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Driven diffusive systems: How steady states depend on dynamics
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In contrast to equilibrium systems, nonequilibrium steady states depend explicitly on the underlying dynam-
ics. Using Monte Carlo simulations with Metropolis, Glauber, and heat bath rates, we illustrate this expectation
for an Ising lattice gas, driven far from equilibrium by an “electric” field. While heat bath and Glauber rates
generate essentially identical data for structure factors and two-point correlations, Metropolis rates give no-
ticeably weaker correlations, as if the “effective” temperature were higher in the latter case. We also measure
energy histograms and define a simple ratio which is exactly known and closely related to the Boltzmann factor
for the equilibrium case. For the driven system, the ratio probes a thermodynamic derivative which is found to
be dependent on dynamics.
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I. INTRODUCTION study has yet been undertaken. In this paper, we consider two

- . . ) models: the standard Ising lattice gas and its nonequilibrium
In statistical physics, Monte Carl1C) simulations play  ¢oysin, the driven Ising lattice gasr KLS model, after the

a major role for the study of phase transitions and criticaitials of its inventors[5]). Both involve particles diffusing
phenomena, as well as ordered and disordered pHa$es on a lattice, subject to an excluded volume constraint and an
Leaving out many details of the art of computing, the broadattractive nearest-neighbor interaction. The total number of
outline of the simulation process is easily summarized. Foparticles remains conserved. For the Ising lattice gas, the
systems both in and far from thermal equilibrium, dynamicrates for particle hops to unoccupied nearest-neighbor sites
ratesW o — '] are defined which specify how a given con- are chosen to satisfy detailed balance, with respect to the
figuration o evolves into a new oney’, when an update is Ising Hamiltonian. In contrast, the driven version involves an
attempted. The simulations then generate long sequences additional external force which acts on the particles much
such configurations. Once initial transients have decayedike an electric field on(positive) charges: aligned with a
time-independentstationary observables—which will be lattice axis(e.g.,y), it favors particle hops along its direction.
our focus in the following—can be computed as configuraln conjunction with periodic boundary conditions, this bias
tional averages. For a system in thermal equilibrium, charac?réaks detailed balance and establisheaoaequilibrium
terized by a Hamiltoniafi, it is well known thatany choice s_teady state. This NESS differs d_rastlcally from its qumb-
of Ws, as long as they satisfy detailed balance with respeciUMm counterpart, exhibiting generic long-range correlations,
to H, will generate configurations distributed according to2" interesting universality class, and highly anisotropic or-
the sameBoltzmann factor, ex{g-8H). In other words, time- dered_phaseES]. . o

. ) . . To illustrate the importance of the transition rates for the
independent observables, including both universal and nory,

. ) ) ) ESS, we measure structure factors and two-point spatial
umvgrsal properties, are independent of thg choice of raleRyrrelations in the driven case using Metropliy Glauber
provided detailed balance holds. The resulting freedom ca y

b loited to desi ticularly efficient cod h ], and heat batf9] rates. To date, simulations of the driven
€ exploited to design particuiarly €fficient co es:‘ SUCN A5h6del have focused almost exclusively on Metropolis rates
cluster algorithms[2]. In stark contrast, no such “decou-

ling” of d _ d stati h teristi ; [10]; other rates have only been invoked in some analytic
piing" ot dynamic and stationary characlterstics occurs .orstudies[6,11]. While the first two are easily implemented for
systems driven out of equilibrium: even though nonequilib-

: ) N conserved particle number, an appropriate generalization of
rium steady stateNESS display time-independent observ- _heat bath rates is designed here. To avoid complications due

abtles, _Fuesi e;]re _sensmveb tot moc(ijlflt():anlc(nls ?yf th? Id)t/_nam| 0 inhomogeneous ordered phases, we choose temperatures
rates. 1his behavior can e traced back 1o the Violalion Ohyqe of at criticality. For comparison, we also show the

dgtailed balance which is an inherent feature of nonequilib—same quantities for theequilibrium) Ising model: as ex-

flum Sy stems[3,4].. - . pected, they are found to be identical up to statistical fluc-
. While the sensitivity of NESS to the chqlce of the d3./narn'tuations, and almost perfectly isotropic. In stark contrast,
ics has been noted befof® 6], no systematic computational o the drive is turned on, we find strongly anisotropic

behavior and markedly different values for the three choices
of rates. While all driven cases exhibit the signatures of long-

