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We derive the mean-field equations characterizing the dynamics of a rumor process that takes place on top
of complex heterogeneous networks. These equations are solved numerically by means of a stochastic ap-
proach. First, we present analytical and Monte Carlo calculations for homogeneous networks and compare the
results with those obtained by the numerical method. Then, we study the spreading process in detail for random
scale-free networks. The time profiles for several quantities are numerically computed, which allows us to
distinguish among different variants of rumor spreading algorithms. Our conclusions are directed to possible
applications in replicated database maintenance, peer-to-peer communication networks, and social spreading
phenomena.
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I. INTRODUCTION

During the last years, many systems have been analyzed
from the perspective of graph theory[1,2]. It turns out that
seemingly diverse systems such as the Internet, the World
Wide Web (WWW), metabolic and protein interaction net-
works, and food webs, to mention a few examples, share
many topological properties[3]. Among these properties, the
fact that one can go from one node(or element) of the net-
work to another node passing by just a few others is perhaps
the most popular property, known as “six degrees of separa-
tion” or the small-world(SW) property[3,4]. The SW fea-
ture has been shown to improve the performance of many
dynamical processes as compared to regular lattices, a direct
consequence of the existence of key shortcuts that speed up
the communication between otherwise distant nodes and of
the shorter path length among any two nodes on the net
[1–3].

However, it has also been recognized that there are at
least two types of networks fulfilling the SW property but
radically different as soon as dynamical processes are run on
top of them. The first type can be called “exponential net-
works” since the probability of finding a node with connec-
tivity (or degree) k different from the average connectivity
kkl decays exponentially fast for largek [5]. The second kind
of networks comprises those referred to as “scale-free”(SF)
networks[6]. For these networks, the probability that a given
node is connected tok other nodes follows a power law of
the form Pskd,k−g, with the remarkable feature thatgø3
for most real-world networks[1,2].

The heterogeneity of the connectivity distribution in
scale-free networks greatly impacts the dynamics of pro-
cesses that they support. One of the most remarkable ex-
amples is that an epidemic disease will pervade in an
infinite-size SF network regardless of its spreading rate
[7–11]. The change in the behavior of the processes is so
radical in this case that it has been claimed that the standard
epidemiological framework should be carefully revisited.
This might be bad news for epidemiologists and those fight-

ing natural and computer viruses. On the other hand, in a
number of important technological and commercial applica-
tions, it is desirable to spread the “epidemic” as fast and as
efficient as possible, not to prevent it from spreading. Impor-
tant examples of such applications are epidemic(or rumor-
based) protocols for data dissemination and resource discov-
ery on the Internet[12–15] and marketing campaigns using
rumorlike strategies(viral marketing).

The above applications and their dynamics have passed
almost unnoticed[16,17] to the physics community working
on complex networks despite the fact that they have been
extensively studied by computer scientists and sociologists
[15,18]. The problem here consists of designing an epidemic
(or rumor-mongering) algorithm in such a way that the dis-
semination of data or information from any node of a net-
work reaches the largest possible number of remaining
nodes. Note that in this case, in contrast to epidemic model-
ing, one is free to design the rules of epidemic infection in
order to reach the desired result, instead of having to model
an existing process. Furthermore, in a number of applica-
tions, such as peer-to-peer file sharing systems[14] built on
top of the Internet and grid computing[19], the connectivity
distribution of the nodes can also be changed in order to
maximize the performance of such protocols.

In this paper we study in detail the dynamics of a generic
rumor model[20] on complex scale-free topologies through
analytic and numerical studies, and investigate the impact of
the interaction rules on the efficiency and reliability of the
rumor process. We first solve the model analytically for the
case of exponential networks in the infinite-time limit and
then introduce a stochastic approach to deal with the numeri-
cal solution of the mean-field rate equations characterizing
the system’s dynamics. The method[21–23] is used to obtain
accurate results for several quantities when the topology of
random SF networks is taken into account, without using
large and expensive Monte Carlo(MC) simulations. The rest
of the paper is organized as follows. Section II is devoted to
introducing the rumor model and to derive the mean-field
rate equations used throughout the paper. In Sec. III we deal
with the stochastic approach and compare its performance
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with analytical and MC calculations in homogeneous sys-
tems. We extend the method to the case of power-law dis-
tributed networks and present the results obtained for this
kind of networks in Secs. IV and V. Finally, the paper is
rounded off in the last section, where conclusions are given.

