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Percolation on a multifractal
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We investigate percolation phenomena in multifractal objects that are built in a simple way. In these objects
the multifractality comes directly from the geometric tiling. We identify some differences between percolation
in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The
first is related to the coordination number, which changes along the multifractal. The second comes from the
way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite
size lattices and draw the histogram of percolating lattices against site occupation probability. Depending on a
parameter characterizing the multifractal and the lattice size, the histogram can have two peaks. We observe
that the percolation threshold for the multifractal is lower than that for the square lattice. We compute the
fractal dimension of the percolating cluster and the critical expofieBespite the topological differences, we
find that the percolation in a multifractal support is in the same universality class as standard percolation.
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I. INTRODUCTION The multifractal object we have developed is a natural
generalization of the regular square lattice once we consider
Percolation theory has been used in several fields such ke algorithmic point of view. The algorithm that generates a
chemistry, epidemics, science of materials, transport of fluidsquare lattice with 2<2" cells starting with a square of
in porous media, branched polymers, and econo-physickxed size is the following. We begin with anXL square
[1-8]. The original percolation model based on a square latand cut it into four identical pieceells). At each step all
tice has been extended to several kinds of regular and rafbe cells are equally divided into four parts using vertical and
dom lattice, to continuous media where the objects overlafiorizontal segments. This process produces a lattice as a par-
in space, and to other complex systei@s17. In this work tition of the square. The multifractal we create is also a par-
we genera"ze perc0|ati0n theory to cover an even broadéi’tion of the square, but the ratio in which we divide the cells
range of Comp|ex systems. We devise an approach to inve§ different from 1/2. The parameter characterizing the mul-
tigate how percolation occurs in a support that is itself atifractal, p, is related to the ratio of this division.
multifractal. For this purpose we have constructed an easiIY What makes this problem appealing to physics is the fol-
o

assembled multifractal immersed in a two-dimensic@a)) ~ lowing. The support of the percolation clusters is composed
space. of subsets of different fractal dimensions. It is important to

Our work is inspired by the modeling of geophysical know how these different subsets are connected and how

natural objects that show multifractal propertigs3—16. they participate in the conducting process. There are intrigu-
The model can be applied to transport of fluid in multifractaling features in the network due to the fact that all the cells
porous media such as sedimentary strata. Oil reservoirs af@ve rectangular shape but the area and the number of neigh-
possible candidates to be modeled in such a way since tHors can vary, forming an exotic tiling.
measurement of some physical quantities in well logs shows [n Sec. Il we present the multifractal object that we con-
multifractal behaviof17,18. Despite the potential applica- Struct to study percolation, and we analyze how its multifrac-
tions, this problem is important by itself in the scientific tal partition maps into the square lattice. In Sec. Ill we ex-
context. The study of percolation phenomena in multifractaPose the algorithm we use to estimate the percolation
lattices is relevant in statistical physics, especially when théhreshold and derive the multifractal spectrum of the multi-
size of the blocks and their number of neighbors can vary. fractal object. In Sec. IV we show the numerical results and
In order to make this analysis we create a multifractaldiscuss the histograms of percolating lattices versus occupa-
object that can be used as a toy model and a laboratory fdion probability. Finally, in Sec. V we summarize the main
percolation theory. An important characteristic of this objectdifferences between percolation in a regular lattice and in a
is that its topological propertigg.g., number of neighbors of Mmultifractal support.
each block change over the object. In R¢fL9] an algorithm

fchat has some resemplance to ours is used. That_multifractal Il. THE MULTIFRACTAL OBJECT Q.
is built from the partition of a square, but the object has a
trivial topology. In addition, the object used [49] is sto- The central object of our analysis is a multifractal object

chastic and ours is deterministic. Although both modelsthat we callQ,;. Before defining it we enumerate some of
present multifractality, our model has the following differ- its properties.

