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Postcollapse dynamics of self-gravitating Brownian particles and bacterial populations
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We address the postcollapse dynamics of a self-gravitating gas of Brownian partiéediimensions in
both canonical and microcanonical ensembles. In the canonical ensemble, the postcollapse evolution is marked
by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-
similarly with decreasing central density and increasing core radius. In the microcanonical ensemble, the
postcollapse regime is marked by the formation of a “binarylike” structure surrounded by an almost uniform
halo with high temperature. These results are consistent with thermodynamical predictions in astrophysics. We
also show that the Smoluchowski-Poisson system describing the collapse of self-gravitating Brownian particles
in a strong-friction limit is isomorphic to a simplified version of the Keller-Segel equations describing the
chemotactic aggregation of bacterial populations. Therefore, our study has direct applications in this biological
context.
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[. INTRODUCTION Kramers-Poisson system. In a strong-friction lingitr for
o large time$ it reduces to the Smoluchowski-Poisson system.

Self-gravitating systems such as globular clusters and elfhese equations conserve mass and decrease the Boltzmann
liptical galaxies constitute a Hamiltonian system of particlesfree energy[11]. They possess a rich physical and math-
in interaction that can be supposed isolated in a first approxiematical structure and can lead to a situation of “isothermal
mation[1]. Since energy is conserved, the proper descriptiorollapse,” which is the canonical version of the gravothermal
of stellar systems is the microcanonical ensenile The catastrophe. These equations have not been considered by
dynamical evolution of elliptical galaxies is governed by theastrophysicists because the canonical ensemble is not the
Vlasov-Poisson system which corresponds to a collisionlessorrect description of stellar systems and the usual astro-
regime. On the other hand, the kinetic theory of globularphysical bodies do not experience friction with a gexcept
clusters is based on the Landau-Poisson systerthe orbit-  dust particles in the solar nebula2]). Yet it is clear that the
averaged Fokker-Planck equatjmhich describes a colli- self—grav_itating B_rownia_n gas model iS_ of considerable con-
sional evolution. These equations conserve mass and ener@gPtual interest in statistical mechanics to understand the
Furthermore, the Landau equation increases the Boltzmargirange thermodynamics of systems with long-range interac-
entropy (H theorem due to stellar encounters. These equa-ions and the inequivalence of statistical ensembles. In addi-
tions have been studied for a long time in the astrophysicdi©n: it provides one of the first models of stochastic particles
literature and a relatively good physical understanding hag.'th long-range interactions, thereby extending the classical
now been achievefll]. In particular, globular clusters can instein-Smoluchowski modgll3] to a more general con-

: ; « text [11].
experience "core collap4e-] related to the “gravothermal In addition, it turns out that the same type of equations
catastrophe” concep?].

F i i | int . tatistical occurs in biology in relation to the chemotactic aggregation
or systems with long-range Interactions, stalistical Engy pcterig| populationgl4]. A general model of chemotactic
sembles are not equivalef#f]. Therefore, it is of conceptual

. : . ; aggregation has been proposed by Keller and Sgidglin
interest to compare the microcanonical evolution of stella 99reg prop y Fiog

. . ) the form of two coupled partial differential equations. In
systems to a canonical one in order to emphasize the anal@g o approximation, this model reduces to the

gies and differences. This can be achieved by considering &n,4chowski-Poisson systei]. Therefore, there exists an
gas of self-gravitating Brownian particlg§] subject 10 a g5y orhismbetween self-gravitating Brownian particles
friction originated from the presence of an inert gas and to %nd bacterial colonies. Nonlocal drift-diffusion equations
stochast_ic forcémodeling Furbulent quctu_ations, collisions, analogous to the Smoluchowski-Poisson system have also
etc). This system has a rigorous canonical structure Whe_rﬁeen introduced in two-dimensional hydrodynamics in rela-
the temperaturel’ measures the strength of the stochastiGiy 14 the formation of large-scale vortices such as Jupiters

force. Thus, we can precisely check the thermodynamic reat red spotl6—18. These analogies aive further physical
predictions of Kiesslind9] and Chavani§10] obtained in interest to EUE Brov?ﬁian model gies give iu physi

the cano_nical ensemblfa. In the mean-figld apprqximation, the In a recent series of papej8,19,2Q, we have studied the
self-gravitating Brownian gas model is described by thedynamics and thermodynamics of self-gravitating Brownian
particles confined within a spherical box of radiRsin a
space of dimensio®. In these works, we focused on the
*Electronic address: Clement.Sire@irsamc.ups-tlse.fr precollapse regime. In the canonical situatifixed tempera-
"Electronic address: Chavanis@irsamc.ups-tise.fr ture T) we showed that a critical temperaturgexists below
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which the system undergoes a gravitational collapse leadinmean-field one, the physical formation of binaries is replaced
to a finite-time singularity at=t,. Fort—t,, the evolu- by the type of structures mentioned above. The formation of
tion is self-similar in the sense that the density profilea “Dirac peak” containing the whole mass in canonical en-
evolves asp(r,t)=po(t)f(r/rq(t)) wheref(x) is independent sembles and the formation of “binaries” in microcanonical
of time. Forx— +, f(x) ~x"* with «=2. The central den- ensembles are expected from thermodynamical consider-
sity increases agy~ (t;oy—t)* and the core radius decreasesations[23,9,2,10,24,1P These are the structures which pro-
asro~ (teo—t)*'*. For T=0, the exponent i&=2D/(D+2).  voke a divergence of free ener¢at fixed mass and tempera-
The scaling profiles can be calculated analytically. These reture) and entropy(at fixed mass and energyrespectively
sults can be compared with those of Peng@tj who con-  [19]. All these analytical results are confirmed by numerical
sidered an isothermal collapse modeled by the Euler-Jeargmulations of the Smoluchowski-Poisson system in Secs. VI
equations. We also introduced a microcanonical descriptioand VII. We were able in particular to “cross the singularity”
of Brownian particles by letting the temperatufé) evolve  att=t., and describe the postcollapse dynamics.

in time so as to conserve energy. This can provide a simpli-

fied model for the violent relaxation of collisionless stellar

systemq17] or, simply, a numerical algorithifil1] to deter- Il. ANALOGY BETWEEN SELF-GRAVITATING
mine what the maximum entropy state is at fifeedndM. In BROWNIAN PARTICLES AND BACTERIAL
the microcanonical situation, there exists a critical en&gy POPULATIONS

(Antonov energy below which the system collapses. Ror
— 1., there exists a pseudoscaling regime wherpasses
very slowly from ay,,=2.21... to a=2. Numerical simula- We consider a system of self-gravitating Brownian par-
tions suggest thak(t) remains finite at=t., so that the true ticles described by thBl coupled stochastic equations
scaling regime corresponds &=2, as in the canonical situ- ar. v
ation[20,22. —=v, —
What happens after,.? By investigating the casgé=0, dt dt
we found in[19] that the evolution continues in the postcol- hare s is the friction coefficientD’ is the diffusion coeffi-
lapse regime with the formation of a Dirac peak accreting.jont andR;(t) is a white noise satisfyindR;())=0 and
more and more mass &é(t) ~ (t—t.;)’? while the density (Rai(';)ij(t')l>:5ij 5,,3(1—1), wherea,b=1, ...I D refer to

outside th_e peak evolve:? self-s!m|larly .Wlth decreas!ng “®Nthe coordinates of space amg=1,... N to the particles.
tral density po~ (t—t.)"= and increasing core radius

S . : : The particles interact via the potentidU(ry,...,r
~ (t=teon) P22 Our aim in this paper is to investigate the P P (s N

postcollapse regime foF #0 in both canonical and micro- =Ziju(r;=ry). In this paperu(ri-r;) is the Newtonian bi-
. . nary potential inD dimensions. The stochastic proce4s
canonical ensembles. In Sec. Il, we emphasize the analogP/

A. Self-gravitating Brownian particles

==&, - VU(ry, ... Fy) +V2D'Ri(D), (1)

between self-gravitating Brownian particles and bacterial efines doy modelof gravitational dynamics which extenc_js
. . : he classical Brownian mod¢l3] to the case of stochastic
populations. In the following, we shall use astrophysical ter-

. articles in interaction. In this context, the friction is due to
minology but we stress that our results apply equally well t . : .