II. RUMOR MODEL IN HOMOGENEOUS NETWORKS

The rumor model is defined as follows. Each of theN
elements of the network can be in three different states. Fol-
lowing the original terminology and the epidemiological lit-
erature [18], these three classes correspond to ignorant,
spreader, and stifler nodes. Ignorants are those individuals
who have not heard the rumor and hence they are susceptible
to be informed. The second class comprises active individu-
als that are spreading the rumor. Finally, stiflers are those
who know the rumor but that are no longer spreading it. The
spreading process evolves by directed contacts of the spread-
ers with others in the population. When a spreader meets an
ignorant the last one turns into a new spreader with probabil-
ity l. The decay of the spreading process may be due to a
mechanism of “forgetting” or because spreaders learn that
the rumor has lost its “news value.” We assume this latter
hypothesis as the most plausible so that the contacting
spreaders become stiflers with probabilitya if they encoun-
ter another spreader or a stifler. Note that as we are designing
our rumor strategy in such a way that the fraction of the
population which ultimately learns the rumor be the maxi-
mum possible, we have assumed that contacts of the type
spreader-spreader are directed; that is, only the contacting
individual loses interest in propagating the rumor further.
Therefore, there is no double transition to the stifler class.

In a homogeneous system, the original rumor model due
to Daley and Kendall[20] can be described in terms of the
densities of ignorants, spreaders, and stiflers,istd, sstd, and
rstd, respectively, as a function of time. Besides, we have the
normalization condition

istd + sstd + rstd = 1. s1d

In order to obtain an analytical insight and a way to later
test our numerical approach, we first study the rumor model
on top of exponentially distributed networks. These include
models of random graphs as well as the Watts-Strogatz(WS)
small-world model[3,4]. This model produces a network
made up ofN nodes with at leastm links to other nodes. The
resulting connectivity distribution in the random graph limit
of the model[4] takes the form

Pskd =
mk−m

sk − md!
e−m,

which gives an average connectivitykkl=2m. Hence, the
probability that a node has a degreek@ kkl decays exponen-
tially fast and the network can be regarded as homogeneous.

The mean-field rate equations for the evolution of the
three densities satisfy the following set of coupled differen-
tial equations:

distd
dt

= − lkklistdsstd, s2d

dsstd
dt

= lkklistdsstd − akklsstdfsstd + rstdg, s3d

drstd
dt

= akklsstdfsstd + rstdg, s4d

with the initial conditionsis0d=sN−1d /N, ss0d=1/N, and
rs0d=0. The above equations state that the density of spread-
ers increases at a rate proportional to the spreading ratel,
the average number of contacts of each individualkkl, and to
the densities of ignorant and spreader individuals,istd and
sstd, respectively. On the other hand, the annihilation mecha-
nism considers that spreaders decay into the stifler class at a
rate akkl times the density of spreaders and of nonignorant
individuals 1−istd=sstd+rstd.

The system of differential equations(2)–(4) can be ana-
lytically solved in the infinite-time limit whenss`d=0. Us-
ing Eq.(1), we have thate0

` sstddt=r`=limt→`rstd. Introduc-
ing the new variableb=1+l /a we obtain the transcendental
equation

r` = 1 −e−br`. s5d

Equation(5) always admits the trivial solutionr`=0, but
at the same time it also has another physically relevant solu-
tion for all values of the parametersl and a. This can be
easily appreciated since the condition

d

dr`

s1 − e−br`dr`=0 . 1 s6d

reduces tol /a.0. That is, there is no “rumor threshold”
contrary to the case of epidemic spreading[8]. This strik-
ingly different behavior does not come from any difference
in the growth mechanism ofsstd—the two are actually the
same—but from the disparate rules for the decay of the
spreading process.

On the other hand, this result also points out that a math-
ematical model for the spreading of rumors can be con-
structed in many different ways. The results of this paper,
however, indicate that the presence of spreader annihilation
terms due to spreader-spreader and spreader-stifler interac-
tions is very relevant for practical implementations[24,25].
We shall come back to this point later on.