ences: it shows a nontrivial topology, we can determine its (1) Q. iS a multifractal, which means th&,,; has an
spectrum of fractal dimensions analytically, it generalizes thénfinite number ofk subsets each one with a distinct fractal
square lattice, and it shows simplicity in construction. dimensionD, .
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step,n=4, in Fig. 1(d). As observed in the figure, at level
n=4 there are 2 blocks and the distribution of areas among
the blocks follows the binomial law
B [Sig
4 3 2 2
(W 1= p +4 P +6 P
1+p 1+p) \1+p 1+p/ \1+p
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We call the elements with the same arek get. In the case
j n=4 we have fivek sets.
srss ran At step n the square has"2?! line segments,r(+1) k
srer s8¢ 1 sets, and 2blocks. The partition of the are&=1 (usingL?
bl | ST units) of the square into different blocks follows the binomial
" waNEE rule
I: 1]
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(b) (d) As n—o eachk set(a subset made of cells of the same

FIG. 1. The four initial steps in the formation .. (a) The areag determines a monofractal whose dimension we calcu-
vertical line cutting the square into two pieces of area ratidwo  1ate in the next section. The ensemble oflatiets engenders

horizontal lines sharing the rectangles in the same ratio are depictd® multifractal objec .
in (b). The third step is indicated ifc) and the fourth ir(d). At each

step the areas of the corresponding blocks are shown in figure. Ill. THE ALGORITHM OF PERCOLATION

. . . AND THE MULTIFRACTAL SPECTRUM
(2) It is possible to determine the spectrum of@|] ana-

lytically. In this section we show the algorithm used to study the
(3) The sum of all the families df subsets fills the square. percolation properties @ ,; and the analytical derivation of

This fact enables us to study its percolation properties usings spectrum of fractal dimensions. The estimation of the

procedures similar to the ones applied to site percolation igpectrumD, is performed using the box counting method

the square lattice. [24], whose measure elements come from the percolation
(4) The algorithm of construction o, has just one algorithm.
parameteip. The concept of the percolation algorithm 1Qy,; consists

(5) For the special choicp=1 the objectQ,; degener- in mapping it into the square lattice. The square lattice
ates into the square lattice. In this case we compare our rehould be large enough that each line segmer@® gf coin-

sults with square lattice site percolation. cides with a line of the lattice. Therefore we consider that the
(6) The objectQ,; shows self-affinity or self-scaling de- square lattice is more finely divided th@h,. In this way all

pending on the region of the object. blocks of the multifractal are composed of a finite number of
(7) Finally, the algorithm for construction @, is simple  cells of the square lattice.

and it is easily implementated on the computer. To explain the percolation algorithm, we suppose that the

We defineQ,,s through the following algorithm. We start Q,,; construction is at step. We proceed with the percola-
with a square of linear size and choose a parameter(p  tion algorithm by choosing at random one among tHe 2
<1, wherep=s/r for r ands integers. In the first stem blocks of Q,,s. Once a block is chosen all the cells in the
=1, the square is cut into two pieces of ares+r) square lattice corresponding to this block are considered as
=1/(1+p) ands/(s+r)=p/(1+p) by a vertical line(we  occupied. Each time a block & is chosen, the algorithm
use units ofL?). In other words, the square is cut accordingchecks if the occupied cells of the underlying lattice are con-
to a givenp. This step is shown in Fig.(4), where we use nected in such a way as to form afinite percolation clus-
p=slr=2/3. ter. The algorithm to check the percolation is similar to the

In the second stem= 2, we cut the two rectangles of Fig. one used if20-23.

1(a) by the samep, but using two horizontal lines as shown  For estimation of the spectrul, of an objectX we use

in Fig. 1(b). This partition of the square generates four rect-the box counting methofR24]. The objectX is immersed in

angular blocks: the smallest one is of af@a(1+p)]% two  the plane of real numberd$? and we use the trivial metric.

of them of areap/(1+p)?, and the largest one is of area Cover R? by square boxes of side lengththat just touch

[1/(1+ p)]?. In the figurep>0.5. each other. LeN(X) denote the number of square cells of
The third stepn=3, is shown in Fig. {c) and the fourth  side lengthe which interseciX. If
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FIG. 2. (Color) The figure shows two views of the multifrac@l,; for n=12, (s,r) =(3,2). On the left we have the original picture. The
right-hand panel is an enlargement of the square indicated at left.