. . the presence of an inert gas and the stochastic force is due to
biology where the chemotactic model has more concrete

physical applications. In Sec. Ill, we set the notation andclassmal Brownian motion, turbulence, or any other stochas-

. : ._tic effect.
recall the main results concerning the precollapse dynamics. Starting from theN-body Fokker-Planck equation and us-

In Sec. IV, we study the postcollapse dynamic§aD by a . e g .
method different fron{19], which can be generalized at fi- ing a mean-field approxlmatlo[QS,zq, we can derive the
nonlocal Kramers equation

nite temperature. The postcollapse dynamic$at0 is pre-

cisely considered in Sec. V. In the canonical ensemble, we of  of a9 of

show that the system forms a Dirac peak whose mass in- Y +VE + FE = E(D,&v + §fV>,
D/2-1 H R 7

creases ad/(t) ~ (t—teon) while the density profile for

r>0 expands self-similarly withpo~ (t—tso) ™t andro~(t ~ whereF=-V® is the smooth gravitational force felt by the

—ton) Y2 For large times, the system is made of a Dirac peakoarticles. The gravitational potentidl is related to the den-

of mass~M surrounded by a light gas of Brownian particles Sity p=/fd°v by the Poisson equation

(with negligible self-interaction Due to thermal motion, AD = S,Gp 3)

complete collapse takes an infinite tif@ntrary to the case '

T=0). Fort— +o, the mass contained in the Dirac peak in-where S is the surface of the uniD-dimensional sphere.

creases as 1IM(t)/M ~exp(—\t) where is the fundamental Equation(2) can be considered as a generalized version of

eigenvalue of a quantum problem. For-0, we find that the Kramers-Chandrasekhar equation introduced in a homo-

AN=1/4T+cp/TY3+---. In the microcanonical ensemble, the geneous mediurf27]. In this work, the diffusion and friction

postcollapse regime is very pathological. The system tends tmodel stellar encounters in a simple stochastic framework.

create a “Dirac peak of 'Omass” surrounded by a uniform The condition that the Maxwell-Boltzmann distribution be a

halo with infinite temperature. The central structure is remi-stationary solution of Eq(2) leads to the Einstein relation

niscent of a “binary star” containing a weak masa<€M &=D’'pB where B=1/T is the inverse temperatu@e have

=Nm but a huge binding energy comparable to the potentiaincluded the mass of the particles and the Boltzmann con-

energy of the whole cluster. Since our model is essentially atant in the definition off). In our case, we dmot assume

(2)
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that the medium is homogeneous, so that we have to solve In order to prevent finite-time singularities and infinite
the Kramers-Poisson system. This makes the study muatiensities, we can consider a model of self-gravitating
more complicated than usual. Up to date, we do not knowBrownian fermions, enforcing the constraifi 7, (Pauli
any astrophysical application of this model although thereexclusion principlé The corresponding Kramers equation
could be connections with the process of planetesimal formatakes the form
tion in solar nebulg12]. Whatever, this model is interesting
to develop from a conceptual point of view because it pos- of + a_f + (7_f - i[ ,of + _ }

: : v_—+F flp=-tiv|. (9
sesses a rigorous thermodynamical structure and presents the aor N N N
same features as more realistic mod@sthermal distribu- ) strong-friction limit, we obtain a Smoluchowski equa-
tions, collapse, phase transitions, gtdzor this Brownian tion of the form
model, the relevant ensemble is the canonical one since the
temperatureT is fixed. Therefore, the Kramers-Poisson sys- dp 1
tem can be viewed as the canonical counterpart of the E:V' E(VP*'PV@) : (10)
Landau-Poisson system. It is interesting to study these two
models in parallel to illustrate dynamically the inequivalencewhere p(p) is the equation of state of the Fermi gas. The
of statistical ensembles for systems with long-range interacfermionic Smoluchowski-Poisson system has been studied in
tions. [30]. Generalized Kramers and Smoluchowski equations are

To simplify the problem further, we shall consider the introduced in[11].

strong-friction limit £&—+ or, equivalently, the limit of
large timest> £ 1. In that approximation, we can neglect the

inertia of the particles. Then, the coupled stochastic equa- B. Keller-Segel model
tions (1) simplify to The name chemotaxis refers to the motion of organisms
(amoeba induced by chemical signal@crasin. In some
g% =-V,U(ry, ... ry) + V2D'R;(1). (4) cases, the biological organisms .secrete a substance that has
dt an attractive effect on the organisms themselves. Therefore,

, ) _ .. _in addition to their diffusive motion, they move systemati-
Furthermore, to leading order, the velocity distribution is 1y along the gradient of concentration of the chemical they
Maxwellian, secretgchemotactic flux When attraction prevails over dif-
D2 fusion, the chemotaxis can trigger a self-accelerating process
f(r,v,t) = <ﬁ> p(r,t)e-BUZ/Z, (5) until a point at which aggregation takes place. This is the
2 case for the slime moldictyostelium Discoideunand for

and the Kramers equation reduces to the Smoluchowsl%he bacterlisch.encma coli[14]. . .
A model of slime mold aggregation has been introduced

equation by Keller and Sege]15] in the form of two coupled differ-
ap 1 ential equations
E:V- E(TVp+pV(I)) . (6) 5
L=v.(D,vp)-V (D, V0, (11)
It can be shown that the Kramers equation decreases the Jt
Boltzmann free energy
Jdc
o =-k(c)c+f(c)p+D.Ac. (12

2
Flf]=E- TS:f £ Pr Py + = f pddPr
2 2 In these equations(r ,t) is the concentration of amoebae and
c(r,t) is the concentration of acrasin. Acrasin is produced by
the amoebae at a raf¢c). It can also be degraded at a rate
_ . k(c). Acrasin diffuse according to Fick’s law with a diffusion
i.e., F<0 andF=0 at statistical equilibriunm{canonicalH coefficientD.. The amoeba concentration changes as a result
theorem. Similarly, the Smoluchowski equation decreasesof an oriented chemotactic motion in the direction of a posi-
the free energy-[p] which is obtained fronF[f] by using tive gradient of acrasin and a random motion analogous to
the fact that the velocity distribution is Maxwellian in the diffusion. In Eq.(11), Dy(p,c) is the diffusion coefficient of
strong-friction limit. This leads to the classical expression the amoebae and,(p,c) is a measure of the strength of the
influence of the acrasin gradient on the flow of amoebae.
This chemotactic drift is the fundamental process in the
problem.
A first simplification of the Keller-Segel model is pro-
The passage from the Kramers equation to the Smoluvided by the system of equations
chowski equation in the strong-friction limit is classi¢as].
It can glso be obtained formally from a Chapman-Enskog ap =DAp-xV -(pVo), (13)
expansion29]. ot

+Tf fIn fd®rdPv; (7

1
F[p]:TprnpdDr+§de>dDr. (8)

066109-3



C. SIRE AND P. H. CHAVANIS PHYSICAL REVIEW E69, 066109(2004)

Jc ) From now on, we seM=R=G=£¢=1 and we restrict our-
o - D'Ac+ap-be, (14 selves to spherically symmetric solutions. The equations of
the problem become
where the parameters are positive constants. An additional
simplification, introduced by Jager and Lauckh@sd|, con- P =V - (TVp+pVd) (20)
sists in ignoring the time derivative in E¢L4). This is valid at ’
in the case where the diffusion coefficidht is large. Taking

alsob=0, we obtain Ad =Syp, (21
ap _ B with proper boundary conditions in order to impose a van-
a DAp=xV -(pVo), (15 ishing particle flux on the surface of the confining sphere.