III. STOCHASTIC NUMERICAL APPROACH

Recently[23], we have introduced a numerical technique
[21] to deal with the mean-field rate equations appearing in
epidemiclike models. It solves the differential equations by
calculating the passage probabilities for the different transi-
tions. The main advantage of this method, as compared to
MC simulations, is its modest memory and CPU time re-
quirements for large system sizes. Besides, we do not have to
generate any network. Instead, we produce a sequence of
integers distributed according to the desired connectivity dis-
tribution Pskd. The numerical procedure here proceeds as
follows. At each time step until the end of the rumor spread-
ing process, the following steps are performed
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(i) Identify from the mean-field rate equations the transi-
tion probabilities per time unit from one state into the fol-
lowing one— that is, from thei class to thes class,Wi→s,
and finally to ther class,Ws→r.

(ii ) Calculate the mean time intervalt for one transition
to occur. This is determined as the inverse of the sum of all
the transition probabilities:t=1/sWi→s+Ws→rd.

(iii ) Stochastically decide what transition will actually
take place. This is done by deciding that the probabilities for
both transitions are given byPi→s=Wi→st and Ps→r
=Ws→rt, respectively, materializing the choice by generating
a random number between 0 and 1.

The numerical algorithm described above does not de-
pend on the topological features of the network on top of
which the rumor dynamics is taking place. Indeed, all the
topological information, including correlations, enters in the
computation of the transition probabilities. We should note
here that the present results are obtained for uncorrelated
networks. The method could also be applied to correlated
networks without explicit generation of them. In that case,
one should work with the two-point correlation function
Psk,k8d [23] instead of usingPskd. On the other hand, a
correlated network could be built up as in[26].

In order to gain confidence with the method and to show
its soundness, we show in Table I the values ofr` obtained
from Eq. (5), MC simulations, and the stochastic approach
for homogeneous networks. In this case, the transition prob-
abilities are the same for all the elements within a given class
(i, s, or r) irrespective of their actual connectivities. From
Eqs.(2)–(4) we get

Wi→sstd = Nlkklistdsstd, s7d

Ws→rstd = Nakklsstdfsstd + rstdg, s8d

for the transitions from the ignorant to the spreader class and
from the spreader to the stifler class, respectively.

It can be seen from Table I that the difference between the
SNA result and the MC simulations is less that 1.4%, indi-
cating the reliability of the SNA approach. The remaining
small differences between the SNA and MC results is mainly
due to the fact that the homogeneous SNA model does not
take into account the exponentially decaying fluctuations in
the connectivity of WS networks. On the other hand, MC

simulations of the rumor dynamics for a network made up of
N=104 nodes, averaged over at least 10 different network
realizations and 1000 iterations, took several hours. Eventu-
ally, this method takes up to a few days when increasing the
system size and decreasing the value ofa. On the contrary,
the stochastic approach is very fast. Indeed, for the same
parameter values, the numerical simulation takes around
5 min CPU time in a 2.0-GHz-P4 PC. Therefore, having
such a method will allow us to scrutinize very efficiently and
accurately the whole phase diagram and time profiles of the
process under study. In what follows, we analyze in detail the
dynamics of the rumor spreading process by numerically
solving the mean-field rate equations for SF networks.

IV. POWER-LAW DISTRIBUTED NETWORKS

The heterogeneity of the connectivity distribution inherent
to SF networks significantly affects the dynamical evolution
of processes that take place on top of these networks
[7–11,27–30]. We have learned in recent years that the fluc-
tuations of the connectivity distribution,kk2l, cannot be ne-
glected even for finite-size systems[9]. Thus, the system of
differential equations(2)–(4) should be modified accord-
ingly. In particular, we should take into account that nodes
could not only be in three different states, but also they be-
long to different connectivity classesk. Let us denote by
ikstd, skstd, andrkstd the densities of ignorants, spreaders, and
stiflers with connectivityk, respectively. In addition, we have
that ikstd+skstd+rkstd=1. The mean-field rate equations now
read as

