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Conformal field theory of the Flory model of polymer melting
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We study the scaling limit of a fully packed loop model in two dimensions, where the loops are endowed
with a bending rigidity. The scaling limit is described byhaee-parametefamily of conformal field theories,
which we characterize via its Coulomb-gas representation. One choice for two of the three parameters repro-
duces the critical line of the exactly solvable six-vertex model, while another corresponds to the Flory model
of polymer melting. Exact central charge and critical exponents are calculated for polymer melting in two
dimensions. Contrary to predictions from mean-field theory we show that polymer melting, as described by the
Flory model, iscontinuous We test our field theoretical results against numerical transfer matrix calculations.
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I. INTRODUCTION within the framework of Nienhuis’ self-avoiding walk model

4.5].

Over the years, polymers physics has greatly benefite([j ?he picture changes considerably when the polymer is in
from studies of lattice models. One persistent theme has beep “compact” phase, with the monomers occupying all the
the use of lattice models to uncover universal properties ofvailable space. Such a situation is relevant, for instance,
chain molecules. An example is provided by the scaling exwhen modeling the conformations of globular protej6
ponents which characterize the statistical properties of polyCompactness in this case follows from the interaction be-
mer conformations, in the limit of very long chaifit]. For  tween hydrophobic amino acids and the solvéntter),
polymer chains confined to live in two dimensions, exactwhich leads to the expulsion of the solvent from the bulk of
values of exponents were calculated by NienHaisusing the protein. The simplest way to model this effect is to en-
the self-avoiding walk on the honeycomb lattice. The pre-force compactness as a global, steric constraint on the poly-
dicted value of the swelling exponent, which relates the lin-mer configurationg6]. Within this compact phase, one ex-
ear size of the polymer to the number of monomers, wa®ects a phase transition from a disordered melt to an ordered

directly measured in recent fluorescence microscopy studigdyStal as the stiffness of the polymer is increased.
of DNA absorbed on a lipid bilayes]. To study this melting transition, in 1956 Flory introduced

Here we turn to the problem of polymer melting, which a lattice model[7]. Flory’s model, in its simplest formula-

deals with a possible phase transition induced by the comp%i\—grl’( %?]nfriztss OJ;?:;%IE :hgri:j’o(\j/\?esgr\i/\l/)iter? ;)lggnzier!f-ar\i/oigiitng
tition between chain entropy and bending rigidity. Bending d ' g ngiaity.

rigidity determines the persistence length of the ponmerTo describe the melted phase the chain is taken to be maxi-

S . ; . . ) ally compact, filling all the sites of the square lattice; see
This is t.he distance over which the relative orientations ong_ 1. The resistance to bending is modeled by an energy
two chain segments are decorrelated due to thermal fluctua ; o
. SO i ) . enalty for making 90° turns.
tions. The long chain limit mentioned in the previous para-

h is obtained wh h | | hi h In the Flory model, at infinite temperature the entropy
graph Is obtained when the polymer length is much greatefj,minates and the polymer will exhibit a finite density of
than its persistence length.

o . - . bends, as in Fig.(h). As the temperature is lowered to zero,
_Itis important to point out that the ?ﬁeCt of f|r)|te t?e”d'”g Il the bends are expelled from the bulk and their density
rigidity depends crucially on the steric constraints 'mposeogoes to zero, as in Fig(H). The nature of the transition from
on the polymer by its interactions with the solvent. For ex-yhe pigh temperature melt to the low temperature crystal has
ample, in the presence of a good solvent the polymer is in g0, dehated over the yeds. Here we show that the melt-
“dilute” phase. Typical chain conformations are swollen with

. ing transition iscontinuousand calculate exact values of
empty space between the monomers filled by solvent mol

. . X . scaling exponents at the transition.
ecules. On the lattice, the dilute phase is characterized by a' |, 1is original paper, Flory[7] proposed a mean-field
vanishing fraction of sites occupied by monomers. In thi ’

. A : . Streatment which predicts a first-order transition. According to
phase, the bending rigidity simply increases the persistencg g [7], the density of bends goes to zero at the transition

Igngth o_f the polymer, _qnd It does. not Ie_ad toa phase ranskg the chain entropy vanishes. This prediction of a first-

tion. This can be verified analytically in two dimensions, order transition with a vanishing entropy was challenged by

Nagle[9]. Namely, he showed that the exactly solvable six-

vertex model maps to a related polymer model which differs

*Email address: jacobsen@ipno.in2p3.fr from Flory’s by the presence of polymer loops of all sizes.
"Email address: kondev@brandeis.edu Applying Flory’s mean-field approximation to this model
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FIG. 1. Compact polymer con-
figurations on an 1X 15 square
lattice: (a) Typical configuration
in the melt phase, ancb) zero-
temperature crystalline state, in
which the number of bends is
minimum.

(a) (b)

leads once again to the prediction of a first-order melting The paper is organized as follows. In the following sec-
transition. However, as Nagle pointed out, this is at odddion we introduce the SFL model, which, in the limit of zero
with the exact solution of the six-vertex moddlO] which  loop weight, gives the Flory model of polymer melting, and
predicts a continuous, infinite order transition. This observawe discuss its phase diagram. In Sec. Ill we discuss the
tion makes it questionable that the Flory approach is valid irheight representation of the loop model and how it leads to a
the original model as well. In fact, a few years later Gujraticonformal field theory in the scaling limit. We make use of
and Goldsteif11] proved that the polymer entropy in Flo- the field theory in Sec. IV to calculate the central charge and
ry’s model stays finite all the way down to zero temperaturescaling exponents, which we check against numerical trans-
when it finally vanishes. However, the order of the transitionfer matrix computations in Sec. V. In Sec. VI we propose a
still remained an unresolved question. phase diagram for the generalized six-vertex and eight-vertex
Monte Carlo simulations of Baumgartner and Yodr2], models. We end with a discussion of the scaling of semiflex-
where they allowed for many chains and a finite density ofible compact polymers, and we argue that the generalized
empty sites, showed a first-order melting transition. Sooreight-vertex model furnishes a rather complete description of
thereafter Saleufl3], using a transfer matrix approach, pre- noncompact semiflexible polymers. An appendix is reserved
sented numerical evidence of a continuous transition, similafor a detailed discussion of the construction of the transfer
to the one found in the six-vertex model. The analogy withmatrices.
the six-vertex model points at the possibility of having a
high-temperature phase with continuously varying expo-
nents. A few years later, Bascle, Garel, and Orlgh4] pro-
posed an improved mean-field treatment of the Flory model, Here we define the SFL model, and give a rough sketch of
which does not suffer from the problem of a vanishing en-its phase diagram based on the limits of weak and strong
tropy at the transition. It also predicts a first-order transition.bending rigidity. The fact that the SFL model reduces to the
This is however at odds with more recent Monte Carlo workF model in the limit of unit loop fugacity9] plays an im-
by Mansfield[15] which, although strictly speaking dealing portant role in guiding our intuition about the loop model. It
with a system of many chains, is again in favor of a continu-also provides an exactly solvable line in the phase diagram,
ous transition. against which the field theoretical and numerical results can
Here we show that polymer melting is continuous, asbe checked.
originally argued by Saleyi 3], by making use of a particu-
lar model, thesemiflexible loogSFL) mode] and its height
representation. Furthermore, we calculate the central charge
and exact scaling exponents at the transition. These results The semiflexible fully packed loop model on the square
are checked against detailed numerical transfer matrix comattice (the SFL modelis defined by filling the square lattice
putations. with loops drawn along the lattice edges. Allowed loop con-
The SFL loop model can be thought of as a “loop generfigurations satisfy two constraint&) self avoidance—loops
alization” of the so-called F modgB], in which suitably are not allowed to cross, arfd) full packing—every site is
defined loops carry additional Boltzmann weights. The Fvisited by exactly one loop.
model is a special case of the six-vertex mddé, in which On the square lattice with periodic boundary conditions,
all vertices carry equal weights. This connection will serve asdges that are not covered by loops also form loops, as there
the motivation for introducing a more general model, theare two unoccupied edges associated with every site of the
generalized six-vertex modeh which the generalzero- lattice. We refer these to as “ghost loops.”
field) six-vertex model is endowed with extra loop weights.  Given the configurations of the semiflexible loop model,
We shall finally introduce a similarly generalized version of the Boltzmann weights are defined in the following way.
the eight-vertex moddtLQ]. Its interest from a polymer point Every real loop is given a weight,, and every ghost loop
of view is that it allows for a unified description of semiflex- has weightng. (In all the figures the real and ghost loops are
ible lattice polymers in a variety of phases: compact, denseshown as black and gray, respectively, whence the subscripts
and dilute. Furthermore, it allows us to discuss the effect ob andg.) The parameters,, andnq act as fugacities of the
vacancies on the polymer melting transition. two-loop flavors, and as such they control the average num-