These read
Ac=-\p, (16)

wherex=a/D’. Clearly, these equations are isomorphic to
the Smoluchowski-Poisson systef8)—6) describing self-
gravitating Brownian particles in a strong-friction limit. In
particular, the chemotactic flux plays the same role as th
gravitational drift in the overdamped limit of the Brownian
model. When chemotactic attraction prevails over diffusion,
the system is unstable and the bacteria start to aggregate. ap 1 5{ D_1<

b 1 ap
—(0,1)=0, P()=——=, T—(1) +p(1)=0, (22
S (00=0, (D)= —=, T2 () +p(1) =0, (22)
for D>2. ForD=2, we taked(1)=0 on the boundary. Inte-
rating Eq.(21) once, we can rewrite the Smoluchowski-
oisson system in the form of a single integro-differential
equation

This blowup is similar to the collapse of self-gravitating sys- —- = p=1-.

ap p ' ’ D=1,
o Ol T—+—55 | p(r)Sr=—dr’ | ¢

tems in a canonical situation. We note that in the Keller- axor 0
Segel model, the diffusion coefficient can depend on the den- (23
sity, leading to anomalous diffusion. Such a situation iSTh total L h f the Kineti q
considered in[20] where the nonlinear Smoluchowski- tenet'a?(i)netpsr%%;ss'glven as the sum of Ihe kinetic and po-
Poisson system is studied. : ibutions:
The Keller-Segel model ignores clumping and sticking 1 5
effects. However, at the late stages of the blowup, when the E=_T+7 J pPd-r. (24)
) . LT 2 2
density of amoebae has reached high values, finite-size ef-
fects and stickiness must clearly be taken into account. As a The Smoluchowski-Poisson system is also equivalent to a
first step, we can propog@6] to replace the classical equa- single differential equation
tion (15) by an equation of the form )
oM M D-1oM 1 oM
p a N\ T a9
E:DAP‘XV [p(oo—p) V c], (17)
for the quantity

which enforces a limitatiorp(r ,t) <oy on the maximum ;

density of amoebae. This is the counterpart of the model of M(r,t) :f p(r')Sor’P4dr (26)
self-gravitating Brownian fermioni80]. These types of non- 0

local Fokker-Planck equations also occur in two-dimensional | . . I
(2D) hydrodynamics and astrophysics in relation with theWh'.Ch represents th? mass contained W.'thm the sphere of
formation of large-scale vortices and galaxj&ég,1§. Their radiusr. The appropriate boundary conditions are
systematic study is clearly of broad inter¢si]. M(0,t) = Ng(t), M(1,t)=1, (27)

where Ny(t)=0, except if the density develops a condensed
Dirac peak contribution at=0, of total masN(t). It is also
convenient to introduce the functicr,t)=M(r,t)/rP satis-

Ill. COLLAPSE DYNAMICS OF SELF-GRAVITATING
BROWNIAN PARTICLES

A. Smoluchowski-Poisson system fying
At a given temperatur@ controlling the diffusion coeffi- Js #s D+1ds Js
cient, the densityp(r,t) of self-gravitating Brownian par- E:T ?+ T + rE+Ds S. (28)
ticles satisfies the following coupled equations:
%) 1
P V. {—(TV ptpV @)} , (18) B. Self-similar solutions of the Smoluchowski-Poisson
ot ¢ system
AD =S,Gp, (19) In [8,19,2Q, we have shown that in the canonical en-

semble(fixed T), the system undergoes gravitational collapse
where® is the gravitational potential arfg} is the surface of below a critical temperaturé; depending on the dimension
the unitD-dimensional sphere. of space. The density develops a scaling profile, and the cen-
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tral density grows and diverges at a finite tig. The case

D=2 was extensively studied [19] and turns out to be very

PHYSICAL REVIEW E 69, 066109(2004)

M(ro(t),t) ~ po(Oro(®) ~ T22(te - )21 (39)

peculiar. Throughout this paper, we restrain ourselves to th&herefore, the collapse doest create a Dirac peakblack
more generic casB > 2, although other dimensions play a hole”).

special role as far as static properties are concelsed
We look for self-similar solutions of the form

; T\v2
P(hU—Po(U‘{%): ro—(%) ,

where King's radius defines the size of the dense cfig&
In terms of the mass profile, we have

(29

r

M(r,t)=MO<t>g( ) with Mo(t) = por2, (30

ro(t)
and
g(x) = SDJX f(x")x'Ptdx’. (31)
0
In terms of the functiors, we have
r . (X)
s(r,t) :po(t)$<m>, with S(x) = gX—D. (32

Substituting the ansai82) into Eq. (28), we find that

dpog .y _ P09l
at S0 g S ™
. pé(sm + 252500 + xS0 (0 + DS(x)Z),
(33)

where we have set=r/r,. The variables of position and
time separate provided thagzdpoldt is a constant that we
arbitrarily set equal to 2. After time integration, this leads to

1
Po() = 5 (teon = ), (34)

In [19], we have also studied the collapse dynamic¥ at
=0 for which we obtained

po(t) ~ S_Dl(tcoll - t)_lr

as previously, but the core radius is not given anymore by
King’s radius which vanishes foF=0. Instead, we find

(39)

ro~po ", (40
with
a= D2-l[-)2' (41
The scaling functiorS(x) is only known implicitly:
D+2

where K is a known constantsee [19] for detaily, S(0)
=2/(D+2), and the largec¢ asymptoticsS(x)~ f(x) ~x"*.
The mass within the core radius is now

M(ro(t),t) ~ po(Drg(t) ~ (teon —1)°'2, (43)

and it again tends to zero as-t.y,. Comparing Eqs(38)
and (43) suggests that if the temperature is very small, an
apparent scaling regime corresponding to Thed case will
hold up to a crossover time, with

teo — te ~ TP2, (44)

Abovet., the T # 0 scaling ultimately prevails.

IV. POSTCOLLAPSE DYNAMICS AT T=0

So far, all studies concerning the collapse dynamics of

so that the central density becomes infinite in a finite timeself-gravitating Brownian particles have concentrated on the

teon- The scaling equation now reads

D+
2S+xS =9+

18’ +S(xS +DY9). (35

X

The scaling solution of Eq.35) was obtained analytically in
[19] and reads

= 36
X D-2+x (36)
which decays with an exponent=2. This leads to
4D-2) x2+D 4xP
f(x) = , =—. (3
() S, (D-2+x27 g(x) D24 (37)

Note finally that within the core radiug, the total mass
in fact vanishes at—t;,. Indeed, from Eq(30), we obtain

time periodt<t.,. A natural question arises: what is hap-
pening fort >t,,? The first possible scenario is that the state
reached at=t.,, is in fact a stationary state. However, it is
easy to checksee[8]) that this is absolutely not the case. In
addition, the preceding study leads to a sort of pard@dk
Indeed, we know that the statistical equilibrium state in the
canonical ensemble is a Dirac pegk10]. This is not the
structure that forms dt=t.,. This structure is singular at the
origin (p~r~2) but different from a Dirac peakn particular
the central mass is zexadrhis means that the evolutionust
continue aftety,. In particular, we will show that the Dirac
peak predicted by statistical mechanics forms in the postcol-
lapse regime.

