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We propose a metric to quantify correlations between earthquakes. The metric consists of a product involv-
ing the time interval and spatial distance between two events, as well as the magnitude of the first one.
According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a
classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing
predetermined space-time windows. In the simplest network construction, each earthquake receives an incom-
ing link from its most correlated predecessor. The number of aftershocks for any event, identified by its
outgoing links, is found to be scale free with exponentg=2.0s1d. The original Omori law withp=1 emerges
as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate
magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks sug-
gests that aftershock collection with fixed space windows is not appropriate.
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I. INTRODUCTION

Earthquakes exhibit complex correlations in space, time,
as well as magnitude[1–6]. Sequences of earthquakes often
appear related to main shocks of large magnitude, which are
followed in time by nearby smaller events. Sometimes, the
main shock is also preceded by a few intermediate or smaller
precursor events. Earthquakes can also cluster as swarms,
where the seismic activity is not distinctly associated with a
main event. Human observation tends toward labeling these
events depending on their relative magnitude and their posi-
tion in the space-time sequence: foreshocks, main shocks,
and aftershocks, respectively. However, in defining after-
shocks, it is clearly necessary to distinguish them from what
is called background seismicity, and to assign to each one its
correct main shock(s). Although an observation by eye of the
evolving seismic situation can support a classification, a pre-
cise label for each event may be intrinsically impossible.

In the most popular approach, aftershocks are collected by
counting all events within a predetermined space-time win-
dow [7–10] following a main event(see Fig. 1), where both
the main event and the space-time window are chosena pri-
ori by the observer. Of course, the identification of after-
shocks will change by altering the space-time window. Also,
the method does not define the probability that an event
thereby collected is actually correlated to the main event un-
der consideration. Maybe more importantly, one does not
know whether the selected space-time windows are too large
or too small for minimizing errors in the procedure. A more
subtle issue is to define aftershocks of aftershocks. If an af-
tershock can have more than one preceding large event,
which of these should be regarded as the most important or
correlated one? These remarks point to a fundamental ques-
tion: are aftershocks invariant observables of seismicity? In
particular, can one define aftershocks without using space-
time windows selected by the observer?

A quantitative metric of the correlation between any two
earthquakes, or the extent to which one can be considered an
aftershock of another, may be crucial for solving these prob-
lems, and for developing a better understanding of seismic-
ity. Such a metric should include known statistical properties
of seismicity that are robust with respect to the space-time
window chosen by the observer(unlike previous methods of
aftershock identification). One robust law is the Gutenberg-
Richter (GR) distribution [4] for the number of earthquakes
of magnitudem in a seismic region,

Psmd , 10−bm, s1d

with b usually <1. Another is the fractal appearance of
earthquake epicenters[1,3,11], with fractal dimensiondf.
These are both general statistical laws that hold over the
entire Earth’s surface, wherever earthquakes have been sys-
tematically collected. However, the observed exponentsb
and df may vary slightly depending on the seismic region
and time span considered.
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FIG. 1. (Color online) Schematic examples of space-time win-
dows used to collect aftershocks: the usual rectangular or convex
window (dashed line) and our hyperbolic, concave window(shaded
region).
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Combining these two laws, the average number of earth-
quakes of magnitude within an intervalDm of m, occurring
in an area of radiusr over a time intervalt, is

n̄ = C t rdfDm 10−bm, s2d

whereC is a constant depending on the overall seismicity in
the region and time interval under consideration.

For any earthquakej in the seismic region, looking back-
ward in time, how many earthquakes of magnitude within an
intervalDm of m would be expected to have occurred within
a time intervalt, and within a distancel, of that specific
event? In fact, ann value can be defined between any two
eventsi and j occurring in the sequence at timesTi andTj,
with Ti ,Tj. If we take the magnitudemi of the ith event, the
spatial distancel = l i j between the two earthquake epicenters,
and the time intervalt= tij =Tj −Ti, the expected number of
events of magnitude withinDm of mi occurring in the par-
ticular space-time domain bounded by eventsj and i is

nij ; CtldfDm 10−bmi . s3d

Note that the domain appearing in Eq.(3) is selected by the
particular history of seismic activity in the region and not
preordained by any observer.

