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We address the postcollapse dynamics of a self-gravitating gas of Brownian particles inD dimensions in
both canonical and microcanonical ensembles. In the canonical ensemble, the postcollapse evolution is marked
by the formation of a Dirac peak with increasing mass. The density profile outside the peak evolves self-
similarly with decreasing central density and increasing core radius. In the microcanonical ensemble, the
postcollapse regime is marked by the formation of a “binarylike” structure surrounded by an almost uniform
halo with high temperature. These results are consistent with thermodynamical predictions in astrophysics. We
also show that the Smoluchowski-Poisson system describing the collapse of self-gravitating Brownian particles
in a strong-friction limit is isomorphic to a simplified version of the Keller-Segel equations describing the
chemotactic aggregation of bacterial populations. Therefore, our study has direct applications in this biological
context.
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I. INTRODUCTION

Self-gravitating systems such as globular clusters and el-
liptical galaxies constitute a Hamiltonian system of particles
in interaction that can be supposed isolated in a first approxi-
mation[1]. Since energy is conserved, the proper description
of stellar systems is the microcanonical ensemble[2]. The
dynamical evolution of elliptical galaxies is governed by the
Vlasov-Poisson system which corresponds to a collisionless
regime. On the other hand, the kinetic theory of globular
clusters is based on the Landau-Poisson system(or the orbit-
averaged Fokker-Planck equation) which describes a colli-
sional evolution. These equations conserve mass and energy.
Furthermore, the Landau equation increases the Boltzmann
entropy(H theorem) due to stellar encounters. These equa-
tions have been studied for a long time in the astrophysical
literature and a relatively good physical understanding has
now been achieved[1]. In particular, globular clusters can
experience core collapse[3–6] related to the “gravothermal
catastrophe” concept[7].

For systems with long-range interactions, statistical en-
sembles are not equivalent[2]. Therefore, it is of conceptual
interest to compare the microcanonical evolution of stellar
systems to a canonical one in order to emphasize the analo-
gies and differences. This can be achieved by considering a
gas of self-gravitating Brownian particles[8] subject to a
friction originated from the presence of an inert gas and to a
stochastic force(modeling turbulent fluctuations, collisions,
etc.). This system has a rigorous canonical structure where
the temperatureT measures the strength of the stochastic
force. Thus, we can precisely check the thermodynamical
predictions of Kiessling[9] and Chavanis[10] obtained in
the canonical ensemble. In the mean-field approximation, the
self-gravitating Brownian gas model is described by the

Kramers-Poisson system. In a strong-friction limit(or for
large times) it reduces to the Smoluchowski-Poisson system.
These equations conserve mass and decrease the Boltzmann
free energy[11]. They possess a rich physical and math-
ematical structure and can lead to a situation of “isothermal
collapse,” which is the canonical version of the gravothermal
catastrophe. These equations have not been considered by
astrophysicists because the canonical ensemble is not the
correct description of stellar systems and the usual astro-
physical bodies do not experience friction with a gas(except
dust particles in the solar nebula[12]). Yet it is clear that the
self-gravitating Brownian gas model is of considerable con-
ceptual interest in statistical mechanics to understand the
strange thermodynamics of systems with long-range interac-
tions and the inequivalence of statistical ensembles. In addi-
tion, it provides one of the first models of stochastic particles
with long-range interactions, thereby extending the classical
Einstein-Smoluchowski model[13] to a more general con-
text [11].

In addition, it turns out that the same type of equations
occurs in biology in relation to the chemotactic aggregation
of bacterial populations[14]. A general model of chemotactic
aggregation has been proposed by Keller and Segel[15] in
the form of two coupled partial differential equations. In
some approximation, this model reduces to the
Smoluchowski-Poisson system[8]. Therefore, there exists an
isomorphism between self-gravitating Brownian particles
and bacterial colonies. Nonlocal drift-diffusion equations
analogous to the Smoluchowski-Poisson system have also
been introduced in two-dimensional hydrodynamics in rela-
tion to the formation of large-scale vortices such as Jupiter’s
great red spot[16–18]. These analogies give further physical
interest to our Brownian model.

In a recent series of papers[8,19,20], we have studied the
dynamics and thermodynamics of self-gravitating Brownian
particles confined within a spherical box of radiusR in a
space of dimensionD. In these works, we focused on the
precollapse regime. In the canonical situation(fixed tempera-
tureT) we showed that a critical temperatureTc exists below
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which the system undergoes a gravitational collapse leading
to a finite-time singularity att= tcoll. For t→ tcoll, the evolu-
tion is self-similar in the sense that the density profile
evolves asrsr ,td=r0stdf(r / r0std) where fsxd is independent
of time. Forx→ +`, fsxd,x−a with a=2. The central den-
sity increases asr0,stcoll− td−1 and the core radius decreases
as r0,stcoll− td1/a. For T=0, the exponent isa=2D / sD+2d.
The scaling profiles can be calculated analytically. These re-
sults can be compared with those of Penston[21] who con-
sidered an isothermal collapse modeled by the Euler-Jeans
equations. We also introduced a microcanonical description
of Brownian particles by letting the temperatureTstd evolve
in time so as to conserve energy. This can provide a simpli-
fied model for the violent relaxation of collisionless stellar
systems[17] or, simply, a numerical algorithm[11] to deter-
mine what the maximum entropy state is at fixedE andM. In
the microcanonical situation, there exists a critical energyEc
(Antonov energy) below which the system collapses. Fort
→ tcoll, there exists a pseudoscaling regime wherea passes
very slowly fromamax=2.21. . . to a=2. Numerical simula-
tions suggest thatTstd remains finite att= tcoll so that the true
scaling regime corresponds toa=2, as in the canonical situ-
ation [20,22].

What happens aftertcoll? By investigating the caseT=0,
we found in[19] that the evolution continues in the postcol-
lapse regime with the formation of a Dirac peak accreting
more and more mass asMstd,st− tcolldD/2 while the density
outside the peak evolves self-similarly with decreasing cen-
tral density r0,st− tcolld−1 and increasing core radiusr0

,st− tcolldsD+2d/2D. Our aim in this paper is to investigate the
postcollapse regime forTÞ0 in both canonical and micro-
canonical ensembles. In Sec. II, we emphasize the analogy
between self-gravitating Brownian particles and bacterial
populations. In the following, we shall use astrophysical ter-
minology but we stress that our results apply equally well to
biology where the chemotactic model has more concrete
physical applications. In Sec. III, we set the notation and
recall the main results concerning the precollapse dynamics.
In Sec. IV, we study the postcollapse dynamics atT=0 by a
method different from[19], which can be generalized at fi-
nite temperature. The postcollapse dynamics atT.0 is pre-
cisely considered in Sec. V. In the canonical ensemble, we
show that the system forms a Dirac peak whose mass in-
creases asMstd,st− tcolldD/2−1 while the density profile for
r .0 expands self-similarly withr0,st− tcolld−1 and r0,st
− tcolld1/2. For large times, the system is made of a Dirac peak
of mass,M surrounded by a light gas of Brownian particles
(with negligible self-interaction). Due to thermal motion,
complete collapse takes an infinite time(contrary to the case
T=0). For t→+`, the mass contained in the Dirac peak in-
creases as 1−Mstd /M ,exps−ltd wherel is the fundamental
eigenvalue of a quantum problem. ForT→0, we find that
l=1/4T+cD /T1/3+¯. In the microcanonical ensemble, the
postcollapse regime is very pathological. The system tends to
create a “Dirac peak of 0+ mass” surrounded by a uniform
halo with infinite temperature. The central structure is remi-
niscent of a “binary star” containing a weak mass 2m!M
=Nm but a huge binding energy comparable to the potential
energy of the whole cluster. Since our model is essentially a

mean-field one, the physical formation of binaries is replaced
by the type of structures mentioned above. The formation of
a “Dirac peak” containing the whole mass in canonical en-
sembles and the formation of “binaries” in microcanonical
ensembles are expected from thermodynamical consider-
ations[23,9,2,10,24,19]. These are the structures which pro-
voke a divergence of free energy(at fixed mass and tempera-
ture) and entropy(at fixed mass and energy), respectively
[19]. All these analytical results are confirmed by numerical
simulations of the Smoluchowski-Poisson system in Secs. VI
and VII. We were able in particular to “cross the singularity”
at t= tcoll and describe the postcollapse dynamics.