Il. SEMIFLEXIBLE LOOP MODEL

A. Definition of the model
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FIG. 2. Typical configurations in the SFL model with=ny=2 and bending rigidity parameter,=1/4 (a), wx =1 (b), andwx =4 (c).
We shall show that the left and middle panels correspond to critical melt states, while the right panel is a noncritical crystalline state. In the
latter, domains of nonzero staggered polarizatsee Sec. |l B Rare clearly visible.

ber of loops of each flavdi 6]. They can be varied indepen- B. Qualitative phase diagram
dently as the number of ghost loops is not fixed by the num- pqgn qualitative features of the phase diagram of the
ber of real loopg17]. Furthermore, a weighti is assigned  gemjfiexible loop model can be deduced from the limits of
to each vertex of the lattice at which the real and ghost 100p$¢rq and infinite bending rigidity. The motivation for devel-
Cross. Fomvy >1 this has the oeffect of dlsfgvorlng vertices at oping a precise theory of the phase diagram, as mentioned in
which the loop makes a 90° bend, or, in other words, hpe |nyroduction, stems from the interest in the—0, Ny
Ioops are semlflexm_)le. The partition function of the semi-_4 case, which is the Flory model of polymer melting. We
flexible loop model is are also motivated by the relation of the SFL model to the
integrable six-vertex model, and its generalizations.
Z= 2, npbngawy, (1)
g 1. Flory model

In the Flory limit of the SFL model, thes =1 point is the
where the sum runs over all allowed loop configuratighs compact polymer problem, which we have studied previ-
Np and N,y are the number of real and ghost loops, respeceusly[17]. Here one is concerned with enumerating all self-
tively, while V is the number of crossing vertices; these areavoiding walks that visit every site of the lattice. We have
the two rightmost vertices in Fig. 3. In the limit— 0, with ~ shown that compact polymers on the square lattice are a
ng=1, we recover the Flory modeE/n, counts compact critical geometry characterized by non-mean-field scaling ex-
polymer loops each weighed lvyi{ ponents which can be calculated exactly from a field theory.

The semiflexible loop model can be thought of as the As wy is increased away from one, we are dealing with a
generalization of the fully packed loop model on the square&eompact polymer with a bending rigidity. In the limity
lattice (FPL?) model introduced in Ref[17]. The FPI? —o we arrive at a frozen phase in which the density of
model is given by the partition function, E¢l), with wy,  vertices at which the polymer bends goes to zero. This is the
=1. It has a critical phase fon,|,[ng| <2, characterized by a polymer crystal. At an intermediate weightwy
power-law distribution of loop sizes. For other values of the=w§ (1 <wg <) there will be a melting transition. One of
loop weights the model is noncritical with a distribution of the important unresolved problems is the nature of this tran-
loop sizes cut off at a finite valudixed by the correlation sition. Here we construct an effective field theory of the
length. Below we will show that the vertex weighty, for Flory model and show that the melting transitiorcantinu-
each point in the critical phase of the FPodel, produces ous
a line of fixed points which terminates in a Kosterlitz-  Another interesting issue is the region okQvy <1. As
Thouless transition. wy — 0, straight-going vertices are completely suppressed,

066108-3



J. L. JACOBSEN AND J. KONDEV PHYSICAL REVIEW B9, 066108(2004

ad U dJ nonrigorou$ results for the central charge and scaling di-
M (1 M (] mensions, which we confirm via numerical transfer matrix
calculations.
! ! } }
i ]i i ,ﬁ . M lIl. FIELD THEORY CONSTRUCTION

FIG. 3. Correspondence between the vertices of the six-vertex 10 construct a field theory for the critical phase of the

model and the FPLmodel(here shown for an even vertex; at odd SFL model we make use of the height representation of the
vertices the arrows are reversged FPL? model. This was already described in detail in our pre-

vious work[17], and here it is briefly reviewed for complete-

and with appropriate boundary conditions the only allowed€SS: The main effect of the vertex weighy on the field

configurations are those of a checkerboard pattern of smaﬁsiggr?g I‘?h}(s) éiggr:]o"’:“gﬁagng t(r)::altc:serC]tor;Iplcl;Eglra?QbSPIg—a ds to
loops, each loop having its minimal length of 4. If the Flory ' 9 ge,

limit (n,— 0) is taken before thevy — 0 limit, there has to continuously varying scaling dimensions for a specific subset

be a number of straight-going vertices at the boundary, thof operators, which we identify. These results are confirmed

dominant configurations being those of a single wiggly Iine.%y our numerical transfer matrix computations.

In any case, thavy — 0 limit is again a crystalline phase of

zero entropy. We shall however argue below that the corre- A. Height map
sponding crystallization transition is locatedvat=0 and is The height mapping is defined on the space of oriented
thus rather uninteresting. loop configurationdG’}. We associate 2o oriented loop

_ A qualitative idea of the physics underlying the phaseconfigurationg’ with each loop configuratiog of the SFL
diagram of the SFL model can be obtained by looking aiyodel by independently orienting every real and every ghost
some typical configurations for various values w§; see loop clockwise or counterclockwise.

Fig. 2. The images were obtained by performing Monte The Boltzmann weight of an oriented loop is €xp),

Carlo simulations on a square lattice of size X000 with |\ here the phase= + e, for clockwise(counterclockwisg
toroidal boundary conditions. For technical reasftffj we i iented real loops, ang= * e, for the two orientations of
taken,=ny=2 and no loops of noncontractible topology are o ghost loops. To recovex, and n, for the loop weights,

allowed. (Further details on the algorithm used for theseagier summing over the two possible orientations we must set
simulations can be found in Rdf18].)

N, =2 cogmey),
2. Six-vertex model (2

. . o . n,=2 cogmey).
Before turning our sights to the semiflexible loop model it g $mey)

is instructive to review exact results for thieero-field six-  This particular partition of the loop weights between the two
vertex (6V) model. The 6V model corresponds to thg  orientations has the advantage of allowing the loop weights
=ng=1 line in the phase diagram of the SFL model. Theto be distributed among all the vertices that the loop visits,
mapping between the two is simple: at evenld) vertices  thus rendering the weights local. This is achieved by assign-
the edges covered by the real loops are identified with arrowiig the phaseme,/4(me,/4) to every vertex at which the
pointing out(in), while the edges covered by the ghost loopsoriented realghos) loop makes a right turn, and the oppo-
correspond to arrows pointing iout); see Fig. 3. The ap- site phase for left turns. The fact that for every closed loop
propriate six-vertex weights ase=b=1 andc=wy [19]. on the square lattice the difference between the number of
In the 6V model there is an order-disorder transition as deft and right turns is £4, is what makes these vertex weights
function of the vertex weightvy. In the ordered state, which work. The total vertex weight is then given by the product of
is obtained forwy — o, all the vertices are of the variety  phase factors when the loops bend, while a weightis
(cf. Fig. 3. The order parameter is the staggered polarizaassigned to vertices at which the loops do not bend.
tion, which in the loop language can be expressed as the Turning back to the height map, we define microscopic
difference between the number of horizontal and the numbeneightsh(x) on the lattice{x} dual to the square lattice on
of vertical loop-covered edges per sftE8]. The exact solu- which the loops are defined. Once the height at the origin is
tion of the six-vertex model predicts a continuquifinite-  fixed, the heights on all the other vertices of the dual lattice
orden transition occurring awy =2 [10]. The disordered are uniquely specified by the oriented loop configuration.
phase for B<wy <2 is critical with an infinite correlation Namely, the height difference between nearest-neighbor ver-
length and power-law correlations. Below we will show thattices of the dual lattice ig\, B, C, or D, depending on the
there is an analogous transition in the semiflexible loopstate of the edge that separates them. The four height-
model, aswy is varied, for all values ofn|, |ng| =<2, includ- difference vectors, also referred to as “colors,” are associated
ing the Flory casgn,—0,ng=1). In the Flory model this  with the four possible states of any given edge, which can be
was observed previously by Saleur in numerical transfer maeither covered by a real or a ghost loop, with one of two
trix computationg13]. For the critical phase of the model we possible loop orientations. Real loops are formed by alternat-
shall construct an effective field theory using the interfaceing cycles of A and B colored edges, while th€ and D
representation of the loop model. This leads to exact  colored edges are ones visited by the ghost loops. Note that
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the difference between aABAB--- and aBABA--- cycle e(l):(— 7,0, +m),
encodes the orientation of the correspondiregl) loop.
The fully packing constraint and the requirement that the e = (= 7,0,-m)

height be uniqudi.e., the sum of height differences along
any closed lattice path must be zpimposes a single alge-
braic constraint on the four color&+B+C+D=0. It fol-
lows that only three of the four vectors are linearly indepen- "
dent. A convenient choice that respects the symmetries e¥ = (- m,-m,0).
bgitnwtifgrr:r;ﬁef?:gztce C;I?gsﬂi I/c;rlt?(t:etz%fcgrr;estﬂg??értlgaxgg:gﬁ'hese electric charges are associated with the most relevant
P 9 vertex operators appearing in the Fourier expansion of the
B B operator conjugate to the loop weidisee Eq(12) below].
A=(-1,+1,+D, B=(+1+1-1, Demanding that all four charges have scaling dimension
(3)  equal to 2 givegusing Eq.(16)]

(6)

C=(-1,-1,-9, D=(+1,-1,+12.