Of all the earthquakes precedingj , the most unlikely to
occur according to Eq.(3) is earthquakei* such thatnij is
minimized wheni = i* . However, earthquakei* actually oc-
curred relative toj , even though it was the least likely to
have done so. Therefore,i* must be the event to which earth-
quake j is most correlated. In general, ifnij !1, then the
correlation betweenj andi is very strong, andvice versa. By
this argument, the correlationcij between any two earth-
quakesi and j is inversely proportional tonij , or

cij = 1/nij .

As we show later, the distribution of the correlation variables
cij (or their inversenij) for all pairs i , j is extremely broad.
Therefore, for each earthquakej , a few exceptional events in
its past have much larger correlation than all the others.(One
of these will be the extremal eventi* .) These strongly corre-
lated pairs of events can be marked as linked nodes, and the
collection of linked nodes over all earthquakes forms a net-
work.

The metric defined by Eq.(3) allows a classification of
aftershocks. Further, the question of which is the better can-
didate to be the foreshock of an event can be quantitatively
decided. Hierarchical clusters of earthquakes emerge, in
which the biggest event in the cluster is called the main
event, but where possibly later aftershocks create their own
sequences of aftershocks, whenever they are able to “steal”
aftershocks from the main event, and so on for further gen-
erations of aftershocks. Nevertheless, earthquakes are auto-
matically collected into hierarchically self-organized clus-
ters, or networks, without any special preanalysis of single
event properties, or selection of space-time windows.

In the language of modern complex network theory
[12,13], what we achieve is a time-oriented growing network
where nodes(earthquakes) have internal variables(magni-
tude, occurrence time, and location), and links between the

nodes carry a weight(the metricnij or its inversecij) and are
directed according to the time orientation, from the older to
the newer nodes. Empirically, we find that both the distribu-
tion of outgoing links and the cluster size distribution are
scale free. Due to the continuous nature of the link variable
nij , no event isa priori purely an aftershock or a main shock.
However, due to the broad distribution ofnij observed, main
shocks and aftershocks emerge as extreme limits of a con-
tinuous spectrum of the extent to which any given event can
be considered to be a precursor or aftershock of other events
in the sequence.

Since the space-time-magnitude scales appearing in Eq.
(3) are selected by the actual sequence of events, the vari-
ablesnij can be considered to be self-organizing tags of the
underlying physical process governing seismicity. Note that
singularities are eliminated by taking a small scale cutoff in
time (here tmin=180 sec) and a minimum spatial resolution
(herelmin=100 m).

Our approach was inspired by a recent analysis of earth-
quake waiting times by Baket al. [6,14]. They introduced a
space-time-magnitude scaling variable that allows a data col-
lapse of the distribution of waiting times between subsequent
earthquakes larger than a specified magnitude, occurring
within grid cells of a specified size, covering nonoverlapping
areas of the Earth. Also, Abe and Suzuki found scale-free
networks for earthquakes in a completely different context,
where nodes representing these grid cells were linked when
subsequent earthquakes occurred in them[15]. However, nei-
ther of these works quantified the correlation between an
arbitrary pair of earthquakes, or dealt with the subject of
aftershock identification.

II. DATA AND PARAMETERS

The catalog we have analyzed is maintained by the South-
ern California Earthquake Data Center(it can be downloaded
from the SCEDC web site http://www.scecdc.scec.org/ftp/
catalogs/scsn), for which Dm=0.1. It is considered to be
complete for events withm.2. We use data ranging from
January 1, 1984 to December 31, 2000. In order to work with
a well-defined ensemble, a lower threshold on the magnitude
is introduced: events with magnitude smaller thanm, are
discarded. For each event, its positioni in the sequence is
used as a label, and we record the magnitudemi, the occur-
rence timeTi (measured in seconds from midnight of the first
day), and the latitude and longitude of the epicenter(con-
verted to angles measured in radians,ui andfi, respectively).
The distance between two eventsi and j is then measured as
the arc length on the Earth’s surface,l i j
=R0 arccosfsinsuidsinsu jd+cossuidcossu jdcossfi −f jdg, where
the Earth’s radius isR0=6.36733106 m.