II. ANALOGY BETWEEN SELF-GRAVITATING
BROWNIAN PARTICLES AND BACTERIAL

POPULATIONS

A. Self-gravitating Brownian particles

We consider a system of self-gravitating Brownian par-
ticles described by theN coupled stochastic equations

dr i

dt
= vi,

dvi

dt
= − jvi − =iUsr 1, . . . ,r Nd + Î2D8Ristd, s1d

wherej is the friction coefficient,D8 is the diffusion coeffi-
cient, andRistd is a white noise satisfyingkRistdl=0 and
kRa,istdRb,jst8dl=di jdabdst− t8d, wherea,b=1, . . . ,D refer to
the coordinates of space andi , j =1, . . . ,N to the particles.
The particles interact via the potentialUsr 1, . . . ,r Nd
=oi, jusr i −r jd. In this paper,usr i −r jd is the Newtonian bi-
nary potential inD dimensions. The stochastic process(1)
defines atoy modelof gravitational dynamics which extends
the classical Brownian model[13] to the case of stochastic
particles in interaction. In this context, the friction is due to
the presence of an inert gas and the stochastic force is due to
classical Brownian motion, turbulence, or any other stochas-
tic effect.

Starting from theN-body Fokker-Planck equation and us-
ing a mean-field approximation[25,26], we can derive the
nonlocal Kramers equation

]f

]t
+ v

]f

]r
+ F

]f

]v
=

]

]v
SD8

]f

]v
+ jfvD , s2d

whereF=−=F is the smooth gravitational force felt by the
particles. The gravitational potentialF is related to the den-
sity r=efdDv by the Poisson equation

DF = SDGr, s3d

where SD is the surface of the unitD-dimensional sphere.
Equation(2) can be considered as a generalized version of
the Kramers-Chandrasekhar equation introduced in a homo-
geneous medium[27]. In this work, the diffusion and friction
model stellar encounters in a simple stochastic framework.
The condition that the Maxwell-Boltzmann distribution be a
stationary solution of Eq.(2) leads to the Einstein relation
j=D8b whereb=1/T is the inverse temperature(we have
included the mass of the particles and the Boltzmann con-
stant in the definition ofT). In our case, we donot assume
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that the medium is homogeneous, so that we have to solve
the Kramers-Poisson system. This makes the study much
more complicated than usual. Up to date, we do not know
any astrophysical application of this model although there
could be connections with the process of planetesimal forma-
tion in solar nebula[12]. Whatever, this model is interesting
to develop from a conceptual point of view because it pos-
sesses a rigorous thermodynamical structure and presents the
same features as more realistic models(isothermal distribu-
tions, collapse, phase transitions, etc.). For this Brownian
model, the relevant ensemble is the canonical one since the
temperatureT is fixed. Therefore, the Kramers-Poisson sys-
tem can be viewed as the canonical counterpart of the
Landau-Poisson system. It is interesting to study these two
models in parallel to illustrate dynamically the inequivalence
of statistical ensembles for systems with long-range interac-
tions.

To simplify the problem further, we shall consider the
strong-friction limit j→+` or, equivalently, the limit of
large timest@j−1. In that approximation, we can neglect the
inertia of the particles. Then, the coupled stochastic equa-
tions (1) simplify to

j
dr i

dt
= − =iUsr 1, . . . ,r Nd + Î2D8Ristd. s4d

Furthermore, to leading order, the velocity distribution is
Maxwellian,

fsr ,v,td = S b

2p
DD/2

rsr ,tde−bv2/2, s5d

and the Kramers equation reduces to the Smoluchowski
equation

]r

]t
= = ·F1

j
sT = r + r = FdG . s6d

It can be shown that the Kramers equation decreases the
Boltzmann free energy

Fffg = E − TS=E f
v2

2
dDrdDv +

1

2
E rFdDr

+ TE f ln fdDrdDv; s7d

i.e., Ḟø0 and Ḟ=0 at statistical equilibrium(canonicalH
theorem). Similarly, the Smoluchowski equation decreases
the free energyFfrg which is obtained fromFffg by using
the fact that the velocity distribution is Maxwellian in the
strong-friction limit. This leads to the classical expression

Ffrg = TE r ln r dDr +
1

2
E rF dDr . s8d

The passage from the Kramers equation to the Smolu-
chowski equation in the strong-friction limit is classical[28].
It can also be obtained formally from a Chapman-Enskog
expansion[29].

In order to prevent finite-time singularities and infinite
densities, we can consider a model of self-gravitating
Brownian fermions, enforcing the constraintf øh0 (Pauli
exclusion principle). The corresponding Kramers equation
takes the form

]f

]t
+ v

]f

]r
+ F

]f

]v
=

]

]v
FD8

]f

]v
+ jfsh0 − fdvG . s9d

In the strong-friction limit, we obtain a Smoluchowski equa-
tion of the form

]r

]t
= = ·F1

j
s=p + r = FdG , s10d

where psrd is the equation of state of the Fermi gas. The
fermionic Smoluchowski-Poisson system has been studied in
[30]. Generalized Kramers and Smoluchowski equations are
introduced in[11].

B. Keller-Segel model

The name chemotaxis refers to the motion of organisms
(amoeba) induced by chemical signals(acrasin). In some
cases, the biological organisms secrete a substance that has
an attractive effect on the organisms themselves. Therefore,
in addition to their diffusive motion, they move systemati-
cally along the gradient of concentration of the chemical they
secrete(chemotactic flux). When attraction prevails over dif-
fusion, the chemotaxis can trigger a self-accelerating process
until a point at which aggregation takes place. This is the
case for the slime moldDictyostelium Discoideumand for
the bacteriaEscherichia coli[14].

A model of slime mold aggregation has been introduced
by Keller and Segel[15] in the form of two coupled differ-
ential equations

]r

]t
= = · sD2 = rd − = · sD1 = cd, s11d

]c

]t
= − kscdc + fscdr + DcDc. s12d

In these equationsrsr ,td is the concentration of amoebae and
csr ,td is the concentration of acrasin. Acrasin is produced by
the amoebae at a ratefscd. It can also be degraded at a rate
kscd. Acrasin diffuse according to Fick’s law with a diffusion
coefficientDc. The amoeba concentration changes as a result
of an oriented chemotactic motion in the direction of a posi-
tive gradient of acrasin and a random motion analogous to
diffusion. In Eq.(11), D2sr ,cd is the diffusion coefficient of
the amoebae andD1sr ,cd is a measure of the strength of the
influence of the acrasin gradient on the flow of amoebae.
This chemotactic drift is the fundamental process in the
problem.