The scenario that we are now exploring is the following.
A central Dirac peak containing a masg(t) emerges at
t>t.q, Whereas the density far>0 satisfies a scaling rela-
tion of the form
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r r
p(r,t) = Po(t)f(%) , (45) s(r,t) = poﬁﬁ(m) , (52

wherepo(t) is now decreasing with timgstarting frompy(t ~ with S(0)=D~* and
=t.on) — +°] andrg(t) grows with time[starting fromr(t 0 = r(f)a 53
=t.o1)=0]. As time increases, the residual mass for0 is po®) =1o(0”*, (53

progressively swallowed by the dense core made of particleghere r, is thus defined without ambiguity. Inserting this

which have fallen on each other. It is the purpose of the res§caling ansatz in Eq51) and defining the scaling variable
of this paper to show that this scenario actually holds, as wek=r/r,, we find
as to obtain analytical and numerical results illustrating this
final collapse stage. 1 dpg B No 1

In this section, we present an alternative treatment to thata_pgﬁ(as+ xS)=8(DS+xS) + ;rng(DSJr XS - 1).
of [19], where this scenario was analytically shown to hold at
T=0. This new approach is a good introduction to the gen- (54)
eral T+ 0 case which is studied in the next section. We refefjynosing scaling, we find that both time-dependent coeffi-
the reader tq19] for an explicit solution of théT=0 post-  cjents appearing in Eq54) should be in fact constant. We
collapse regime, which, we found, leads to a central peals define a constapt such that
containing all the mass in a finite tintg,4

For T=0, the dynamical equation for the integrated mass No= MPofc? (55)
M(r,t) reads

and set
oM 1 M

a e (49 29

= -k, 56
aps dt “ (56)

with ndar ndition . . o
th boundary conditions with x>0, as the central residual density is expected to de-

M(0,t) = Ng(t), M(L,H)=1. (47) ~ crease. Equation(56) implies that py~ (t—t.,;)~%, which
' ' ' along with Eq.(53) implies thatNg~ (t—t.,;)”*1. We thus
We definep, such that, for smalt, find a power law behavior foN,, which, in order to be
5 compatible with Eq(49), leads to
r
M(r,t) = No(t) = po(t) = +- . (48) D
D po() = |~ = 1)t~ tean)™ (57)
Up to the geometrical factdB‘Dl, po(t) is the central residual
density (the residual density is defined as the density afte@nd then to
the central peak has been subtragtdebr r=0, Eq. (46) 1
leads to the evolution equation fbk: K= D . (58)
-
dNo We end up with the scali i
o = poNo. (49) e end up with the scaling equation

1
As No(t)=0 for t<t.y, and since this equation is a first order 5 a(aS+ xS) +S(DS+xS) + ux °(DS+xS - 1) =0.
differential equation, it looks likéNy(t) should remain zero
for t>t,, as well. However, since pg(teon) (59)
=+, ther(_e is mathematically speaking no global solution forg gy, Eq.(59), we find that the large-asymptotics ofS is
this equation and nonzero values fd(t) can emerge from  gy) — x-« |n a short finite time aftet,, it is clear that the
Eq. (49, as will soon become clear. large-distance behavior of the density profite>ro) cannot
We then define dramatically change. We deduce that the deca should
M(r.t) - No(t) match the behavior for time slightly less thig, for V\_/hich
S(r,t) = ———2 (500 S(X)~x?®®*2 Hence the value ofx should remain un-
r changed before and aftey,. Finally, we obtain the follow-

. . ing exact behaviors for short times a :
which satisfies 9 fteg)

s [ o N[ 7 ()= (= tog) (60
S S S =(t- :
—:(r—+Ds>s+ —E?(r—+Ds—p0>. (51) SR
ot ar r ar
By definition, we have alss(0,t)=py(t)/D. Fo(t) = (E)(D+2>/2D(t_t )(D+2)/2D (61)
We now look for a scaling solution of the form 0 coll '
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2\P? s ((925 D+ 1&5) ( s )
No(t) = pl =] (t—teon)™2 62 —=T| 5+ —|+(r—+Ds|s
0( ) M( D) ( coll) ( ) at o2 r oo o
We note the remarkable result that the central residual den- N No &_S+ Ds— 70
sity p(0,t)=S5lpo(t) displays a universal behavior just after o\r S™Po)- (70)
teon, @ result already obtained [19]. Moreover, we find that
No(t) has the same form as the mass found within a sphere ddy definition, we have agais(0,t)=py(t)/D.
radiusrg(t) belowt,, given in Eq.(43). We look for a scaling solution of the form
Moreover, the scaling functio8 satisfies
r
D+2( 2D ) S(r,t)=po(t)5<—), (72)
0 (D+25+ xS’) +S(DS+xS) + ux °(DS+xS - 1) rot)
-0 63) with S(0)=D. As before, we define King's radius by
The constaniu is determined by imposing that the large- (T 2
behavior ofs(r,t) [or p(r,t)] exactly match(not be simply fo= g : (72)

proportionaj that obtained below,, which depends on the

shape of the initial condition as shown[ib9]. Equation(63)  For t<t,, we hads(r,t)~4Tr 2 [or S(x) ~4x?]. In a very

can be solved implicitly by looking for solutions of the form short time aftet,,, this property should be preserved, which
xP=7[S(x)]. After cumbersome but straightforward calcula- implies that the postcollapse scaling function should also be-

tions, we obtain the implicit form have as
D D D/(D+2) -
1+ 5= [1 {00+ 32)] (64 S0 ~ 4, 73
g g 0 for | I [ h li [ 0
which coincides with the implicit solution given ifl9]. Oobrta:i:\r:ge x. Inserting the scaling ansatz into EF0), we
Note thatS(x) is a function ofxP. We check that the above
result indeed leads t80)=D"! and to the large- asymptot- 1 dpg D+1
ics ——(25+xS)=9"+ S +3(DS+xS)
2p2 dt X
) 2 D/(D+2) ( ) 0 N 1
. 21D+2)| & ~2D/(D+2
S(X) ~ (Dz) X . (65) N ODF(DS-'- xS -1). (74)
Polo

Note finally that forT=0, Ny saturates to 1 in a finite ) ) ) o )
time, corresponding to the deterministic collapse of the outef\dain, this equation should be time independent for scaling
mass shell initially at=1. Indeed, using Gauss' theorem, the t0 hold, which implies that there exist two constaptand «

position of a particle initially at(t=0)=1 satisfies such that
g — r—(D—l) (66) NO = MpOr(? (75)
dt '
and
The position of the outer shell is then
1d
r(t)=(1-DY*P, (67) =Py (76)

2p3 dt
which vanishes fotg,;=D 1.
with k>0, as the central residual density is again expected
to decrease. EquatiofV6) implies thatpy~ (t—t.,)™* and
then thatNg~ (t—t.o)®>%. We thus find a power law behav-
A. Scaling regime ior for Ny, which, in order to be compatible with E¢69),

In the more general case# 0, we will proceed in a very leads to the universal behavior
similar way as in the previous section. We define, again,

V. POSTCOLLAPSE DYNAMICS AT T>0

D -1
M(r,t) = No(t po(t) = (‘ - 1) (t=teon) (77)
str = LN (68) 2
. - and then to
whereN;, still satisfies
1
d -
MNo_ N, (69) ““p-2 (78
dt

We now obtain We end up with the scaling equation
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1 D+1 Equation(83) can be reexpressed as a Schrddinger equa-
E(ZSHS) S+ — S5+ S(DS+xS) tion (in imaginary time, thus involving a self-adjoint opera-
tor (see the Appendix The large-time behavior is dominated

+ux °(DS+xS - 1) =0, (79) by the first eigenstate. Coming back to the notation of Eq.