The effective field theory for the SFL model describes the Ky = 757(2 —€5~ &),
fluctuations of the coarse-grained heights which retains only
the long-wavelengtiimuch larger than the lattice spacjng ()
) ) . . -
Fourier modes of the microscopic heights. Kys= g(eo— &),

B. Effective field theory: wy=1
_ml-e)(l-gy
Ka2=7

For wy=1 we have the familiar case of the fully packed 2 2-e-6

loop model on the square lattice. Its effective field theory
was discusses in a previous publicatid¥] and here it is  for the elastic constants of the FPimodel; e, ande, satisfy
reviewed for completeness. Eg. (2) and take their values on the interjal, 1/2]. Below
The partition function of the loop model in the height we will argue that the effect ofi # 1 is to change the value
representation can be written as a path integral over thef the elastic constar,, while leaving the other two un-
coarse grained heights with tlidimensionlessaction: changed.
The boundary term in the action,
S=&+S%+3. (4) :
- 2 .
This action only takes into account the long-wavelength fluc- % 4 f Fxleo-hx)Jpx), @

tuations of the microscopic height. The three terms in the . . -
action are of different origin. enforces the correct weight of topologically nontrivial loops.

The elastic term If the_ (_)riented loop modgl is _defined with peri_odic boundary
conditions along one directiofi.e., on a cylinder these
would be the loops that completely wind around the cylinder

S = 1 J d2{Kq[(@h1)2+ (ah3)2] + 2K 5(@ ht - 9 hd) [24]. On a cylinder the scalar curvatupeis nonzero only at
2 the two boundaries at infinitys; has the effect of placing
+ Ko @ h2)2 5 background electric chargeseg at the two boundaries,
2 9N) ® where the identification
accounts for the height fluctuations due to the entropy of -
fully packing the square lattice with oriented loops. Equiva- €=- E(eg +e,,0,65— &) 9)

lently, this is the entropy of edge coloring the square lattice

with four different colors. The elastic term favors oriented comes about by demanding that the oriented W|nd|ng |Oops

loop configurations that minimize the variance of the micro-pe assigned correct phase factors,(eipe,) or exp (i mey)
scopic height; these are the macroscopically flat states. |

terms of the color degrees of freedom the flat states have the The third term, called the Liouville term,
property that the four edges of each elementary plaquette are
colored by two colors only. )

The particular form of the matrix of elastic constaKtss S = f dxwih(x)], (10
fixed by the lattice symmetries and symmetries associated
with permuting the color#\, B, C, andD. The elastic con- owes its existence to the complex weights associated with
stantsK;; are functions of the loop fugacity. For tive,=1  oriented loops in the bulk. The local redistribution of the
case they were calculated in R§L7] using the loop ansatz loop weights made in Sec. Ill A leads to complex vertex
[22], which allows one to identify the marginal screening weights, which in turn depend only on the colors of the four
charges[23]. For the FPE model there are four screening edges around the vertex. If we write the vertex weight as
charges: exp(—-w), then
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w(B,C,A,D) =0, Sx=fd2x X[h(x)] (13
w(B,D,A,C) =0,
to the action. The&X operator takes the value iy on the flat
states made up 4B,C,A,D) or (B,D,A,C) type vertices,
T . . .
W(A,B,C,D)= = i—(eg+ &), and vanishes on all the others. By inspection of the graph of
4 flat states we find that the lattice of periodicities for the op-
eratorX, Ry, is the span of1,0,-1), (1,0,1, and(0,1,0;
_ =T these are the height difference vectors between the flat states
WEB.A,CD)= + |4(eg &), (1) in the support oX. This observation implies thah] can be
expanded in a Fourier series over electric charges that live in
o the dual IatticeR; which is the span of7,0,7), (7,0,
W(A,B,D,C)= i (&€, -m), and(0,2,0).
If we consider the effect 084 as a perturbation on the
action of the FPE model, the electric charge®, +21,0)
w(B,A,D,C)= * if(_ €~ &y); play a special role. Namely, the operator product expansion
4 of exp[i(0,27,0)-h] and exp[-i(0,2m,0)-h] contains the
the top(bottom) sign is for ever(odd) vertices, and the col- (9h?)? operator, and therefore leads to the renormalization of
ors are listed in order, starting from the leftmost edge and<22 [25]. This follows from the fact that the background
proceeding clockwise around the vertex. The weight operatofharge, Eq(9), has a vanishing second component. On the
w is invariant under cyclic permutations of the colors and itother hand, for chargeswith nonzero first or third compo-
is a periodic function of the heights around a vertex. In thenent, the effect of the background charge is that the operator
scaling limit the vertex weights give rise to the operatorProduct expansion of exje-h) and expg-ie-h) does not

wlh(x)] in Eq. (10) which can be written as a Fourier series containdh' - dh! operators and therefore does not lead to the
renormalization of the elastic constars.

wh(x)]= > W, explie-h(x)]. (12 The Coulomb gas representation of the height model pro-
ecR., vides a clear physical picture of the effect®f on the criti-

) o _ _ cal action of the FP£model. Fowy =1 the dimension of the
The electric chargesappearing in the Fourier expansion are (0, +27,0) charges follows from Eq16),

dictated by the lattice of periodicitie®,, of the operator

w[h]; R,, is the reciprocal latticeR,, is determined by in- (2m)? 1 1
spection of the values the loop weight operator takes on the Xx = 4K = ( + )
flat states: vectors i®,, connect flat states on which the loop 22
weight operator takes identical values. The most relevanit is greater than 2 in the whole critical region of the FPL
charges iR, are the four given in Eq6). We identify them  model. These charges are therefore irrelevant in the renor-
with the screening chargg23] of the Coulomb gas. This is malization group sense. In the Coulomb gas picture the

14
l-¢ 1l-g (19

the content of the loop ansatz introduced in R2g2]. (0, £277,0) charges appear as bound pairs of neutral dipoles.
Increasingwy will have the effect of increasing the bare
C. Effective field theory: wy # 1 fugacity of these dipoles, which will in turn increase the

. ) value of the couplingK,, appearing in the effective field

For the SFL model, whem 1, the Liouville term in  yneqry Formally, this can be seen in perturbation theory
Eq. (4) is modified, while the elastic anq the boundary termsmaking use of the operator product expansfas]. Physi-
are unchanged. The number of marginal screening chargeSy the renormalization oK,, can be understood as the
appearing in Eq(12) is reduced from four to two, and the gcreening effect of dipoles. The dipoles lower the Coulomb
loop ansatz fixes the values K{, andK,z only. They do not  gpergy petween two electric test charges having a nonzero
depend on the value ofy and are given by thei =1 for-  gecong component, corresponding to an increase in the value
mulas, Eq.(7). Ky, on the other hand, is a nonuniversal o¢ k_ \which plays the role of a dielectric constant.

function of wy. Below we present arguments for this sce- -~ at'a critical valuew, there will be a Kosterlitz-Thouless-
nario, which is supported by exact results available in the 6Myne transition of the SFL model into a flat state with a van-
case(i.e., forn,=ny=1), and by our numerical transfer ma- jshing density of vertices at which the polymer bends. At the
trix calculations described in Sec. V below. _ transition the(0,+2s,0) charges are marginal, i.e., their
The new vertex weightv, changes the value of in EQ.  g04jing dimension is equal to 2. Using E(id) this observa-

(11) from O to _ln_WX for the vertex state¢B,C,A,D), . tion gives rise to the prediction for the critical value K,
(B,D,A,C), and six other related to these two by cyclic

permutations of the colors. The weights of the other 16 ver- T
tex states are unchanged. We consider the consequences of Kaowy) = 5 (15)
this change on the effective field theory.