*Electronic address: wkwak@hal.physast.uga.edu ranged decay in real space, the correlations are much weaker
"Electronic address: dlandau@hal.physast.uga.edu for Metropolis rates than for either Glauber or heat bath
*Electronic address: schmittm@vt.edu ones.
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As an additional probe into the differences between the Wo— d'] Pyo')
standard. Ising Iatucg gas and its drlvelj cousin, we construct W' — o] Pyo)
energy histogram@with respect to the Ising Hamiltoniafor
both. For the equilibrium case, these are of course intimatel{Df course, this just ensures that evéry} bracket in Eq(2)
related to the Boltzmann distribution and contain a wealth ofvanishes. An important quantity which enters here is the en-
thermodynamic information. For the driven system, they areergy difference of two configurations; and o
easily measured in a simulation, but their physical interpre- ,
tation has not been established yet. Here, we consider a Ao=H[o']-H[a]. (4)
simple histogram ratio whose equilibrium limit is easily de- 5 simple way of satisfying detailed balance is to impose
rived, and compute its nonequilibrium counterpart. rates which are functions of this difference alon&fo

This paper is organized as follows. We first introduce our_ o']=w(BA,) where the functiow must satisfy
models and the three types of dynamics, followed by a brief

discussion of our key observables. We then present our data w(X) =w(-x)e, (5)

for two-point correlations, structure factors, and energy his-

tograms. We conclude with a summary, offering a conjectur y vi_rtue of Eq.(3) byt is otherwise arbitrary.. All three rate
for the origin of the observed differences between the thre unctions to be considered below—Metropolis, Glauber, and

rate functions. heat bath—are_ constructed in this way, but differ in some
important details.

An obvious way of driving a system into monequilib-
rium steady state is to impose rates thetlate detailed bal-
A. Models ance. A prototype model that has attracted much interest due
to its remarkable properties is the driven Ising lattice @as

LS mode) [3,5]. It differs from the standard Ising model
hrough the presence of an external fo&ealigned with a

— g BHo 1Mol 3)

II. BACKGROUND

In this section, we introduce our two prototype models,
namely, the Ising lattice gas and its driven version. Both ar

defined on arM X L square lattice in two dimensions, with . . ) T .
d particular lattice axigthe y direction). When a particle at-

fully periodic boundary conditions. Each sités either oc- " 100 ¢ N t-neiahb ite. it i i
cupied by a particle or empty, which we denote by a spinemp S 1o Jump 1o an empty nearestneighbor site, 1t 1S no

variablec, taking two values: +Xoccupied or —1 (empty). only affected by the local energetics, incorporated in (&y.

e ; : but also by the drive: similar to an electric fieldl,favors
For the equilibrium Ising model, we can specify(globa) (suppressggarticle hops alongagainsy the selected direc-

Hamiltonian: tion, leaving transverse exchanges unaffected. A straightfor-
H[o]=-ID e (1) ward extension of Eq4) is to include the work done by the
in field, i.e., to define a local “energy” difference of the form
where the sum runs over nearest-neighbor pairs of sites, and A=H[o']-H[o] - €. (6)

J>0 denotes the binding energy. In order to access the Isin'g| _ . e

critical point, we consider only half filed systems: €€ €=0 for two configurations differing only by a trans-

(LM)~1%,0;=0. When coupled to a heat bath at temperature/€7S€ jump, ande=+1 (-1) if the particle hops along

T, the probability,Py(c), to find the system in configuration (@gainsk the field in the move. We can now choose rates of

o is controlled by the well-known Boltzmann factd®y(o) the form(5) with x=BA. However, it is essential to note that

o exp(—BH) with B=1/ksT. Here and in the following, the the combination of uniform drive and periodic boundary
- B . 1

subscript 0 will always denote equilibrium quantities. conditionsprecludesthe existence of global Hamiltonian

The usual technique for simulating such a distribution isfor the driven system. A unique steady stRt) establishes

to introduce a dynamics in configuration space. We choose '%Ser:: b;trnﬁinr;ﬁt l:;e ﬁXpr?ﬁﬁﬁern t]?frmts 0\1,‘va Br? Itzmair;?i;ﬁctor.
suitable set of transition rate§[{o— o'], which specify o ma € the nonequ um etiects, we choose c

