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Phase transitions of the Ashkin-Teller model including antiferromagnetic interactions on a type
of diamond hierarchical lattice

Jian-Xin Lé>* and Z. R. Yang?
ccasT (World Laboratory), Box 8730, Beijing 100080, China
2Department of Physics and Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China
3Depar’[ment of Physics, Jiangxi Normal University, Nanchang 330027, China
(Received 27 November 2003; published 2 June 2004

Using the real-space renormalization-group transformation, we study the phase transitions of the Ashkin-
Teller model including the antiferromagnetic interactions on a type of diamond hierarchical lattices, of which
the number of bonds per branch of the generator is odd. The isotropic Ashkin-Teller model and the anisotropic
one are, respectively, investigated. We find that the phase diagram, for the isotropic Ashkin-Teller model,
consists of five phases, two of which are associated with the partially antiferromagnetic ordering of the system,
while the phase diagram, for the anisotropic Ashkin-Teller model, contains 11 phases, six of which are related
to the partially antiferromagnetic ordering of the system. The correlation length critical exponents and the
crossover exponents are also calculated.
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[. INTRODUCTION quite different from that in two dimensions. However, there
appears only one partially ordered antiferromagnetic phase,
; ! X ) ) in which (s)=0, (¢)=0, and(so) is antiferromagnetically
have !nvest|gated the anlsotrpplc Ashkm-TeI(éﬁ') model ordered. Their results were supported subsequently by other
[2] with the ferromagnetic interactions on a family of ks [16-18. For the anisotropic AT model, in which the
diamond-type hierarchical lattices, and obtained the phasg,q |sing systems were not identical with each other, the
diagram as well as the critical exponents, this work is fo-gcture of the phase diagram has been investigated by a
cused on the AT model including the antiferromagnetic 'nter'variety of approaches, including exact dualitjld],
actions on a type of diamond hierarchical lattices, of WhiChrenormaIization-group transformation[20], finite-size-

the number of bonds per branc_h of the generator is odd. Faél:aling [21], mean-field approximation, and Monte Carlo
[3] has shown that the effective Hamiltonian for the AT simulations[22]. Nonetheless, as far as we know, the par-

As the continuation of the previous wofk], in which we

model can be expressed as, tially ordered antiferromagnetic phases have not yet been
a obtained in the phase diagram for the anisotropic AT model.
H =2 (Kss; + K007+ Kig0i80)), As noted by Berker and Ostlund[23], certain

w renormalization-group transformations, which are only ap-
where each lattice sitieis associated with two Ising spirss ~ Proximate on the translational symmetry lattices, become ex-
andoj, K, K,, andK, are permitted to take negative values act on the hierarchical lattices. On the other hand, the hier-
to reflect the antiferromagnetic interactions, and the Iym  archical lattices are highly inhomogeneof#], and they
runs over all the nearest-neighbor pairs of spins. The gener#1@y Pprovide insights into other low-symmetry problems
AT model remains unsolved exactly although Wegj#éhas such as random magnets, surfaces, etc. Therefore, much

shown the equivalence of the AT model to a staggered eighﬁ’-"ork on the hierarchical lattices has been motivated recently
vertex model. [25—-28. So far, most of the research on the AT model has

The isotropic AT model in two dimensions has been studP€en focused on the translational symmetry lattices, i.e., Bra-
ied extensively by means of experimental technigeg  Vais lattices, whereas much less attention has been paid to
Monte Carlo simulation§s—9], and various theoretical meth- the study of this model on the fractal lattices, e.g., the hier-
0ds[10-13. It has been showfil4] that the phase diagram archical lattices. For the ferromagnetic case, Matial. [29]
has a very rich structure and consists of five phases, two Gind Bezerret al.[30] have studied the isotropic and aniso-
which are related to the partially antiferromagnetic ordering{TOPiC AT model on a kind of self-dual hierarchical lattice,
of the system, i.e(a) (s)=0, (¢)=0, and(so) is antiferro-  espectively. _ o
magnetically orderedb) both (s) and(c) are antiferromag- In this paper, using the real-space renprmallzatlon-gro_up
netically ordered, butso) is ferromagnetically ordered. Us- transformation, we study the phase transitions of the Ashkin-
. ; . . . o Teller model including the antiferromagnetic interactions on
ing series analysis and Monte Carlo simulations, Ditzan

al. [15] determined the phase diagram for the isotropic ATa type of diamond hierarchical lattices, of which the number

