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Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation
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We investigate saturation effects in susceptible-infected-susceptible models of the spread of epidemics in
heterogeneous populations. The structure of interactions in the population is represented by networks with
connectivity distributionP(k), including scale-fre¢SF) networks with power law distribution®(k) ~ k™.
Considering cases where the transmission of infection between nodes depends on their connectivity, we intro-
duce a saturation functio@(k) which reduces the infection transmission ratacross an edge going from a
node with high connectivitk. A mean-field approximation with the neglect of degree-degree correlation then
leads to a finite threshold,>0 for SF networks with 2 y<3. We also find, in this approximation, the
fraction of infected individuals among those with degkeéor \ close toA.. We investigate via computer
simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained
from mean-field theory with and without neglect of degree-degree correlations.
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[. INTRODUCTION Epidemic behavior in these homogeneous networks,
where each node hasneighbors,P(k) =6, show a “phase
Many social, biological, and physical systems can betransition” as the rata. at which an infected individual in-
modeled as networks, i.e., connected graphs with at most fgcts a susceptible neighbor, is changed; i.e., there exists a
single edge between nodes: nodes represent entities afitical valuex=\.>0 below which the only stationary state
edges represent interaction pathways among the ridggs IS a disease-free stafer absorbing phageand above which
The connectivity pattern in these networks encode informathere is an endemic infected state active phase This can
tion about the structure of the systg®-5). An important be proven rlgorously_fqr the stochastic contact process on a
and much studied feature of these networks is their degre@9ular lattice, an infinite homogeneous network, and is in-
distribution P(k), whereP(k) is the fraction of nodes of the herltedf blg m_gan;ﬂel;j mﬁge.ls based on Ithls_i)rorfe;s. The
network that havé connections to other nodes. It was found M2 I?th cr|t|cabva ufe‘z‘\'ct Ty Fropor‘glor?g t;zz 1 ¢ %:r.]-
that many interesting networks such as the intefégtand verse of the number of "interacting neighbofd2,13. This

th it fh | contaict het mean field\)'" is smaller than that for the contact process.
€ patlerns of human sexual con dotpare very Ceroge-  The Jatter depends not only on the number of neighbors but
neous with approximately scale-fré&F degree distribu-

S _ e . also on the topology of the lattiasee later[12,13.
tion: i.e., P(k)~k™ (power law distribution with 2<y=<3 An interesting question then is how to extend these mod-

[6-9]. The study of epidemics in heterogeneous networks ig|s, which correspond to networks with homogeneous con-
therefore of practical importance for the control of the Spreadwectivity, to real world situations where the number of con-
of cyber viruses and biological epidemics. tacts varies greatly from one node to anotf&#9]. In such

The mathematical studies of epidemics on the other hanfleterogeneous networks, each node has a statistically signifi-
often make the assumption of a homogeneous populatiosant probability of having a very large number of connec-
[10,11. This means that any infective individual is an tions compared to the average connectivity of the network.
equally likely source for the further transmission of the dis-The mean-field version of this problem was studied in Refs.
ease to other members of the population with whom thaf10,14-18 where it was shown that the epidemic threshold
individual is in contact and vice versa. The simplest epidedecreases with increasing second moment of the connectivity
miological model of that kind is the susceptible-infected-distribution. As a result epidemic processes in infinite SF
susceptiblgSIS) model[10,11]. In the SIS model, individu- networks with diverging second moments 3, are believed
als can only exist in two discrete states; healtfbut not to possess any epidemic threshold below which the in-
susceptiblg or infected. The disease processes are specifieféction cannot produce an epidemic outbreak or an endemic
as follows: Infected individuals become susceptitilealthy  infected statg14—-19.
at rate 5, independently of their environment. We shall The absence of an epidemic threshold in SF networks
choose time units in whicld=1. Susceptible individuals be- makes them very vulnerable. This remains true even if one
come infected at a rat® multiplied by the number of in- takes into account the finite size of real systems which of
fected neighbors, i.e., infected nodes to which they are coreourse always have finite second moments. In general the
nected by an edge. When the web of interactions betweegpidemic threshold for a heterogeneous network is much
individuals is taken to be a regular lattice the stochastic prosmaller than for a homogeneous network with the same av-
cess describing this system is the Harris’ contact processrage number of contacf$9]. The presence of “assortative”
[12]. or “dissortative” two-point degree correlation in SF networks
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with 2<y=<3 does not appear to alter the absence of epiwhich are infected at time We defineAC(k,|) as the effec-
demic threshold20,21. tive transmission, or infectivity, rate across an edge going