The b value of the GR law isb.0.95 for this data set,
while df .1.6 was found by Corral[14] using a box counting
procedure. It is consistent with the correlation dimension we
measure for most of our clusters. However, many of the sta-
tistical results we find are not sensitive to the precise value of
df or b.

With these units and values, the constantC can be esti-
mated using Eq.(2). However, a precise evaluation ofC is
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not possible, becausen̄ is the mean of a variable with huge
variations in space and time. We have measuredn̄ for several
circular windows well inside the zone covered by the cata-
log, findingCø10−9. For simplicity, our choice in this paper
is C=10−9. Most of our results are insensitive to the precise
value ofC because we focus on relative, rather than absolute
correlations between a pair of events. Throughout this paper
we use, unless otherwise stated, the above mentioned values,
and a lower thresholdm,=2.5. For this value ofm,, the
number of nodes in the network constructed using the entire
catalog isN=28398, while, e.g., form,=4, as per Fig. 2,
N=902. Other than changing the cutoff where finite system
size effects appear, the precise value ofm,.2 has no effect
on the statistical properties of the network we report here.

To simplify notation, we denote the probability distribu-
tion of a generic quantityq asPsqd. On finding distributions
decaying as power laws, a clearer result appears by binning
the values ofPsqd in properly normalized bins of a width
that grows geometrically withq.

III. RESULTS

A part of the network constructed using this method is
shown in Fig. 2. Hierarchically organized clusters of earth-
quakes emerge, where the links join aftershocks with their
most correlated predecessor.

IV. EXPLANATION OF METHOD

Figure 3 shows the probability distribution of correlation
values,Pscd, obtained by sampling over all earthquake pairs
in the data set. It is an extremely broad distribution that

exhibits power law behavior over more than 13 orders of
magnitude:

Pscd , c−t with t = 1.5 ± 0.05. s4d

Of course, the distribution of valuesn=1/c is also a
power law Psnd,n−v, with v+t=2. In this casev<0.5.
Given such a broad distribution, for any earthquakej , a few
extreme eventsi exist whose correlationscij are much larger
than all the others. Therefore, it makes sense to represent
these few earthquake pairs as nodes that are linked, while not
linking pairs that have much smaller values ofcij . Then the
sequence of earthquakes may be usefully represented as a
sparse network, where links exist between the most strongly
correlated events. In the simplest implementation, earth-
quakej links solely to itsextremal predecessor i* which has
the largestcij .

Constructing the extremal network, each new earthquake
j attaches with a single link to the previous earthquake in the
sequence that minimizesnij (or maximizescij), with a weight
denoted asnj

* . Hence, each link carries the extremalnj
* for

the added nodej relative to all previous nodes, and globally
one obtains a growing directed tree. Links with smallnj

*

indicate a stronger correlation between the emitting node and
the receiving one, and are expected to identify events nor-
mally classified as aftershocks. Weak links with largenj

* arise
when none of the previous events are sufficiently strong, and
close in space and time to eventj . Clearly, the first earth-
quake in the time series has no incoming link.

A natural decomposition of the network into clusters is
achieved by then removing all weak links wherenj

* .nc, and
nc is a link threshold value. The correlated events are reliably
detected whennc is less than 1 but not extremely small. In
the latter case, correlated events detach, and a very frag-
mented network appears. For largenc some uncorrelated
events make links, and a giant cluster appears. The resulting
space-time windows are concave(see Fig. 1, and Conclu-
sions), at variance with the convex windows usually used.