In the height representation of the SFL model, the chang€&or values ofvy smaller tharw§, K,, will be a nonuniversal
in vertex weight corresponds to adding function of wy. In the n,=ng=1 case, the formuly,
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=arcsiriwy/2) follows from the exact solution of the 6V IV. OPERATORS AND SCALING DIMENSIONS
model [10]. The critical value of the vertex weight is
W (6V)=2 andK,,(2)=7/2 is in agreement with Eq15).
For other values oh, andny our numerical transfer matrix
calculations are in good agreement with [Etp).

The introduction of the vertex weighty also has an ef-

The effective field theory of the semiflexible loop model
describes a Coulomb gas of electric and magnetic charges in
the presence of background and screening charges. The mag-
netic chargesm are vectors inR which is the lattice of

fect on the screening charges, E6), which appear in the periodicities of th_e graph pf flat states, while. th*e electric

Liouville part of the action. First consider tg=n, case of ~Cchargese take their values in the reciprocal latti¢e [17].

the SFL model. Due to the presence of thig term cyclic ~ With the normalization adopted for the vectdrshroughD,

permutations of the four colors around a vertex are no longeFd. (3), R is a face-centered cubic lattice whose conven-

a symmetry of the vertex weight. Therefore, unlike the  tional cubic cell has sides of length 4, while is a body-

=1 case[17], there are now two independent elastic con-centered cubic lattice whose conventional cubic cell has

stantsk,, andK,,; appearing inS.. K;3=0 follows from the  sides of lengthm.

remainingZ, symmetry of the vertex weights which are in-  The scaling dimension of an operator which has total

variant undertwo cyclic permutations, such d# ,B,C,D) electromagnetic charge, m) is the sum of its electric and

—(C,D,A,B). The deduced structure of the elasticity ma- magnetic dimensions, and it is a function of the elastic con-

trix implies that the four electric charges in E@) are no  stants and the background chaigé]:

longer degene[%te ig c(ignensiog for zzrbitra:jv{x. Siﬂce the 1

dimensions o' ande'“ are independent df,,, they are - = N .

identified as the two screening charges tied to the nonrenor- x(e,m) = 477[(eK )+ (€= 26) +(mK)-m].  (16)

malizability of the loop weight$17]. As in the FPI2 model ) . . o

we then assume that these two charges remain margin§l is the 33 matrix of elastic constants arft™ is its in-

when n, # ny. Using the dimension formula, E¢16), this ~ Verse.

then fixes the values of the two elastic consta#ts, and From Eq.(16) and the form ofK [Eq. (5)] and &, [Eq.

K1z to the values quoted in Eq7). (9)], it immediately follows that operators whose electric and
Finally, it is interesting to look at some extreme limits of magnetic charges both have a vanishing second component

K, in view of the effective field theory. Consider first the Will have aK,-independent scaling dimension. The scaling

limit Ky,—o in which height fluctuations in the second dimension in this case is independentvgf and equal to its

height component are completely suppresséds we are  known value atwvy =1 [17]. Operators witre andm charges

outside the critical phase, we are here referring to the bar&hose second components are not both zero will, on the

value of the coupling.Clearly, height fluctuations must al- other hand, have a scaling dimension that varies continu-

ways be present in the microscopic four-coloring model, bupusly withwy. These predictions are confirmed by our nu-

it is nevertheless instructive to look for the states that mini-merical results.

mize the fluctuations oh?. From the choice of the color

vectors, Eq(3), it is not difficult to see that on the four sites A. Central charge

of {x} surrounding a given vertex? fluctuates by two units

for the first four vertices of Fig. 3 and by one unit for the last

two vertices. All vertices must therefore be of thetype,

corresponding to the limitwy —. Thus, K,,—®~ as

Wy — 0,

The central charge of the SFL model follows from its
critical action. The three height componeritmsonic free
fields) each contribute one unit to the central charge while
the contribution from the background charge isx(&g,0).

Conversely, a&,,— 0, the fluctuations if? become un- Using Eq.(16) for x(ey, 0), Eq.(9) for the background charge

bounded and the effective field theory loses its consistenca%' and the calculated values of the elastic consti(aisand
(since it was based on the assumption that the interfacidf1s E-(7), we find

entropy is due to bounded fluctuations around the macro- eﬁ &2

scopically flat states However, the argument given above c=3- 6( + —"—) 17
indicates that a small value ¢€,, should correspond to a 1-& 1-g

small number of straight-going vertices in the loop model.jndependenbf the unknown value oK.

Thus, we would conjecture thit;,—0 aswy — 0. This ex- For the 6V model, which corresponds to tag=e,=1/3
pectation is confirmed by the exact result for the 6V cas@ine in the SFL model, the above formula gives1 for the
[10] and also by extrapolation of our numerical results forcentral charge along the critical line. This result also follows

Kaa(wy) in the Flory case. directly from the exact solution of the 6V model.

Apart from these limiting values, we would of course ex-  For the Flory model of polymer melting, which is tleg
pect Ky, to be a monotonically increasing function wk  =1/2, e;=1/3 case, the predicted central chargecis-1.
throughout the critical phase. This value is confirmed by our numerical transfer matrix

In the following section we compute the central chargecalculations(see Sec. Y.
and the scaling dimensions of various operators in the semi-
flexible loop model from its effective field theory. We iden-
tify quantities that depend on the nonuniversal elastic con-
stantK,,; these are then predicted to vary continuously with  The SFL model can be thought of as the zero-temperature
Wy. limit of a more general model where we allow for thermal

B. Thermal operator

066108-7



J. L. JACOBSEN AND J. KONDEV PHYSICAL REVIEW B9, 066108(2004

excitations that violate the fully packing constraint. Viola- eﬁ

1
tions of the constraint lead to vertices with the four adjacent  Xak, 2, = 5[(1 —&)ky + (1 - e ks~ - eo(l =&, 0
edges coloredC,D,C,D). In the height representation such

a vertex is identified with a topological defeccrew dislo- e2EI

cation) whose charge, i.e., the sum of height differences - 1_%(1_5‘@0)] (21)

around the vertex, is o ) _
and is identical to that of the FRlmodel[17]. Our numeri-

cal simulations confirm that even string dimensions are con-
mr=2(C+D)=(0,-4.,0. (18 stant along the critical line.
In the odd string case, whes=2k,—1 ands;=2ky—1,
Other vertices which have n& or B colored edges are pos- the electric and magnetic charge §i¢]
sible, but they have a larger magnetic charge and are hence

less relevant. € 1K -1=— 7—T(eg +e,0,e5- &),

In the Coulomb gas picture a topological defect corre- b 2
sponds to a magnetic charge. Therefore, the thermal dimen- (22
sion can be calculated using Ed.6), and we find Mat-1,2-1= ~ 2(ky+Kg— 1,1 kg~ k).

Notably, the magnetic charge has a nonvanishing second

4 .
X = X(0,my) = — K. (19) component. Using Eq16) we calculate
o
Ko 1 2 2

Xoky12-1= " F é[(l —€y)(2k, — )7+ (1 —gy)(2kg — 1)7]
We make use of this equation below as it allows us to deter-
mine the unknown elastic constag, from a measurement 1 e N ezg 23
of the thermal scaling dimension. Once this elastic constant 2[1-e, 1-¢g, (23)
is known, scaling dimensions of all electromagnetic opera- ) ) _
tors can be calculated from E(L6). for the odd string dimension. It depends on the valu& gf

and will therefore vary continuously withy. At the melting
transition the exponents are exactly known from ELp).
C. String operators This is confirmed by our numerical transfer matrix results,

. . . which we describe next.
A particularly important set of operators in any loop

model are the string operators. Their two-point function is

defined as the probability of having the small neighborhoods V. TRANSFER MATRIX RESULTS
around two fixed points on the lattice, which are separated by ] ) .
a large distance, connected Byreal loop segments argj To check the correctness of our field theoretical predic-

ghost loop segments. For simplicity, we shall requiyend tions, we h_ave_numerically diagonaliz_ed the_ transfer me_ltrix
to be either both even or both odgl+ s, odd requireg to  Of the semiflexible loop modefand of its various generali-

be odd which produces a twist in the height, as discussed iations, to be discussed belpdefined on semi-infinite cyl-

Ref. [17]. In the height representation these string configuinders of even width& ranging from 4 to 14. o

rations are mapped to two topological defects, one serving as The existence of a transfer matrix may not &epriori

the source and the other as the sink of oriented loop sedovious, since the Boltzmann weights depend on the number

ments. When the oriented loop segments wind around th&f 100ps, which is a nonlocal quantity. We have however

defect points they are assigned spurious phase factors by t@&€ady shown in an earlier publicati¢h7] how this is re-

vertex weights; these phase factors can however be Compeﬁolved by working in a basis of states that contains nonlocal

sated by introducing appropriate electric charges at the positformation about how loop segments are interconnected at a
tions of the defect$§26]. given stage of the computations. In that paper, it was also