In these analyses all edges are treated in the same wayom a node with degrek to a node with degrek: C(k,I)
There are however many situations where there are differ=1 in the absence of saturation effects.
ences between the “strength” of different edges. We investi- The mean-field equation of the contact process on this
gate here cases where the assigned weight of an edge heetwork [15,16, which ignores correlations between the
tween two nodes depends on the connectivity of these nodestates of the nodes, yields the following set of differential
We consider, in particular, saturation effects due, for ex-equations forp(t):
ample, to the fact that disease transmission requires a certain
amount of contact time or “finite time commitment” from dpe(®) _ () + NOWD[L = pu(D)] 2
both individuals in contact. This has the effect of lowering dat Px k P
the effective connectivity for highly connected nodes anckN . . -
thereby decreasing the importance of the *heavy tails” in//& €an interprehQy(t) as the effective transmission rate of
P(k). Such saturation effects then lead to a finite thresholdnfection to an uninfected node of degrkevy all infected
even when the second momentRik) diverges. An example nodes with which it is in contact via any of itsedges,
in which saturation effects, due to temporal limitation of in- -
teractions, play an important role is Holling’s “the principle Q= k; PAKCKDA). ®
of time budget” in behavioral ecolod?2. _ - )

Using mean-field approximations appropriate for heteroHere P(I[k) is the probability that an edge emerging from a
geneous network mode[45,16 of epidemics we calculate node of degre& has its other end at a node with degteesd
the critical value\, for different saturation patterns. We also C(k,!) is the effective strength of such a bond. We shall now
find in this mean-field approximation, which neglects assume further that
degree-degree correlations between different nodes, the be- IP(1)
havior of the endemic prevalengg, i.e., the fraction of in- P(lk) = ——= (4)
fected nodes of degrde for A close to\.. They all have the z

same behavior fox:)‘c'ﬁf~Ak()‘_7‘c)Bg with Acincreasing \yith z=¥, kP(K), i.e., random attachmerito degree-degree
with k; B=1 when the third moment is finite. This depen- correlation.

dence ork is missed by the homogeneous approximation of 1, specify C(k,1) in Eq. (3), we make the simplifying

the conkt]act_netwqu. . ical simulati he beh assumption that an individual witk contacts spends equal
We then investigate, via numerical simulations, the behavg,e \yith each neighbor. The effective strength of an edge is

ior of the stochastic contact process on a regular lattice oo given by a product of ratios of effective connectivity to
sisting of nodes with two different degrees. The results argytq) connectivity of each node in contact

compared with mean-field approximations with and without

neglect of degree-degree correlations. Ckc(
’ Jreerted Clely = S (5)
ki
Il. MEAN-FIELD SIS MODEL WITH SATURATION with C(k,1)=1 corresponding to uniform bond strength.
The mean-field theory for the contact process, obtained by Eduation(2) can now be written in the form
neglecting correlations between different nodes, is described dpu(®)
by an equation for the density of infected nogés, present R - o) +A[1 - p (1) ]IC(KO{p(D)}), (6)
at timet, which can be written aglL3] dt
here
dp(t W
——==p) +Azp()[1 - p(V)], (1)
dt 2 P(KIC(K)p(t)
wherez is the coordination number. Solving E@l) yields O({pM} = e (7)
z

p(t)=(Az—-1)p(0)e D [Az-1+\zp(0)(eM*VI-1)].  The

steady state solution of E@l), obtained ag—«, has an inlvi ) i

epidemic thresholdMF=1/z. For x> \MF, any initial infec- ;\//ilgll(tjlslymg Eq. (8 by ClloPU9/z and summing ovek

tion spreads and becom%lsF persistent with stationary total

prevalence level p=(\=\¢")/\. Below the threshold do(t) _ \O(1) )