. : . o . for our simulations, i.e., a particle will never jump against
how a configurations evolves into a new oneg’, in unit

time. For simplicity, we only consider transitions in which the field.

and ¢’ differ by a single nearest-neighbor particle-hole ex-

c_hange. Now, the probgb!llty dlstrlbutloﬁ(o,t_) _becomes B. Three different rate functions

time dependent and satisfies a master equdtiaitten, for ) ] ] )

simplicity, in continuous timg In this subsection, we introduce the three choices of tran-

sition rates—Metropolis, Glauber, and heat bath—which will
P(a,t) = E MW" — o]P(a’,t) - Wo — o' ]P(a,t)}. be compared in the following. For the first two choices, the

o relevant quantity is the local energy difference between the

) final (¢’) and theinitial (o) configuration. For the third
choice, the rate is independent of the initial configuration;
Its stationary solution,P(o)=Ilim,_..P(o,t), controls all instead, the selection criterion involves the local energy dif-
time-independentproperties. It is unique, under fairly ge- ference of the two possiblénal configurations,c and o’.
neric conditions on the rates. To ensure that the desired equror the equilibrium Ising model, energy differences are eas-
librium distribution Py(o) is reproduced, one choos&¥s ily computed from Eq(4), and each rate satisfies the detailed
which satisfy the detailed balance condition: balance condition; for the driven model, we invoke [E8),
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and detailed balance is violated. Random numbers are se [e¢] o |

lected uniformly from the interva(0,1). NP ol e hd hd
Metropolis dynamicsFor this choice of rates, we ran- P |° hd | |0 d |

domly select a nearest-neighbor piij of sites with differ- L .

ent occupanicesy; # o;. We denote the original configura- — -

tion aso and lets’ be the configuration witlay, o switched @ () © @

(i.e., of =0y, of =0y). The transition fromo to ¢’ is con- . _ . . o

trolled by the Metropolis rate functiomyye(x)=min(1,e™). FIG. 1. A central pair and a particular configuration of its six

To be specific, we first compute= BA. If x<0, the attempt nearest neighbors. Occupied sites are indicated by solid circles.

(exchanggis accepted; if, howevex>0, we draw arandom  gynamics generate the same outcome: each will select Fig.
numberz and perform the exchange onlyzfse™. Clearly,  1(a) as the final configuration with probability 1 for any
energetically favorable moves are always performed while/alue of 8J.
only a fraction of costly ones is accepted. As temperature This is not the case for bondsinsverseo the field[Figs.
increases, this fraction approaches 1 in a monotonic fashiorl(c) and Xd)]. For the purposes of this argument, we choose
Glauber dynamicsSimilar to Metropolis dynamics, the BJ=0.1. We denote the configuration shown in Fige)I(d)]
implementation of this algorithm involves, first, selecting by o{c’]. The energy differencA=12] is easily computed
two nearest-neighbor sites with different occupancies. Againfrom Eq. (4) or Eq.(6). Given a random numbez, the Me-
o' refers to the configuration with switched occupancies. Extropolis algorithm will accept a transition from to o’ only
changes are then controlled by the Glauber rate functiorif z<e*?#’=0.30, while the reverse transitiqga’ to o) is
wg(X)=1/(1+€). Again, we computex=B8A and draw a always accepted. For Glauber dynamics, the transition from
random numbee. If z<1/(1+€), we accept the exchange; ¢ 10 ¢’ is accepted iz<1/(1+e*%*)=0.23, while the re-
otherwise, it is rejected. While energetically favorable moves/€rse transition is accepted #<1/(1+e™*%%)=0.77. Fi-
are not necessarily accepted, they are always more probatﬂ@”y’ the hea_lt bath algorithm will choos_eas the final state
than unfavorable ones. if z<1/(1+e1%#%)=0.77 , ands’ otherwise.