A first simplification of the Keller-Segel model is pro-
vided by the system of equations

]r

]t
= DDr − x = · sr = cd, s13d
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]c

]t
= D8Dc + ar − bc, s14d

where the parameters are positive constants. An additional
simplification, introduced by Jäger and Lauckhaus[31], con-
sists in ignoring the time derivative in Eq.(14). This is valid
in the case where the diffusion coefficientD8 is large. Taking
alsob=0, we obtain

]r

]t
= DDr − x = · sr = cd, s15d

Dc = − lr, s16d

where l=a/D8. Clearly, these equations are isomorphic to
the Smoluchowski-Poisson system(3)–(6) describing self-
gravitating Brownian particles in a strong-friction limit. In
particular, the chemotactic flux plays the same role as the
gravitational drift in the overdamped limit of the Brownian
model. When chemotactic attraction prevails over diffusion,
the system is unstable and the bacteria start to aggregate.
This blowup is similar to the collapse of self-gravitating sys-
tems in a canonical situation. We note that in the Keller-
Segel model, the diffusion coefficient can depend on the den-
sity, leading to anomalous diffusion. Such a situation is
considered in [20] where the nonlinear Smoluchowski-
Poisson system is studied.

The Keller-Segel model ignores clumping and sticking
effects. However, at the late stages of the blowup, when the
density of amoebae has reached high values, finite-size ef-
fects and stickiness must clearly be taken into account. As a
first step, we can propose[26] to replace the classical equa-
tion (15) by an equation of the form

]r

]t
= DDr − x = · frss0 − rd = cg, s17d

which enforces a limitationrsr ,td,s0 on the maximum
density of amoebae. This is the counterpart of the model of
self-gravitating Brownian fermions[30]. These types of non-
local Fokker-Planck equations also occur in two-dimensional
(2D) hydrodynamics and astrophysics in relation with the
formation of large-scale vortices and galaxies[17,18]. Their
systematic study is clearly of broad interest[11].

III. COLLAPSE DYNAMICS OF SELF-GRAVITATING
BROWNIAN PARTICLES

A. Smoluchowski-Poisson system

At a given temperatureT controlling the diffusion coeffi-
cient, the densityrsr ,td of self-gravitating Brownian par-
ticles satisfies the following coupled equations:

]r

]t
= = ·F1

j
sT = r + r = FdG , s18d

DF = SDGr, s19d

whereF is the gravitational potential andSD is the surface of
the unitD-dimensional sphere.

From now on, we setM =R=G=j=1 and we restrict our-
selves to spherically symmetric solutions. The equations of
the problem become

]r

]t
= = · sT = r + r = Fd, s20d

DF = SDr, s21d

with proper boundary conditions in order to impose a van-
ishing particle flux on the surface of the confining sphere.
These read

]F

]r
s0,td = 0, Fs1d =

1

2 − D
, T

]r

]r
s1d + rs1d = 0, s22d

for D.2. ForD=2, we takeFs1d=0 on the boundary. Inte-
grating Eq. (21) once, we can rewrite the Smoluchowski-
Poisson system in the form of a single integro-differential
equation

]r

]t
=

1

rD−1

]

]rHrD−1ST
]r

]r
+

r

rD−1E
0

r

rsr8dSDr8D−1dr8DJ .

s23d

The total energy is given as the sum of the kinetic and po-
tential contributions:

E =
D

2
T +

1

2
E rFdDr . s24d

The Smoluchowski-Poisson system is also equivalent to a
single differential equation

]M

]t
= TS ]2M

]r2 −
D − 1

r

]M

]r
D +

1

rD−1M
]M

]r
, s25d

for the quantity

Msr,td =E
0

r

rsr8dSDr8D−1dr8, s26d

which represents the mass contained within the sphere of
radiusr. The appropriate boundary conditions are

Ms0,td = N0std, Ms1,td = 1, s27d

whereN0std=0, except if the density develops a condensed
Dirac peak contribution atr =0, of total massN0std. It is also
convenient to introduce the functionssr ,td=Msr ,td / rD satis-
fying

]s

]t
= TS ]2s

]r2 +
D + 1

r

]s

]r
D + Sr

]s

]r
+ DsDs. s28d

B. Self-similar solutions of the Smoluchowski-Poisson
system

In [8,19,20], we have shown that in the canonical en-
semble(fixed T), the system undergoes gravitational collapse
below a critical temperatureTc depending on the dimension
of space. The density develops a scaling profile, and the cen-
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tral density grows and diverges at a finite timetcoll. The case
D=2 was extensively studied in[19] and turns out to be very
peculiar. Throughout this paper, we restrain ourselves to the
more generic caseD.2, although other dimensions play a
special role as far as static properties are concerned(see
[19,20]).

We look for self-similar solutions of the form

rsr,td = r0stdfS r

r0std
D, r0 = S T

r0
D1/2

, s29d

where King’s radiusr0 defines the size of the dense core[1].
In terms of the mass profile, we have

Msr,td = M0stdgS r

r0std
D, with M0std = r0r0

D, s30d

and

gsxd = SDE
0

x

fsx8dx8D−1dx8. s31d

In terms of the functions, we have

ssr,td = r0stdSS r

r0std
D, with Ssxd =

gsxd
xD . s32d

Substituting the ansatz(32) into Eq. (28), we find that

dr0

dt
Ssxd −

r0

r0

dr0

dt
xS8sxd

= r0
2SS9sxd +

D + 1

x
S8sxd + xSsxdS8sxd + DSsxd2D ,

s33d

where we have setx=r / r0. The variables of position and
time separate provided thatr0

−2dr0/dt is a constant that we
arbitrarily set equal to 2. After time integration, this leads to

r0std =
1

2
stcoll − td−1, s34d

so that the central density becomes infinite in a finite time
tcoll. The scaling equation now reads

2S+ xS8 = S9 +
D + 1

x
S8 + SsxS8 + DSd. s35d

The scaling solution of Eq.(35) was obtained analytically in
[19] and reads

Ssxd =
4

D − 2 +x2 , s36d

which decays with an exponenta=2. This leads to

fsxd =
4sD − 2d

SD

x2 + D

sD − 2 +x2d2, gsxd =
4xD

D − 2 +x2 . s37d

Note finally that within the core radiusr0, the total mass
in fact vanishes ast→ tcoll. Indeed, from Eq.(30), we obtain

Msr0std,td , r0stdr0
Dstd , TD/2stcoll − tdD/2−1. s38d

Therefore, the collapse doesnot create a Dirac peak(“black
hole”).

In [19], we have also studied the collapse dynamics atT
=0 for which we obtained

r0std , SD
−1stcoll − td−1, s39d

as previously, but the core radius is not given anymore by
King’s radius which vanishes forT=0. Instead, we find

r0 , r0
−1/a, s40d

with

a =
2D

D + 2
. s41d

The scaling functionSsxd is only known implicitly:

F 2

D + 2
− SsxdGD/sD+2d

= Kx2D/sD+2dSsxd, s42d

where K is a known constant(see [19] for details), Ss0d
=2/sD+2d, and the large-x asymptoticsSsxd, fsxd,x−a.
The mass within the core radius is now

Msr0std,td , r0stdr0
Dstd , stcoll − tdD/2, s43d

and it again tends to zero ast→ tcoll. Comparing Eqs.(38)
and (43) suggests that if the temperature is very small, an
apparent scaling regime corresponding to theT=0 case will
hold up to a crossover timet* , with

tcoll − t* , TD/2. s44d

Above t* , theTÞ0 scaling ultimately prevails.

IV. POSTCOLLAPSE DYNAMICS AT T=0

So far, all studies concerning the collapse dynamics of
self-gravitating Brownian particles have concentrated on the
time periodtø tcoll. A natural question arises: what is hap-
pening fort. tcoll? The first possible scenario is that the state
reached att= tcoll is in fact a stationary state. However, it is
easy to check(see[8]) that this is absolutely not the case. In
addition, the preceding study leads to a sort of paradox[24].
Indeed, we know that the statistical equilibrium state in the
canonical ensemble is a Dirac peak[9,10]. This is not the
structure that forms att= tcoll. This structure is singular at the
origin sr, r−2d but different from a Dirac peak(in particular
the central mass is zero). This means that the evolutionmust
continue aftertcoll. In particular, we will show that the Dirac
peak predicted by statistical mechanics forms in the postcol-
lapse regime.