In the cases, =2k, ands,=2kg, i.e., when the number of shown that the full transfer matrix contains various sectors,
real and ghost strings are both even, the electric and magbe leading eigenvalues of which provide finite-size estima-

netic charge of the corresponding string operator[ &7 tions of the free energy and of the various critical exponents,
using the standard conformal field theof@FT) relations
[27,28
€22, = = 5 (€,0,=€) (1= 8¢ 0) = - (6,0.6)(1 = 5 o) ¢
2k, 2k .~ 1Yy , Yy 0/
b2~ 00 " : fO(L):fo(w)—$+“', (24)
(20)
Mok, 2k, = ~ 2(kp + Kg, 0,kg = kp).
2’7TXk

Since the charges have vanishing second component their fi (L) = fo(L) = NS (25)
dimension is independent df,, and constant along the
whole critical linewy <w§. The value of the string dimen- Here, the labek refers either to a higher eigenvalue in the
sion follows from Eq.(16), sector to whichfy belongs, or to the leading eigenvalue in
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another sector characterized by some topological defect of 1.10F ]
chargek. = 1 06l i
To access critical exponents, we shall mainly be con- -
cerned with topological defects that consist in enforcing that »TI/ 1.02}F -
a certain number of strings of either flavor propagate along =
the length direction of the cylinder. These give rise to a two- E 0.98 1
parameter family of critical exponenXgn,sg corresponding to = oo4f . -
S, real strings and, ghost strings. The corresponding topo- © .
logical charges, Eqg20) and (22), take the form of three- 090k . . . : + o
dimensional electromagnetic vector charges. In the transfer 0.0 05 10 1.5 20 25
matrix calculations, each of these topological sectors is asso- (@) Wy
ciated with a different state space. The difficulty of precisely ‘ . ‘ . . '
characterizing these spaces limited our previous approach SoapTTTT LI
[17] to at most two strings. In the Appendix we present an = —o06f * . %Eé@’?o T
algorithm that explicitly constructs the required state spaces S foL=610,12 ! +
for any (s,,s), based on an iterative procedure and hashing S -0.8F axi2L=10,12,14 & 1
techniques. T ol SRfiNng.,, & ]
By inspection of the eigenstates produced by our previous o ’ o T Soud
algorithm[17], it turns out that many of the basis states carry = _1.2f N TLooxx .
zero weight. One would then expect that identical results can ” T

be obtained more efficiently by working in a basis in which
such states have been eliminated from the outset. We defer
the technical details of how this can be done to the Appen-
dix. Itis alsp shown how the block-di.a}gonaliz.ation scheme FIG. 4. Central charge as a function of the bending rigidityy
can be carried even further,_ by exploiting various conservag,, ihe 6v modelleft) and the semiflexible loop modaiight). We
tion laws that are most easily understood from the analog¥no three-point fits for different system sizes, as indicated.
between the SFL model and the six-vertex model. One im-

portant consequence is that the constrained free erfgfgy is constrained to the critical regime <Oy <.

that is linked to the thermal scaling dimension can now be . ?
. . . In Fig. 4 we show the effective central charge as a func-
obtained as a leading eigenvalue, rather than as the secopld

. . . . . -~ tion of wy, in the casesn,,n,)=(1,1) and(0,1). The result
eigenvalue in the stringless sector. This considerably M= 21 for 0 wa <2 is well esgtablished for the 6V model. but
proves the efficiency of the computations. B X= '

Finally, the matrix elements need some modification inthe plot for this case is still useful as it gives us some guid-

order to take into account the bending rigidity parameter ﬁcn)f: tﬁ:.t tt?]evggageférgﬁ:ﬁirgﬁer(gﬁoﬁ)nsgged' |I12 Spr?]r;tlll?ular,
This is readily done, without any modification of the basis P ilig '

states, sincevs is a purely local quantity. and that the termination of critical behavior @t =2 is

Before turning to our numerical results, we should rnen_clearly signaled by the finite-size data leveling off. Another

tion that we have submitted our transfer matrices to severa{s?if;f/?tegim::evsvhggcfg;v;; Zwt'?he g'zﬁrr:esibzit\:lv\fe?;%ges'
tests, in order to verify their correctness: y R

(1) Forwy=1, all numerically determined string dimen- Obi\?{xguthrllsfﬂﬁzgiczeetgffle]gtr:afs a more important role in
sionsxs s With sy+s;=2 or 4 agree to at least three signifi- 9 play P

1 . . ) the (ny,ny,) =(0,1) case, the general picture is quite similar.
cant digits with their exact values in the cas@g,ng) g .
- <Wy <WS.
=(1,1) [10] and (ny,ny)=(0, 1) [17]. The figure leaves little doubt that=-1 for 0<wy <w§. We

. : i _ N
(2) All eigenvalues found for the FBLmodel agree with :L?/Zy%tr)é?r;nthi fg\s,t_nr]%légeﬁ'vﬁ';n ale=1.95+0.15, ot far
those obtained from our previous algorithji]. '

3 For the si : 440 h dth Here, and elsewhere, we mainly show fits in which the
(3) For the six-vertex mo e[_ ], we aye compared the convergence of Eqs(24) and (25) has been accelerated
extrapolated bulk free energy with Baxter’s exact expressio

Mthrough the inclusion of a nonuniversall?/correction, as
(4) Again for the six-vertex model, we find excellent 9 '

. redicted by conformal invariance.
agreement with the exact formulas =K,/ and xr P y
=4K,,/ m, whereK,,=arcsinwy/2) is the elastic constant.

0.0 05 1.0 1.5 20 25
(b) Wy

(5) We .have also' found agreement with the fir_st'few B. String dimensions
terms in diagrammatic expansions around various limits of ] )
infinite fugacities. We next turn to the computation of the magnetic-type

scaling dimensiom;sbySg describing the scaling of the opera-
tor that insertss, real strings and; ghost strings. To study
these, the widthL of the strip must have the same parity as
A crucial prediction of our field theory is that, for given s,+s,. For simplicity we shall limit ourselves to the case of
values of the loop fugacitig®,, ny), the central charge of the evenL. There are then two classes of exponents: Those in
SFL model should be independentwg, as long as the latter which s, ands, are both even, and those in which they are

A. Central charge
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FIG. 5. Scaling dimensionx.Sb’S with evens, ands;. The left FIG. 6. Scaling dimensionxsb,Sg with odd s, ands;. We show

and right panels show, respectivéqg,z andx, o. System sizes used %1 1 (left) andxg 4 (right) for the SFL model.
in the two-point fits are also indicated.

] ) According to the field theoryK,, is a nonuniversal func-
both odd. The field theory predicts that the former shouldjon of wy, and once it is known the values of all the other
stay constant on the critical line, parametrizedvipy, while  critical exponents follow. This suggests the following nu-
the latter are expected to vary continuously as functions ofnerical check of the field theoretic scenario. For several val-
wy; see Sec. IV C. _ ues ofwy, we measure; from the transfer matrix, and use it

On Fig. 5 we show two examples of exponents Veiils;  to determineK,,. We then compute the predictions for the
even, within the SFL modef(n,,ng)=(0, D] with varying  various other scaling dimensiorithe xs ) from the field
wy. They correspond, respectively, to the insertion of tWotheory, Eq.(16), by use of the numerically determined value
ghost strings(x, o) and of four real stringgx, o). From the  of K, and compare them with values measured directly
figure it should be evident thadg)vzz;l1 and x4,0:% are con-  from the transfer matrices.
stant throughout the critical phase. In the latter case the The result of this verification is shown in Table I. The
finite-size variations are quite pronounced, as might have&alues forx; are based on transfer matrices for strips up to
been anticipated given the higher number of strings. Carefugize L=14, here extrapolated to the limit— . The agree-
observation of the distance between subsequent finite-siz8ent between the CFT predictions and numerics is in general
points however strongly suggests that the variation willexcellent. Note, however, that the precision deteriorates
eventually die away. whenevenwy approaches zero ary,, effects which are also
Examples of exponents with, s, odd are given in Fig. 6. clearly visible in Figs. 4-6. _

