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Dynamics of rumor spreading in complex networks
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We derive the mean-field equations characterizing the dynamics of a rumor process that takes place on top
of complex heterogeneous networks. These equations are solved numerically by means of a stochastic ap-
proach. First, we present analytical and Monte Carlo calculations for homogeneous networks and compare the
results with those obtained by the numerical method. Then, we study the spreading process in detail for random
scale-free networks. The time profiles for several quantities are numerically computed, which allows us to
distinguish among different variants of rumor spreading algorithms. Our conclusions are directed to possible
applications in replicated database maintenance, peer-to-peer communication networks, and social spreading

phenomena.
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I. INTRODUCTION ing natural and computer viruses. On the other hand, in a

number of important technological and commercial applica-

During the last years, many systems have been analyzdtbns, it is desirable to spread the “epidemic” as fast and as
from the perspective of graph theof¥,2). It turns out that efficient as possible, not to prevent it from spreading. Impor-
seemingly diverse systems such as the Internet, the Worl@nt examples of such applications are epide(oicrumor-
Wide Web (WWW), metabolic and protein interaction net- based protocols for data dissemination and resource discov-
works, and food webs, to mention a few examples, shar€ry on the Internef12-13 and marketing campaigns using
many topological propertig8]. Among these properties, the rumorlike strategiegviral marketing. _
fact that one can go from one noder element of the net- The above applications and their dynamics have passed
work to another node passing by just a few others is perhagdmost unnoticed16,17 to the physics community working
the most popular property, known as “six degrees of separd2? complex networks despite the fact that they have been
tion” or the small-world(SW) property[3,4]. The SW fea- extensively studied by computer scientists and sociologists

ture has been shown to improve the performance of man 5,18. The proble_zm here consists of designing an epld(_emlc
dynamical processes as compared to regular lattices, a direq} rumor-mongeringalgorithm in such a way that the dis-

y P ) P 9 ' mination of data or information from any node of a net-
consequence of the existence of key shortcuts that speed

th :cation bet therwise distant nod q rk reaches the largest possible number of remaining
€ communication between otherwise distant nodes and Qlygeg Note that in this case, in contrast to epidemic model-

the shorter path length among any two nodes on the nghg one s free to design the rules of epidemic infection in
[1-3. ) ) order to reach the desired result, instead of having to model
However, it has also been recognized that there are gfn existing process. Furthermore, in a number of applica-
least two types of networks fulfilling the SW property but tions, such as peer-to-peer file sharing syst&hd built on
radically different as soon as dynamical processes are run agp of the Internet and grid computii@9], the connectivity
top of them. The first type can be called “exponential net-djstribution of the nodes can also be changed in order to
works” since the probability of finding a node with connec- maximize the performance of such protocols.
tivity (or degreg k different from the average connectivity  |n this paper we study in detail the dynamics of a generic
(k) decays exponentially fast for largg5]. The second kind  rumor model[20] on complex scale-free topologies through
of networks comprises those referred to as “scale-f(t&)  analytic and numerical studies, and investigate the impact of
networks[6]. For these networks, the probability that a giventhe interaction rules on the efficiency and reliability of the
node is connected tk other nodes follows a power law of rumor process. We first solve the model analytically for the
the form P(k) ~k™”, with the remarkable feature that<3  case of exponential networks in the infinite-time limit and
for most real-world network§l,2]. then introduce a stochastic approach to deal with the numeri-
The heterogeneity of the connectivity distribution in cal solution of the mean-field rate equations characterizing
scale-free networks greatly impacts the dynamics of prothe system’s dynamics. The methi@—23 is used to obtain
cesses that they support. One of the most remarkable exccurate results for several quantities when the topology of
amples is that an epidemic disease will pervade in amandom SF networks is taken into account, without using
infinite-size SF network regardless of its spreading ratdarge and expensive Monte Caxl®lC) simulations. The rest
[7-11. The change in the behavior of the processes is sof the paper is organized as follows. Section Il is devoted to
radical in this case that it has been claimed that the standaidtroducing the rumor model and to derive the mean-field
epidemiological framework should be carefully revisited.rate equations used throughout the paper. In Sec. Il we deal
This might be bad news for epidemiologists and those fightwith the stochastic approach and compare its performance
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with analytical and MC calculations in homogeneous sys- ds(t) )

tems. We extend the method to the case of power-law dis- “at = MR (Ds(t) — a(Kys)[s(t) +r ()], (3
tributed networks and present the results obtained for this

kind of networks in Secs. IV and V. Finally, the paper is

rounded off in the last section, where conclusions are given. d;_(tt) = a(K)s(t)[s(t) +r(t)], (4)

