corresponding Poisson distribu-
tion.

Ill. GENERALIZED UNEQUAL-TIME PROBABILITY

We shall find restrictions on the positions of the different
starting and ending space-time points of the particles under PO (xq,ty; .o Xt L 19
which the above conditions hold true.

To this end, we give some definitions which make condi-is given by the determinant of thex n matrix M™,
tions (1)—«(3) more transparent and convenient to work with.

For each particlei=1,2, ... n, all the possible free tra- PW=detM™, with M =B_;(x—x,t; —19).
jectories with specified space-time endpoini$; = (x’,t . . . 20
e A and v;: =(x,t) e A, are confined to a parallelogram (20)
composed of vertical and diagonal lattice bonds only, whose Proof. First, we show that the conditions of the theorem
uppermost corner isio, and the lowermost one ig. This  ensure the fulfillment of condition&)—(3):
parallelogram will be calledrajectory setof particlei and
will be denoted byZ(v°,v;), or in short notation7;.

Two parallelograms7; and 7; intersectif they have a
common space-time point. (2) The condition for noninvasive interaction excludes

Two parallelogram¢/; and 7 interactif they intersect or  the possibility of the formation of unwanted terms of other
if there is a pair of vertical bonds, € 7; andb; € 7; belong-  types, different from those described in Sec. Il. To clarify
ing to the same elementary square of the lattice this point, let us turn to Fig. 2.

(1) The condition for nonfatal interaction between any
pair of trajectory sets is equivalent to conditi@l).
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x4 x9 W, = WHWS, (24)
where
0 o]
X2 —> W= WOE -kt x—k,tjzx+ 1 -k t+1;%,t)),
k=0
X1 (25)
X9 X W3 == WS-kt x =k t|zZx =kt + 1;x;,t1), (26)
(a) (b) k=0

FIG. 2. An example of invasively interacting trajectory se&s  gnd
and corresponding auxiliary trajectory séits.

W1 =W;,= WS, 10 x+ Ltlyjx+ 1,t+ 1;%,t;)

An example of two invasively interacting trajectory sets is = W3 = Lt X, tly[x, t+ 1;xg,ty). (27)
shown in Fig. 2a). Trajectory sets corresponding to the term o
Bo(xo— X3, t,—t9)By(x,—x9+1,t;—t9), generated by the can- Let us verify the identityW; +W,=W; +W,:
cellation procedure, are shown in Figh2 These sets de-
scribe the auxiliary trajectories constructed under permuta-2 o 0. )
tion of the space-time ending points of the particles and = [Woxg — ko trix =k tlzx + 1=kt + 1x,tp)
shifted by one site to the left starting point of the right-hand
side particlgat that its trajectory set degenerates to a vertical - W(xg -k, t%x - K,t|Zx = k,t+ 1;%5,t,)]
segment As it is seen from the figure, in this case there exist ~,.0.0. )
noncrossing particle trajectories which do not match any un- XWZ (i X + LAyfx + 1t + 10y, ty)
wanted terms subject to cancellation. Therefore, the invasive = {W(x(f,t(l’;x,t|z|x+ 1,t+ 1;%1))
interaction violates conditio(8) for applicability of the can-
cellation procedure. Note that if a starting or ending point of
one of the particles belongs to the trajectory set of another,
condition (2) will be violated as well. As it is readily seen,
conditions(2) and (3) hold true if the starting point of the = WX} = K, 95X = K, tlzlx = K, t + 1:%5,t,) ]}
right-hand side particle does not belong to the cone of the -(,0 10. .
starting point of the left-hand side particle and, similarly, the XW0e X+ LY+ Lt+ 1ixa,t)
ending point of the left-hand side particle does not belong to = WXt x,tjZx + 1,t + 1;%,,t,)
Summary the condiion for noninvasive nteraction impties. <V 08X+ L+ Lt Lixuty) @9
the validity of conditiong2) and(3). _ These are exactly the unwanted terms represented graphi-

Consider now the case of two particles for which the CON-cally in Fig. 1b). The expression
ditions of the theorem are fulfilled. Assume that their first

©

+ 2 [WOE - k= 1,t%:x— k= 1,t;|zx — k,t + 1;xp,1,)
k=0

nearest neighborhood occursxaand x+1 at timet. There WOE 2 t|zlx + 1t + 1:%,1)
exist unwanted terms, similar to those considered in Sec. Il 0.0
[see Fig. 18)], with the difference that the starting and end- XWX, t; X + LAly[x+ 1t + 15%q,t) (29

ing space-time points may have unequal times, . .
gsp P y q corresponds to cag®), and the expression