. ) : U . f bonds per branch of the generator is odd. The isotropic
model in three dimensions, which is much richer than, an(ﬁ«shkin-Teller model and the anisotropic one are, respec-

tively, investigated, and the reduced interaction parameters
Ks K., andK, are permitted to take negative values. We find
*Email address: jianxinle@yahoo.com that the phase diagram, for the isotropic Ashkin-Teller
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TABLE I. Nontrivial fixed points with eigenvalues and critical
exponents for the isotropic AT model on a type of diamond hierar-
?::32 - _ chical lattice in the case ah=4 andb=3.
() (c)

@ Fixed point (w1, w3) (N, N\p) v ¢
Iy 0,0.3113 2.4481,0 1.2271
I» 0.3113,1 2.4481,0 1.2271
:::é - — I3 0,3.2119 2.4481,0 1.2271
l4 3.2119,1 2.4481,0 1.2271
@ © 0 I 0.3113,0.09693 2.4481,0.4994 1.2271
lg 3.2119,10.3164 2.4481,0.4994 1.2271
FIG. 1. First two stages of the constructions of two members of ~ P1 1,4.5265 2.8689,1.5606 1.0424 0.4223
the family of the diamond-type hierarchical lattices. P, 0.2209,0.2209 2.8689,1.5606 1.0424 0.4223

model, consists of five phases, two of which are associated \When the number of bonds per branch of the generator of
with the partially antiferromagnetic ordering of the system,the diamond hierarchical lattices is odd, i.b50dd, there
while the phase diagram, for the anisotropic Ashkin-Tellerare eight nontrivial fixed points in total. The locations of
model, contains 11 phases, six of which are related to thénese nontrivial fixed points in the parameter spasg w,)
partially antiferromagnetic ordering of the system. In addi-are (0,0, (w,1), (0,1/0), (L/w,1), (o,®?),
tion, the correlation length critical exponents and the cross(llwl,llwlz), (1,1/wp), and (wp,wp), respectively. It is
over exponents are also calculated. In the following sectionworth noting that bothw, andwp are dependent on the values
the phase transitions of the isotropic Ashkin-Teller modelof m andb [1]. As an example, Table | shows the case of
including the antiferromagnetic interactions on this type ofb=3 andm=4, wherew,=0.3113 andwp=0.2209.

diamond hierarchical lattices is investigated. In Sec. Ill, we Through the calculation of the eigenvaluesand X\, of
study the phase transitions of the anisotropic Ashkin-Tellethe renormalization-group transformation matRxderived
model including the antiferromagnetic interactions on thefrom the recursion relations, the correlation length critical
same lattices. Finally, we give a brief discussion and concluexponenty and the crossover exponedtcan be obtained

sion in Sec. IV. from the scaling factob and the relevant eigenvalues of the
transformation matrixR for any givenm andb [33-39. As
Il. THE ISOTROPIC ASHKIN-TELLER MODEL an example, the results in the casebsf3 andm=4 are

For the diamond-type hierarchical latticfa1,32, their presented in Table I, from which one can find that the non-
constructions can be realized through iterative decoration dfivial fixed pointsly, I, 13, 14, Is, andlg are associated with

a two-point bond by a generator, which has two verticesonly one identical relevant eigenvalue, and have the same

joined by m branches ob bonds. Figure 1 shows the con- correlation length critical exponentas the Ising universality
structions of two members of the family. cl_ass [31], Whereas_, the nontrivial f_|xed point3; and P,

In the previous worl1], we have obtained, respectively, with two relevant e|gen_values, are |_n_the same case _and pos-
two sets of recursion relations, in the parameter space%‘g.’SS the same correlation length critical exponelnhntlc_al
(Ko, K,.K,) and (@y,wy, s, of the renormalization-group with that of the four-state Potts model on the same lattice, as

transformation of the anisotropic AT model on a family of well as the same crossover exponeniBoth the correlation

diamond-type hierarchical lattices, where the three neV\Igengéu dcenr?thLet)r;Fe)O:sr?:r:g d tggrﬁé?ﬁgglv e;;ﬁ&nedptla:rr]e
parameters are defined as;=expf—2K,-2K,), w; P 9 P ’

= exp{~2K .~ 2K,). and ws=exp(~2K—2K,). Therefore, let and not completely determined by the fractal dimension of