II. RUMOR MODEL IN HOMOGENEOUS NETWORKS . . . .
with the initial conditionsi(0)=(N-1)/N, s(0)=1/N, and

The rumor model is defined as follows. Each of the r(0)=0. The above equations state that the density of spread-
elements of the network can be in three different states. Folers increases at a rate proportional to the spreading\rate
lowing the original terminology and the epidemiological lit- the average number of contacts of each individigaland to
erature [18], these three classes correspond to ignoranthe densities of ignorant and spreader individuals, and
spreader, and stifler nodes. Ignorants are those individualgt), respectively. On the other hand, the annihilation mecha-
who have not heard the rumor and hence they are susceptibigsm considers that spreaders decay into the stifler class at a
to be informed. The second class comprises active individurate (k) times the density of spreaders and of nonignorant
als that are spreading the rumor. Finally, stiflers are thosg,qiviquals 14(t)=s(t) +r(t).
who know the rumor but that are no longer spreading it. The The system of differential equatiori&)—(4) can be ana-
spreading process evolves by directed contacts of the spre fically solved in the infinite-time limit whers(-<)=0. Us-

ers with others in the population. When a spreader meets o —r =i )
ignorant the last one turns into a new spreader with probabﬁ— g Eq.(1), we have tha, s(hidt=r.. =lim,_..r (0. Introduc

ity \. The decay of the spreading process may be due to ing thg new variablgg=1+\/a we obtain the transcendental
mechanism of “forgetting” or because spreaders learn thaet\quatlon
the rumor has lost its “news value.” We assume this latter r,=1-e P, (5)
hypothesis as the most plausible so that the contacting ] ) o )
spreaders become stiflers with probabilityif they encoun- Equation(5) always admits the trivial solution.=0, but
ter another spreader or a stifler. Note that as we are designirdj ('€ same time it also has another physically relevant solu-
our rumor strategy in such a way that the fraction of thetion for all values of the parameteps and a. This can be
population which ultimately learns the rumor be the maxi-€2Sily appreciated since the condition
mum possible, we have assumed that contacts of the type d
spreader-spreader are directed; that is, only the contacting —
individual loses interest in propagating the rumor further. dr..
Therefore, there is no double transition to the stifler class. reduces ton/a>0. That is, there is no “rumor threshold”

In a homogeneous system, the original rumor model dugontrary to the case of epidemic spreadiiy This strik-
to Daley and Kendal[20] can be described in terms of the ingly different behavior does not come from any difference
densities of ignorants, spreaders, and stiflgt3, s(t), and  in the growth mechanism of(t)—the two are actually the
r(t), respectively, as a function of time. Besides, we have thgame—but from the disparate rules for the decay of the
normalization condition spreading process.

. _ On the other hand, this result also points out that a math-
i) +sO+r(H=1. (1) ematical model for the spreading of rumors can be con-

In order to obtain an analytical insight and a way to laterstructed in many different ways. The results of this paper,
test our numerical approach, we first study the rumor modehowever, indicate that the presence of spreader annihilation
on top of exponentially distributed networks. These includeterms due to spreader-spreader and spreader-stifler interac-
models of random graphs as well as the Watts-Strogl®)  tions is very relevant for practical implementatiofist, 2.
small-world model[3,4]. This model produces a network We shall come back to this point later on.
made up olN nodes with at leagh links to other nodes. The
resulting connectivity distribution in the random graph limit