The scenario that we are now exploring is the following.
A central Dirac peak containing a massN0std emerges at
t. tcoll, whereas the density forr .0 satisfies a scaling rela-
tion of the form
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rsr,td = r0stdfS r

r0std
D , s45d

wherer0std is now decreasing with time[starting fromr0st
= tcolld→+`] and r0std grows with time[starting fromr0st
= tcolld=0]. As time increases, the residual mass forr .0 is
progressively swallowed by the dense core made of particles
which have fallen on each other. It is the purpose of the rest
of this paper to show that this scenario actually holds, as well
as to obtain analytical and numerical results illustrating this
final collapse stage.

In this section, we present an alternative treatment to that
of [19], where this scenario was analytically shown to hold at
T=0. This new approach is a good introduction to the gen-
eralTÞ0 case which is studied in the next section. We refer
the reader to[19] for an explicit solution of theT=0 post-
collapse regime, which, we found, leads to a central peak
containing all the mass in a finite timetend.

For T=0, the dynamical equation for the integrated mass
Msr ,td reads

]M

]t
=

1

r sD−1d M
]M

]r
, s46d

with boundary conditions

Ms0,td = N0std, Ms1,td = 1. s47d

We definer0 such that, for smallr,

Msr,td − N0std = r0std
rD

D
+ ¯. s48d

Up to the geometrical factorSD
−1, r0std is the central residual

density (the residual density is defined as the density after
the central peak has been subtracted). For r =0, Eq. (46)
leads to the evolution equation forN0:

dN0

dt
= r0N0. s49d

As N0std=0 for tø tcoll, and since this equation is a first order
differential equation, it looks likeN0std should remain zero
for t. tcoll as well. However, since r0stcolld
=+`, there is mathematically speaking no global solution for
this equation and nonzero values forN0std can emerge from
Eq. (49), as will soon become clear.

We then define

ssr,td =
Msr,td − N0std

rD , s50d

which satisfies

]s

]t
= Sr

]s

]r
+ DsDs+

N0

rD Sr
]s

]r
+ Ds− r0D . s51d

By definition, we have alsoss0,td=r0std /D.
We now look for a scaling solution of the form

ssr,td = r0stdSS r

r0std
D , s52d

with Ss0d=D−1 and

r0std = r0std−a, s53d

where r0 is thus defined without ambiguity. Inserting this
scaling ansatz in Eq.(51) and defining the scaling variable
x=r / r0, we find

1

ar0
2

dr0

dt
saS+ xS8d = SsDS+ xS8d +

N0

r0r0
D

1

xD sDS+ xS8 − 1d.

s54d

Imposing scaling, we find that both time-dependent coeffi-
cients appearing in Eq.(54) should be in fact constant. We
thus define a constantm such that

N0 = mr0r0
D s55d

and set

1

ar0
2

dr0

dt
= − k, s56d

with k.0, as the central residual density is expected to de-
crease. Equation(56) implies that r0,st− tcolld−1, which
along with Eq.(53) implies thatN0,st− tcolldD/a−1. We thus
find a power law behavior forN0, which, in order to be
compatible with Eq.(49), leads to

r0std = SD

a
− 1Dst − tcolld−1 s57d

and then to

k =
1

D − a
. s58d

We end up with the scaling equation

1

D − a
saS+ xS8d + SsDS+ xS8d + mx−DsDS+ xS8 − 1d = 0.

s59d

From Eq.(59), we find that the large-x asymptotics ofS is
Ssxd,x−a. In a short finite time aftertcoll, it is clear that the
large-distance behavior of the density profilesr @ r0d cannot
dramatically change. We deduce that the decay ofS should
match the behavior for time slightly less thantcoll for which
Ssxd,x2D/sD+2d. Hence the value ofa should remain un-
changed before and aftertcoll. Finally, we obtain the follow-
ing exact behaviors for short times aftertcoll:

r0std =
D

2
st − tcolld−1, s60d

r0std = S 2

D
DsD+2d/2D

st − tcolldsD+2d/2D, s61d
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N0std = mS 2

D
DD/2

st − tcolldD/2. s62d

We note the remarkable result that the central residual den-
sity rs0,td=SD

−1r0std displays a universal behavior just after
tcoll, a result already obtained in[19]. Moreover, we find that
N0std has the same form as the mass found within a sphere of
radiusr0std below tcoll, given in Eq.(43).

Moreover, the scaling functionS satisfies

D + 2

D2 S 2D

D + 2
S+ xS8D + SsDS+ xS8d + mx−DsDS+ xS8 − 1d

= 0. s63d

The constantm is determined by imposing that the large-r
behavior ofssr ,td [or rsr ,td] exactly match(not be simply
proportional) that obtained belowtcoll, which depends on the
shape of the initial condition as shown in[19]. Equation(63)
can be solved implicitly by looking for solutions of the form
xD=zfSsxdg. After cumbersome but straightforward calcula-
tions, we obtain the implicit form

1 +
xD

m
Ssxd = F1 +

xD

m
SSsxd +

2

D2DGD/sD+2d

, s64d

which coincides with the implicit solution given in[19].
Note thatSsxd is a function ofxD. We check that the above
result indeed leads toSs0d=D−1 and to the large-x asymptot-
ics

Ssxd , m2/sD+2dS 2

D2DD/sD+2d

x−2D/sD+2d. s65d

Note finally that forT=0, N0 saturates to 1 in a finite
time, corresponding to the deterministic collapse of the outer
mass shell initially atr =1. Indeed, using Gauss’ theorem, the
position of a particle initially atrst=0d=1 satisfies

dr

dt
= − r−sD−1d. s66d

The position of the outer shell is then

rstd = s1 − Dtd1/D, s67d

which vanishes fortend=D−1.

V. POSTCOLLAPSE DYNAMICS AT T.0

A. Scaling regime

In the more general caseTÞ0, we will proceed in a very
similar way as in the previous section. We define, again,

ssr,td =
Msr,td − N0std

rD , s68d

whereN0 still satisfies

dN0

dt
= r0N0. s69d

We now obtain

]s

]t
= TS ]2s

]r2 +
D + 1

r

]s

]r
D + Sr

]s

]r
+ DsDs

+
N0

rD Sr
]s

]r
+ Ds− r0D . s70d

By definition, we have againss0,td=r0std /D.
We look for a scaling solution of the form

ssr,td = r0stdSS r

r0std
D , s71d

with Ss0d=D−1. As before, we define King’s radius by

r0 = S T

r0
D1/2

. s72d

For t, tcoll, we hadssr ,td,4Tr−2 [or Ssxd,4x−2]. In a very
short time aftertcoll, this property should be preserved, which
implies that the postcollapse scaling function should also be-
have as

Ssxd , 4x−2, s73d

for large x. Inserting the scaling ansatz into Eq.(70), we
obtain

1

2r0
2

dr0

dt
s2S+ xS8d = S9 +

D + 1

x
S8 + SsDS+ xS8d

+
N0

r0r0
D

1

xD sDS+ xS8 − 1d. s74d

Again, this equation should be time independent for scaling
to hold, which implies that there exist two constantsm andk
such that

N0 = mr0r0
D s75d

and

1

2r0
2

dr0

dt
= − k, s76d

with k.0, as the central residual density is again expected
to decrease. Equation(76) implies thatr0,st− tcolld−1 and
then thatN0,st− tcolldD/2−1. We thus find a power law behav-
ior for N0, which, in order to be compatible with Eq.(69),
leads to the universal behavior

r0std = SD

2
− 1Dst − tcolld−1 s77d

and then to

k =
1

D − 2
. s78d

We end up with the scaling equation
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1

D − 2
s2S+ xS8d + S9 +

D + 1

x
S8 + SsDS+ xS8d

+ mx−DsDS+ xS8 − 1d = 0, s79d

wherem has to be chosen so thatSsxd satisfies the condition
of Eq. (73). Its value will be determined numerically in Sec.
VI for D=3. Note that for smallx, the precollapse scaling
function satisfiesSsxd−Ss0d,x2, whereas the postcollapse
scaling function behaves as

Ssxd − Ss0d , xD. s80d

However, contrary to theT=0 case,Ssxd is not purely a
function of xD.