In order to quantitatively assess the properties of this net-
work, we start by analyzing the distribution of link weights
Psn*d. This distribution exhibits power law behavior with an
exponent.−1 up to a cutoff, as shown in Fig. 4. The distri-

FIG. 2. (Color online) Scale-free earthquake network around
Landers epicenter(clusterA, red online) and Hector Mine epicenter
(clusterB, blue online). Colors fade with the aftershock generation,
from darker to lighter within each cluster. Note that the big event
following the Landers earthquake, giving rise to its own subcluster
(A1, orange online) of aftershocks, is not a first generation after-
shock, since it has no link from Landers. Herem,=4 and nc

=10−2.

FIG. 3. The probability distribution of the correlationc between
all earthquake pairs in the data base, withm,=2.5. It is a scale-free
distribution over more than thirteen orders of magnitude.
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bution of correlations between linked nodes in the extremal
network Psc*d is also a power law,Psc*d,1/c* . Such a
broad, continuous distribution, without particular character-
istic peaks, indicates that a division of earthquakes into rigid
classes is intrinsically impossible. Instead, a continuum of
possibilities ranges from clear aftershocks, which have an
incoming link with smalln* , to events that are independent,
with an incoming link of largen* , but may emit many out-
going links with smalln* , and would be called main shocks.

A. The scale-free network

The resulting network of earthquakes is scale free. The
number of aftershocks of an earthquake is equal to the num-
berk of outgoing links from the node representing that event.
In the language of network theory, this is called the out-
degree of the node. Figure 5 shows that earthquakes in
Southern California form a scale-free network, with an out-
degree distribution scaling over more than three decades,
with an indexg=2.0s1d.

Recently, many scale-free networks withPskd,k−g have
been discovered[12,13] in a broad variety of contexts. These
include the Internet[16], the citation network, and the world-
wide web[17], which are man-made; protein interaction and
genetic regulatory networks[18,19], which are products of
biological evolution; and the solar coronal magnetic field
[20], which is physical network embedded in three-
dimensional space formed by turbulent magnetohydrody-
namic forces at very high magnetic Reynolds number. The
aftershock network found here appears to be in a separate
category from all previous examples. As we show later,
many other characteristics, in addition to the out-degree dis-
tribution, of the aftershock network are scale-free—as dem-
onstrated in, e.g., Figs. 4, 8, and 9. These other properties
make it unlikely that the aftershock network can be described

with a preferential attachment model or other model for
scale-free networks discussed so far in the literature.

B. Clusters and the giant component

Lowering the link thresholdnc from infinity, the fully con-
nected network breaks into clusters, in a percolationlike tran-
sition from a giant component to a finite cluster regime. As
in percolation theory[21], the fraction of nodes in the big-
gest clustersud is a good order parameter, displaying two
distinct regimes, meeting at a point marked by an arrow in
Fig. 6. Abovenc=10−1 in the phase with a giant component,
u grows quickly withnc, while belownc=10−2 in the finite
cluster regime, it increases much more slowly withnc. We
estimate the transition to take place betweennc=10−1 and
nc=10−2. This estimate is consistent with that obtained by
examining the distribution of cluster sizesN, which is the
total number of earthquakes in a connected cluster, as a func-
tion of nc (see Fig. 7). Near the transition, the cluster size

FIG. 6. (Color online) Order parameter for the percolationlike
transition from a giant component to a finite cluster regime. Frac-
tion of nodes in the biggest cluster as a function of the thresholdnc,
for three values ofm,. The arrow marks the boundary between the
two regimes we expect.

FIG. 4. (Color online) The distribution of link weights,n* , for
sequences of different temporal duration. An average over all non-
overlapping time intervals of the same duration is shown. The
power law behavior is stable to variations in the duration. However,
the cutoff moves to smallern* on increasing the measurement time
interval as weakly linked earthquakes find more correlated prede-
cessors further in the past. The vertical dotted line represents the
estimated transition point,nc

s, for the giant cluster. The straight
dashed line has a slope −1.