In both casesy, , andx, ;, the convergence to monotonically The origin of t_hese numencal shortcomings can be under-
increasing functions ofvy is clearly brought out. Also note St0od from the field theory. First, fory —0 we haveK,,
the agreement with the exact results fog=1, which read 0 @nd the fluctuations in the second height component
o =—-5 —_0.0446 and 2220.455[17] respectively, be<_:ome unbounded. Mlcroscop|cally,_ the_z do_mlnan_t co,nf|gu-
117 112 317112 ' rations are those of long strands of wiggling lir&selices”)
C. Thermal scaling dimension whose persistence length increases with decreasipg
. . . . . Strong corrections to scaling will set in when this length
_ A; dgscrlbed in the Appendix, the thermal scgllng d'men_'becomes comparable to the system dizeSecond, forwy
sion is Imke_d to the gap betyveen transfer matrix sectors |n_>W§( we are approaching a Kosterlitz-Thouless-type phase
which there is an eveiespectively an odchumber of flavor  ransition, and strong logarithmic corrections to scaling are

crossings in the basis states. Because of the relation expected due to the marginality of the operafor
- Based on the data in Table I, we can refine our estimate
Koo =7, (26)  for the location of the melting transition:
w§ =1.92+0.02. (27)

measuring this gap gives a direct means of accessing the
elastic constant associated with the second height componelnt Fig. 7 we compare our numerical results for the curve
in the field theory. x1(wy) in the SFL case with the exactly known result of the
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TABLE |. Thermal exponenk; measured for varying values @fy. The corresponding values of the
scaling dimensions; ;, X3 3, andx; 3 as predicted by our conformal field theqigolumn marked CF)rare
compared with their numerically measured counterp@dtumn marked Num.

Wy Xt X1,1 X3,1 X1,3
CFT Num. CFT Num. CFT Num.

0.4 0.1417)
0.5 0.2075)
0.6 0.27%4) -0.117 -0.115 0.383 0.385 0.549 0.548
0.7 0.3463) -0.100 -0.100 0.400 0.402 0.567 0.565
0.8 0.4132) -0.087 —-0.085 0.413 0.418 0.580 0.582
0.9 0.49187) —-0.065 —-0.066 0.435 0.436 0.601 0.601
1 4 _5 51 209

7 112 112 336
11 0.652510) -0.026 -0.025 0.474 0.475 0.641 0.643
1.2 0.74295) -0.002 -0.002 0.498 0.498 0.665 0.665
13 0.836%3) 0.022 0.022 0.522 0.521 0.688 0.688
1.4 0.93741) 0.047 0.048 0.547 0.546 0.713 0.715
15 1.04901) 0.075 0.076 0.575 0.576 0.742 0.75
1.6 1.17697) 0.107 0.11 0.607 0.62 0.774 0.80
1.7 1.3332) 0.148 0.15 0.648 0.68 0.815 0.90
1.8 1.5415) 0.202 0.20 0.702 0.7 0.869 0.9
1.9 1.8618) 0.29 0.3 0.79 0.8 0.95 1.0

6V model, x;=(4/m)arcsiriwy/2) [10]. Although the func- Until now we have only considered the isotropic case of

tional forms are quite reminiscent, we have unfortunately noa=b. (See Fig. 3. Let us briefly recall the effect of taking
been able to conjecture a convincing exact expression in the+ b in the six-vertex mode[10]. Define the parameters
SFL case. and u by

A_a2+b2—w)2(

=-cosu, O<u<m, 28
VI. PHASE DIAGRAM 2ab ® K (28)

A. Generalized six-vertex model

. . Xpi p) — expliw
Given the one-to-one correspondence between the six ver- a_e Aip) = expiw) - pn<w<pu. (29

tex configurations in the FELmodel and the six arrow con- b expliu+iw)-1"
figurations in the six-vertex modétee Fig. 3, it is natural to

define a generalized six-vertex model in which the standar
arrow weights are supplemented by the nonlocal loop

hen, takinga# b corresponds to twisting the usual square
ttice into a rhombus, defined by the anisotropy arigi

weightsny, ny of the FP12 model. - W
0:E<1+_)' (30)
2.0 ®
All this means is that the central charge and the critical ex-
15 ponents, when measured in the usual way from a transfer
matrix, get multiplied by a geometrical factor of &f.
M 1.0 In Fig. 8 we plot the effective central charge of the SFL
model withb=wy=1 and varyinga against the variable
0.5 =0/, defined in terms of the above 6V expressions. By the
word “effective” we mean that we do not correct for the
0.0 lattice distortion, the effect of which can then be read off
0.0 from the graph. If the effect of the anisotropy were the same

as in the 6V model, the plot should just look like the function
-sin(w7), since the SFL model hageal central chargec

FIG. 7. Thermal scaling dimensio; versus bending rigidity ~=—1. Clearly, this is not the case, and so the nonlocality of
wy in the Flory modelsymboly, as compared to the exact result of the loop weights has a nontrivial effect on the anisotropy
the six-vertex modefline). factor. We leave this as an interesting open question.
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FIG. 8. Anisotropy effects in the generalized six-vertex model
with (ny,ng)=(0,1). The symbols show the effective central charge FIG. 10. Proposed phase diagram of the generalized eight-vertex
for various system sizes. For comparison, the dashed line shows tieodel.
function —sinz7), which would have been the exact result if the

anisotropy had the same effect as in the six-vertex model. For w,=0, the model reduces to the SFL model, and so
below the melting pointM (i.e., for wy <w§ with, very
B. Generalized eight-vertex model roughly, w§,=~2) we have a line of critical points along

which critical exponents that depend on the second height

It is also of interest to consider the loop generalization Ofcomponent vary continuously, while the central charge

the eight-vertex model. In terms of the loops there are two

different ways of resolving the vertices that act as sources or Geﬁ 6e?
sinks of the eight-vertex arrows, and so we are led to con- (N, Ng) =3 = 1-e —9—1 S (31
9

sider the ten-vertex model defined by Fig. 9. In addition to
the local weights which are shown on the figure, we assigns constant. The end point of the SFL line, with ==, is a
the usual nonlocal loop weightg, andn,,. trivial attractive fixed pointT, favoring configurations in

For simplicity, we shall disregard the effects of aniso-which all loops go straight in the bulithey are necessarily
tropy, and thus only two types of local weights are of inter-reflected at the boundaries enjoying free boundary condi-
est. The first is the weighwy of having the two loop flavors  tions). The pointT is believed to govern the theories to the
cross, same as in the SFL model. The second is a contagyht of M (i.e., with wy >Ww5%), including a portion of the
interactionw,, assigned to the vertices where two loop seg-phase diagram with nonzero but smajl (see Fig. 10
ments of the same flavor touch one another. One may con- Moving away from the critical line of the SFL model,
sider letting it depend on the flavor index, but in order to staytowards positive values of the contact interaction, we ob-
close to the definition of the conventional eight-vertex modelserve numerically that the central charge drops abruptly by
we shall here take the contact interaction to be flavor indeone unit, and stays constant as a functiorwpfup to some
pendent. finite critical valuew; that depends omy. This is the dense

The motivation for the contact interaction is to be able tophase of the DPL. model[30] with central charge
exclude the loops of a given flavor from any number of lat-
tice vertices. As this violates the compactness constraint, we 6ef 662EI
expect the conclusions of our earlier paper on the transition c(npng) =\1-7 1 12e )

€

from the compact to the dense ph§3€] to apply. A nonzero ¢
value ofw, should induce a flow towards a phase where théHere, the two loop-flavors decouple, and critical exponents
two loop flavors decouple, and the critical properties are jusére just the sum of the critical exponents for two noninter-
those of two noninteractin@(n) models(with n=n, andn,  actingO(n) models(with n=n, andny) in the dense phase.
respectively in the low-temperaturédense phase. We have verified numerically this prediction for the exponent

A detailed numerical study of the behavior of the effectivex; ; for a number of different loop fugacities. We have also
central charge in the parameter sp&eg,w,) has led us to observed numerically that the critical exponents do not de-
suggest that the phase diagram of the generalized eighpend onwy throughout the dense phase. This confirms the