Finally, we find that the weight of the central peak has a
universal behavior for short time aftertcoll:

N0std = mS 2

D − 2
DD/2−1

TD/2st − tcolldD/2−1. s81d

Note thatN0std behaves in a very similar manner to the mass
within a sphere of radiusr0 below tcoll, shown in Eq.(38). In
addition, comparing Eqs.(81) and(62), we can define again
a postcollapse crossover time between theTÞ0 and T=0
regimes:

t* − tcoll , TD/2, s82d

which is similar to the definition of Eq.(44).

B. Large-time limit

Contrary to theT=0 case, complete collapse does not take
place in a finite time as thermal fluctuations always allow for
some particle to escape the central strongly attractive poten-
tial. In order to illustrate this point and obtain more analytic
insight into this matter, we will place ourselves in the ex-
treme situation where almost all the mass has collapsed
sN0<1d, and only an infinitesimal amount remains in the
residual profile.

In this limit, the residual densityrsr ,td satisfies the
Fokker-Planck equation

]r

]t
= TS ]2r

]r2 +
D − 1

r

]r

]r
D +

1

rD−1

]r

]r
, s83d

with boundary condition

T
]r

]r
s1,td + rs1,td = 0. s84d

The problem indeed reduces to the study of a very light gas
(i.e., with negligible self-interaction) of Brownian particles
submitted to the gravitational forceF=−sGM / rD−1der of a
central unit mass. Alternatively, this can also be seen as the
probability distribution evolution equation of a system of
two Brownian particles moving in their mutual gravitation
field.

Equation(83) can be reexpressed as a Schrödinger equa-
tion (in imaginary time), thus involving a self-adjoint opera-
tor (see the Appendix). The large-time behavior is dominated
by the first eigenstate. Coming back to the notation of Eq.
(83), we find that

rsr,td , e−ltcsrd, s85d

wherec satisfies the eigenequation

− lcsrd = TSc9 +
D − 1

r
c8D +

1

rD−1c8 s86d

and the same boundary condition asr—i.e.,

Tc8s1d + cs1d = 0. s87d

The eigenvaluel will also control the large-time behavior of
r0 andN0 as Eqs.(69) and (85) both imply that

1 − N0std <
r0std

l
, e−lt. s88d

We did not succeed in solving analytically the above
eigenequation, and for a given temperature, this has to be
solved numerically. However, in the limit of very small tem-
perature, we can apply techniques reminiscent from semi-
classical analysis in quantum mechanicssT↔hd. We now
assumeT very small and definef such that

csrd = e−fsrd/T. s89d

The function h=w8 satisfies the following nonlinear first-
order differential equation:

TSh8 +
D − 1

r
hD +

h

rD−1 − h2 = lT, s90d

with the simple boundary condition

hs1d = 1. s91d

In the limit T→0, the term proportional toT in the left-
hand side of Eq.(90) cana priori be discarded, leading to

hsrd =
2lTrD−1

1 +Î1 − 4lTr2sD−1d
. s92d

If 4lT,1, the above expression is a valid perturbative solu-
tion also atr =1, but cannot satisfy the constrainths1d=1.
Hence, we conclude that in the limit of small temperature
4lTù1, so that the above expression is only valid forr not
to close tor =1. The above argument also suggests thatlT is
of order unity and we write

lT =
1

4
+ m2. s93d

To understand how the boundary condition, Eq.(91), can be
in fact satisfied, one has to come back to Eq.(90), which, for
r =1, shows thath8s1d,l,T−1@1. This implies that the
termTh8 cannot be neglected nearr =1 and thath varies in a
noticeable way on a length scale from 1 of orderT.

This suggests to define
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zsxd = hs1 − Txd, s94d

which satisfies(at order 0 inT)

− z8 + z− z2 =
1

4
+ m2 s95d

andzs0d=1. This equation has the unique solution

zsxd =
1

2
+ m

1 − 2m tansmxd
2m + tansmxd

. s96d

For largex, this function only has a sensible behavior for
m=0, which shows that

lim
T→0

lT =
1

4
s97d

and that Eq.(92) is in fact valid for 1−r @ s4lT−1d→0. To
leading order, we find

hs1 − Txd < z0sxd =
1

2
+

1

2 + x
. s98d

Equations(92) and(98) show thathsxd goes rapidly from
1 to 1/2 in a small region close tor =1 whereh varies on the
scaleT. One can even compute the next correction tolT by
including the next term of orderT in the equation forz.
Writing

zsxd = z0sxd + T1/3z1sxT1/3d, s99d

we find

z18 +
2

u
z1 + z1

2 −
D − 1

2
u = −

m2

T2/3 = − cD, u = T1/3x.

s100d

This is again an eigenvalue problem which selects a unique
constantcD, which we could only solve numerically. Still,
this leads to the nontrivial result

l =
1

4T
+

cD

T1/3 + ¯ sT → 0d. s101d

We now solve the eigenvalue problem(86) and(87) in the
limit of large temperaturesT→+` (see also the Appendix).
We again perform the change of variables(89) and rewrite
Eq. (90) in the form

h8 +
D − 1

r
h = l −

1

T
S h

rD−1 − h2D . s102d

Then, we expand the solutions of this equation in terms of
the small parameter 1/T!1. We write h=h0+s1/Tdh1

+s1/T2dh2+¯ andl=l0+s1/Tdl1+s1/T2dl2+¯. To zeroth
order, we have

h08 +
D − 1

r
h0 = l0. s103d

The solution of this equation ish0=l0r /D. Using the bound-
ary conditionh0s1d=1, we obtain

l0 = D, h0 = r , s104d

andhns1d=0 for n.0. To first order, we get

h18 +
D − 1

r
h1 = l1 −

h0

rD−1 + h0
2. s105d

Integrating this first-order differential equation and using the
boundary conditionh1s1d=0, we obtain

h1 =
D

2sD + 2d
r −

1

2
r3−D +

r3

D + 2
, s106d

with

l1 =
D2

2sD + 2d
. s107d

Hence, the large-temperature behavior of the eigenvalue is

l = D +
D2

2sD + 2d
1

T
+ ¯ sT → + `d. s108d

This expansion can be easily carried out to higher orders but
the coefficients are more and more complicated. Restricting
ourselves toD=3, we get

l = 3 +
9

10

1

T
−

477

700

1

T2 + OsT−3d.

VI. NUMERICAL SIMULATIONS IN THE CANONICAL
ENSEMBLE

In this section, we illustrate the analytical results obtained
in the previous section in the case ofD=3. Except when
specified otherwise, our simulations have been performed at
T=1/5,Tc<0.397. . ., for which we have obtainedtcoll
<0.44408. . . .