logN(X)  logN(X) Figure 3 shows the spectrum DBf, for n=400 calculated
log(L/e) =1lim logL (3)  from Eq. (5). The use of increasing does not change the
L= shape of the curve, it only increases the numbek @ind
makes the curve appear more dense. We 839 € (2,3) to
illustrate the asymmetry of the distribution. The spectrum
as a maximum close tpn. In this case (2/3)408270.
his means that the majority of the mass of the multifractal
is concentrated in thk sets around this value. The spectrum
Nk=Cﬁs"r(”‘k), (4) Dy is typically asymmetric around its maximum. Only the
case §,r)=(1,1) is symmetric and the asymmetry Df,
whereCﬁ is the binomial coefficient that express the numberincreases as/(s+r)— 1, which is related to the area distri-
of elements ok type, ands’r("¥ is the area of each ele- bution among the blocks, as we shall see in the next section.
ment of this set. If the square is partitionadtimes (/2
horizontal cuts andn/2 vertical cut$ its size isL=(s IV. NUMERICAL SIMULATIONS
+r)™2. Combining all this information we have for the frac-
tal dimension of each set

DX= I|m

e—0

is finite, thenDy is the dimension oK.

In our case the object is ak set. Remember that theset
corresponds to a set of rectangles of the same area. kor
set we have thal, is given by

In this section we focus our attention on the numerical
results obtained from the algorithm exposed above. We are

log CKskr(n—k

D= lim———p. (5) 2
K . log(s+r)"
1.8
In ther=s=1 case all subsets @, are composed of
elements of the same area, square cells. In this way the ok 16
ject is formed by a single subset with dimension D
k
D= i log(1+1)" ®) 14
=lim———Fgp=2.
nl0g(1+1)M 1.2
This result is expected since in this particular c&xg de- 1
generates into a square lattice that has dimension 2.
In Fig. 2 we show the picture @, for p=2/3. We have 0 100 200 300 200
usedn=12. On the left, the full object is shown; on the right,
an enlargement of an internal square of the object is illus- k

trated. We have used the same color to indicate the elements
of the samek set. The unusual tiling depicted in the figure is  FIG. 3. The spectrum of fractal dimensioBs, of Q. for n
common forQ, s with different values ofp. =400 and p,q)=(3,2).
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TABLE I. The values ofp., d;, and g for several multifractals
any T 1 characterized by different paifs, r).

@D
1)

(sr) 11 219 @G G2 @Yy GY (BIY

P 0.593 0.527 0.526 0.526 0.525 0.525 0.530
d¢ 1.895 1900 1911 1.890 1902 1.929 1.842
B 0.127 0.128 0.140 0.141 0.141 0.118 0.109

square lattice exactly. The other valuesppfare shown in
Table I.

The reason whyQ.s, for diversep, shows roughly the
samep, comes from the topology of the multifractal. The
topology of a set of blocks is related to the coordination
08 numberc, which is defined as the number of neighbors of
each bloc2]. Q. has the property that changes along
the object and withp. However, we compute the average
coordination numbec,,. These results do not depend sig-
nificantly on p, or onn, the number of steps used to build
Qmi, Which determines the number of blocks. The value
found,c,,=5.436, for the multifractal is close to the value of
c for the triangular percolation problem, which has 6 and
whose analytic percolation threshold ps=0.5. The situa-
tion (s,r)=(1,1), the square lattice, trivially shows=4.
Because the square lattice has a differeritt configures a
particular situation compared to othéx, s and it shows a
different p, as depicted in Fig. @).