WO, 95 x,tz]x + 1t + 1%, t) = WO xtlzx + 1.t + 1;%,1)
XWX + L tly[x + 1,t+ 1;xq,ty), (21) XWOQ = 1,89 %, tly]x,t + 1%, t1) (30)
to case(ii).
W(xg,tg;x,t|— ZX,t+ 1%, t) Consider next a moment of tinie>t, when not only free
0.0 _ trajectories come to the neighboring sitésand x’ +1, but
XWXt X + LEly[x + 1t + 1%, ty). (220 trajectories which have already interacted at timéet us

write down the corresponding terms separately:

The derivation of the terms canceligl) and(22) is analo- . 00
gous to one given in Sec. II: WHX X L x + 1t + 1xt[Zx + Lt + 1;%,t)

XW ™00, x+ Ltlylx+ 1,t+ 1;x + Lt'[y]x + 1.t/
W, = WiW, (23) +1:xq,t), (31)
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WO 2 x 1 x + 1t + 1x', |- Zx',t' + 1;%,1)) WS, 2x,tzix + 1.t + 1;%,1))
XW O x+ Ltly|x+ Lt + 1;x + 1,t'|y]x' + 1.t/ + WO 2 x, b= Zx,t + 1;%,1,)
+1:X,t), (32) + WHOS X, x + 1t + 1;x, |2 + Lt + 1;xp,1)

_ + WO X X+ 1t + 1x,t|— Zx + Lt + 1;xp,tp)
WHOO Xt [Zx + 1Lt + 1;%,1))

+WHOO 2% X! tZx + 1t + 1:%,t
XW_(Xg,tO;X/+1,t/|y|X, +1,tl +1;X1,t1), (33) ( 101 | | 2 2)

+WHOE X = ZX t+ 1% t) + ... (36)

W9 Xt [= ZX 1 + 15X, tp) Adding up all these terms we obtai (x,—x0;t,—12). There-
XWX + LUy + 1t + 1ix,ty).  (34) fore, the contribution of the considered pairs of auxiliary
trajectories to the cancellation is given by the expression
The first two termg31) and(32) describe trajectories which

0. OV\A/ —(+/0 10- :
have already interacted at timheand the next two term@3) Bi(Xo = Xg;ta — t) W 0%, t; X + Lty[x + 1,t + 1

and (34) describe trajectories which have not interacted by X + L0y yX O+ 1+ 10x,t).

time t’. To distinguish the latter, the symbols of their gener- ) - ) ]

ating functions are marked with a bar. Summing up over all the auxiliary trajectories of the second

By adding up(31) and(32), as well ag33) and(34), we  particle, we obtain the resul; (06X}t~ )B4 G;
obtain the necessary corrections to the free trajectories up toty), which proves the determinant formul20) for the case
time t’, when they come to the neighboring sitésand x’ of two particles.

+1, Passing to the consideration of a connected cluster of
0 0. o =3 particles, we note that the cagb=x, i # ], is excluded
W(xg, by %, t2fx + Lt + 1ox', 1|2 + 1t + 1;%,1) by the condition for noninvasive interaction. Therefore, par-
XW 0,0 x+ 1tlylx + 1,t+1,x + 1t/|y]x + 1.t/ ticles may not start from the same site atodiffgzrent timeos and
o according to our particle labeling ruleg; <x;<<---<x,.
+1:%,t) +W(x‘1’,t2;x’,t'|z|x' + 1,1+ 1;%,t,) Simple geometrical considerations show that a particle can-

not interact nonfatally and noninvasively with two or more
right (or left) neighbors existing in different time intervals.

Next, by moving down with time and successively consider-1NUS We can begin with the firgeftmos) particle and con-

ing the adjacent elementary squares in each row, we repeSider its interaction with the second ofits right neighboy.
the analysis of the two-particle interaction until all the tra-AAS In the case of equal times of start and finish, in each pair
jectories are considered: those which have interacted earli&f interacting trajectories the right one remains free and in-
in time, as well as the free noninteracting ones. teracts with the trajector_y on its own ng_ht-hand side inde-

To demonstrate that all the unwanted contributions fromPendently of the left neighbors. The trajectory of thi,

the free-particle trajectories are canceled out by the term@ghtmost particle is free. Therefore, we can carry out the
entering into the expressioBl(xz—xg;tz—tg)B_l(xl—xg;tl gbove r_:maly5|s.by sgccesswely considering all thg pairs of
~19), we sum up over all the auxiliary trajectories that par_lntera((:fng_partlt_:les in the condnected cluster until all un-
ticipate in the cancellation. First, we note that, as in the/Vanted trajectories are removed.
equal-time case considered in Sec. Il, in each pair of inter-