(32)

vertex model is as shown on Fig. 10. expectations that in noncompact phases the only effect of the
bending rigidity is to renormalize the persistence length of
- . - the polymer, as already discussed in the Introduction.
L L L_ Finally, for w, large enough, the numerically evaluated
'—1 ! "_'l " "_] " central charges suggest that the models flow into an attrac-
4 $ $ tive fixed point P situated at(wy,w;)=(0,%). Here, only
(x4) (x2) (x2) (x2) contact-type vertices are allowed, and since the different
1 W Web Wee loop flavors can no longer coexist, the partition functiofPat

becomes simply a sunZ=2,+Z, whereZ involves only
FIG. 9. Vertices defining the generalized eight-vertex model,contact vertices of flavok (with k=b,g). But clearly Z, is
along with their corresponding multiplicities and local weights.  just the loop-model representati¢hO] of a self-dual Potts
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model withg,=(n,)? states. It is intuitively cleafand explic- These two features can be accounted for within the frame-
itly brought out by the exact solutiofi0]) that the free en- work of the generalized eight-vertex model with,,n,)
ergy of theg-state Potts model is an increasing functiomof =(1,1). First, note that our field theory predicts that the re-
Therefore, the sunz=2,+Z, will be dominated by the term gion on Fig. 10 which is limited by the two oblique lines and
with the largest value of). Thus, the pointP has central the coordinate axes is actualtyitical with central charge

charge ¢=0 (dense phaggthis is obtained by setting,=g;=1/3 in
Eq. (32). This is not in contradiction with the exact result
6€? 662 [10] that this same region is noncritical within the eight-
c(np,ng) = ma><1 T1-g 1= 1-e ) (33)  vertex model. Namely, the generalized eight-vertex model is
9

embedded in a much larger Hilbert space. More precisely,
identification of the critical Potts model©Ul statement is that the first and third height components
possess critical fluctuations and constitute=#® theory, even
exponents are simply those of a sing@max (ny,n,)] though the second height component is massiye. This sce-
model in the dense phase b"g nario is brought out very clearly by the numerics, as we

We would expectpthat bnly this larges portion of the observe the leading transfer matrix eigenvalues in the sectors
phase diagram gets modified by letting the contact interacgsairg::]rgggrethii;r?riueneargé/Kan?/;r?iS%o;ggﬂ?Cg:r hlzftkée
tion be flavor dependent. Let us recall that in the conven—(26) glon. Er 22 Y, €1 £Q.
tional O(n) model[2] with a finite positivevacancy fugacity éecond the field theory also accounts for the fact that
mcc:r;:?it(i:cr:glcglr:r?ghagslor'l'%fetk;i?sltoglfr):nlihdeksncc::/sﬁdagyd:;[\gir OfWithin the 8V model, the two oblique lines are critical with

X L ' =1. Namely, we claim that they simply correspond to

branch[2,3]], is attractive inw, and as such controls the ¢ . W ' y Py P

tire d " of | It tral ch s th ; ddiIute-phase behavior within the generalized 8V model.
fon;beovgmamo OWwe. 1S central charge IS the one reterred ;o precisely, since,=n,, the two decouple®(n) models

must be driven to their critical points simultaneously by tun-
ing the common parameter; ,=w; ;= W,. Settingé=1/3 in
Eq. (35) gives a contribution o€=1/2 for each of the mod-

. L - els, whenceg,,=1/2+1/2=1 aexpected.
in the usual parametrizatiom=2 cog7€). The second Finally, in the 8V model, the part of they, axis with

branch, known as theilute branch[2,32, is repulsive inw.  g<_<1 constitutes a further image of the line OM under
and as such requiresi; to be tuned to a particular 4n exact symmetry. We believe this to be “accidental” in the
n-dependent critical value. In other words, the fugacity of agense that we have seen no sign of a finite interval ofwthe

vacancy can tune th@(n) model to its critical point. The pejng critical within the generalized 8V model with other

and, by the usual 't
with the dense phase of th®(n=yq) model, the critical

c=1-6(1-9) (34)

central charge of the dilute phase is values of the fugacities.
Taking a common contact parametef ,=w, 4 for the
c=1-68%(1+%9), (35  generalized 8V model with, # ny destroys the criticality of
the two oblique lines of Fig. 10. They still act as transition
using the same parametrization as above. lines in the sense that they separate the basins of attraction of

In particular, in the DPE model[30] the two loop-flavors  the dense phase and the poift@ind T, respectively. How-
act as decouple®(n) models, and depending on the fugaci- ever, the transition is now expected to be a first-order one.
ties of the two flavors of vacancies each of the models cafhis is confirmed by our numerical results for th,,ny)
reside in either the dense or the dilute phase, giving a total 0£(0,1) case which show that the effective central charge
four different phases. We expect this conclusion to hold truelevelops violent finite-size effects upon approach of the tran-
in the generalized eight-vertex modgle., with an added sition lines. Further support for this scenario is furnished by
bending rigidity wy). Note that only whem,=n, can we  Monte Carlo simulation§12] where a finite concentration of
simultaneously take the tw®(n) models to their critical empty sites was shown to lead to a first-order transition.

point by tuning a vacancy fugacity. which is common for The oblique lines in Fig. 10 are expected to move away
the two loop-flavors. In the general case, whgp“ny we  from their exactly known 8V positions when we vary the
would need two distinct parametems, , andw, ¢, as indi-  loop fugacities away from the trivial valuegy,=ny=1).

cated on Fig. 9. Presumably, this would lead to a richer phasgome evidence for this is already available from our deter-
diagram, with critical lines corresponding to dense-dilute,mination of the melting poinM in the Flory case; see Eq.
dilute-dense, and dilute-dilute behavior of the t@m) mod-  (27). In general, we have been able to numerically determine
els. the position of the uppermost line from the transfer matrix
Let us return to the phase diagram shown in Fig. 10. Inspectra. Recall from the discussion near E2f) that the
the special case of the eight-vertex model, the two obliqueoupling K,, can be linked to the gap between the leading
transition lines shown on Fig. 10 are known to be of slopeeigenvalues in two topologically characterized transfer ma-
1/2[10]. Actually, they are just images of the line OM under trix sectors. By scanning through, at fixed wy we have
certain exact symmetries of the eight-vertex mogt0]. observedat least in the Flory cag¢hat these two eigenval-
Thus, they have agaic=1, whereas the “bulk” of the phase ues become degenerate as soomasioves away from zero
diagram is noncritical. (even at a value as small ag=10"°). This degeneracy
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eventually disappears when there is a level crossing in tha&t the melting transition the exact result férfollows from

ground-state sector of the transfer matrix, at some fimite  the computed value of the critical elastic constant, @),
We have measured the position of this level crossing as a 5

function of system size and extrapolated it to the thermody- F=-3. (37

namic limit. To test the rel_|ab|I|ty of the method, we have The pegative value implies that at the transitiand slightly
first applied it to the(n,,ng)=(1,1) case. Our final estimate e|oyy if) the two ends of the polymer feel an effectiae
we=1.52+0.02 at fixedvy =1 is in good agreement with the {raction, This is surprising as the naive expectation is that the
exact resultw,=3/2 [10]. The same method applied to the yyo ends of a polymer will feel an effective repulsion due to
Flory case, (np,ng)=(0,1), yields w.=1.4294+0.0005 at the self-avoiding constraint. For stiff compact polymers this
wx=1 and w;=1.958+0.005 atwyx=2. These values are najve expectation is not met. Whether this will persist in
clearly different from those predicted by the 8V model.  three dimensions is an interesting open question.

In conclusion, we believe that it would be most interesting
to study the generalized eight-vertex model in more detail,
using the exact techniques of integrable systems. In particu-
lar, it is conceivable that the present treatment misses some The generalized 8V model gives a quite detailed model-
subtle exceptional points in the phase diagram. ization of two-dimensional lattice polymers. It possesses the
following features.

(a) Steric constraintgself-avoidance and connected-
ness of the polymer chaipare modeled exactly.

The semiflexible loop model was defined as a generaliza- (b) Possibility of introducing polydispersity, by taking
tion of the two-flavor fully packed loop model on the squaren, away from zero.
lattice, by introducing a vertex weight associated with verti- (c) A bending rigidity parametewy allows to control
ces at which the loop does not undergo a 90° turn. We havthe transition between a melt and a crystalline phase.
proposed an effective field theory of the semiflexible loop (d) A contact interaction parametex. (or alterna-
model based on its height representation. This leads to exatively, a fugacity of a vacangycontrols the transitions be-
results for the Flory model of polymer melting in two dimen- tween compact, dense, dilute, Potts-like, and noncritical
sions. Furthermore, we have shown that the loop model proghases.