dikstd
dt

= − lkikstdo
k8

k8Psk8dsk8std

kkl
, s9d

dskstd
dt

= lkikstdo
k8

k8Psk8dsk8std

kkl

− akskstdo
k8

k8Psk8dfsk8std + rk8stdg

kkl
, s10d

drkstd
dt

= akskstdo
k8

k8Psk8dfsk8std + rk8stdg

kkl
, s11d

wherePskd is the connectivity distribution of the nodes and
ok8k8Psk8dsk8std / kkl is the probability that any given node
points to a spreader. We start from a randomly selected
spreader and all the remaining nodes in the ignorant class.
The summation in Eq.(10) stands for the probability that a
node points to a spreader or a stifler. Note that, as before, we
do not allow for double transitions from the spreader to the
stifler class. Next, we compute the respective transition prob-
abilities. In this case, we should also consider that transitions
from one state into another also take place within connectiv-
ity classes. Thus, the transition probabilities depend onk as
well. From Eq.(10) we obtain

TABLE I. Density of stiflers at the end of the rumor spreading
process. Results are shown for five different values ofa for each
method considered. Monte Carlo(MC) simulations were performed
in a WS network withkkl=6 andN=104 nodes. The same system
size was used in the stochastic numerical approach(SNA).

a Eq. (5) MC SNA

1 0.7968 0.813 0.802

0.5 0.9404 0.962 0.954

0.25 0.9930 0.986 0.987

0.2 0.9974 0.996 0.997

0.1 0.9999 0.998 0.999

DYNAMICS OF RUMOR SPREADING IN COMPLEX NETWORKS PHYSICAL REVIEW E69, 066130(2004)

066130-3



Wi→sst,kd = lkNPskdikstdo
k8

k8Psk8dsk8std

kkl
, s12d

Ws→rst,kd = akNPskdskstdo
k8

k8Psk8dfsk8std + rk8stdg

kkl
,

s13d

where all the topological information is contained. Finally
for the mean time interval afteri −1 transitions,t, we find at
each time step

t =
1

Wi→sstd + Ws→rstd
, s14d

with Wi→sstd=ok Wi→sst ,kd, Ws→rstd=ok Ws→rst ,kd, and t
=o j

i−1 t j, where thet j’s are the mean times of thei −1 pre-
vious transitions. At this point, the identification of what
transition takes place and which connectivity class is affected
proceeds as defined in step(iii ) of the previous section.

V. RESULTS AND DISCUSSION

The stochastic method described above can be used to
explore several quantities characterizing the dynamics of the
rumor spreading process. Throughout the rest of the paper
we setl=1 without loss of generality and vary the value of
a. We first generated a sequence of integers distributed ac-
cording toPskd,k−g with g=3 andkkl=6. As initial condi-
tion we userkst=0d=0 and

skstd = 5 1

NPskd
, k = ki ,

0, otherwise,

s15d

whereki is the connectivity of the randomly chosen initial
spreader. The results are then averaged over at least 1000
different choices ofki.

One of the most important practical aspects of any rumor
mongering process is whether or not it reaches a high num-
ber of individuals. This magnitude is simply given by the
final density of stiflers and is called thereliability of the
rumor process. However, it is also of great importance for
potential applications that higher levels of reliability are
reached as fast as possible, which constitutes a practical mea-
sure of the cost associated with such levels of stiflers. For
example, in technological applications, where one may con-
sider several strategies[24,25], it is possible to define a key
global quantity, the efficiency of the process, which is the
ratio between the reliability and the traffic imposed to the
network. For these applications it is not only important to
have high levels of reliability but also to achieve these with
the lowest possible load resulting from the epidemic proto-
col’s message passing traffic. This is important in order to
avoid network congestion and also to reduce the amount of
processing power used by nodes participating in the rumor
process.

In order to analyze, from a global perspective, this trade-
off between reliability and cost, we use time as a practical

measure of efficiency. We call a rumor process less efficient
than another if it needs more time to reach the same level of
reliability. Figure 1 shows the time evolution of the density
of stiflers for several values of the parametera. It turns out,
as expected, that the number of individuals who finally
learned the rumor increases as the probability of becoming
stifler decreases. On the other hand, the time it takes forRstd
to reach its asymptotic value slightly increases witha−1, but
clear differences do not arise for the two extreme values of
a. In fact, for a given time after the beginning of the rumor
propagation, the density of stiflers scales with the inverse of
a. This behavior is further corroborated in the inset, where
the growth of the density of spreaders as time goes on is
shown for the same values of the parametera. While the
peaks of the curves get larger and larger, the times at which
the maxima are reached are of the same order of magnitude
and thus the meantimes of the spreading processes do not
differ significantly.