FIG. 5. (Color online) The degree distribution of the network of
earthquakes and aftershocks. The out-degreek is the number of
aftershocks linked to an earthquake. The introduction of a threshold
nc does not alter the observed behavior. The dashed line has slope
−2, indicating a scale-free degree distributionPskd,k−g with g
<2.
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distribution also appears to be scale-free,PsNd,N−1.7s1d.
Furthermore, a scaling regime exists for a wide range of link
thresholds, indicating a relative insensitivity to a sharp sepa-
ration between what are considered to be correlated and un-
correlated events. For clarity, we use the valuenc

s=10−2 to
locate the transition point where the giant component
emerges. This value is consistent with our ansatz, Eq.(3),
which requires that correlated events haven values signifi-
cantly less than 1. Networks constructed withnc

s therefore
only link strongly correlated events. Obviously for networks
the average number of outgoing links per node is equal to the

average number of incoming links; i.e.,kkoutl=kkinl. If nc

=` then kkinl=1 (excluding the first earthquake), while for
nc=10−2, kkinl=0.7s1d.

In Fig. 4, we study the effect of changing the temporal
span of the catalog on the distribution of link weights. The
power law behavior for strong links is stable, certainly up to
nc

s. However, the cutoff inPsn*d for weak links decreases to
smaller n* values, when earthquakes can link to events at
further distance in the past. For an ideal “infinite” catalog,
we conjecture that the cutoff value cannot be less thannc

s.

C. Scaling law for aftershock distances

We define the link lengthl as the distance between the
epicenter of an aftershock and its linked predecessor. The
distribution of link lengths depends on the magnitudem of
the predecessor, being on average greater for largerm. Di-
viding the link length distribution into classes depending on
the magnitude of the predecessor,Pmsld, a maximum in the
distribution occurs, which shifts to largerl on increasingm,
as shown in Fig. 8. This behavior is consistent with using
larger space-time windows to collect aftershocks from larger
events.

However, the distribution of link lengths exhibits no cut-
off at large distances, but rather decays slowly as a power
law with l, up to the linear extent of the seismic region cov-
ered by the catalog. The different distributions are consistent
with a scaling ansatz:

Pmsld . 10−smFsl/10smd, s5d

wherel is measured in meters,s<0.4, andFsxd is a scaling
function. The tail of the scaling function is a power law; i.e.,
Fsxd,x−l with l<2 for x@1. A data collapse using this
ansatz is shown in the inset of Fig. 8. Such a slow decay at
large distances calls into question the use of sharply defined
space windows for collecting aftershocks, as already pointed
out by Ogata[22].

FIG. 7. (Color online) Cluster size distribution for different link
thresholds. At largenc, a giant cluster exists that is well separated in
size from some remaining small ones. Betweennc=10−1 and nc

=10−2, an apparently continuous transition occurs where the finite
cluster distribution extends out toward the giant cluster, and the
distribution of cluster sizes exhibits power-law behavior. The
straight line has a slope −1.7. Symbols aresp ,nc=102; h , nc

=10;L , nc=1; + , nc=10−1; s , nc=10−2d.

FIG. 8. (Color online) Link length distribution for different
magnitudes of the emitting earthquake, atnc

s. The length at maxi-
mum grows with magnitude roughly aslmax,100.4m, but the distri-
butions have a fat tail, extending up to hundreds of kilometers even
for intermediate magnitude events. These distributions are consis-
tent with a hierarchical organization of events, where big earth-
quakes preferentially link at long distance with intermediate ones,
which in turn link to more localized aftershocks, and so on. Inset:
distributions rescaled according to Eq.(5) with s=0.4.

FIG. 9. (Color online) The Omori law for aftershock rates.
These rates are measured for aftershocks linked to earthquakes of
different magnitudesm using nc

s. For each magnitude, the rate is
consistent with the original Omori law, Eq.(6), up to a cutoff time
that depends onm. As guides to the eye, dashed lines represent a
decay,1/t.
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D. The Omori law for earthquakes of all magnitudes

Figure 9 shows the rate of aftershocks for the Landers,
Hector Mine, and Northridge events. Aftershocks occurring
at time t after one of these events are binned into geometri-
cally increasing time intervals. The number of aftershocks in
each bin is then divided by the temporal width of the bin to
obtain a rate of earthquakes per second. The same procedure
is applied to each remaining event, not aftershocks of these
three. An average is made for the rate of aftershocks linked
to events having a magnitude within an intervalDm of m.
Figure 9 also shows the averaged results form=3 (1710
events), m=4 (161 events), m=5 (28 events), andm=5.9 (4
events).