Heat bath dynamicsAs pointed out above, the interpre- The notable differences are these: First, the Metropolis
tation of o and o is different here: These refer to the two &/gorithm accepts unfavorable moves with higher probability

possible final configurations of the central particle-hole pair._thf"ln either.heat bath or Glauber.xz. 1/(1+€) '.AS a resulp,
it is more likely to explore unphysical domains of configu-

Showing only its local neighborhood in the lattice, we define’™ . o
g only g ration space. Yet, it also accepts favorable moves with higher
probability, and thus leads to a more active dynamics. Com-

T3 T4 ’ T3 T4 paring heat bath and Glauber rates, we note that both subdi-
og=o0, t1 -1 05 ando’'=o0; -1 +1 o3 vide the unit interval into the same subsectiqi®s23 vs
o, 0 o, 0 0.77). Hence they generatgatisticallyvery similar trajecto-

7 ries in configuration space. Update by update, however, the
trajectories can differ: if, e.g., the initial configuration ds
and the random number turns out to be 0.1, the heat bath
algorithm will chooses’ as the final configuration, while the
Glauber rule leads to an exchange sinee0.23. Yet, we will

for bonds along the axis, and

72 72 see below that this subtle difference does not affect the data.
o t1 o o -1 o
o= ' 1  ando’'=* +1 3 (8) C. Structure factors and two-point correlations
oy - ag, oy g,
° N ° 4 Below their critical temperatures, both the lIsing lattice
05 05 gas and the KLS model phase segregate into regions of high

and low density, by virtue of the conservation law on the
number of particles. Typical low-temperature configurations,
3 6 for both models, show a single strip of high-density phase
h=So-So 9) anq its_low—density mirror imag'e._ For the Ising quel, the
= e strip orients itself such as to minimize the energetic cost of
interfacial length. In contrast, the low-temperature strip of
the KLS model isalwaysaligned with the direction of the
drive, and the minimization of interfacial length does not
play a dominant rolgcf. Fig. 2. A quantity which easily
distinguishes disordered configurations from such inhomoge-

for bonds alongy; i.e., parallel to the drive. We also define

In equilibrium, the heat bath algorithm is of course isotropic:
For both types of bonds, we select configuratioif a ran-
dom numberz satisfies z<1/(1+e2"): otherwise, we
chooseo’. For the driven case, this rule is only applied to . . . :
bonds transverse to the drive; for parallel bonds, at infifiite ne_ouls Ones 1s .tth.eegu]:'s_ll—tl(rjne structure factor. Written in
we choose configuratioor with probability 1. Spin fanguage, 1t1s defined as

To appreciate the commonalities and differences of the 1 i |2
three algorithms, it is useful to consider a simple example S(k) ML 2 e“ay| ). (10
with infinite drive. Figure 1 shows a central pair and a par- ’
ticular configuration of its six nearest neighbors. If the pairisHere, k is a wave vector, taking discrete valuds
aligned with the field directiofiFigs. Xa) and Xb)], all three  =(27n,/M, 27, /L) with n=0,1,...M-1 and
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Ty

o HO(E,ﬁ)e—(ﬁ'—B)E
PEM= S e

E’

This allows us to compute the moments of the energy distri-
bution as functions of temperature and extract a wealth of
thermodynamic information.

For the driven lattice gas$i(E, B) is easily compiled in a
simulation. However, Eq12) certainly does not hold for the
nonequilibrium steady state. In particular, exact solutions of
small systemg13] demonstrate unambiguously that, at a
given temperature, configurations with the same energy need
not have the same probability. At best, we can write, using
the Kronecker symbol,

@ © @ @ ® (@ o

FIG. 2. Typical configurations on a 48432 lattice for the equi-
librium Ising model using heat bath dynamicsTat=2.00 (a) and _ .
T,=2.80 (b), and for its driven cousin at three temperaturés: H(E.B) = E 5EYH[ff]P(‘T) =exg-F(EpB)], (14)
=2.90 (c), (d), T,=3.30 (e), (f), and Ts=3.70 (g), (h). The first 7
(second configuration at each temperature was obtained using MewhereF(E, 8) is an as yet unknown function of its variables
tropolis (heat bath dynamics. In each simulation, the data were which will certainly depend on the chosen dynamics.
collected after discarding>210’ MCS for the equilibrium system In the following, we probe=(E, 8) by considering a very
and 10 MCS for its driven counterpart. simple ratio: We measure two histograms at different inverse