- . (83), we find that
whereu has to be chosen so th&tx) satisfies the condition

of Eq. (73). Its value will be determined numerically in Sec. p(r,t) ~ e™My(r), (85)
VI for D=3. Note that for smalk, the precollapse scaling

function satisfiesS(x)—S(0) ~x?, whereas the postcollapse where ) satisfies the eigenequation

scaling function behaves as D-1 1
—)\llf(r):T Iﬂ’+ . {p’ +E ! (86)
S(x) = S(0) ~ Xx°. (80)
and the same boundary condition @s-i.e.,
However, contrary to théf'=0 case,S(x) is not purely a
function of x°. Ty' (1) +y(1)=0. (87)
Finally, we find that the weight of th? central peak has athg gigenvalua will also control the large-time behavior of
universal behavior for short time afteg,: po andN, as Eqs(69) and(85) both imply that
2 D/Z—l t
No(t) = ,u<—D . 2) T2t = ten)”?L (8D 1Nty = 289 g (88)

Note thatNy(t) behaves in a very similar manner to the mass . e did not succeed in solving analytically the above
within a sphere of radius, belowty, shown in Eq(38). In eigenequation, and for a given temperature, this has to be

addition, comparing Eq$81) and(62), we can define again solved numerically. However, in the limit (.)f'very small tem- '
a postcollapse crossover time between T&0 and T=0 perature, we can ?‘pp'y techniques reminiscent from semi-
classical analysis in quantum mechani@s—h). We now

regimes: )
assumeT very small and define such that
te = toon ~ T2, (82) (1) = & HOT, (89)
which is similar to the definition of Eq44). The functionh=¢’ satisfies the following nonlinear first-

order differential equation:
B. Large-time limit

, D-1 h -
Contrary to thel'=0 case, complete collapse does not take T<h * r h) * (D17 h"=AT, (90)

place in a finite time as thermal fluctuations always allow for ) N
some particle to escape the central strongly attractive poteWith the simple boundary condition

tial. In order to illustrate this point and obtain more analytic _

I : ) . h(1)=1. (91

insight into this matter, we will place ourselves in the ex-

treme situation where almost all the mass has collapsed In the limit T— 0, the term proportional td@ in the left-
(Ng=1), and only an infinitesimal amount remains in the hand side of Eq(90) cana priori be discarded, leading to
residual profile.

D-1
In this limit, the residual densityp(r,t) satisfies the h(r) = 2\Tr _ (92)
Fokker-Planck equation 1+1-4\Tr20-D

ap Pp D-1dp 1 ap If ANT <1, the above expression_ is a valid perturbative solu-

T = gl + o) T (83 tion also atr=1, but cannot satisfy the constrainl)=1.
Hence, we conclude that in the limit of small temperature

- . ANT=1, so that the above expression is only valid farot

with boundary condition to close tor=1. The above argument also suggests iais

op of order unity and we write
TE(l,t) +p(1,t)=0. (84) n
AT:Z+M? (93)

The problem indeed reduces to the study of a very light gas

(i.e., with negligible self-interactionof Brownian particles To understand how the boundary condition, E3fl), can be
submitted to the gravitational forde=—(GM/rPYe, of a  in fact satisfied, one has to come back to &), which, for

central unit mass. Alternatively, this can also be seen as the=1, shows thath’(1)~\~T 1>1. This implies that the
probability distribution evolution equation of a system of termTh’ cannot be neglected near 1 and that varies in a
two Brownian particles moving in their mutual gravitation noticeable way on a length scale from 1 of order

field. This suggests to define
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zZ(x) =h(1-Tx), (94) No=D, hp=r, (109
which satisfiegat order 0 inT) andh,(1)=0 for n>0. To first order, we get
1
I , D-1 h
7 +z 22—4+,u (95) h; + - hl:)\l—rD—(_)l+h§. (105

andz(0)=1. This equation has the unique solution Integrating this first-order differential equation and using the

1 1-2utan(ux boundary conditiorh;(1)=0, we obtain
2(x) = = + M“—n(“). (96)
2 2,u + tar(,U,X) D 1 3D r3
= r——r°" s 106
For largex, this function only has a sensible behavior for ! 2(b+2) 2 D+2 (108
=0, which shows that .
with
) 1
lImM\T = 2 (97) D2
-0 AN = . 10
. . 172D +2) (109
and that Eq(92) is in fact valid for 1+> (4\T-1)—0. To
leading order, we find Hence, the large-temperature behavior of the eigenvalue is
h(1-Tx) (X) 1 + — (98) A=D+ D* 1 + (T— +x) (108
- = = - . = — s — @),
W= T o 2D+2)T

Equationg(92) and(98) show thath(x) goes rapidly from  Thjs expansion can be easily carried out to higher orders but

1to 1/2in a small region close te=1 whereh varies on the  the coefficients are more and more complicated. Restricting
scaleT. One can even compute the next correctionToby  ourselves tdD=3, we get

including the next term of ordel in the equation forz
Writing 91 4771

A=3+—=-——=+0(T?.
Z(X) - Zo(X) + Tllgzl(XTl/%, (99) 10T 7007
we find
) D-1 ) VI. NUMERICAL SIMULATIONS IN THE CANONICAL
Zi+azl+zi_7u:_1%/3:_CD' u=TY3 ENSEMBLE

In this section, we illustrate the analytical results obtained
(100 in the previous section in the case B=3. Except when
This is again an eigenvalue problem which selects a uniquéPecified otherwise, our simulations have been performed at
constantcp, which we could only solve numerically. Still, T=1/5<Tc=0.397..., for which we have obtained,,

this leads to the nontrivial result ~0.44408... . ] )
In order to perform our simulations, we have used a
_ 1 ¢ Runge-Kutta algorithm with adaptive step in space and time.
AN=gtqet (120 (102) we call dr the spatial discretization nea=0 (which we

need to take very small as the density profile becomes sin-
We now solve the eigenvalue probléB6) and(87) inthe  gular atr=0). An important numerical problem arises in the
limit of large temperature$ — + (see also the Appendix  numerical integration of Eq69), which is crucial in obtain-
We again perform the change of variabl@9) and rewrite  ing nonzero values faN(t). As this equation is a first-order

Eq. (90) in the form differential equation with initial conditioy(0)=0, any na-
D-1 1/ h ive integration scheme should lead to a strictly vanishing
h' + h=\- ?(D—_l - hz)_ (1020  value forN(t) for all time and anydr. Still, when perform-
r

ing this naive numerical integration, we see that croskigg
Then, we expand the solutions of this equation in terms off€Nerates increasing values fot(dr,t), although keeping
the small parameter Tk<1. We write h=hy+(1/T)h,  M(0,1)=No(t)=0 ultimately makes the numerical integration
+(1/T?)hy+- - andA=\g+(L/T)Ay+(L/T2)N,+- - -. To zeroth unstable. In order to bypass this problem, we have decided to
order. we have introduce a numerical scheme where E9) is replaced by