Figure 2 shows another aspect worth taking into account
when dealing with rumor algorithms. For a given level of
reliability, it is also of interest to know the distribution of
ignorants(or stiflers) by classesk. The figure shows a coarse-
grained picture of Fig. 1, where the density of ignorantsik
according to the connectivity of the individuals has been
represented for different values ofa. The results indicate that
the probability of having an ignorant with a connectivityk, at
the end of the rumor propagation, decays exponentially fast
with a sharp cutoffkc for large connectivity values, which
depends ona. In fact, kc is always well below the natural
cutoff of the connectivity distributions,102d even for small
values ofa. This implies that hubs effectively learn the ru-
mor.

We can further scrutinize the dynamics of the rumor
spreading process by looking at the final density of stiflers
when the initial spreader has a given connectivityki. Figure 3
represents the reliability as a function of time(in units of
a−1) when the rumor starts propagating from a node of con-
nectivityki =kmin=3, ki =kkl=6, ki =20, andki =kmax,280 for
two different values ofa: 0.1 (main figure) and 1.0(inset).

FIG. 1. Time evolution of the density of stifler individuals for
different values ofa. From below, the values ofa go from 1.0 to
0.1 at fixed increments of 0.1. The inset shows the time dependence
of the density of spreaders. The system size isN=104, kkl=6, and
g=3. Time is in units ofa−1.
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Interestingly, the final value ofRstd does not depend on the
initial seed, but reaches the same level irrespective of the
connectivity of the very first spreaderki. This is a genuine
behavior of the rumor dynamics and is the opposite to what
has been observed in other epidemic models like the SIR
model [8], where the final number of recovered individuals
strongly depends on the connectivity of the initially infected
individuals. However, a closer look to the spreading dynam-
ics tell us that not all is the same for different initial spread-
ers.

The figure also indicates that as the connectivity of the
seed is increased, the time it takes for the rumor to reach the
asymptotic value decreases, so that for a fixed time length
the number of individuals in the stifler class is higher whenki
gets larger. This feature suggests an interesting alternative for
practical applications: start propagating the rumor from the

most connected nodes. Even in the case that no direct link
exits between a node that is willing to spread an update and
a hub, a dynamical(or temporal) shortcut to a well-
connected node could be created in order to speed up the
process. With this procedure, the density of stiflers at the
intermediate stages of the spreading process could be as
much different as 30% for moderate values ofa. This trans-
lates in less costs, because one can always implement an
algorithm that will destroy the actual spreading when a given
level of reliability is reached. Note, however, that this behav-
ior slightly depends ona, the differences being always ap-
preciable, but more important asa increases.

Finally, we have exploited the fastness of the stochastic
approach used here to explore the consequences of imple-
menting three different annihilation rules for the rumor
spreading decay. In particular, we consider that the spreading
process dies out proportionally only to the number of spread-
ers (ss interactions) or to the number of stiflers(sr interac-
tions). This modifies the terms entering in the sum of Eqs.
(10) and(11) so that now the transition probabilities from the
s into the r class read

Ws→r
ss st,kd = akNPskdskstdo

k8

k8Psk8dsk8std

kkl
, s16d

Ws→r
sr st,kd = akNPskdskstdo

k8

k8Psk8drk8std

kkl
, s17d

respectively. Table II summarizes the reliability of the pro-
cess as a function ofa for the three mechanisms considered
[31]. The results indicate that in all variants, the final density
of stifler individuals is higher than for the “classical” setting.
However, in order to evaluate the efficiency of the process
from a global perspective, we must look at the time evolution
of the densities as we did before.

In Figs. 4 and 5 we have represented the time(in units of
a−1) profiles ofRstd andSstd for each decay term and several
values ofa. From the figures, it is clear that while the final

FIG. 2. Density of ignorantsik at the end of the rumor process as
a function of their connectivityk. A clear exponential decay can be
appreciated for all values ofa shown. This implies that hubs have
efficiently learned the rumor.