(1-eF), o>1 (6)

of the model[4] takes the form Ill. STOCHASTIC NUMERICAL APPROACH
k-m m Recently[23], we have introduced a numerical technique
P(k) = (k—m)! €, [21] to deal with the mean-field rate equations appearing in

epidemiclike models. It solves the differential equations by

which gives an average connectiviti)=2m. Hence, the calculating the passage probabilities for the different transi-
probability that a node has a degties (k) decays exponen- tions. The main advantage of this method, as compared to

tially fast and the network can be regarded as homogeneoudIC simulations, is its modest memory and CPU time re-
The mean-field rate equations for the evolution of thequirements for large system sizes. Besides, we do not have to
three densities satisfy the following set of coupled differen-generate any network. Instead, we produce a sequence of

tial equations: integers distributed according to the desired connectivity dis-
. tribution P(k). The numerical procedure here proceeds as
di(t) _ _ ; follows. At each time step until the end of the rumor spread-
== MK (D)s(t), 2 ;
dt ing process, the following steps are performed
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TABLE I. Density of stiflers at the end of the rumor spreading simulations of the rumor dynamics for a network made up of
process. Results are shown for five different valuestdér each  N=10* nodes, averaged over at least 10 different network
method considered. Monte CarlbIC) simulations were performed  realizations and 1000 iterations, took several hours. Eventu-
in a WS network with(k)=6 andN=10" nodes. The same system g|ly, this method takes up to a few days when increasing the

size was used in the stochastic numerical appra&&in). system size and decreasing the valueroDn the contrary,

the stochastic approach is very fast. Indeed, for the same
a Eq. () MC SNA parameter values, the numerical simulation takes around
1 0.7968 0813 0.802 5 min CPU time in a 2.0-GHz-P4 PC. Therefore, having

such a method will allow us to scrutinize very efficiently and

0.5 0.9404 0.962 0.954 accurately the whole phase diagram and time profiles of the
0.25 0.9930 0.986 0.987 process under study. In what follows, we analyze in detail the
0.2 0.9974 0.996 0.997 dynamics of the rumor spreading process by numerically
0.1 0.9999 0.998 0.999 solving the mean-field rate equations for SF networks.

(i) Identify from the mean-field rate equations the transi- IV. POWER-LAW DISTRIBUTED NETWORKS

tion probabilities per time unit from one state into the fol-
lowing one— that is, from thé class to thes class,W,_,
and finally to ther class,W;_,,.

(i) Calculate the mean time intervalfor one transition
to occur. This is determined as the inverse of the sum of als
the transition probabilitiest=1/(W,_s+Ws_.,).

(iii) Stochastically decide what transition will actually
take place. This is done by deciding that the probabilities fo
both transitions are given bJl;_=W,_¢r and Ilg_,
=W, _,, 7, respectively, materializing the choice by generating
a random number between 0 and 1.

The heterogeneity of the connectivity distribution inherent
to SF networks significantly affects the dynamical evolution
of processes that take place on top of these networks
7-11,27-30 We have learned in recent years that the fluc-
uations of the connectivity distributiok?), cannot be ne-
glected even for finite-size systerf§. Thus, the system of
Igjifferential equations(2)—4) should be modified accord-
ingly. In particular, we should take into account that nodes
could not only be in three different states, but also they be-
long to different connectivity classds Let us denote by

The numerical algorithm described above does not dei-k(t)' s(1), andry() the densities of ignorants, spreaders, and

pend on the topological features of the network on top Ofstn‘lers with connectivityk, respectively. In addition, we have

which the rumor dynamics is taking place. Indeed, all thethatik(t)+sk(t)+rk(t):l' The mean-field rate equations now

topological information, including correlations, enters in the'®2d as
computation of the transition probabilities. We should note

here that the present results are obtained for uncorrelated dL(t):—)\ki (I)E K'P(K')s: () 9)
networks. The method could also be applied to correlated dt K o (k) '
networks without explicit generation of them. In that case,
one should work with the two-point correlation function
P(k,k") [23] instead of usingP(k). On the other hand, a ds(t) } kK'P(k")se (1)
correlated network could be built up as[i26]. gt Ak'k(t)E, %)
In order to gain confidence with the method and to show K
its soundness, we show in Table | the values.obbtained K'P(K")[Se (1) + 1 (t)]
from Eg. (5), MC simulations, and the stochastic approach - aks() > ® , (10
for homogeneous networks. In this case, the transition prob- K’
abilities are the same for all the elements within a given class
(i, s, orr) irrespective of their actual connectivities. From B s (1) + 1)
Egs.(2)—(4) we get dnd® _ aks(t) >, KPIOLS® + 1 (t)], (11)
dt " (k)
Wi_s(t) = NNK)i(D)s(t), (7