temperaturesB, and B,, and construct
n,=0,1,... L-1. For simplicity, we writeS(n,,n,) in the )
following, and useS(1,0) andS(0, 1) to detect strips aligned REE') = H(E,B) H(E',8) (15)
with the y or x axis, respectively. For a perfectly ordered ’ H(E',8;) H(E,B,)
strip aligned withy, S(1,0)=0.41ML is maximized in con- for a range of,E’. In equilibrium, this ratio is just a simple
i fi i [tSih,00=0(1). Fur- . nil ’ .
trast, a disordered configuration resultsSid,0)=0(1). Fur exponential: Ry(E E')=exf—(B- B)(EE")], since all

ther, the structure factor is the Fourier transform of the two-n rmalization factor ncel. For the driven tem. little i
point correlation functionG(r), defined via ormalization tactors cancel. or the en system, littie 1S

known except

G(r) = (og0y) — (o) Ty). (11 R(E,E") = exd F(E,B,) — F(E,8) - F(E',8,) + F(E', B1)].
(16)

We assume translational invariangeodulo the lattice size
and invoke the half filling constraint, when¢e,)=(o)=0.
The same constraint imposes the sum &J&(r)=5(0)=0.
Hence negative values @(r) for certain values of the ar-
gument should not come as a surprise.

This form will be analyzed further below.

To conclude this section, we establish a few conventions
and summarize the technical details of the simulations. All
temperatures in the following are quoted in units)okg; an
important reference point is the Onsager temperailye
=-2/In(v2-1) = 2.269[14] which marks the critical point of

D. Energy histograms the two-dimensional Ising model. The equilibrium lattice gas
and the driven system differ only in one paramet&r0 vs

For both the equilibrium Ising model and its driven coun- £=1000, respectively. Such a large value foisuppresses
terpart, it is straightforward to accumulate(@ormalized  (almos) all moves against the drive, and is therefore effec-
energy histograntH(E, B), with respect to the energy func- tively infinite. When a quantity, e.g., the critical temperature
tion defined in Eq.(1). For the equilibrium Ising model, for the driven system, has been measured in different dynam-
Ho(E, B) is intimately related to the Boltzmann distribution: ics, we will use superscripts! (Metropolis, H (heat bath,
if W(E) denotes the density of states afig) the canonical andG (Glaubej to distinguish them, as iy, T, and TS.
partition function, we have The data for structure factors and two-point correlations were
obtained on 10& 100 systems while the histogram simula-
tions used a smaller system size,>80. In each case, 1
Monte Carlo stegMCS) corresponds to one update attempt
per site on average. For the larger system, each run lasted
Clearly, the right-hand side is the probabilRy(E,8) to find 2% 10 MCS. The first 16 MCS were discarded to ensure
the system with energf. The power of the histogram that the system had reached steady state, and data were taken
method[12] resides in the observation that, up to statisticalevery 100 MCS over the second half of the run. For better
errors, a single histogram measured at temperatugid/ statistics, 20 independent runs were performed and averaged.
sufficient to constructPo(E,B’) at all other temperatures For the smaller size, 2 10° MCS were discarded, followed
1/8" by 12x 10° measurements.

Ho(E,8) =Z {BWE)e = (12
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FIG. 3. The pair correlation function for the equilibrium system and its driven counterpart on>allilattice. The left column shows
the Ising lattice gas at=2.47 with Metropolis(a), heat bathb), and Glauberc) dynamics; the right column shows the driven system at
T=3.60 with Metropolis(d), heat bath(e), and Glaubeif) dynamics.

. RESULTS bath and Metropolis dynamics, at three different tempera-
tures. At the lowest temperaturg =2.90 [Figs. 4c¢) and
2(d)], the driven system is ordered for both dynamics. In
stark contrast to the equilibrium case, the interfaces between
We begin our discussion by showing a few typical con-high- and low-density regions are parallel&@nd therefore
figurations of the driven system on a%4&32 lattice. Figures clearly not dominated by energetics. At a slightly higher tem-
2(a) and 2b) are obtained for the equilibrium case, just be- perature,T,=3.30[Figs. 4e) and 2f)], we observe the first
low and above criticality. The preference for horizontal in- glaring discrepancy between the two dynamics: the configu-
terfaces is clearly seen in Fig(@). The remaining configu- ration generated by the heat bath algorithm is still ordered
rations[Fig. 2(c)—2(h)] all show the driven system, for heat while the Metropolis configuration is already disordered!