D-1 Ny o .
hy+ =g =1o. (103 5 = PoNG (109

The solution of this equation ts=\or /D. Using the bound- NIt and p{' are extracted from a fit ofA(r,t) to the func-

ary conditionhy(1)=1, we obtain tional form (we are inD=3)
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FIG. 1. We plotNy(t) for small times(solid line). This is com-
pared toNo(t)MeYx [1+a(t—t.)°] (dashed ling whereNg(t)heoy FIG. 2. In the postcollapse regime, we plofr,t)/po(t) as a
is given by Eq.(81) with £=8.38917147..., and~1.7 andb function of the scaling variablg=r/ry(t). A good data collapse is
~0.33 are fitting parameters. Note that the validity range of this fitobtained for central residual densities in the range-10°. This is
goes well beyond the estimateédwith t. —te~ T22~0.09. The compared to the numerical scaling function computed from(E9).
bottom inset illustrates the exponential decay ofNbt)~e™. (dashed ling The inset shows the comparison between this post-
The best fit fork leads to\ ~5.6362 to be compared to the eigen- collapse scaling functiofdashed lingand the scaling function be-
value computed by means of E@6), A\=5.636 125 3.... Finally, 10W tcoi Which has been rescaled to have the same value-@f
the top inset illustrates the sensitivity N(t) to the space discreti- Preserving the asymptoticS(x)=(3+x°/4)~* [see Eq.(36), solid
zation, which introduces an effective cuteé factor of 4 between line]. Note that the postcollapse scaling function is flatter near
each of the three curvpNote the small time scale. Even the curve =0; @sS(X)~1/3~x® (in D=3) abovety instead ofS(x)-1/3
corresponding to the coarsest discretization becomes indistinguish= X2, below teo.
able from the others for>0.448.

pare the postcollapse scaling function to that obtained ana-

' fit(t) lytically below t.,, (precollapsg In Fig. 3, we confirm the
M(r,t) = NEY(t) + Pol sy ag(t)r°+ag(t)r® (1100  validity of our perturbative expansion fav, in the limit of
3 small temperature. We compare the valuecgf extracted

from directly solving the full eigenvalue problem to that ob-

in a region of a fewdr, excluding of course=0. This func-  (4ineq from Eq(100), finding perfect agreement. Finally, in

tional form is fully compatible with the expected expansion
for M(r,t), both below(ag=0) and above(as=0) t.y. We
find that this numerical scheme allows us to cross smoothly
the singularity at.;. An effective cutoff is introduced which
effectively depends omr, and we have checked that the
results presented in this section are extremely close to the § 2.6k
ones that would be obtained in the ideal lidit— 0. This is Z\
illustrated in Fig. 1, where the smoothing effect of our algo- :l
=
<

2.8

rithm is shown to act on a very small time region aftgy.
Even more surprisingly, we find that for sufficiently large
times (actually very small compared to any physical time

scales, our results are essentially independendigfeven for 22

unreasonably large values df. We are thus confident that . , ) \ ) , .

we have successfully crossed the collapse singularity. 0 0.1 0-33 03 04
In Fig. 1, we plotNy(t) for small time which compares T

well with the universal form of Eq.(81), where u h ol (T 1)T-213 function of
=8.38917147... has been determined so as to ensure th T I?Iin?; Tanedng‘ugrg;revsrrﬁ:ﬁ” srrc:u:idT Cor?\f‘e‘:‘ge““‘t:;'g“ 0
. D=3
ﬁlfsﬂree:t:(etuzvgip%?\(g:lt:glr :jggg; (()Sfelfl—(st()ac.w\iif?\ aV\Ithils;(; =2.338107 41... fol — 0 according to Eq(101). We find perfect
. 0\ . agreement with this value using a quadratic(diotted ling. Fur-
perfect agreement with the value oextracted from solving thermore, this fit shows that the slope &t 0 is in fact equal to
numerically the eigenvalue problem of E&6). Finally, we

: . X e -2+2.10% suggesting that the next term to the expansion of Eq.
show the effect of the numerical spatial discretizaiomear  (101) js A=1/4T+c,T-Y3-2+ -+, in D=3. In the inset, we plot as

r=0. Satisfactorily enough, the value Nf(t) is sensitive to 4 function ofT up to T=T.~0.4. The small-temperature analytical
the choice ofdr only for very small times after the collapse, result of Eq.(101) is in very good agreement with the numerical
and we were able to easily reach small enodgtin order to  data up toT~0.03, whereas the Iarg'éestimzatte)\(T):3+1—90T‘l
faithfully reproduce the postcollapse singularity. In Fig. 2,+--- is only qualitatively correct in this range of physical tempera-
we convincingly illustrate the postcollapse scaling and com+ures, T<T..

066109-10



POSTCOLLAPSE DYNAMICS OF SELF-GRAVITATING. PHYSICAL REVIEW E 69, 066109(2004)

ticipate that the postcollapse dynamics in the microcanonical
ensemble is probably an ill-defined problem. In this extreme
regime, let us try to consider the possible flaws of this model
in order to describe a consistent dynamics of a reasonable
physical self-gravitating system. First, our assumption of
uniform temperature is certainly not realistic in a system dis-
playing huge density contrast, and some alternative ap-
proaches are needed to incorporate a spatially dependent
temperature. This point is certainly crucial and will be ad-
dressed in a future worf32]. Furthermore, in this regime, a
careful physical analysis predicts that this system of self-
gravitating individual particles should lead to the formation
of binaries, which is probably beyond the description ability
of our essentially mean-field approach. In other words, the
system may become intrinsically heterogeneous, which prob-

theoretical expression of Eq92), which is valid for 1> u? ably cann_ot be captured k_’y our continuous model. Finally,
~T23 (solid ling). We also plot the theoretical expressionzf W€ can think of other physical effectdegeneracy effects of
[dash-dotted line; see E98)] and the next-order perturbation re- guantum or dynamical origin, finite-particle-size effects,
sult [dotted line; see Eq99)], which are valid in the region 1  €tC), preventing the system from reaching arbitrarily large
< u?~T?3 The inset is a blowup of the region close to 1. Note densities. One way to describe such effects consists in intro-
how h(r) varies by a quantity of order unity as/aries by a quantity  ducing a spatial cutofh or a density cutoff of ordeh™. In

of order T=0.01. We have chosen a not too small value Toin such a system, the dynamics first follows the precollapse
order to be able to visualize the two scale regimes in a single figuredynamics until the maximum density is approached. Then,
Both approximations shown in the inset are getting betteas the system will ultimately reach a maximum-entropy state

h@)

FIG. 4. ForT=0.01(A=35.074 198...,4=0.317 398 77.), we
plot h(r) computed numerically from Eq90) (dashed lingand the

decreases. that we propose to characterize in a simple manner, as in
[33,24.
Fig. 4, we compare the numerical value obtainedH@) to We propose to describe the final state as a “core-halo”

the different analytical estimates given in the preceding secStructure, which for simplicity we modelize as a core of ra-
tion, for T=0.01. The two important regions T<py? diush<1 and constant density
~T?and 1+> u?~ T2 can be clearly identified. DN
Pcore= ;rﬁ, (112
VIl. POSTCOLLAPSE IN THE MICROCANONICAL
ENSEMBLE which mimics a regularized central Dirac peak containing a