whereP(K) is the connectivity distribution of the nodes and
W (1) = Na(K)s(t)[s(t) +r(t)], (8) 2wk'P(K)sc(t)/(k) is the probability that any given node
points to a spreader. We start from a randomly selected
for the transitions from the ignorant to the spreader class angpreader and all the remaining nodes in the ignorant class.
from the spreader to the stifler class, respectively. The summation in Eq(10) stands for the probability that a
It can be seen from Table | that the difference between th@ode points to a spreader or a stifler. Note that, as before, we
SNA result and the MC simulations is less that 1.4%, indi-do not allow for double transitions from the spreader to the
cating the reliability of the SNA approach. The remaining stifler class. Next, we compute the respective transition prob-
small differences between the SNA and MC results is mainlyabilities. In this case, we should also consider that transitions
due to the fact that the homogeneous SNA model does ndtom one state into another also take place within connectiv-
take into account the exponentially decaying fluctuations irity classes. Thus, the transition probabilities dependk ais
the connectivity of WS networks. On the other hand, MCwell. From Eq.(10) we obtain
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. k'P(K")s (1) Lor ]
Wit = AN 2 — = (12 09 | ]
K 0.8
0.7
K P(K')[ i (1) + 10 (1)] s ]
W, (1) = akNPUS(D S - o6 | _
K Y o5 |- ]
o~ F i
(13 04 - ]
where all the topological information is contained. Finally 031 ]
for the mean time interval aftér 1 transitions,r, we find at 02 ]
each time step 0.1 —J 1
00 1 | L 1 1 1 L [ 1 | 1
_ 1 (14) 0 5 10 15 20 25 30
WO+ W () e
with W_ ()=, Wi_(t,k), W, (1)=2, W,_,(t,k), and t FIG. 1. Time evolution of the density of stifler individuals for

different values ofa. From below, the values af go from 1.0 to

0.1 at fixed increments of 0.1. The inset shows the time dependence
fo the density of spreaders. The system sizBlis10%, (k)=6, and
y=3. Time is in units ofa™.

:2}'1 7, where ther's are the mean times of the-1 pre-
vious transitions. At this point, the identification of what
transition takes place and which connectivity class is affecte
proceeds as defined in st@p) of the previous section.
measure of efficiency. We call a rumor process less efficient
than another if it needs more time to reach the same level of
V- RESULTS AND DISCUSSION reliability. Figure 1 shows the time evolution of the density
The Stochastic method described above can be used Rj Stiﬂers f0r Sevel’a| Va|ueS Of the pal’ameﬁeﬂt turns Out,
explore several quantities characterizing the dynamics of th@s expected, that the number of individuals who finally
rumor spreading process. Throughout the rest of the papéggrned the rumor increases as the probgblht_y of becoming
we set\=1 without loss of generality and vary the value of stifler decreases. On the other hand, the time it takeR(igr

a. We first generated a sequence of integers distributed aé0 reach its asymptotic value slightly increases witH, but
cording toP(k) ~ k™ with y=3 and(k)=6. As initial condi-  clear differences do not arise for the two extreme values of

tion we user,(t=0)=0 and «a. In fact, for a given time after the beginning of the rumor
propagation, the density of stiflers scales with the inverse of

1 : a. This behavior is further corroborated in the inset, where
sdt) =1 NP(K)’ k=ki, (15) the growth of the density of spreaders as time goes on is

shown for the same values of the parameteiWhile the
peaks of the curves get larger and larger, the times at which
wherek; is the connectivity of the randomly chosen initial the maxima are reached are of the same order of magnitude
spreader. The results are then averaged over at least 1080d thus the meantimes of the spreading processes do not
different choices ok;. differ significantly.