A. Typical configurations, two-point correlations,
and structure factors
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0.30 . 0.30 7 . dynamics on the other. These are most easily observed in
o Figs. 4c) and 4d). For Metropolis ratesGM(0,y) is positive
sl | s | and decreases monotonically throughkig. 4(c)], while
3 3 GM(x,0) drops rapidly below zero, displays a minimum, and
% then recovers and approaches zero from below. These fea-
000 () < tures have been noted befdis, and are directly related to
h " ” the breaking of detailed baland®,17,1§. The data for
Glauber and heat bath dynamics, while practically indistin-
0.30 . 0.30 . guishable from one another, differ visibly from the Metropo-
@ lis ones. Considering correlations measured along the field
el | tic e | direction first, we observ&H(0,y)=G®(0,y)>GM(0,y) for
< < all y. In other words, Metropolis rates generate weaker cor-
8 relations, consistent with the lowefY. Heat bath and
0.00 |- (b;""‘"h— - ! Glauber rates produce roughly the same correlations; more-
over, these show clear signatures of being very close to criti-
x X cality, evidenced by the distinctly positive value at the largest
y shown: GM(0,40 =G®(0,40=0.07. Highly correlated
FIG. 4. Parallel and transverse two-point correlations for theqomains in the driven system are needle shaped, with the
equilibrium system af=2.47 (a), (b) and for the driven case at peggle pointing along the field, and this small, yet nonzero
T=3.60(c). (d) on a 100<100 lattice. Each plot shows data for \5e indicates that some of these domains are long enough
three dynamics: Metropoligasterisks heat bath(filled squares ) gnan half the system. These precursors of ordering become
and Gcliagbe(cl)pehn cwglei n ((‘;’1) alndéb) aclil data co:lapse, while in - o\en more obvious when we turn to correlatidransverse
(¢) and(d) only heat bath and Glauber data overlap. to the field: The secondary maximum in Figddindicates a

) ) tendency towards forming thin stripes for heat bath and
Eventually, atT3=3.70, both algorithms generate disorderedg|gyper rates.

configurations. Clearly, the two algorithms leaddiferent The structure factors bear out this picture. Again, the in-
critical temperatures, withT; <T. A rough estimate gependence from the rates, and the isotropy near criticality is
bﬁsed on our datg15] results in T;=3.55£0.05 and clearly displayed by the contour plots for the equilibrium
T: =3.15¢0..05. More precise estimatgsg] are available system, shown in Figs.(8-5c), and by the projections
for Metropolis rates onlyT'=3. 198 0119). shown in Figs. 6a) and @b). In the driven casgFigs.

To probe this apparent discrepancy between Metropolig(d)—5(f), 6(c), and Gd)], the presence of strong anisotropy
and heat bath rates further, and to explore the position ok apparent, and the well-known discontinuity singularity at
Glauber rates in this triad, we turn to a more detailed analythe origin [18] is observed easily: lign_oS(ky,0)
sis. In Fig. 3, we show surface plots &f(r) for the Ising 4 |im —0S(0,k,). While these broad features characterize all
lattice gastop row, Figs. 82)-3(c)] and the driven system hree dynamics, the absolute values of the structure factors
[bottom row, Figs. &1)—-3(f)]. The three columns correspond jtfer slightly from one another:SV(k,,k,) is generally
to the three different dynamics: MetropoliBigs. 3a) and smaller than eitheﬂ*(kx,ky) or SG(kX,ky). Méreover, the dis-

3(d)], heat batf{Figs. 3b) and 3e)], and GlaubefFigs. 3c) f icalit b dth h the di ti-
and 3f)] Figure 4 shows selected projections G(I'), ance from criucality can be measure roug e aiscont

G(0,y)
G(0y)

0.00 -

G(x,0)
G(x,0)

namely G(0,y) and G(x, 0), for equilibrium [Figs. 4a) and nuity ratio,

4(b)] and with infinite drive[Figs. 4c) and 4d)]. As dictated IikaﬁOS(kX, 0)
by detailed balance, the correlation functions for ¢lagiilib- §= m
rium systemare independent of dynamics: there are no dis- Ky 0Ty