XW 00,9 x" + L[y + 1t + 1i%q,ty). (35)

acting particles, the particle on the right-hand side remains IV. ZERO-RANGE PROCESS
free (and eventually interacts with the particles on the right, ) , ) ) )
independently of its left neighbprLet the trajectory of the In this section we consider a zero-range discrete-time pro-

second particléwith x3>x%) be such that the two particles C€SS 0N & finite chain df sites with integer coordinates
become nearest neighbors at the following set of space-tima.L: --- - @nd open boundary conditions. The configuration

points: pf the system i§ specified by the occupation numirg(ts,
i=1,...L, at discrete moments of timé=0,1,.... The
{(x0),x+ 1,0} {x"t"), X + 1.t} ... probabilistic dynamics of the system is given by the prob-
(X £0) (O 4 1 (M) a_bility of par_ticle hopping from sité to the neare.st-neighbqu
o ' ' site on the righi+1. We assume that the hopping probabili-
The corresponding contribution from the auxiliary trajecto-ties are independent efandt, but depend on the order in
ries of the second particle is which particles have arrived at the siteNamely, out of all
0.0 n,(t) particles on sitei, the particle that has arrived first
W™kt x+ Litly[x+ 1t + 1; leaves that site with probabilitg. The remainingn;(t)—1
X+ L]y + 1,60+ 1xg ). particles remain on siteat the moment t. The hopping pro-

cess conserves the total number of particie$Ve assume
This expression can be taken out as a common factor. Thilat particles are injected on the first sitel of the chain at
auxiliary trajectories of the first particle contribute the fol- given moments of timea?,t2,... 1% and leave the system
lowing terms: from the last site =L at given moments of timg,t,, ... t,.
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TASEP Zero-Range Process this problem in a frame of the random walk theory and in-
troduced vicious walkers to coin the condition of nonmeeting
o~ i1 e \ of different particles. This line was continued later by For-
(4, £4) i N a,t3)
i \\\ﬁ\(LM»L\) e \ (bt rester[36]. o ]
o) )"\)\\ \ﬁ“.““” 4,“,}@:) \ @) _ Independently, the_ probler_n of mutually avoiding trajecto-
L \i\\‘ﬂ'@'ﬂi) v \ Lo ries was considered in combinatorics, where the determinant
S Lt \ ) expression for the number of configurations is known as the
R R w Gessel-Viennot theoreni37]. Recently, a connection be-

tween the statistical mechanics approach and the Gessel-
éﬂennot theorem has been establisiig8,39, and more gen-
eral cases of interaction between walkers have been
considered40Q].
The difference between vicious walkers and the ASEP is
by in the statistical weight of bundles of trajectories. A vicious
walker does not see neighboring walkers until it collides with

FIG. 3. Correspondence between TASEP and zero-rang
process.

The probability of this event is denoted
PL9,19, .ttt

Theorem 3 Given the sets of timegt} and {t}, i them. Therefore, the weights of parts of its trajectory do not
:1’5’6” n o the conditional probability - gepend on neighboring trajectories during the whole survival
PL(t], 82, ... tolts &2, ... ty) is given by the determinant of time interval. On the contrary, in the ASEP, the probability of
the nxn matrix M, a step depends on a state of target site: if it is occupied, the

_ n n _ _ 0 step is forbidden with probability one. This difference puts
PL=detM™, where M’ =By j(L~1+i-jt~t). twop kinds of models igto diﬁerﬁnt classes. If the vici%us
(37 walkers belong to the class of free-fermion models, the
ASEP is the model of essentially interacting particles. Using
terminology of the Bethe ansatz, the free-fermion models are
solved by purely antisymmetric Bethe functions, whereas the
ASEP needs less trivial Bethe ansatz. Nevertheless, it has
’Sbeen shown by Schitz that the specific form of the ASEP
Interaction still allows a determinant representation, although
the simple binomial matrix elements in the Gessel-Viennot
eterminant should be replaced by more complicated func-
ons(actually, by infinite sums of binomial coefficiemté&\n
analytical derivation of the determinant formula for the
ASEP on an infinite lattice is given if23]. In this paper, we
give a geometrical interpretation of this solution using a tra-

Determinant expressions enumerating configurations dfectory analysis which has been presented firs3ifi as a
nonintersecting trajectories have appeared in physical litergart of solution of the ASEP on a ring.
ture in the early sixties, in the context of exactly solvable
lattice models of statistical mechanics such as the dimer ACKNOWLEDGMENT
model on the hexagonal latticg2], the models of two-
dimensional biomembran@3], and the free-fermion sector This work was supported in part by Russian Foundation
of the six-vertex modef34,35. In 1984, Fisher considered for Basic Research under Grant No. 03-01-00780.

Proof. Consider the TASEP fon particles starting at space-
time points(x?,tio) and ending atx;,t;), i=1,2,... n where
x=i andx;=L+i—-1. Shifting theith trajectory as a whole by
i-1 sites to the left, we obtain the ZRP shown in Fig. 3
which is the object of Theorem 3. Then, Theorem 2 prove
Eq. (37).

In the continuous-time limit we obtain a standard ZRP
with constant hopping rates which are independent of th%
occupation number of the sites.

V. DISCUSSION
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