.massN,. In the regionh<r=1 stands the halo of constant
So far, we have only addressed the postcollapse dynam'?ﬁensityo g

in the canonical ensemble. In the microcanonical ensemble,

the dynamical equation has to be supplemented with the D(1-Np)

strict energy conservation conditidsee Eq.(24)], which PhamZW, (113
fixes the global temperatur€&(t). For this model, it was

shown in[8,19,2Q that below a certain energiAntonov  containing the rest of the mass. Ass small, we can com-

energy, the system collapses with an apparent scaling assgute the potentialor total) energy and the entropy, only
ciated withay,q,~ 2.2 for intermediate timegvhen the tem-  including the relevant leading terms. We find
perature still increases in a noticeable whgfore entering a
scaling regime witha=2, identical to that obtained in the D D { N3 D-2 D
canonical ensemble. In the lintit- t.,,, the temperature and T o' D2-4
potential energy both seem to converge to a finite value,
preserving a constant energy. Closely before the collapse
time, the temperature behaves @&icon) ~T() ~ (leai=0”  \ hore the first term is the kinetic energy, whereas the en-
with y=1/2. This section addresses thet.,, time period. tropy (up to irrelevant constantseads

Assuming a spherical mass density and after integration

52t 1+ No= NG| +O(h?),

(114

by parts, the potential enerdy can be rewritten in the form D N,
(D>2) S:EIn T—Noln<@> - (1 =Ng)In(1 =Ng) + O(hP).
1 (T M2(r,t) 1 (119
W(t)=-— dr - . 117
® 2L 1T T 2D-2) (119

For a given small value dfi, S has a local maximum &\l
We see immediately that @3-1>1, the occurrence of a =0 provided thaE> E.(h), with lim;_,,E.(h)=-D/(D?-4).
finite massN(t) # 0 concentrated at=0 implies an infinite  Below E, the sole entropy maximum residesNy, satisfy-
potential energy, hence an infinite temperature. We thus aring the implicit equatior(again in the limit of smalh)
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R “binary star” structure in stellar dynamics. Binary formation
is the physical process that arrests core collapse in globular
] clusters[34]. This is also the end point of our simple micro-

h canonical Brownian model.

=) 0.15 ol

Z 0.54 0.56 058 06 062 VIIl. CONCLUSION
ol - In this paper, we have investigated the postcollapse dy-
0.05 3 namics of a gas of self-gravitating Brownian particles in ca-

nonical and microcanonical ensembles. Our results also ap-
ply to the chemotactic aggregation of bacterial populations in
biology. At the collapse timé.;, the system develops a sin-
gular density profile scaling gs~r~2. However, the “central
FIG. 5. ForE=-0.45<E;~-0.335, we ploNo(t), for different  singularity contains no mass,” the temperature does not di-
values ofh decreasing by a factor of 2 for each curve from the topyerge, and the entropy and free energy are fiftd9,2qQ.
one to the bottom one. It is clear thé§(t) decreases dsdecreases.  gjnce this profile is not a maximum entropespectively, a
The inset shows the corresponding temperature plots. The tempergsinimum free energystate or a stationary solution of the
ture T(t) increases abk decreases. Note that in the precollapse re-Smoluchowski-Poisson system, the collapse continues after
gime, the temperature essentially does not dependth.dror the to1- This solves the apparent paradox reporte{2i.
situation considered, it starts from(0)=0.1 and culminates at Coln the canonical ensemble, mass accretes progressively at

PR P ....I.:
038 06 0.62

PR S S T T
0.54 0.56

T(teo) =05, the center of the system and a Dirac peak forms by swallow-
ing the surrounding particles. Eventually, the Dirac peak con-
N. = b 1 (116 tains all the mass. This structure has an infinite free energy
0~ No Inh’ F=E-TS— — simply because its binding energy is infinite.
In<@> This is therefore the most probable structure in canonical

ensemble[9,10,24. In the microcanonical ensemble, the
where the given asymptotics is quantitatively correct only formaximum-entropy statéat fixed mass and energgonsists
extremely small values dfi. Hence, we find that the mass of a single binary embedded in a hot h##8,2,19. This is
included in the core slowlglecreasesvith core sizeh [24],  precisely what we see in our numerical simulations. The tem-
resulting in an effective singularity(r)=-(1/Inr)8°(r). perature increases dramatically abadyg (resulting in an

Meanwhile, the temperature diverges as almost uniform halpalthough the mass contained in the core
is weak (but finite). We note the “spectacular” fact that al-
T EW 2 1 (117 most all the gravitational energy resides in a binarylike core

with negligible mass. A similar phenomenon is observed in
stellar dynamics for globular clusters having experienced
and leads rapidly and efficiently to a uniform halo. core collapse[1l]. This shows that the microcanonical

In order to relate this result to our actual system, we perSmoluchowski-Poisson system shares some common proper-
form microcanonical postcollapse simulations using theties with kinetic equations usually considered in stellar dy-
same regularization scheme as in the canonical case in ordeamics(Landau-Fokker-Planck equationgespite its greater
to describe the evolution dy(t). In addition to this, we also  simplicity. Clearly, a major drawback of our microcanonical
need to regularize the potential energy which is strictly infi-model is to assume that the temperature uniformizes instan-
nite (as well asT) whenNy# 0. Consistently with the previ- taneously, implying an infinite thermal conductivity. We shall
ous discussion, we introduce a numerical cutoffy defin-  relax this simplification in a future worf32]. However, the

D D2-4h°2In2h

ing present study is one of the first dynamical studies showing
- the formation of Dirac peaks and binarylike structures in
W) = - }j M (r,t)d 1 (119  Systems with gravitational interaction.
2J), P71 2(D-2)° Our Brownian model is based on the existence of a gas-

eous medium that generates a friction force. This situation
In Fig. 5, we plotNy(t) and T(t) for different values of the exists in certain astrophysical models such as the transport of
cutoff h. Contrary to the canonical case, the postcollapselust particles in the solar nebyla2]. Dust particles are sub-
dynamics is stronglyr dependent. We see that in conformity mitted to Stokes or Epstein drag. It is clear that when the
with our result of Eq.(116), the central mas$\, clearly  concentration of particles is importagdrior to planetesimal
decreases as— 0. Therefore, in the microcanonical case, formation), self-gravity has to be taken into account. Thus,
the physical picture is that when the collapse titgg is  our system of self-gravitating Brownian particles could be
reached, the temperature increases rapidly, which leads to tleennected to this astrophysical situation. We just mention
rapid homogenization of the system except for a dense anithis as a possible astrophysical application because it is not
small core, whose magds,~In~'T is a decreasing function our present main motivation to make a precise model of
of the maximum temperature reached. This central structurdust-gas-gravity coupling in protoplanetary disks. However,
with weak mass and huge binding energy is similar to ahis problem could be considered in future works.