cernable differences between Figea)33(c), and the data in  which diverges ag — T, [18]. Our data result inSM=7.5,
Figs. 4a) and 4b) collapse within statistical error ba(ess  while S"=S%=34>SM. Our findings confirm, once again,
than 0.01 in absolute unjts The chosen temperature, that the heat bath and Glauber data are effectively much
T=2.47, is close enough to Ising criticality so that lattice closer to criticality than those for Metropolis rates.
anisotropies are irrelevanG(r) is isotropic, with circular
contours centered on the origin. The small negative values
observed at large distances are a consequence of the sum
rule. In the final section, we turn to a brief investigation of
This simple picture becomes considerably more complexenergy histograms. Since Glauber and heat bath rates pro-
when we turn to theriven system[lower row of Fig. 3 and duce essentially identical data, we restrict ourselves in the
Figs. 4c) and 4d)]. The chosen temperaturg=3.60, is following to just heat bath and Metropolis rates. To set the
very close to our estimate for the critical temperature of heascene, we first show two histograms for the equilibrium sys-
bath and Glauber rate§?:TS:3.55 and about 15% above tem, generated at, and slightly above, criticality=2.269
TQ". We immediately note the strong anisotropy induced byand T,=2.369 [Figs. 4a and {b), respectively. As ex-
the drive. Further, there are noticeable differences betweepected, the data for the different dynamics collapse very
Metropolis rates on one hand, and heat bath and Glaubavell, within statistical errors. Not surprisingly, the peak po-

B. Histogram ratio analysis
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FIG. 5. Structure factor con-
tour plots for the equilibrium sys-
tem and its driven counterpart on
a 100x 100 lattice. The left col-
umn shows the Ising lattice gas at
T=2.47 with Metropolis(a), heat
bath (b), and Glaubeic) dynam-
ics; the right column shows the
driven system atf =3.60 with Me-
tropolis (d), heat bath(e), and
Glauber(f) dynamics.

FIG. 6. Parallel and transverse
structure factors for the equilib-
rium system atT=2.47 (a), (b)
and for the driven case af
=3.60(c), (d), on a 100< 100 lat-
tice. Each plot shows data for
three dynamics: Metropoli@ster-
iskg), heat bath (filled squarep
and Glaubefopen circleg Within
error bars(not shown, the data
effectively collapse ina) and(b),
while only heat bath and Glauber
data overlap in(c) and (d). Note
the different scale irgd).
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FIG. 8. Normalized histograms for the driven system using heat
bath (solid line) and Metropolis(dotted ling rates, at3;=1/3.550
(a) and 8,=1/3.650(b). In (c), we show InR,, vs E-E’. Metropo-
FIG. 7. Normalized histograms for the equilibrium system usingjis data are shown as open circles and are takegy a/3.200 and
heat bath(solid line) and Metropolis(dotted ling rates, atB;  5,=1/3.300; the heat bath datdilled circles are taken atg;

=1/2.269(a) and g,=1/2.369 (b). In (), we show InRy vs E =13 550 ands}=1/3.650. Two theoretical lines are showr(8
—E': Data are shown as opgietropolis and filled (heat bath  _ 5 )(E-E’) (dotteg and <B,- BY(E~E') (solid).
squares; the solid line is the expected behaviog;— 3,)(E-E’).

sition shifts to higher energies with increasing temperatureplies to both the equilibrium and the driven case. As we can
while the width is largest at criticality. In Fig.(@), we plot ~ see from Figs. 7 and 8, each histogram displays a well-
the corresponding histogram ratio, §d5), and compare it developed peak. Energies far away from the peak position
to the predicted exponential form. The agreement is ofccur rarely, so that histograms are plagued by large statisti-
course very good. cal errors in those regions. In order to yield a reliable ratio,

With Fig. 8, we enter unfamiliar territory. In analogy to the corresponding histograms should overlap in their statis-
the equilibrium plots, Figs. (@) and §b) display the energy tically meaningful domains. Hence the two chosen tempera-
histograms of the driven system, at two temperatufigs, tures must not lie too far apart.
=3.550 andT,=3.650, for heat bath and Metropolis dynam-  In Fig. &c), we present the histogram ratio for the driven
ics. The chosen temperatures correspond to criticality angystem. For each dynamics, two temperatures close to their
slightly above for heat bath rates; for Metropolis rates, bothfespective critical temperatures were chosen: 3.200 and
are well inside the disordered phase. In contrast to the equi-300 for Metropolis rates, and 3.350 and 3.650 for heat bath
librium case, the histograms clearly depend on the choice dites. Remarkably, we observe that the histogram ratio for
rates: the peak positions are considerably higher for Meboth is again a simple exponential, i.e., Ra(E,E’) «(E
tropolis than for heat bath rates. At the same time, the widttr E’), at least over the range shown. In stark contrast to the
is largest for the system closest to criticality, i.€,=3.550 equilibrium case, there is na priori reason here to expect
with heat bath rates. such behavior. Instead, it indicates tHdE, ) in Eq. (16)