The collection of aftershocks linked to earthquakes of all
magnitudes is one of the main results of our method. Even
intermediate magnitude events can have aftershocks that per-
sist up to years. Earthquakes of all magnitudes have after-
shocks which decay according to the Omori law[5,23],

nstd ,
K

c + t
for t , tcutoff, s6d

wherec andK are constant in time, but depend on the mag-
nitudem [23,24] of the earthquake. We find that the Omori
law persists up to a timetcutoff that also depends onm as well
as the link threshold,nc. Estimates of the cutoff times fornc

s

aretcutoff<3 months form=3, andtcutoff<1 yr for m=4. For
larger magnitudes, it is difficult to distinguishtcutoff from the
temporal duration of the data set.

The Omori law for aftershocks emerges as a result of our
analysis, although it is not part of the original ansatz, Eq.(3),
used to define aftershocks. It has been extensively investi-
gated over decades, together with its modified version[23]
involving a scaling,t−p. The data shown in Fig. 9 are con-
sistent with the original Omori result,p=1, for aftershocks
of earthquakes of all magnitudes, once second and further
generations of aftershocks are excluded. Our result is also
consistent with theoretical studies on stick-slip motion
[25,26], which suggestp<1.

V. DISCUSSION

Convex space-time windows have been used since the
1970’s[7–10], often with the size of the window determined
by the main shock magnitude. The performance of this pro-
cedure is satisfactory for large earthquakes, although fixed
window sizes may omit relevant aftershocks. Nevertheless,
as a shortcoming, it can lead to distortions if many large
aftershocks occur. In this case, nothing can be said on the
“ownership” of further aftershocks.

Different approaches to the problem of aftershocks collec-
tion were proposed by several authors, sometimes with the
aim to cure the former shortcomings. For a review see Ref.
[27]. Our method has some similarities with these ap-
proaches. For instance, Frohlich and Davis collected earth-
quakes in clusters[28] by means of a different linking pro-
cedure. However, their analysis was done using a metric of
the form ,Îl2+constt2, which does not take into account
the magnitude of events, and has a space-time form at vari-
ance with measured earthquake correlations.

Maximum likelihood methods[29,30], in the context of
seismicity, usually start with an ansatz on the law governing
aftershocks, typically the modified Omori law. It is further
assumed that seismicity is a nonstationary Poisson branching
process. Models including these assumptions have been
called epidemic type aftershock sequence models(ETAS, see
Ref. [30]). Using a likelihood analysis with space, time, and
magnitude, Ogata compared several forms of aftershocks dis-
tance distributions[22], and showed that an aftershock rate
of the form

nm,lstd ,
10am

fclsmd + lgmsct + tdp s7d

was the most appropriate among his choices[ct ,a, p, andm
are constant, whileclsmd is scaling with the magnitudem of
the main shock]. Hence, he also concluded that fixed space
windows were not the best choice. Indeed, our metric vari-
able n in Eq. (3) somewhat resembles his form ofn. The
same form was also adopted in ETAS models[31–33]. In
this framework, one hasg=1+b/a*2 [33] and the expo-
nent of the distribution of cluster sizes is 1+g−1&2. Both
values are in agreement with our measurements of these ex-
ponents from the empirical data, using our metric ansatz to-
gether with the network construction. Thus ETAS models
with an appropriately chosenn give some results consistent
with our findings.

However, our method is simpler to implement than like-
lihood methods. Furthermore, it does not require an ansatz
on the validity of the modified Omori law, or on the type of
statistical process that describes seismicity. Instead, the origi-
nal Omori law is found as a result of our analysis. In addi-
tion, the physical argument leading to the variablenij also
fixes the parameters in its definition, without the need to
evaluate them by maximizing a likelihood. The only ansatz
we make is the form of the metric.