In order to perform our simulations, we have used a
Runge-Kutta algorithm with adaptive step in space and time.
We call dr the spatial discretization nearr =0 (which we
need to take very small as the density profile becomes sin-
gular atr =0). An important numerical problem arises in the
numerical integration of Eq.(69), which is crucial in obtain-
ing nonzero values forN0std. As this equation is a first-order
differential equation with initial conditionN0s0d=0, any na-
ive integration scheme should lead to a strictly vanishing
value forN0std for all time and anydr. Still, when perform-
ing this naive numerical integration, we see that crossingtcoll
generates increasing values forMsdr ,td, although keeping
Ms0,td=N0std=0 ultimately makes the numerical integration
unstable. In order to bypass this problem, we have decided to
introduce a numerical scheme where Eq.(69) is replaced by

dN0

dt
= r0

fitN0
fit . s109d

N0
fit and r0

fit are extracted from a fit ofMsr ,td to the func-
tional form (we are inD=3)
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Msr,td < N0
fitstd +

r0
fitstd
3

r3 + a5stdr5 + a6stdr6 s110d

in a region of a fewdr, excluding of courser =0. This func-
tional form is fully compatible with the expected expansion
for Msr ,td, both belowsa6=0d and abovesa5=0d tcoll. We
find that this numerical scheme allows us to cross smoothly
the singularity attcoll. An effective cutoff is introduced which
effectively depends ondr, and we have checked that the
results presented in this section are extremely close to the
ones that would be obtained in the ideal limitdr→0. This is
illustrated in Fig. 1, where the smoothing effect of our algo-
rithm is shown to act on a very small time region aftertcoll.
Even more surprisingly, we find that for sufficiently large
times (actually very small compared to any physical time
scales), our results are essentially independent ofdr, even for
unreasonably large values ofdr. We are thus confident that
we have successfully crossed the collapse singularity.

In Fig. 1, we plotN0std for small time which compares
well with the universal form of Eq.(81), where m
=8.389 171 47. . . has been determined so as to ensure the
proper behavior ofSsxd for largex (see Sec. V A). We also
illustrate the exponential decay of 1−N0std, with a rate in
perfect agreement with the value ofl extracted from solving
numerically the eigenvalue problem of Eq.(86). Finally, we
show the effect of the numerical spatial discretizationdr near
r =0. Satisfactorily enough, the value ofN0std is sensitive to
the choice ofdr only for very small times after the collapse,
and we were able to easily reach small enoughdr, in order to
faithfully reproduce the postcollapse singularity. In Fig. 2,
we convincingly illustrate the postcollapse scaling and com-

pare the postcollapse scaling function to that obtained ana-
lytically below tcoll (precollapse). In Fig. 3, we confirm the
validity of our perturbative expansion forl, in the limit of
small temperature. We compare the value ofcD extracted
from directly solving the full eigenvalue problem to that ob-
tained from Eq.(100), finding perfect agreement. Finally, in

FIG. 1. We plotN0std for small times(solid line). This is com-
pared toN0stdtheory3 f1+ast− tcolldbg (dashed line), whereN0stdtheory

is given by Eq.(81) with m=8.389 171 47. . ., anda<1.7 andb
<0.33 are fitting parameters. Note that the validity range of this fit
goes well beyond the estimatedt* with t* − tcoll,TD/2,0.09. The
bottom inset illustrates the exponential decay of 1−N0std,e−lt.
The best fit forl leads tol<5.6362 to be compared to the eigen-
value computed by means of Eq.(86), l=5.636 125 3. . .. Finally,
the top inset illustrates the sensitivity ofN0std to the space discreti-
zation, which introduces an effective cutoff(a factor of 4 between
each of the three curves). Note the small time scale. Even the curve
corresponding to the coarsest discretization becomes indistinguish-
able from the others fort.0.448.

FIG. 2. In the postcollapse regime, we plotrsr ,td /r0std as a
function of the scaling variablex=r / r0std. A good data collapse is
obtained for central residual densities in the range 103–106. This is
compared to the numerical scaling function computed from Eq.(79)
(dashed line). The inset shows the comparison between this post-
collapse scaling function(dashed line) and the scaling function be-
low tcoll which has been rescaled to have the same value atx=0,
preserving the asymptotics:Ssxd=s3+x2/4d−1 [see Eq.(36), solid
line]. Note that the postcollapse scaling function is flatter nearx
=0, as Ssxd−1/3,x3 (in D=3) above tcoll instead ofSsxd−1/3
,x2, below tcoll.

FIG. 3. The main plot representsslT− 1
4

dT−2/3 as a function of
T1/3 (line and squares), which should converge tocD=3

=2.338 107 41. . . forT→0 according to Eq.(101). We find perfect
agreement with this value using a quadratic fit(dotted line). Fur-
thermore, this fit shows that the slope atT=0 is in fact equal to
−2±2.10−4, suggesting that the next term to the expansion of Eq.
(101) is l=1/4T+c3T

−1/3−2+¯, in D=3. In the inset, we plotl as
a function ofT up toT<Tc<0.4. The small-temperature analytical
result of Eq.(101) is in very good agreement with the numerical
data up toT,0.03, whereas the large-T estimatelsTd=3+ 9

10T−1

+¯ is only qualitatively correct in this range of physical tempera-
tures,TøTc.
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Fig. 4, we compare the numerical value obtained forhsrd to
the different analytical estimates given in the preceding sec-
tion, for T=0.01. The two important regions 1−r !m2

,T2/3 and 1−r @m2,T2/3 can be clearly identified.

VII. POSTCOLLAPSE IN THE MICROCANONICAL
ENSEMBLE

So far, we have only addressed the postcollapse dynamics
in the canonical ensemble. In the microcanonical ensemble,
the dynamical equation has to be supplemented with the
strict energy conservation condition[see Eq.(24)], which
fixes the global temperatureTstd. For this model, it was
shown in [8,19,20] that below a certain energy(Antonov
energy), the system collapses with an apparent scaling asso-
ciated withamax<2.2 for intermediate times(when the tem-
perature still increases in a noticeable way) before entering a
scaling regime witha=2, identical to that obtained in the
canonical ensemble. In the limitt→ tcoll, the temperature and
potential energy both seem to converge to a finite value,
preserving a constant energy. Closely before the collapse
time, the temperature behaves asTstcolld−Tstd,stcoll− tdg

with g.1/2. This section addresses thet. tcoll time period.
Assuming a spherical mass density and after integration

by parts, the potential energyW can be rewritten in the form
sD.2d

Wstd = −
1

2
E

0

1 M2sr,td
rD−1 dr −

1

2sD − 2d
. s111d

We see immediately that asD−1.1, the occurrence of a
finite massN0stdÞ0 concentrated atr =0 implies an infinite
potential energy, hence an infinite temperature. We thus an-

ticipate that the postcollapse dynamics in the microcanonical
ensemble is probably an ill-defined problem. In this extreme
regime, let us try to consider the possible flaws of this model
in order to describe a consistent dynamics of a reasonable
physical self-gravitating system. First, our assumption of
uniform temperature is certainly not realistic in a system dis-
playing huge density contrast, and some alternative ap-
proaches are needed to incorporate a spatially dependent
temperature. This point is certainly crucial and will be ad-
dressed in a future work[32]. Furthermore, in this regime, a
careful physical analysis predicts that this system of self-
gravitating individual particles should lead to the formation
of binaries, which is probably beyond the description ability
of our essentially mean-field approach. In other words, the
system may become intrinsically heterogeneous, which prob-
ably cannot be captured by our continuous model. Finally,
we can think of other physical effects(degeneracy effects of
quantum or dynamical origin, finite-particle-size effects,
etc.), preventing the system from reaching arbitrarily large
densities. One way to describe such effects consists in intro-
ducing a spatial cutoffh or a density cutoff of orderh−D. In
such a system, the dynamics first follows the precollapse
dynamics until the maximum density is approached. Then,
the system will ultimately reach a maximum-entropy state
that we propose to characterize in a simple manner, as in
[33,24].