K=K =K ” iiv obtam th ; the lattice[1].
s=Mo =1 OF w1 =wp, WE Can easlly obtain the recursion ré- - ag spown in Figs. 2 and 3, which correspond to the case
lations, in the parameter spacgé,K,) and (wq,ws), of the

lizati ¢ ; f the i ic AT of b=3 andm=4 in the parameter spad@;,w3) and the
renormalization-group transformation of the isotropic arameter spacé,,K), the phase diagram consists of five
model on the same lattices. However, in order to reproduc

the two-sublattice structure of a simple antiferromagneti hases when the number of bonds per branch of the genera-

round state. herein we shall restrict ourselves t ; r of the diamond hierarchical lattices is odd, ilesodd.
ground staté, here € Shall restrict ourselves 10 a type Op, . jatails of these five phases are as follows: in phase | the
diamond hierarchical lattices, of which the number of bonds

per branch of the generator is odd, ilesodd. In contrast, system is ferromagnetically orderegd), (o), and (so) all

the simple diamond-type hierarchical lattices witheven being nonzero; in phase I th_e system is fully d.isorde(e)-j,
are only suitable to describe the ferromagnetic ground staté??» @nd(so) all being zero; in phase Il there is a partially
The obtained recursion relations of the renormalizationferromagnetic orderingso) being nonzero, buts) and(o)
group transformation will produce all fixed points and resultbeing zero; in phase IV there is a partially antiferromagnetic
in the phase diagram for the isotropic AT model including theordering, (so) alternating from site to site, bus) and (o)
antiferromagnetic interactions on the diamond hierarchicabeing zero; in phase V50) is ferromagnetically ordered, but
lattices for any giverm andb. (s) and (o) are antiferromagnetically ordered. Therefore,
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' ' ' ' ' ' with b=odd, are consistent with those in R¢lL4]. It is

L worth noting that Costat al. [36] have obtained the global
oF 1 mean-field phase diagram of the isotropic AT model, which
consists of six phases, i.€a) the paramagnetic phase, where
()=0, (0)=0, and(so)=0; (b) the symmetric Baxter phase,
where(s)=(o) # 0 and(so) # 0; (c) the partially ordered fer-
sk . romagnetic phase, whe(s)=0, (¢)=0, and(so) # 0; (d) the
partially ordered antiferromagnetic phase, wh&e=0, (o)
v ; =0, and(so) is antiferromagnetically orderedg) the par-
tially ordered ferromagnetic phase, whei® # 0, (o)=0,
6 . and (so)=0; (f) the asymmetric Baxter phase, whe(®
- #0,{o)#0, and{so) # 0, but(s) # (o). It can be found that
the first four phases are reproduced in our results, but we can
not obtain the others. In addition, there are two partially
Al | ordered antiferromagnetic phases in this work, but only one
| appears in the mean-field results. In the mean time, those
first-order transition lines in the mean-field phase diagram
cannot be reproduced in this work.

IIl. THE ANISOTROPIC ASHKIN-TELLER MODEL

2 4
The recursion relations, in the parameter space
I, /p, I, v (w1, w,, ws), Of the renormalization-group transformatifi
T ” - L L v 25 will produpe all f!xed points a}nd result in the phase diagrqm
® for the anisotropic AT model including the antiferromagnetic

! interactions on the diamond hierarchical lattices for any

FIG. 2. Phase diagram in the parameter spagews) for the givenm andb. When the number of_ bonds_per pranch qf the
isotropic Ashkin-Teller model on a type of diamond hierarchical 9€nerator of the diamond hierarchical lattices is odd, be.,
lattice forb=3 andm=4, wherew,=0.3113,wp=0.2209. =odd, there are 22 nontrivial fixed points in total. The loca-

tions of these nontrivial fixed points in the parameter space

when considering the odd valueslofand the antiferromag- (w;,w,,w;) are (w;,0,0), (0,0,,0), (0,0,0), (1,0,,0)),
netic interactions, one can obtain two new phases IV and Vw,,1,w)), (@, o,1), (0, 0,02, (0,0, o), (0, 0,o),
associated with the partially antiferromagnetic ordering 0f(1/w|,0,0), (0,1/0,,0), (0,0,1/w), (1,1/w,1/w),
the system, which have not been found in the previous WO”(l/w|,1,1/w,), (1/w;, 1wy, 1), 1wy, 1w, 1]0?),
(1]. _ (Lw,1le? 1le), (Lot lle,1le),  (1,1,1/wp),