In Table | we showp, and the fractal dimension of the
percolating clusterd;, for diversep. We have done an av-
erage over 100 000 samples amd 16. The estimation odi
is done by the relatiotM ~L¢ for the “mass” M of the
percolation cluster, which means the area of the cluster mea-
sured in units of the underlying square lattice, anthe size

FIG. 4. In(a) is depicted the histogram of percolation lattices of the underlying lattice. Based on the valuesdgfof Table
versus the occupation probabiliy for the cases §r)=(1,1), | we conclude that percolation on a multifractal suppert-
(2,9), (4,1, and(6,1). The areas under the curve are normalized topadqded in two dimensiondelongs to the same class of uni-
unity. For the sames(r) a graphic of the fraction of percolation e sajity as the usual percolation in two dimensions. The
Iritat\t::ir% 6‘1’55‘:5‘) is shown in(b). 40000 lattices were used 10 ..o\ jated value of; for the (6,1) case is smaller compared

ge- to the others because of finite size effects. We discuss this
effect in detail in the following paragraphs.
interested mainly in analyzing the percolating properties of Percolation shows critical phenomena and several scaling
Q- Figure 4a) shows the histogram of percolating lattices relations are observed. The critical exponghis defined
versus the occupation probabiliy The area under the his- from the equation
togram is normalized to unity. We use=10 and average the P
results over 40 000 samples. We consider that a lattice per- RL~[pe(L) = pel” @

colates when it percolates from top to bottom or from left toWherep is the exact occupation probability value, in con-
right. The histogram of percolating lattices in both directionstrast top? (L), which is the finite size value. The po’vver law
is similar but slightly shifted to the right. This shift is com- (7) is safisfied forp,(L) obtained fromR, . The numerical
mon in percolatior(see Ref[21] for percolation in a square agtimation of8 is based on Eq(7), whereR, is a key ele-
lattice). o _ _ ment of the analysis. F@,, the probabilityR, is not a well

We show in Fig. 4a) the results of simulations for the pehaved function op for low L as we shall see in the next
following values of §,r):(1,1), which degenerates into the paragraphs. ActuallyR, can show, depending om an in-
square lattice; an,1), (4,1), and(6,1) which correspond to  flection point atp, in this regime. However, in the case
true multifractals. In this figure the histograms correspondingvhereL — the scaling of po(L) — p.] recovers the usual
to (2,1, (4,1, and(6,1) are shifted to the left compared to behavior. In this regime we find the sarBecharacteristic of
the histogram of1,1). The peak of the histogram fdf,1)  the two-dimensional cased=5/36=0.13888. We checked
corresponds, as expected, to the square lattice size percoia- our simulations that, fon=18, 8 is around 5% of the
tion thresholdp.=0.597 [2], since this case matches the exact value. The full set of values @fis in Table I.

0
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TABLE II. Estimation of Ap. and [s/(s+r)]" for several
stepsn.

n 8 10 12 14 16 18
AP 029 022 015 011 0.070 0.040

s n

S+r

0.291 0.211 0.157 0.115 0.084 0.062

low, in the finite lattice size condition used in the simulation.
From an analytic point of view the cur®,l) in Fig. 5 is
different from curve(1,1). In curve(6,1) there are three ex-
tremal points while in thél,1) case the curve shows a single
maximum point. We conjecture that in the limit of—o
these three points coalesce into a single one and all the
curves show a similar behavior.

P The two peaks in the histogram come from the huge dif-
ference among the area of the blocks @f,;. For large

FIG. 5. The histogram of percolating lattices versus the occupa: n . X
tion probabilityp for several values of the lattice size. The graphic (S/T)" the area difference is so accentuated that we model

shows the double peaks approaching each otheriasreases. In the histogram of percolating lattices with bimod_al statistics.

the figure 6,r)=(1,6) and 8<n<18. 40 000 lattices were used to [N the case of the largest block chosen the multifractal easily

make the average. percolates compared with the opposite possibility. To esti-
mate the effect of the largest area block on the statistics we

It is worth saying that, despite small fluctuations in the US€ Table Il. The difference between the first peals,aind

values shown in the table, there is no trend in the numberéhe secqtr;]dtr?nef ﬂbtg IS Afpt?]‘axl In Ta;btl)el Ilkwe C()trﬁpa;r? |
The conclusion we take from these data is that the errors arePmax Wi e frac ',?n o! the fargest block over the tofa
caused by finite size effects and low-number statistics. ~ Sduare ares/(s+r)]". This comparison is made for differ-