B. Generalized eight-vertex model

VII. DISCUSSION

vides a generalization of the eight-vertex model with an in- (e) Possibility of introducing nonlocal interactioxal-
teresting phase diagram. Here we comment further on thedbough of a peculiar form by takingny away from one.
two main results. The phase diagram of a somewhat similar model was

studied in the Bethe approximation by Lise, Maritan, and
Pelizzola[33]. However, in the compact limit the results of
these authors are equivalent to Flory’s mean-field treatment,

Polymers configurations are random, and as such, they agg they do not take into account the nonlocal features of the
described by probability distributions. Their critical nature, polymers. We have here treated the excluded-volume effects
in the long-chain limit, is revealed by the fact that thesein an exact manner. On the other hand, the model of Ref.
distributions have scaling forms characterized by universaj33] includes an additional feature.
exponents. The simplest distribution is the probabitity, |) (f) A contact interaction between nonconsecutive
that the end-to-end distance equalfr a polymer of con- monomers that are nearest neighbors on the lattice allows to
tour lengthl. In the scaling limit, wherr is much greater drive the model to tricriticality, i.e., to access tlgepoint
than the lattice spacing and much less than the radius gfhysics.
gyration of the polymer, we havd] This interaction is not present in the generalized 8V

by model. If we were to include it, we would need the contact

p(r, 1) =r* (/). (36) interaction to be flavor dependefthe authors of Ref[33]

Here f is a scaling functiony is the “swelling exponent,” do not consider what we refer to as ghost lgoptowever,
and 6 the “cyclization exponent.” we do not believe that anything new can be learnt from such

For semiflexible compact polymers, which correspond toa generalization. First, the contact interaction is redundant in
the Flory model withwy <w§, the swelling exponent is  the compact phasev.=0), as the number of contacts is con-
=1/2.This is an exact result which simply follows from the stant(actually maximal in any fully packed configuration.
fact that compact polymers are space filling, regardless ofecond, in the noncompact phaseg+ 0) our field theory
wy. Furthermore, the swelling exponent can be related to theredicts a decoupling into two independedtn) models.
string dimensionx, o through the scaling law=(2-x,)™*  One would expect the flavor-dependent contact interactions
[16]. Then replacinge,=1/2 andey=1/3 in Eq.(21) gives  to act independently on the two decoupled models, and the
X2, 0=0 andv=1/2, for allvalues ofwy. This calculation then problem essentially reduces to that of #@oint physics of
serves as a nontrivial check on the field theory. a standardd(n) model[34].

The cyclization exponent is related to the scaling dimen- We leave it as an interesting question whether the gener-
sion associated with one real and one ghost loop segmerdlized 8V model can be tackled using the methods of inte-
0=-2x; ; [17]. From Eq.(23) it follows that 6 will vary grable systems. From Fig. 9 it can obviously be formulated
continuously as the polymer is made stiffer by increasing  as a 40-vertex modetaking into account the loop orienta-

A. Scaling of semiflexible compact polymers
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tions) with complex vertex weights. To our knowledge, such U U oo I I I oo T T I oo

a model has not been studied previously. If one could solve
it, it would be particularly interesting to work out the exact
expression of the coupling constdfy,(wy) as a function of S
the loop fugacities, andng. Also, it is conceivable that our

field theoretical approach has missed some exceptional criti- F|G, 11. Reference state used for generating the sectorsyith
cal points in the phase diagram. flavork strings(k=b,g).

b Sg

C. Order of the melting transition Choosing the sector corresponding to the thermal scaling

In this paper we have established that the order of thgimension is a little less obvious. A useful observation is
melting transition within the Flory model is second order, asT2d€ by eproTng the correspondence with states of Ithe
first suggested by Saleit3]. We have also explained how SX-Vertex fg};gde’ as depicted in Fig. 3. In a given row, let
the introduction of a finite density of vacancies may lead to d%_ andN, be the number of flavdk-loop segments re-
first-order transition, as observed in Monte Carlo simulation$/ding on even and odd vertical edges, respectively. Then

[12]. This combined scenario settles a long controversy iff©""€
the literature(8]. Q = (NEVen— N394 — (NEve"- Ngdd). (A1)

By inspection of Fig. 3 it is seen th& is nothing but the
vertical flux of arrows within a given row. By the ice rul@,

We are grateful to Ken Dill for introducing us to the Flory is @ conserved quantity and can thus be used to label a sector
model of polymer melting. J.K. would further like to thank of 7-
the KITP in Santa Barbara for hospitality, where this work ~ The reference state of Fig. 11 with,,s;)=(0,0) is seen
was initiated. The research of J.K. was supported by the NS haveQ=0. The first excited state with no strings h@s
under Grant No. DMR-9984471 and by the Cottrell Founda=*4 and is depicted in Fig. 12. Its first four sites are occu-
tion. pied by mutually penetrating real and ghost arches, followed
by (L-4)/2 simple real arches. In general, for any giden
states withQ=+4q exist forq=0,1,...|L/4]. The number
of states in thekth sector is just
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APPENDIX: CONSTRUCTION OF THE
TRANSFER MATRICES

V22 [ L2
The transfer matrix construction of R¢fL7] relied on an D ( )( )CLIZ— C (A2)
explicit bijection between the set of allowed connectivity n+q/\n-q e

statesC and the set of integerd={1,2,3, ... |C[}. How- _
ever, in many cases it is difficult to furnish anpriori char- ~ WhereC,=(2m!/n!(n+1)! are the Catalan numbers. Using
acterization of the set of allowed basis states and its card® SUm rule on the binomial coefficients, it is easily seen that
nality. Moreover, some of the states utilized in Ri&f7] were the total number of states without strings, summed over the
found to carry zero weight in the leading eigenvectors of theS€ctor index, reads simply

n=q

corresponding sectors of the transfer matrix, and so one L2
should think that it would be possible to eliminate them from > ( )CLIZ—nCn- (A3)
the outset. n=0 \2N

To remedy this situation it is preferable to use another
approach. Without prior knowledge of the state space, th
latter is explicitly generated by acting with the transfer ma-
trix 7 on a reference statey) which is known to belong to
the image of7 in the concerned sector. In this way, a certain
number of image states is generated, which can be inserted
an appropriate data structure using hashing technifREs
One then acts witl on these states, generating a new list of
states, and continues in this way until no new states are ge
erated. The resulting list is the complete state spacg iof
the concerned sector.

It remains to find an appropriate reference statg for
each physically interesting sector @f For the secto(s;, )
in which s, flavork strings(k=b,g span the length of the
cylinder generated upon action @f the reference state can LA
be chosen as shown in Fig. 11. This state simply consists of
(L—-s,—sy)/2 real arches followed by, real strings ands,
ghost stringsL must of course have the same paritysgs FIG. 12. Reference state used for generating the thermal
+Sg. sector.

his is nothing but the dimension of the state space used in
ef. [17].

From entropic reasons it is fairly obvious that the free
energy belongs to the sectgr 0. We are now going to argue
mat the thermal scaling exponent is linked to the gap be-
tween the first eigenvalue in tlg=0 andq=1 sectors, cf.
Eqg. (25). The first reason is that, by construction, tipel
onstraint acts as an excitation within the full state space
[with all values ofq included, as in Eq(A3)], and hence
should correspond to a subdominant eigenvalue within that
space. Indeed, it is observed numerically that the second ei-
genvalue obtained from the transfer matrix of R@f7] co-

066108-15



J. L. JACOBSEN AND J. KONDEV PHYSICAL REVIEW B9, 066108(2004

TABLE Il. Sizes of various sectors of the SFL model transfer matrix defined on a cylinder of widitin
periodic boundary conditions. The symlds},s;) labels the sector in whick, flavor«k strings(k=b,g) run
along the length of the cylinder. The sect@fs 0) and “Thermal” have no strings, but the parity of the
number of flavor crossings in the basis states is fixed to be even and odd, respectively.

L (0,0 Thermal (2,0 1,1 (4,0 3,1 (2,2

2 2 1 1

4 8 1 8 12 1 2 2

6 46 12 69 141 15 42 72

8 332 124 664 1720 196 684 1056

10 2784 1280 6960 21760 2520 10320 14800

12 25888 13605 77664 283584 32565 151500 205920

14 259382 149604 907837 425019
incides with the leading eigenvalue of tlge=1 sector, ob- In the field theory, one might compute the exponent cor-
tained by using the techniques outlined above. responding to the insertion of magnetic defecty m; at

As a second argument, note that in the language of theither end of the cylinder. In the transfer matrix, these should
SFL model height mapping, encircling the first four sites ofsimply be linked to the gap between the secpr andq
Fig. 12 yields a height dislocation &§—-C+B-D. By the '
four-coloring rule,A+B+C+D=0, this is the same as

In Table Il we show the sizes of the various transfer ma-
trices used in this work. The columns labelé®,0) and
“Thermal” correspond to the expressioe?) with q=0 and

mr=2(A+B)=-2(C+D). (A4) g=1, respectively. For the other columns, similar expressions
) ) ) ) may be worked out along the lines of R¢L7).
But the latter isalsothe height defect associated with a de- Finally, let us remark that the computations for the gen-
fect vertex(C,D,C,D) that corresponds to excluding the eralized eight-vertex model introduced in Sec. VI B are pro-
real loops from that vertex, which is exactly a thermal-typeduced from the same reference states, but slightly generaliz-
excitation(and to wit the one that is used for computing theing the transfer matrix to accommodate the contact-type
critical exponent; within the field theory. vertices shown on Fig. 9.
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