(A<AYF), the initial infection dies out exponentially fast. A dat 6+ z % PICIKIL-p(D],  (8)

similar transition occurs for the stochastic contact process on

a regular lattice with edges between nearest neighbors. Thghere®(t) is shorthand fo®({p(t)}). GivenP(k) andC(k),

critical values\, for the latticeZz¢ are \,=1.6489 in one Egs.(6)—(8) form a closed set of nonlinear differential equa-

dimension (d=1,z=2), A\.=0.4122 in two dimensiond tions for thep,(t) which can be solved, in principle, for any

=2,z=4), etc. 2\, approachesmg"le asd— o [13]. given initial valuegp;(0)}. They reduce to a single equation,
Consider now a general network with degree distributionEqg. (1), when P(k)= 4§, and p,=p. For a generaP(k) the

P(k). Let p(t) be the fraction of the nodes with degrke number of variables and equations are infinite.
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We are interested primarily in finding stationary solutions
P 0<p,=<1, in which not allp,=0. (There is of course
always one solution corresponding to the uninfected state
p(H)=p(0)=0 for all k.) We write the stationary version of
Eq. (6) in the form

__ CnO

Pr= — ©
1+C(k\O
Multiplying Eq. (9) by P(k)C(k)/z and summing ovek we
get
2 _
1o 12 P(k){L)_} =f(\O), (10)
Aoz 1+C(kAO

wheref(x) is @ monotone decreasing functiomofEquation

(10) will have a(unique solution@()\) different from zero if
and only if \ >\, the epidemic threshold,

NP I
¢ 10 (CK)
For diverging second momerG2(k))=%, \,=0. For a regu-
lar lattice with P(k)= ¢y, and C(k) =k, we recover the usual
mean-field result\;=1/z.

Once we have foun@®(\) >0 from Eq.(10) we then get
p(\) >0 directly from Eq.(9) for all k for which C(k) >0.
To get the behavior of the,(\) for_)\l)\c we expand the

right-hand side of Eq(10) in smallA®. This yields

- %E P(K)C3(k) + O((\©®)?). (12
k

1_1
N A

Solving for ® with finite (C3(k)), we get

— z 1 1
@(X)—m()\—)\c—P>+ e =AN-N) (13

and we obtain from Eq.9),

0.5
2
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FIG. 1. Epidemic thresholds; as a function ofy. Thin and
thick solid lines are drawn for epidemic thresholds from SF net-
works with saturation typ&, and C,,, respectively. Fat solid line
represents the epidemic threshold from SF network without satura-
tion. The dashed line is the epidemic threshold for a homogeneous
network with coordination number=(k). Inset: Ratios of the epi-
(11)  demic thresholds for the SF network with saturation and without
saturation to that of the homogeneous netwdgk, =100, m=5,
andp=1 are used.

IIl. EPIDEMIC THRESHOLD IN SF NETWORK WITH
CONNECTIVITY SATURATION

To see how connectivity saturation modifies the behavior
of epidemics, we consider two different types of saturating
functions of C(k),

if k< Koo

if k=Ko

ith

wherek is total connectivity of a node and,,, is a param-

E( = AC(KAN = \o),

p= Ek P(K) o ~ A(C(K)DAN = \y),

whereA=z/\¥C3(k)).
When{(C3(k))= both® andp are not differentiable as

(14)

(15

approaches . from above. For a SF network witB(k) =k,

(C3(k)) is finite only for y>4 wherep~ (A—-\.). However
for SF network with connectivity saturation, the rangeyof
where(C3(k)) is finite can include all cases witp>2 so that
z is finite. The case wheréC3(k)) is infinite is discussed in

the Appendix.

eter.

We replace the sum in Eq10) by an integral ovek and
carry out calculations ok for SF networks withP(k)=(y
-1)m» k7 for k=m, y> 2. After elementary integration we
can obtain the epidemic thresholdgby using Eq.(11) and
the second order mome(?(k)). They are plotted against
in Fig. 1. This figure presents a phase diagram consisting of
two phases: a disease-free state below each epidemic thresh-
old curve and an endemic infection state above each curve.
Note that\. diverges asy— 2 as can be seen from diver-
gence ofz in Eq. (11) when (C?(k)) is finite. This can be
understood by noting that as the number of edges increases
the effective infection rate for any node decreases. Note also
thatA.=0 in the absence of saturation fox2y=<3 because
of the divergence ofC?(k)).
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FIG. 4. The topology of latticeq.a) The face-centered square