. The above re_sults, concerning the stru_cture of thg phasayl/wp,l), (1/wp,1,1), and (wp, wp,wp), respectively. It
diagram for the isotropic AT model including the antiferro- is essential to point out that both andwp are dependent on

magnetic interactions on the diamond hierarchical Iattice§he values ofn andb [1]. As an example, Table Il shows the
case ofb=3 andm=4, wherew,;=0.3113 andwp=0.2209.
Also, through the calculation of the eigenvalues \,,
and\; of the renormalization-group transformation matrx
derived from the recursion relations, the correlation length
critical exponentr and the crossover exponert can be
obtained from the scaling facttrand the relevant eigenval-
ues of the transformation matriX for any givenm andb. As
an example, the results in the casebsf3 andm=4 are
presented in Table Il, from which it can be found that two
setsl, and Uy of the nontrivial fixed points have the same
correlation length critical exponemtas the Ising universality
class[31]. The setV, of the nontrivial fixed points is associ-
ated with two equal relevant eigenvalues identical with that
of the former two set$, andU,, and have the same correla-
tion length critical exponent as well as the only one cross-
over exponent equal to 1. With respect to the det of the
nontrivial fixed points, they are related to three relevant ei-
FIG. 3. Phase diagram in the parameter spaceK) for the ~ genvalues, among which the two smaller ones are identical
isotropic Ashkin-Teller model on a type of diamond hierarchical with each other, hence they possess the same correlation
lattice forb=3 andm=4, wherew;=0.3113,wp=0.2209. length critical exponent which is identical with that of the
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TABLE Il. Nontrivial fixed points with eigenvalues and critical exponents for the anisotropic AT model
on a type of diamond hierarchical lattice in the casensf4 andb=3.

Fixed point (w1, wy,w3) (N1,N2,N\3) v
I1 0.3113,0,0 2.4481,0,0 1.2271
[Py 0,0.3113,0 2.4481,0,0 1.2271
I3 0,0,0.3113 2.4481,0,0 1.2271
U, 1,0.3113,0.3113 2.4481,0,0 1.2271
U, 0.3113,1,0.3113 2.4481,0,0 1.2271
Us 0.3113,0.3113,1 2.4481,0,0 1.2271
Vi, 0.3113,0.3113,0.09693 2.4481,2.4481,0.4994 1.2271 1
V, 0.3113,0.09693,0.3113 2.4481,2.4481,0.4994 1.2271 1
V3 0.09693,0.3113,0.3113 2.4481,2.4481,0.4994 1.2271 1
I4 3.2119,0,0 2.4481,0,0 1.2271
I5 0,3.2119,0 2.4481,0,0 1.2271
lg 0,0,3.2119 2.4481,0,0 1.2271
Uy 1,3.2119,3.2119 2.4481,0,0 1.2271
Us 3.2119,1,3.2119 2.4481,0,0 1.2271
Ug 3.2119,3.2119,1 2.4481,0,0 1.2271
Vy 3.2119,3.2119,10.3164 2.4481,2.4481,0.4994 1.2271 1
Vs 3.2119,10.3164,3.2119 2.4481,2.4481,0.4994 1.2271 1
Ve 10.3164,3.2119,3.2119 2.4481,2.4481,0.4994 1.2271 1
Py 1,1,4.5265 2.8689,1.5606,1.5606 1.0424 0.4223
P, 1,4.5265,1 2.8689,1.5606,1.5606 1.0424 0.4223
P3 4.5265,1,1 2.8689,1.5606,1.5606 1.0424 0.4223
Py 0.2209,0.2209,0.2209 2.8689,1.5606,1.5606 1.0424 0.4223

four-state Potts model on the same lattice, as well as two
equal crossover exponents. Both the correlation length
critical exponentr and the crossover exponegtare depen-
dent on the concrete geometrical parametemsnd m, and

not completely determined by the fractal dimension of the
lattice [1].

As shown in Fig. 4, which corresponds to the casé of
=3 andm=4, the phase diagram consists of 11 phases when
the number of bonds per branch of the generator of the dia-
mond hierarchical lattices is odd, i.&5o0dd. The details of
these 11 phases are as follows: in phase | the system is fer-
romagnetically ordereds), (o), and(so) all being nonzero;
in phase Il the system is completely disorder&, (o), and
(so) all being zero; in phase Il there is a partially ferromag-
netic ordering,{s) being nonzero, bufo) and (so) being
zero; in phase IV there is a partially ferromagnetic ordering,
(o) being nonzero, bus) and(so) being zero; in phase V
there is a partially ferromagnetic orderin@go) being non-
zero, but(s) and{o) being zero; in phase VI there is a par-
tially antiferromagnetic orderings) alternating from site to
site, but{(s) and (so) being zero; in phase VIl there is a
partially antiferromagnetic orderingy) alternating from site
to site, but(s) and(so) being zero; in phase VIII there is a
partially antiferromagnetic orderingso) alternating from
site to site, buks) and (o) being zero; in phase IXs) is
ferromagnetically ordered, byr) and (so) are antiferro-