We propose to describe the final state as a “core-halo”
structure, which for simplicity we modelize as a core of ra-
dius h!1 and constant density

rcore=
DN0

SDhD , s112d

which mimics a regularized central Dirac peak containing a
massN0. In the regionh, r ø1 stands the halo of constant
density,

rhalo =
Ds1 − N0d
SDs1 − hDd

, s113d

containing the rest of the mass. Ash is small, we can com-
pute the potential(or total) energy and the entropy, only
including the relevant leading terms. We find

E =
D

2
T −

D

D2 − 4
F N0

2

hD−2 + 1 +
D − 2

2
N0 −

D

2
N0

2G + Osh2d,

s114d

where the first term is the kinetic energy, whereas the en-
tropy (up to irrelevant constants) reads

S=
D

2
ln T − N0 lnSN0

hDD − s1 − N0dlns1 − N0d + OshDd.

s115d

For a given small value ofh, S has a local maximum atN0
=0 provided thatE.Ecshd, with limh→0Ecshd=−D / sD2−4d.
Below Ec, the sole entropy maximum resides atN0, satisfy-
ing the implicit equation(again in the limit of smallh)

FIG. 4. ForT=0.01sl=35.074 198. . . ,m=0.317 398 77. . .d, we
plot hsrd computed numerically from Eq.(90) (dashed line) and the
theoretical expression of Eq.(92), which is valid for 1−r @m2

,T2/3 (solid line). We also plot the theoretical expression ofz0

[dash-dotted line; see Eq.(98)] and the next-order perturbation re-
sult [dotted line; see Eq.(99)], which are valid in the region 1−r
!m2,T2/3. The inset is a blowup of the region close to 1. Note
how hsrd varies by a quantity of order unity asr varies by a quantity
of order T=0.01. We have chosen a not too small value forT in
order to be able to visualize the two scale regimes in a single figure.
Both approximations shown in the inset are getting better asT
decreases.
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N0 =
D

lnSN0

hDD , −
1

ln h
, s116d

where the given asymptotics is quantitatively correct only for
extremely small values ofh. Hence, we find that the mass
included in the core slowlydecreaseswith core sizeh [24],
resulting in an effective singularityrsr d=−s1/ ln rddDsr d.
Meanwhile, the temperature diverges as

T , −
2

D
W,

2

D2 − 4

1

hD−2 ln2 h
s117d

and leads rapidly and efficiently to a uniform halo.
In order to relate this result to our actual system, we per-

form microcanonical postcollapse simulations using the
same regularization scheme as in the canonical case in order
to describe the evolution ofN0std. In addition to this, we also
need to regularize the potential energy which is strictly infi-
nite (as well asT) whenN0Þ0. Consistently with the previ-
ous discussion, we introduce a numerical cutoffh by defin-
ing

Wstd = −
1

2
E

h

1 M2sr,td
rD−1 dr −

1

2sD − 2d
. s118d

In Fig. 5, we plotN0std and Tstd for different values of the
cutoff h. Contrary to the canonical case, the postcollapse
dynamics is stronglyh dependent. We see that in conformity
with our result of Eq.(116), the central massN0 clearly
decreases ash→0. Therefore, in the microcanonical case,
the physical picture is that when the collapse timetcoll is
reached, the temperature increases rapidly, which leads to the
rapid homogenization of the system except for a dense and
small core, whose massN0, ln−1T is a decreasing function
of the maximum temperature reached. This central structure
with weak mass and huge binding energy is similar to a

“binary star” structure in stellar dynamics. Binary formation
is the physical process that arrests core collapse in globular
clusters[34]. This is also the end point of our simple micro-
canonical Brownian model.

VIII. CONCLUSION

In this paper, we have investigated the postcollapse dy-
namics of a gas of self-gravitating Brownian particles in ca-
nonical and microcanonical ensembles. Our results also ap-
ply to the chemotactic aggregation of bacterial populations in
biology. At the collapse timetcoll, the system develops a sin-
gular density profile scaling asr, r−2. However, the “central
singularity contains no mass,” the temperature does not di-
verge, and the entropy and free energy are finite[8,19,20].
Since this profile is not a maximum entropy(respectively, a
minimum free energy) state or a stationary solution of the
Smoluchowski-Poisson system, the collapse continues after
tcoll. This solves the apparent paradox reported in[24].

In the canonical ensemble, mass accretes progressively at
the center of the system and a Dirac peak forms by swallow-
ing the surrounding particles. Eventually, the Dirac peak con-
tains all the mass. This structure has an infinite free energy
F=E−TS→−` simply because its binding energy is infinite.
This is therefore the most probable structure in canonical
ensemble[9,10,24]. In the microcanonical ensemble, the
maximum-entropy state(at fixed mass and energy) consists
of a single binary embedded in a hot halo[23,2,19]. This is
precisely what we see in our numerical simulations. The tem-
perature increases dramatically abovetcoll (resulting in an
almost uniform halo) although the mass contained in the core
is weak (but finite). We note the “spectacular” fact that al-
most all the gravitational energy resides in a binarylike core
with negligible mass. A similar phenomenon is observed in
stellar dynamics for globular clusters having experienced
core collapse [1]. This shows that the microcanonical
Smoluchowski-Poisson system shares some common proper-
ties with kinetic equations usually considered in stellar dy-
namics(Landau-Fokker-Planck equations), despite its greater
simplicity. Clearly, a major drawback of our microcanonical
model is to assume that the temperature uniformizes instan-
taneously, implying an infinite thermal conductivity. We shall
relax this simplification in a future work[32]. However, the
present study is one of the first dynamical studies showing
the formation of Dirac peaks and binarylike structures in
systems with gravitational interaction.

Our Brownian model is based on the existence of a gas-
eous medium that generates a friction force. This situation
exists in certain astrophysical models such as the transport of
dust particles in the solar nebula[12]. Dust particles are sub-
mitted to Stokes or Epstein drag. It is clear that when the
concentration of particles is important(prior to planetesimal
formation), self-gravity has to be taken into account. Thus,
our system of self-gravitating Brownian particles could be
connected to this astrophysical situation. We just mention
this as a possible astrophysical application because it is not
our present main motivation to make a precise model of
dust-gas-gravity coupling in protoplanetary disks. However,
this problem could be considered in future works.

FIG. 5. ForE=−0.45,Ec<−0.335, we plotN0std, for different
values ofh decreasing by a factor of 2 for each curve from the top
one to the bottom one. It is clear thatN0std decreases ash decreases.
The inset shows the corresponding temperature plots. The tempera-
ture Tstd increases ash decreases. Note that in the precollapse re-
gime, the temperature essentially does not depend onh. For the
situation considered, it starts fromTs0d=0.1 and culminates at
Tstcolld<0.5.
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APPENDIX: BROWNIAN PARTICLE AROUND
A “BLACK HOLE”

We consider the Brownian motion of a particle subject to
the gravitational force −GMr / r3 created by a central massM
(“black hole”). We assume that when the particle comes at
r =0, it is captured by the central mass. We denote byWsr ,td
the density probability of finding the particle inr at timet. It
is solution of the Fokker-Planck equation

]W

]t
= = ·ST = W+ W

r

r3D , sA1d

where we have setG=M =R=j=1. Let Wsr ,td denote a
spherically symmetric solution of Eq.(A1) satisfying the
boundary conditions

T
]W

]r
s1,td + Ws1,td = 0, sA2d

Wsr,0d =
dsr − r0d

4pr0
2 . sA3d

We call

J = − ST = W+ W
r

r3D sA4d

the current of probability; i.e.,JdSn gives the probability
that the particle crosses an element of surfacedS betweent
andt+dt (n is a unit vector normal to the element of surface
under consideration).

We introduce the probabilitypsr0,tddt that a particle lo-
cated initially betweenr0 andr0+dr0 arrives for the first time
at r =0 betweent and t+dt. We have

psr0,td = −E
Re

J ·dS= 4pe2ST
]W

]r
+

W

r2D
e

= 4pWs0,td,

sA5d

whereRe is a ball of radiuse→0. The total probability that
the particle initially betweenr0 and r0+dr0 has reached the
center of the system between 0 andt is thus

Qsr0,td =E
0

t

psr0,t8ddt8. sA6d

Finally, we averageQsr0,td over an appropriate range of ini-
tial positions in order to get the expectationQstd that the
particle has been captured at timet.