(FC9 lattice. Nodes with type A have eight degrees while nodes

v with type B have four degreegb) A homogeneous network with
z=8.
FIG. 2. Dependence of epidemic threshold from SF network
with saturation functiorC,; on the cutoff connectivityky,,,. From IV. THE CONTACT PROCESS AND MEAN-FIELD
top to bottomky,,,=10, 16, 10°,10%, and<. Herep=1 for C; (k). APPROXIMATION IN A HETEROGENEOUS REGULAR
LATTICE
In the inset of Fig. 1 we compare the epidemic thresholds
A\ of SF networks with saturation wit°™, obtained from To investigate the effect of heterogeneity and degree-
a homogeneous network with coordination numpetk). degree correlations we investigated the SIS model on the
The dependence of the epidemic thresholdgyis plot-  ‘face-centered” squar@CS lattice with two types of nodes.

ted in Fig. 2. Whenk,, is finite, the epidemic threshold TypeA nodes, which connect to both nearest and next near-
Ao(7) is nonzero fory>2 and ask.,y increases\.(y) de-  est neighbor sites, have connecti\)m{:B and typeB, Whic.h
creases. Wheik,,,=, the epidemic threshold of SF net- connect only to nearest neighbor sites, hagye4. For this
work without saturation is recovered. systemP(8[4)=1 and P(4[8)=P(8[8)=1/2, andP(k,|k,)

The stationary total prevalengefor the SF network with =0 otherwise, see Fig. 4. . _ _
and without saturation is plotted in Fig. 3. The stationary Ve carried out computer simulations on this model with
total prevalencep(\) with saturation is smaller than that NO saturation. The critical poin; and critical exponentss,
without saturation for alh>0. This is because saturation ¥ @nd v, were obtained by using the dynamical Monte
reduces the effective transmission rate of infection to an un&arlo method23]. As expected there is a critical poiRt
infected node across an edge going from an infected nodg0-236). This value of). is closer tox.=0.181) for the

with high connectivity[see Egs(3) and (5)]. homogeneous regular lattice witkr 8 than toA,=0.412[13]
for the square lattice witlz=4. The homogeneous regular
| . lattice withz=8 is the square lattice with both nearest neigh-
bor (NN) and next NN bondssee Fig. 4. The critical expo-
— p: Typel nents appear to be the same as for the square lattice as ex-
0.8 - ©: Type 1 . pected from universality considerations. The phase diagram
— p: no Saturation is plotted in Fig. 5. -
-~ ©: no Saturation e e We also computeg, and pg for N> \.. The results are
06 8 plotted in Fig. 6. We can see that nodes with higher connec-
tivity are more infected than those with less connectivity at
04 | close toh..
The mean-field equations of the SIS on this lattice with
the exactP(k,|k,) are
02t
dpa_
0 gt Pt AN(1 = pp)(pa+ pB), (18)
FIG. 3. The steady stajg\) and®(\) of the SIS epidemics on q
thg SF network fory--S. as a function of |nfect|v£y\. Thlck solid Yps _ — pa+ Mpa(l—pg). (19)
(thick dashedllines indicate the steady stap&! (%) with type | dt

saturation. Thin lines are for those without saturation. The critical
point in this particular case is givewf':0.0573 for type | satura-
tion and\.=0 for no saturation. Herk,,,,=100 andn=5 are used. = The steady state solutions are given,
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1 ' . TABLE I. The critical point), the ratiosyag) and ¢, e
CFCS : sim =lim, ) [pa@(M)/(N=\o)] and¢=lim, ., (ps/pa), of the SIS epi-
-~ FCS : MF2 i — demics on the face-centered square lattice. “Sim” refers to simula-
08 1 ECs:MFI T tion data without saturatiofii.e., C(k)=k] while MF1 and MF2
g refer to mean-field analysis with exa@(ky\ka) and the approxi-
06 | mate one using Eq4), respectively.
P Ae N Uz ¢
04 f .
Sim 0.236) © © 0.7
MF1 0.15 7.24 4.5 0.62
02t MF2 0.15 7.4 3.7 0.5
00 0.5 1 L5 The results from simulation and the two mean-field ap-
A proximations are compared in Figs. 5 and 6 and in Table I.