066109-12



POSTCOLLAPSE DYNAMICS OF SELF-GRAVITATING. PHYSICAL REVIEW E 69, 066109(2004)

APPENDIX: BROWNIAN PARTICLE AROUND = d)(r)e‘“. (A9)
A “BLACK HOLE”

] ] ) ] ] This transformation reduces the Schrédinger equation to a
We consider the Brownian motion of a particle subject togecond-order ordinary differential equation

the gravitational force 6Mr /r3 created by a central maks

(“black hole”). We assume that when the particle comes at N 1 :
r=0, it is captured by the central mass. We denot&\y, t) A N 7 L (A10)
the density probability of finding the particle inat timet. It
is solution of the Fokker-Planck equation with the boundary condition
W r 1
Ezv -(TVW+WF), (A1) ¢’(1)+E_¢(1):0. (A11)

where we have seG=M=R=¢=1. Let W(r,t) denote a e note, the eigenvalues and, the corresponding eigen-
spherically symmetric solution of EqAl) satisfying the  functions. Since the Schrodinger operaltbr A—1/4T%4 is
boundary conditions Hermitian, the eigenfunctions form a complete set of or-
thogonal functions for the scalar product

W
T?(l,t) +W(L,t) =0, (A2) N
<fg>:J f(r)g(r)4mradr. (A12)
0
_Or—rop)
W(r,0) = 4mr3 (A3) The system can be furthermore normalized—i{gh, o)

=6, Any function f(r) satisfying the boundary condition
(A11) can be expanded on this basis as

r
I=- (TV W Wr_3> (A4) f(r) =2 (fpn) bn- (A13)
n
the current of probability; i.e.JdSh gives the probability

that the particle crosses an element of surfdSéetweent
andt+dt (n is a unit vector normal to the element of surface 8(r —ro)

We call

In particular,

under consideration a? - > bnlro)dn(r). (A14)
We introduce the probabilitp(rg,t)dt that a particle lo- o n
W W
p(ro,t) = — J J-dsS= 477&2<TE + ﬁ) = 47W(0,1), W(r,t) = > Ae e g (1), (A15)
R, € n
(AS5)

where the coefficientd,, are determined by the initial con-

whereR, is a ball of radiuse— 0. The total probability that ditions(A3), using the expansiofA4) for the & function. We
the particle initially betweem, andry+dr, has reached the 9e€t

center of the system between 0 anid thus
W(r,t) = 2P0 @Mleh (o) o(r).  (AL6)
n

t
Q(ro,t) = fo p(r01t,)dtl . (AG)

From this expression, we obtain
Finally, we averag&(ry,t) over an appropriate range of ini-

- -1/2T At ; 1/2T
tial positions in order to get the expectati@(t) that the p(rot) = 4me r(,% € ¢n(r0)!m[¢n(r)e it
particle has been captured at time
With the change of variables (A17)
W=yl (A7) Then, according to EqA6), we have
we can transform the Fokker-Planck equati@dl) into a B _1/7T 1-ge™t , 177
Schrodinger equatiotin imaginary timg of the form Q(ro,t) = 4me 2102, N n(rolim[ y(r)et’].
n n r—0

iy 1 (A18)

— =TAY - —. A8

ot 4Tr4¢ (A8)

Finally, averaging over the initial conditions, the probability
A separation of the variables can be effected by the substituhat the particle has been captured by the central mass at time
tion t can be expressed as
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Q) =X Qu(v), (A19)
where
Qu(t) =By(1 —e™ (A20)
and
B,= 47— g1l (7], (2D
n r—0

This formally solves the problem. If we consider the large-

time limit, we just need to determine the first eigenvalue
\o(T) of the quantum problem. This has been done analyti-

cally in Sec. V B in the limitsT—0 andT— +o.

PHYSICAL REVIEW E69, 066109(2004)

sin(X,r)

on(r) = An—r : (A30)

The general solution of the diffusion equation can thus be
written

1 +o0
W(r,t) = . > e‘T"ﬁ‘Aﬁ Sin(X,r)sin(xro),  (A31)
0 n=0

with

Xn

2 _
27(X, — SinX, COSX,)

n

(A32)

If we consider the pure diffusion of a particle in a box, the

Below, we consider again the high-temperature regiméoundary conditioriA26) reduces tap’(1)=0 and thex, are
where thermal fluctuations prevail over gravity but we do notsolutions of the implicit equation
restrict ourselves to the first eigenvalue. To leading order in

the limit T— +o, the Fokker-Planck equatiaif\1l) reduces
to the pure diffusion equation
%)

However, for consistencysee Sec. V B it is necessary to
keep the term of order 1/ (arising from the gravitational
force) in the boundary condition. Hence, we take

W
or

W _ _194
— =T=—=

A22
ot r2or (A22)

W 1
E(l't) + ?W(l,t) =0. (A23)

The general solution of the diffusion equati@k22) with the
boundary conditiongA23) and (A3) can be expressed as

W(r,t) = 2 e eh(ro) (), (A24)
where ¢ is solution of
"+ 2y +Rg= 0 A25
& . ¢ T¢— : (A25)
1
¢'(1)+7¢(1)=0. (A26)
Settingp=x/r, Egs.(A25) and(A26) become
)" } —
X'+ TX= 0, (A27)
1
X' (D)= (1 —;)x(l). (A28)

Equation (A27) is readily solved. The eigenvalues can be
written )\n:Txﬁ(T), wherex,(T) are the solutions of the im-
plicit equation

Xn

1-1/2T

tan(x,) = (A29)

The eigenfunctions are

tan(x,) = X,. (A33)

In particular,xy=0. This implies that the probability/(r,t)
converges for large times to aniform profile W(r, +»)
=3/44r which is indeed solution of the diffusion equation in
a box. If gravity is taken into account, its first-order efféat
the limit T— +) is to change the boundary condition to Eg.
(A26). It is as if we had a diffusion across the b§R7,12
although the true physical process is a capture by the central
mass. The eigenvalues are now determined by (Bg9).
The x,~1 are hardly modifiedto first ordej with respect to
the preceding problem bug is now different from zero. To
first order, we find thakS:S/T so thatAy=3 in agreement
with the result of Sec. V B. We also note th&§=T/4a
while A~ are independent of (to leading orderand given
by Egs.(A32) and(A33).

Using Egs(A5) and(A6), the probability that the particle
has been captured by the central mass at timsegiven by

+o0

Q=23

1-e ™t Afz1sin(xnro)
T n=0 .

o

(A34)

n

If we average over initial conditions with the weight33
(uniform distribution, we find to leading order iT~* that

sin(x,ro)

=0, forn>0, (A35)

o

Sin(Xof o)
0 =Xq
l'o

(A36)

Hence, the modes>0 cancel out. Therefore, in the high-
temperature regime, the probability of capture is given by

Qh=1-¢2, (A37)

for all times.
The casdD=2 can be treated by a similar method. Instead
of Egs.(A31), (A32), and(A29), we get

W(r,tH) =2, e_T)%tAﬁJo(an)Jo(ano),
n=0

(A38)
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1
2 _
" R0 + B0’ (A39)
Xn‘]l(xn) _ l
T T (A40)

where J,, is the Bessel function of ordem. For the pure
diffusion processx,=ay, are the zeros of;. If gravity is
taken into account, ther,- ;= ay, while XS:Z/T establish-

ing Ag=2. The probability that the particle has been capturedty, 1he pure diffusion process,=

by the central mass at tinteis given by

orioeTt
Q=T == T AZi ).

(A41)
T n=0 n

If we average over the initial conditions with a weight,2
(uniform distribution, we get Jo(x,f9)=0 if n>0 and

PHYSICAL REVIEW E 69, 066109(2004)

+oo

W(r,t) = >, e‘TXﬁ‘Aﬁ cos(X,r)cogXfp), (A43)
n=0
1
2 _
=13 sin2x,)/2x," (Ad44)
tan(x,) = = (A45)
Xy tar(xy) = =

na. If gravity is taken
into account, therx,~,=nm while xcz):l/T establishing\g

=1. The probability that the particle has been captured by the
central mass at timeis given by

N TP
Q=251 TN otxgg.  (A46)
Tn=0 Xn

‘JO(XOrO):]-- Therefore, in the high-temperature regime' '[he|f we average over the initial conditions with a Weight 1

probability of capture is given, for all times, by
Qt)y=1-e2.

Finally, for D=1, we obtain

(A42)

(uniform distribution, we get cogx,ro)=0 if n>0 and

cogXgrp)=1. Therefore, in the high-temperature regime, the

probability of capture is given, for all times, by

Q) =1-€™. (A47)
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