The dispersion of the histogram changes significantl)ﬁm stepsihln the cc:jnfsrtructlon (;)f the muIUfracataIastrr]] 'n;j. ¢
with (s,r) as intuitively expected. To illustrate the change in creases the area difierence decreases as does the distance

the width of the histogram of a generis,() multifractal we ::)etweeln p?aks. TabIIe clil StEO\{vtShgot())i(rjnagr?eT(an:i??;V\éZigéze
analyze the area of its blocks. At stepf the construction of WO values, we conclude hat (he odal stalis

by the huge mass of the largest block.
Qm¢ the largest element has the argd(s+r)" and the ;
smallestr™/(s+r)" (usingL? units). In this way the largest We notice, however, that the agreement betwagha

n . .
area ratio among blocks increases witir{". As the occu- and[s/(s+r)]" decreases a8 increases. We interpret the

. - I . : .. disagreement between the bimodal statistics hypothesis and
pation probability, entering in the percolation algorithm, is ma}pe numerics for hig as the limit of the hypothesis. Actu-

ally, the largest block is not the only one that produces an-
(s/r)". This increase in the dispersion is visualized clearly in'SOtrOpy in the multifractal, and as increases this fact be-
; comes more accentuated. For smmathe large block can be

the curves2,1) and (4,1) of the figure. tak h in factor in th icot d the bimodal

The most singular curve in Fig.(@ is (6,1), which aken as the main factor in the anisotropy, and the bimoda
clearly shows two peaks. We stress this point when we com§ta’[IStICS apply. Large |mp!|e_s , however, true multiiractals
ment on Fig. 5. Figure @) uses the same data of as Fig. and a more complex statistics should be used to treat the
4(a), but instead of the histogram of percolating lattices Weproblem.
show the cumulative sunR_ . As R, is normalized, this
parameter is also called the fraction of percolating lattices.
As in Fig. 4a) the case §,r)=(1,1), the square lattice, re- In this work we develop a multifractal obje@,,; to study
produces the results in the literatdd]. In this situation the  percolation in a multifractal support. In addition to being a
lattice sizel is L=(s+r)°=1024. For this special case the multifractal, Q¢ shows several interesting properties. The
number of blocks is equal to the number of unit boxes covsum of all its fractal subsets fills a square, and it is possible
ering the surface. The double peak casg)=(6,1) shows to determine the spectrum of its fractal dimensions. In addi-
an inflection point in the graphic d®_ versusp. In the fol-  tion, the algorithm that generat€s,; has only one free pa-

the width of the histograms in Fig.(d increases with

V. CONCLUSION

lowing figure we explore this point in detail. rameterp, and in thep=1 caseQ,,; becomes the square
The most noticeable signature of percolation in the muldattice.
tifractal Q. is the double peak observed fa, () =(6,1) in We observe that percolation in a multifractal presents dif-

Fig. 5. In this figure the histogram of the percolating latticeferent features from percolation in a regular lattice. There are
versusp is plotted for diversen as indicated in the figure. two reasons for that: the heterogeneous distribution of
The distance between the peaks decreases i@sreases. weight (area among the blocks and the variation of the co-
This picture indicates that the double peak is a phenomenoordination number of the topological structure. The weight of
that is relevant for percolation in the multifractal, whems  each block in a multifractal counts differently in the mass of
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the infinite percolating cluster. The difference in weight of spite these differences, we have done numerical estimations
the blocks changes the dispersion of the histogram of percaf the fractal dimension of the percolating cluster in the mul-
lating lattices. The phenomenon of two peaks appearing ififractal, obtaining values that are around 1.89, the same di-
the histogram is also connected with the weight differencemension found for the incipient percolation cluster in a two-
We model the distance between the peaks using bimodal sta@imensional regular lattice. The numerical simulation of the
tistics. In the limit ofn—co all the histograms of multifrac- :8 critical exponent also shows the same value as in the two-

tals seem to collapse onto a single curve. dimensional regular case and points to the same conclusion
For all cases in whiclp# 1 the multifractalQn¢ shows a  that we have regular percolation.

coordination numbefnumber of neighbors of each blogck

that changes along the object. The average coordination

number of Qs is around 5.436. In contrast, the situation ACKNOWLEDGMENTS
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