One could object that the values ofb and/ordf can depend
on the region of the Earth being considered, or may fluctuate
depending on the specific fault zone being studied. However,
the statistical results we find, as shown in the figures, are
remarkably robust to variations in either of these parameters,
or of the thresholdm,. Varyingdf over a wide range, from 1
to 3 (using df .2 requires the introduction of event depths,
see below) does not alter considerably the distribution of
outgoing links, which retains its power law behavior with
index g<2. The distribution of link weights,n* , is even
more insensitive to variations ofb and df. Also the Omori
law with p<1, shown in Fig. 9, does not depend sensibly on
the parameters, and holds for aftershocks linked to earth-
quakes of all magnitudes.

The crust of the Earth has a finite width(<20 km in Cali-
fornia) in which events take place according to a “three-
dimensional” fractal distribution, involving their depth. It is
believed that there is a qualitative difference between small
earthquakes and large ones, the former producing ruptures
smaller that the crust width[2]. Hence, our arguments may
need to be corrected at distances of the order of tens of
kilometers. We have computed spatial distances through the
three-dimensional Euclidean metric distance, using an appro-
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priately reviseddf in Eq. (3). No significant departures from
the results leading to our present conclusions were found.

Multiconnected networks

The introduction of more than one correlated predecessor
for an event will be the subject of a future investigation. This
is accomplished by attaching links between all earthquake
pairs wherenij ,nc. In this case, a general network, which is
not treelike, emerges. The clustering of earthquakes could
then be quantified in terms of the clustering coefficient of the
nodes in the network[19,34]. In our view, an earthquake
network with nodes having multiple incoming links repre-
sents a second order modeling of seismicity, the first being
the simple tree structure we have presented here. In any case,
it is unlikely that including links to more than one strongly
correlated predecessor will change the scale-free character of
the resulting network, although, of course, the network will
no longer have a tree structure.

VI. CONCLUSIONS

We have introduced a metric to determine correlations
between earthquakes that takes into account known statistical
properties of seismicity. By means of an appealingly simple
yet quantifiable procedure, networks of earthquakes and af-
tershocks emerge, where the number of aftershocks linked to
any event is scale-free with an indexg<2. The metric is
constructed by looking backward in time from any particular
event and calculating an expected number of events that
would occur, compared to events that actually occurred. If
this ratio is significantly less than 1, then the preceding event
is correlated with the particular one. This is reminiscent of

Kierkegaard’s adage that life must be lived forward, but can
only be understood backward.

Due to the form of the metricn measuring correlations,
larger earthquakes collect aftershocks from larger space-time
windows. From Eq.(3), these windows have a spatial radius
varying with time asr isTd=fncsT−Tid−110bmig1/df. They span
an hyperbolic space-time region(see Fig. 1), which is at
variance with the usual “rectangular” or convex windows, of
constant radius up to a finite time. In our method, at early
times after an earthquake, its aftershock collection window is
wider in space than it is at later times.

According to our metric, an earthquake can be correlated
to an event very far away, if it occurs shortly after it. This is
consistent with observations of “remote triggering”[35]. It is
also consistent with the hypothesis that seismicity is a self-
organized critical phenomenon[36–38]. In that case, some
locations may be “on the edge of giving an earthquake”(or
toppling, according to the sandpile paradigm), and even a
small perturbation from an event far away could trigger
them. However, we do not necessarily ascribe the correla-
tions measured here to represent a usual cause and effect
relationship. In the sandpile paradigm a completely insignifi-
cant event, like adding one grain of sand to an enormous
pile, can trigger an arbitrarily large avalanche involving the
whole system. Indeed, seismicity as one hierarchically corre-
lated self-organized critical process, generates the scale-free
network of earthquakes and aftershocks.

Our results also suggest that modern network theory may
be a useful and illuminating way to approach the complexi-
ties of seismicity, including perhaps problems related to pre-
diction. Our metric and network construction may also have
applications to other phenomena with intermittent bursts
such as, for instance, solar flares or even turbulence.
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