A comment is in order, concerning the judicious choice ofdepends sufficiently smoothly daas to allow an expansion
the two temperatures which enter the histogram ratio. It apin A=E-E’:

066134-8
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JF(E,B) JF(E,By) and higher propagation velocities than Glauber r§& In

In R.(E,E)=-A oE JE +0(A%) contrast, heat bath and Glauber rates partition the unit inter-
val into the same subsections and accept/reject moves ac-
= - aA +O(A?). (17)  cording to this partition. As a result, they generate statisti-

cally indistinguishable trajectories in configuration space,

Hence the slope of the data in FigcBallows us to probe ading to essentially identical data.

. , . e
a, as a function of temperature and dynamics. It mann‘estl;} It is essential to note. however. that thead character-

iffers f h ilibrium f -5,). A - . . i i
d'. ers from the equl ibrium form{/5, '.82) more system . _istics associated with the breaking of detailed balance, are
atic study is required to extract, and interpret, its properties, : o
¢tlearly observed in all three dynamics: all structure factors
show the typical discontinuity singularity at the origin which,

in turn, translates into power law decays of the two-point
We have simulated the equilibrium Ising lattice gas and itscorrelation functions. To summarizeniversalfeatures, as-
driven nonequilibrium counterpart, using three different dy-Sociated withglobal symmetries, remain independentiof
namics: Metropolis, Glauber, and heat bath. In the equilib£al changes of dynamic rules, both near and far from equi-
rium case, all three rate functions satisfy detailed balancébrium. _ _ _
with respect to the Ising Hamiltonian; as a consequence, all N @ second part of this paper, we discuss the energy his-
stationary(time-independeitequilibrium quantities are ex- togramsH(E, ) associated with our two models, generated
pected to be independent of the choice of the dynamicdy heat bath and Metropolis dynamics. For the equilibrium
Apart from unavoidable statistical errors, our equilibrium System, the independence of the choice of dynamics is borne
data are of course perfectly consistent with this expectatiorut again, while differences emerge in the driven case. A
For the driven system, this is no longer the case: due to theimple ratio, R(E,E’), constructed from two histograms
drive, all three rate functions violate detailed balance, andneasured at different temperaturgs and 3,, allows us to
the “decoupling” of stationary properties from the chosenprobe their functional form for a specified dynamics. In equi-
dynamics no longer holds. Measuring two-point correlationdibrium, the canonical distribution prescribes a simple expo-
and structure factors in the disordered phase, we observiential dependence, Ry=—(8;-B2)(E-E’). Remarkably,
distinct differences between the three dynamics. On the oniés nonequilibrium counterpart IR.. is also exponential in
hand, Metropolis rates lead to a lower critical temperature(E—E’). This behavior indicates a smooth dependence of
and hence generally weaker correlations in the disordereB(E, 8)=-In H(E, 8) on E, allowing us to linearize IR, in
phase, than either Glauber or heat bath rates. On the oth€E—E’). The slope of the resulting straight line depends on
hand, the latter two generate practically indistinguishablehe dynamics and probes the derivatit@=/JE). Further,
data. These features can be understood in terms of a feahd more detailed, studies of this type may reveal some of

basic properties of the three rates: At a given temperaturehe hidden “thermodynamics” of this remarkably complex
Metropolis rates tend to accept all moves with a somewhaponequilibrium steady state.

higher probability than the other two rate functions. In other
words, a system which evolves under the Metropolis algo-
rithm “sees” an effectively higher temperature than if it were
running under heat bath or Glauber. A similar observation We thank Royce K. P. Zia and Per A. Rikvold for fruitful
was made recently for field-driven Ising or solid-on-solid discussions. This research was supported in part by National
interfaces, subject to Glauber and Metropolis dynamicsScience Foundation Grants Nos. DMF-0094422 and DMR-
there, Metropolis rates appear to lead to rougher interfaceB088451.

IV. CONCLUSIONS
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