One of the most important practical aspects of any rumor Figure 2 shows another aspect worth taking into account
mongering process is whether or not it reaches a high nunwhen dealing with rumor algorithms. For a given level of
ber of individuals. This magnitude is simply given by the reliability, it is also of interest to know the distribution of
final density of stiflers and is called theliability of the ignorantg(or stiflerg by classe&. The figure shows a coarse-
rumor process. However, it is also of great importance foigrained picture of Fig. 1, where the density of ignoraipts
potential applications that higher levels of reliability are according to the connectivity of the individuals has been
reached as fast as possible, which constitutes a practical megpresented for different values @f The results indicate that
sure of the cost associated with such levels of stiflers. Fothe probability of having an ignorant with a connectivityat
example, in technological applications, where one may conthe end of the rumor propagation, decays exponentially fast
sider several strategig24,25, it is possible to define a key With a sharp cutoffk; for large connectivity values, which
global quantity, the efficiency of the process, which is thedepends on. In fact, k. is always well below the natural
ratio between the reliability and the traffic imposed to thecutoff of the connectivity distributioli~10?) even for small
network. For these applications it is not only important tovalues ofa. This implies that hubs effectively learn the ru-
have high levels of reliability but also to achieve these withmor.
the lowest possible load resulting from the epidemic proto- We can further scrutinize the dynamics of the rumor
col's message passing traffic. This is important in order tospreading process by looking at the final density of stiflers
avoid network congestion and also to reduce the amount ofhen the initial spreader has a given connectiljtyFigure 3
processing power used by nodes participating in the rumorepresents the reliability as a function of tini@ units of
process. a~') when the rumor starts propagating from a node of con-

In order to analyze, from a global perspective, this tradenectivity k =kqin=3, ki=(k)=6, k;=20, andk; =kqa,~ 280 for
off between reliability and cost, we use time as a practicatwo different values ofx: 0.1 (main figure and 1.0(inse.

0, otherwise,
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U

10

. —— TABLE Il. Density of stiflers at the end of the rumor spreading
process. Results are shown for ten different values dbr each
annihilation term considered. Simulations were performed for a net-

e L Soo, | work with (k)=6 andN=10" nodes. See the text for further details.
*-o .
*. — @ Rs(s+r) RSr RSs
e
=107 *—00=0.1 . 1 0.592 0.857 0.985
A—A =02 0.9 0.635 0.886 0.989
B m0=05 0.8 0.674 0.911 0.991
» *—o =10
107 | - 0.7 0.710 0.938 0.993
0.6 0.766 0.960 0.993
0.5 0.818 0.967 0.997
10-3 | | | P R B
0 5 10 15 20 25 30 35 40 0.4 0.871 0.980 0.997
k 0.3 0.925 0.997 0.998
0.2 0.962 0.999 0.999
FIG. 2. Density of ignorantg, at the end of the rumor process as 0.1 0.988 0.999 0.999

a function of their connectivitk. A clear exponential decay can be
appreciated for all values af shown. This implies that hubs have
efficiently learned the rumor.

most connected nodes. Even in the case that no direct link
exits between a node that is willing to spread an update and
Interestingly, the final value dR(t) does not depend on the 3 nhub, a dynamical(or temporal shortcut to a well-
initial seed, but reaches the same level irrespective of theonnected node could be created in order to speed up the
connectivity of the very first spreadéy. This is a genuine process. With this procedure, the density of stiflers at the
behavior of the rumor dynamics and is the opposite to whajntermediate stages of the spreading process could be as
has been observed in other epidemic models like the SliRhuch different as 30% for moderate valuesaofThis trans-
model[8], where the final number of recovered individuals lates in less costs, because one can a|Ways imp|ement an
strongly depends on the connectivity of the initially infected algorithm that will destroy the actual spreading when a given
individuals. However, a closer look to the spreading dynamievel of reliability is reached. Note, however, that this behav-
ics tell us that not all is the same for different initial spread-jor slightly depends onw, the differences being always ap-
ers. preciable, but more important asincreases.

The figure also indicates that as the connectivity of the Finally, we have exploited the fastness of the stochastic
seed is increased, the time it takes for the rumor to reach tl’@pproach used here to exp|ore the consequences of imp|e-
asymptotic value decreases, so that for a fixed time lengthhenting three different annihilation rules for the rumor
the number of individuals in the stifler class is hlgher Wkﬁ‘n Spreading decay_ In particu|ar, we consider that the Spreading
gets larger. This feature suggests an interesting alternative fgirocess dies out proportionally only to the number of spread-
practical applications: start propagating the rumor from theers (ssinteractions or to the number of stiflergsr interac-
tions). This modifies the terms entering in the sum of Egs.