FIG. 3. Density of stiflers as a function of time fora=0.1 (main
figure) anda=1.0 (inset) when the initial spreader has the connec-
tivity indicated in the inset. Note that in all cases the final density of
individuals who have learned the rumor is the same, but the
asymptotic value is reached at different times. The model param-
eters are as in Fig. 1. Time is in units ofa−1.

TABLE II. Density of stiflers at the end of the rumor spreading
process. Results are shown for ten different values ofa for each
annihilation term considered. Simulations were performed for a net-
work with kkl=6 andN=104 nodes. See the text for further details.

a Rsss+rd Rsr Rss

1 0.592 0.857 0.985

0.9 0.635 0.886 0.989

0.8 0.674 0.911 0.991

0.7 0.710 0.938 0.993

0.6 0.766 0.960 0.993

0.5 0.818 0.967 0.997

0.4 0.871 0.980 0.997

0.3 0.925 0.997 0.998

0.2 0.962 0.999 0.999

0.1 0.988 0.999 0.999
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density of stiflers increases when modifying the original de-
cay rules, the time needed to reach such high levels of reli-
ability also increases. This is due to the fact that the tails of
the densities of spreaders decay more slowly than before. In
particular, it is noticeable that when only spreader-spreader
interactions are taken into account in the decay mechanism,
the lifetime of the propagation process is more than 2 times
longer than for the other two settings. This means that this
implementation is not very suitable for practical applications
as the costs associated to the process rise as well. On the
other hand, the performance of the spreader-stifler setting

seems to depend on the value ofa in such a way that it is
more efficient at both the reliability level and time consump-
tion for a largea, but not in the middle region of the param-
eter space. In summary, the present results support that the
original model works quite well under any condition, while
other variants can be considered depending on the value ofa
used and the type of applications they are designed for.

VI. CONCLUSIONS

In this paper, we have analyzed the spreading dynamics of
rumor models in complex heterogeneous networks. We have
first introduced a useful stochastic method that allows us to
obtain meaningful time profiles for the quantities character-
izing the propagation process. The method is based on the
numerical solution of the mean-field rate equations describ-
ing the model, and contrary to Monte Carlo simulations,
there is no need of generating explicitly the network. This
allows to save memory and a fast exploration of the whole
evolution diagram of the process.

The kind of processes studied here are of great practical
importance since epidemic data dissemination might become
the standard practice in multiple technological applications.
The results show that there is a fragile balance between dif-
ferent levels of reliability and the costs(in terms of time)
associated to them. In this sense, our study may open new
paths in the use of rumor mongering process for replicated
database maintenance, reliable group communication, and
peer-to-peer networks[12–15,32,33]. Besides, as shown
here, the behavior and features of the different algorithms
one may implement are not trivial and depend on the type of
mechanisms used for both the creation and annihilation
terms. It is worth noting here that we have studied the sim-
plest possible set of rumor algorithms, but other ingredients
such as memory must be incorporated in more elaborated
models[24,25].

Of further interest would be a more careful exploration of
the possibility of using dynamical shortcuts for a more effi-
cient spreading of the updates. Our results suggest that it
would be more economic to start from hubs and then destroy
the updating process when a given level of reliability is
reached than starting at random and letting the process die
out by itself. Preliminary studies of more elaborate models
aimed at implementing a practical protocol confirm our re-
sults [25]. This feature is especially relevant for the under-
standing and modeling of social phenomena such as the
spreading of new ideas or the design of efficient marketing
campaigns.
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FIG. 4. Stifler’s growth as a function of time for three different
annihilation mechanisms as explained in the text. Curves show the
time profiles for the two extreme values ofa used in the simula-
tions: a=1.0 (lower curves) and 0.1(higher curves). The curve for
s-s interactions is fora=0.1 and is not complete for clarity. Time is
in units of a−1.

FIG. 5. Growth and decay of the populations of spreaders when
the annihilation mechanism includes interactions of the types-s and
s-r or only s-r or s-s. Curves show the time profiles for the two
extreme values ofa used in the simulations:a=1.0 (lower curves)
and 0.1 (higher curves). Note that although the final number of
stiflers when onlys-s interactions enter in the decay mechanism is
low, the time it takes for the rumor to reach the asymptotic value is
very high as compared to the other two mechanisms. Curves corre-
sponding to thes-s interactions are not complete for clarity. Time is
in units of a−1.
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