o, 8 10

FIG. 4. Phase diagram in the parameter spagg w,,w3) for
the anisotropic Ashkin-Teller model on a type of diamond hierar-
chical lattice forb=3 andm=4, wherew;=0.3113,wp=0.2209.
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magnetically ordered; in phase &) is ferromagnetically type hierarchical lattices, and found that the algebraically
ordered, buts) and(so) are antiferromagnetically ordered; ordered behavior predicted by Berker and Kadafi®f] can

in phase Xl(so) is ferromagnetically ordered, bys) and exist when the number of bonds per branch of the generator
(o) are antiferromagnetically ordered. Therefore, when con©f the hierarchical lattices is odd. Since the Ashkin-Teller

sidering the odd values df and the antiferromagnetic inter- Mode! reduces to a four-state Potts modelXorJ,=J,, it is
actions, one can obtain six new phases VI, VII, VIII, IX, X, V&Y interesting to know whether this algebraic order can

and XI associated with the partially antiferromagnetic order-2/S0 existin the Ashkin-Teller model on this type of diamond

ing of the system, which have not been found in the previougigrarchical lattices. H_ere we present a brief discussion about
work [1]. this problgm. Fpr a gl\(erh), whenm is Igrge enough, two

So far, these antiferromagnetic phases have not been oBEW nontrivial fixed points can be obtained from the recur-
served for the anisotropic AT model on the square latticeSION relations of the renormalization-group transformation
however, we expect them to occur on the square lattice a@r the Ashkln—TeIIer m.odel mclu@ng th_e antlferromagnetlc
well because it is known that the investigation of statistical-Nt€ractions on the diamond hierarchical lattices with
mechanics models on the hierarchical lattices may serve a:s°dd' As an example, we consider the cas®®8. In this

approximations for such models on the Bravais lattices. case, \{vhe_rm>23,_ we can find the existence of two new
nontrivial fixed points in the parameter spage;, w,,ws),

when  m=23, the two fixed points are
(8.8581,8.8581,8.8581 and (12.0268,12.0268,12.0258

In this paper, using the real-space renormalization-groupespectively, and the corresponding eigenval(gsh,,\s)
transformation, we study the phase transitions of the Ashkinef the renormalization-group transformation matrix are
Teller model including the antiferromagnetic interactions on(7.0378,7.0378,1.097%&nd(7.7135,7.7135,0.9034when
a type of diamond hierarchical lattices, of which the numberm=24, the two fixed points ar.1461,6.1461,6.146kand
of bonds per branch of the generator is odd. We find that the19.9726,19.9726,19.9726 respectively, and the corre-
phase diagram, for the isotropic Ashkin-Teller model, con-sponding eigenvalue$\;,\,,\3) of the renormalization-
sists of five phases, two of which are associated with theyoup transformation matrix af€.2660,6.2660, 1.3654nd
partially antiferromagnetic ordering of the system, i@),  (g.8904,8.8904,0.6419 -~ when m=33, the two fixed
<S>:0, <0'>:0, and<50') is antifel’l’omagnetically Ordered)) pOintS are (31098,31098,31098 and
both(s) and (o) are antiferromagnetically ordered, bist)  (139.3082,139.3082,139.3082espectively, and the corre-
is ferromagnetically ordered, while the phase diagram, fo"sponding eigenvalue$h;,\,,\3) of the renormalization-
the anisotropic Ashkin-Teller model, contains 11 phases, Si)@roup transformation matrix afd.9317,4.9317,1.959&nd
of which are related to the partially antiferromagnetic order-(13 gs50, 138550, 0.1483Therefore, one can conclude that
ing of the system, i.e(@) (0)=0, (s7)=0, and(s) is antifer- algebraically ordered behavior, i.e., a distinctive low-
romagnetically orderedp) (5)=0, (s5)=0, and(o) is anti-  temperature phase, will not exist in the Ashkin-Teller model
ferromagnetically ordered(c) (s)=0, (6)=0, and(so) is  on this type of diamond hierarchical lattices, because both of
antiferromagnetically orderedd) both (o) and(so) are an-  the two new fixed points are not completely stable.
tiferromagnetically ordered, bys) is ferromagnetically or-
dered; (e) both (s) and (so) are antiferromagnetically or-
dered, buo) is ferromagnetically orderedf) both (s) and ACKNOWLEDGMENTS
(o) are antiferromagnetically ordered, bistr) is ferromag-
netically ordered. In addition, the correlation length critical ~ Jian-Xin Le would like to thank Dr. W. A. Guo and Dr. X.
exponents and the crossover exponents are also calculated. Kong for their valuable discussions. This work was sup-
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