1.0 (10) and(11) so that now the transition probabilities from the
- . sinto ther class read
“l 1] K P(K)s0 (1)
] S/
I 1] WE.,(t,K) = akNP(K)s¢() > e (16)
06 - 1 " kK
g 3 From Right to Left 1 4
04 | . k=3, k=6, k=20, k=280 1 k’P(k’)rk,(t)
I - 1 WE",(t,K) = akNPK)s (1) > R (17)
02 P01 23 456 7 - <
—j} time 1 respectively. Table 1l summarizes the reliability of the pro-
00 W | T S cess as a function af for the three mechanisms considered

0 5 10 15 20 25 30

| [31]. The results indicate that in all variants, the final density
time

of stifler individuals is higher than for the “classical” setting.
FIG. 3. Density of stiflers as a function of time fa=0.1(main  HOwever, in order to evaluate the efficiency of the process

figure) and «=1.0 (inseh when the initial spreader has the connec- from a 9|0b§‘|_ perspective, we must look at the time evolution

tivity indicated in the inset. Note that in all cases the final density ofof the densities as we did before.

individuals who have learned the rumor is the same, but the In Figs. 4 and 5 we have represented the t{ineunits of

asymptotic value is reached at different times. The model parame *) profiles ofR(t) andS(t) for each decay term and several

eters are as in Fig. 1. Time is in units af™. values ofa. From the figures, it is clear that while the final
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el 2 A B seems to depend on the value ®in such a way that it is
T I 1 more efficient at both the reliability level and time consump-
og L/ i tion for a largee, but not in the middle region of the param-
i / eter space. In summary, the present results support that the

original model works quite well under any condition, while
7 other variants can be considered depending on the value of
S—5 & s—r 1 used and the type of applications they are designed for.

R(t)

] VI. CONCLUSIONS

n In this paper, we have analyzed the spreading dynamics of
1 rumor models in complex heterogeneous networks. We have
Ll first introduced a useful stochastic method that allows us to
30 35 40 45 S0 obtain meaningful time profiles for the quantities character-

izing the propagation process. The method is based on the

FIG. 4. Stifler's growth as a function of time for three different pumerlcal solution of the mean-field rate equations describ-

annihilation mechanisms as explained in the text. Curves show thi'd th_e model, and Contrary to Mo_n’Fe Carlo SImuIatlon_s,

time profiles for the two extreme values afused in the simula- there is no need of generating explicitly th_e network. This

tions: a=1.0 (lower curve$ and 0.1(higher curves The curve for aIIows- to sgve memory and a fast exploration of the whole

s-sinteractions is for=0.1 and is not complete for clarity. Time is €Volution diagram of the process. .

in units of aL. The kind of processes studied here are of great practical
importance since epidemic data dissemination might become

the standard practice in multiple technological applications.

density of stiflers increases when modifying the original de . . X
cay rules, the time needed to reach such high levels of re"'_l'he results show that there is a fragile balance between dif-

ability also increases. This is due to the fact that the tails O;erent levels of reliability and the cost terms of timg

the densities of spreaders decay more slowly than before. Iﬁ:fr?scﬁiﬂgou;zeg"anmt:;]:Snfg:S:fir?ur rs:éggsn;g?/ rgpﬁga?:(;l,v
particular, it is noticeable that when only spreader-spread gernng p P

interactions are taken into account in the decay mechanisn‘i‘,atabase maintenance, reliable group communication, and

o : . : eer-to-peer networkg12-15,32,33 Besides, as shown
the lifetime of the propagation process is more than 2 time . . .
longer than for thep ot[k)legr] two sF()attings. This means that thigere‘ the behavior and features of the different algorithms

implementation is not very suitable for practical applica’[ionsOne may implement are not trivial and depend on the type of

as the costs associated to the process rise as well. On tl%echanlsms used for both the creation and annihilation

other hand, the performance of the spreader-stifler settin rms. It IS worth noting here tha_t we have StUd'e.d the Sim-
lest possible set of rumor algorithms, but other ingredients

such as memory must be incorporated in more elaborated

o ' S models[24,25.
N ) Of further interest would be a more careful exploration of
08 s-s&s-r - the possibility of using dynamical shortcuts for a more effi-
- :: - cient spreading of the updates. Our results suggest that it

- would be more economic to start from hubs and then destroy
the updating process when a given level of reliability is
reached than starting at random and letting the process die
out by itself. Preliminary studies of more elaborate models
~~el - aimed at implementing a practical protocol confirm our re-
———- sults[25]. This feature is especially relevant for the under-
N standing and modeling of social phenomena such as the
il T spreading of new ideas or the design of efficient marketing

S

8 10 12 14 campaigns.
time
FIG. 5. Growth and decay of the populations of spreaders when ACKNOWLEDGMENTS
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