With the change of variables

W= ce1/2Tr, sA7d

we can transform the Fokker-Planck equation(A1) into a
Schrödinger equation(in imaginary time) of the form

]c

]t
= TDc −

1

4Tr4c. sA8d

A separation of the variables can be effected by the substitu-
tion

c = fsrde−lt. sA9d

This transformation reduces the Schrödinger equation to a
second-order ordinary differential equation

f9 +
2

r
f8 + Sl

T
−

1

4T2r4Df = 0, sA10d

with the boundary condition

f8s1d +
1

2T
fs1d = 0. sA11d

We noteln the eigenvalues andfn the corresponding eigen-
functions. Since the Schrödinger operatorH=D−1/4T2r4 is
Hermitian, the eigenfunctions form a complete set of or-
thogonal functions for the scalar product

kfgl =E
0

1

fsrdgsrd4pr2dr. sA12d

The system can be furthermore normalized—i.e.,kfnfml
=dnm. Any function fsrd satisfying the boundary condition
(A11) can be expanded on this basis as

fsrd = o
n

kffnlfn. sA13d

In particular,

dsr − r0d
4pr0

2 = o
n

fnsr0dfnsrd. sA14d

The general solution of the problem(A1) and(A2) can be
expressed in the form

Wsr,td = o
n

Ane
−lnte1/2Trfnsrd, sA15d

where the coefficientsAn are determined by the initial con-
ditions(A3), using the expansion(A4) for thed function. We
get

Wsr,td = es1/2Tds1/r−1/r0do
n

e−lntfnsr0dfnsrd. sA16d

From this expression, we obtain

psr0,td = 4pe−1/2Tr0o
n

e−lntfnsr0dlim
r→0

ffnsrde1/2Trg .

sA17d

Then, according to Eq.(A6), we have

Qsr0,td = 4pe−1/2Tr0o
n

1 − e−lnt

ln
fnsr0dlim

r→0
ffnsrde1/2Trg .

sA18d

Finally, averaging over the initial conditions, the probability
that the particle has been captured by the central mass at time
t can be expressed as
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Qstd = o
n

Qnstd, sA19d

where

Qnstd = Bns1 − e−lntd sA20d

and

Bn = 4p
1

ln
e−1/2Tr0fnsr0dlim

r→0
ffnsrde1/2Trg . sA21d

This formally solves the problem. If we consider the large-
time limit, we just need to determine the first eigenvalue
l0sTd of the quantum problem. This has been done analyti-
cally in Sec. V B in the limitsT→0 andT→ +`.

Below, we consider again the high-temperature regime
where thermal fluctuations prevail over gravity but we do not
restrict ourselves to the first eigenvalue. To leading order in
the limit T→ +`, the Fokker-Planck equation(A1) reduces
to the pure diffusion equation

]W

]t
= T

1

r2

]

]r
Sr2]W

]r
D . sA22d

However, for consistency(see Sec. V B), it is necessary to
keep the term of order 1/T (arising from the gravitational
force) in the boundary condition. Hence, we take

]W

]r
s1,td +

1

T
Ws1,td = 0. sA23d

The general solution of the diffusion equation(A22) with the
boundary conditions(A23) and (A3) can be expressed as

Wsr,td = o
n

e−lntfnsr0dfnsrd, sA24d

wheref is solution of

f9 +
2

r
f8 +

l

T
f = 0, sA25d

f8s1d +
1

T
fs1d = 0. sA26d

Settingf=x / r, Eqs.(A25) and (A26) become

x9 +
l

T
x = 0, sA27d

x8s1d = S1 −
1

T
Dxs1d. sA28d

Equation (A27) is readily solved. The eigenvalues can be
written ln=Txn

2sTd, wherexnsTd are the solutions of the im-
plicit equation

tansxnd =
xn

1 − 1/2T
. sA29d

The eigenfunctions are

fnsrd = An
sinsxnrd

r
. sA30d

The general solution of the diffusion equation can thus be
written

Wsr,td =
1

rr 0
o
n=0

+`

e−Txn
2tAn

2 sinsxnrdsinsxnr0d, sA31d

with

An
2 =

xn

2psxn − sinxn cosxnd
. sA32d

If we consider the pure diffusion of a particle in a box, the
boundary condition(A26) reduces tof8s1d=0 and thexn are
solutions of the implicit equation

tansxnd = xn. sA33d

In particular,x0=0. This implies that the probabilityWsr ,td
converges for large times to auniform profile Wsr , +`d
=3/4p which is indeed solution of the diffusion equation in
a box. If gravity is taken into account, its first-order effect(in
the limit T→ +`) is to change the boundary condition to Eq.
(A26). It is as if we had a diffusion across the box[27,12]
although the true physical process is a capture by the central
mass. The eigenvalues are now determined by Eq.(A29).
The xn.1 are hardly modified(to first order) with respect to
the preceding problem butx0 is now different from zero. To
first order, we find thatx0

2=3/T so thatl0=3 in agreement
with the result of Sec. V B. We also note thatA0

2=T/4p
while An.0 are independent onT (to leading order) and given
by Eqs.(A32) and (A33).

Using Eqs.(A5) and(A6), the probability that the particle
has been captured by the central mass at timet is given by

Qstd =
4p

T
o
n=0

+`
1 − e−Txn

2t

xn
An

2sinsxnr0d
r0

. sA34d

If we average over initial conditions with the weight 3r0
2

(uniform distribution), we find to leading order inT−1 that

sinsxnr0d
r0

= 0, for n . 0, sA35d

sinsx0r0d
r0

= x0. sA36d

Hence, the modesn.0 cancel out. Therefore, in the high-
temperature regime, the probability of capture is given by

Qstd = 1 −e−3t, sA37d

for all times.
The caseD=2 can be treated by a similar method. Instead

of Eqs.(A31), (A32), and(A29), we get

Wsr,td = o
n=0

+`

e−Txn
2tAn

2J0sxnrdJ0sxnr0d, sA38d
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An
2 =

1

pfJ1
2sxnd + J0

2sxndg
, sA39d

xnJ1sxnd
J0sxnd

=
1

T
, sA40d

where Jn is the Bessel function of ordern. For the pure
diffusion process,xn=a1n are the zeros ofJ1. If gravity is
taken into account, thenxn.1.a1n while x0

2=2/T establish-
ing l0=2. The probability that the particle has been captured
by the central mass at timet is given by

Qstd =
2p

T
o
n=0

+`
1 − e−Txn

2t

xn
2 An

2J0sxnr0d. sA41d

If we average over the initial conditions with a weight 2r0
(uniform distribution), we get J0sxnr0d=0 if n.0 and
J0sx0r0d=1. Therefore, in the high-temperature regime, the
probability of capture is given, for all times, by

Qstd = 1 −e−2t. sA42d

Finally, for D=1, we obtain

Wsr,td = o
n=0

+`

e−Txn
2tAn

2 cossxnrdcossxnr0d, sA43d

An
2 =

1

1 + sins2xnd/2xn
, sA44d

xn tansxnd =
1

T
. sA45d

For the pure diffusion process,xn=np. If gravity is taken
into account, thenxn.1.np while x0

2=1/T establishingl0
=1. The probability that the particle has been captured by the
central mass at timet is given by

Qstd =
2

T
o
n=0

+`
1 − e−Txn

2t

xn
2 An

2 cossxnr0d. sA46d

If we average over the initial conditions with a weight 1
(uniform distribution), we get cossxnr0d=0 if n.0 and
cossx0r0d=1. Therefore, in the high-temperature regime, the
probability of capture is given, for all times, by

Qstd = 1 −e−t. sA47d
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