Close to the critical point, we can approximate the ratio,
FIG. 5. The steady state prevalencef SIS in the FCS lattice pg/pa, by neglecting nonlinear term in Eq19): pg/pa
without saturation as a function of infectivity rake pa(pg) repre- ~ ~4NP(8|4)/[1-4\.P(4|4)]. In this heterogeneous lattice
sents the fraction of infected nodes of type A and type B, respecwith only two types of nodes, MF2 with no degree-degree
tively, and p=(pa+pg)/2. Simulation(sim) data are shown with cgrrelation gives the same, but not as good values fqi,

circles while mean-field results, where MF1 with edeKy|ka) and andFB as MF1 with the exact degree_degree correlation.
MF2 with the approximate one using E@), are given with solid

and dashed lines, respectively. Inset: Simulation results of the con-

tact process in the FCS lattigeircles, in the square latticétri- V. CONCLUDING REMARKS

angles with z=4 and in the square lattice with both nearest and

next nearest neighbor interactio(sjuarey with z=8. All simula- In this paper we considered the SIS epidemic model on
tions were performed on lattices of sizé= 100 with random ini- heterogeneous networks with saturation. This made the epi-
tial distribution of infected nodes. demic thresholds finite for SF networks with<?y<3. We

also investigated via computer simulation the stochastic con-

o s o 1 tact process on a heterogeneous regular lattice and compared
pPA=—— — pe=l-T—, (20)  the results with those obtained from mean-field theory with

41 -pg) 2V + 4N and without neglect of degree-degree correlations. Our con-

siderations extend naturally to other types of heterogeneous
with )\C=(—1+v"§)/8. We call this “MF1.” networks in which the effective gtrength of an edge depends
The mean-field equations with “no degree-degree correla2" the degrees of the nodes which it connects. Thus in con-
tion” approximation, “MF2,” can be obtained in a similar sidering the spread of computer viruses on the internet, ef-

manner to that given in Eqé5) and(7). This corresponds to fects similar to saturation might arise from nodes with high

putting P(4|4)=P(4|8)=1/3 andP(8|4)=P(8|8)=2/3. connectivity having higher “firewalls” around them.
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Pu/Pa
""" APPENDIX: CRITICAL BEHAVIOR OF p
06 T A"=0.234 WHEN (C3(k))= oo
A"'=0.154 The critical behavior of the steady staBeandp in the
AM_015 presence of saturation can be evaluated by using the third
C . - —
04 ‘ ‘ ‘ ‘ order momentC3(k)). Whenk,,,<, both® andp can be
0 0.2 0.4 0.6 0.8 1

expanded in a power series close to the critical point because
A of z, (C3(K)) and(C3(K)) being all finite fory> 2.

FIG. 6. Ratio ofpg to pa in the FCS lattice as a function of ~ Whenkpa,—, (C¥(k)) may diverge and as a result the
infectivity rate\. The notation and symbols are the same as in Figexpression of Eqg13)—(15) are not valid any more. Let us
4. The arrows point to the critical, corresponding to each scheme. introduce the limiting case o, (k) whenk,,,=,
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Cuk)=kP forz<p=<1. (A1) (y=1mP

X~ F
2Ay-p-1)°

— 1
A% = 1[1,77—1,77,— — } (A2)
A

p
Then, (C}},(k))=(y=1)m"™/y-np-1 for y>np+1 while Om
(Clh(k)y=o for 2<ys<np+l. When y>3p+1, ie, 1
(C3,(k)y<=, ® andp at\ close to\. are equivalent to those pon = zFl{l,n, n+tl,-—— ] (A3)
in Egs.(13)«15). B AOmMP

However when 2 y<3p+1, i.e.,(C}(k))=», pand®  for noninteger values ofy=(y-1)/p and for y>2. After
are treated in different ways and their behaviors close to th‘?‘aylor expansion in the limit of smald we obtain(i) pC
critical point are presented as follows: Foy (k) the steady )\ (r-2/2=n) for 2< y<2p+1, (i) p° =\Mr2 for 2p

state®“in and pCi can be given, +1<y<3p+1.
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