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We investigate saturation effects in susceptible-infected-susceptible models of the spread of epidemics in
heterogeneous populations. The structure of interactions in the population is represented by networks with
connectivity distributionPskd, including scale-free(SF) networks with power law distributionsPskd,k−g.
Considering cases where the transmission of infection between nodes depends on their connectivity, we intro-
duce a saturation functionCskd which reduces the infection transmission ratel across an edge going from a
node with high connectivityk. A mean-field approximation with the neglect of degree-degree correlation then
leads to a finite thresholdlc.0 for SF networks with 2,gø3. We also find, in this approximation, the
fraction of infected individuals among those with degreek for l close tolc. We investigate via computer
simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained
from mean-field theory with and without neglect of degree-degree correlations.
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I. INTRODUCTION

Many social, biological, and physical systems can be
modeled as networks, i.e., connected graphs with at most a
single edge between nodes: nodes represent entities and
edges represent interaction pathways among the nodes[1,2].
The connectivity pattern in these networks encode informa-
tion about the structure of the system[3–5]. An important
and much studied feature of these networks is their degree
distribution Pskd, wherePskd is the fraction of nodes of the
network that havek connections to other nodes. It was found
that many interesting networks such as the internet[6] and
the patterns of human sexual contacts[7] are very heteroge-
neous with approximately scale-free(SF) degree distribu-
tion: i.e., Pskd,k−g (power law distribution) with 2,gø3
[6–9]. The study of epidemics in heterogeneous networks is
therefore of practical importance for the control of the spread
of cyber viruses and biological epidemics.

The mathematical studies of epidemics on the other hand
often make the assumption of a homogeneous population
[10,11]. This means that any infective individual is an
equally likely source for the further transmission of the dis-
ease to other members of the population with whom that
individual is in contact and vice versa. The simplest epide-
miological model of that kind is the susceptible-infected-
susceptible(SIS) model[10,11]. In the SIS model, individu-
als can only exist in two discrete states; healthy(but
susceptible) or infected. The disease processes are specified
as follows: Infected individuals become susceptible(healthy)
at rate d, independently of their environment. We shall
choose time units in whichd=1. Susceptible individuals be-
come infected at a ratel multiplied by the number of in-
fected neighbors, i.e., infected nodes to which they are con-
nected by an edge. When the web of interactions between
individuals is taken to be a regular lattice the stochastic pro-
cess describing this system is the Harris’ contact process
[12].

Epidemic behavior in these homogeneous networks,
where each node hasz neighbors,Pskd=dk,z, show a “phase
transition” as the ratel at which an infected individual in-
fects a susceptible neighbor, is changed; i.e., there exists a
critical valuel=lc.0 below which the only stationary state
is a disease-free state(or absorbing phase) and above which
there is an endemic infected state(or active phase). This can
be proven rigorously for the stochastic contact process on a
regular lattice, an infinite homogeneous network, and is in-
herited by mean-field models based on this process. The
mean-field critical value,lc

MF, is proportional toz−1, the in-
verse of the number of “interacting neighbors”[12,13]. This
mean fieldlc

MF is smaller than that for the contact process.
The latter depends not only on the number of neighbors but
also on the topology of the lattice(see later) [12,13].

An interesting question then is how to extend these mod-
els, which correspond to networks with homogeneous con-
nectivity, to real world situations where the number of con-
tacts varies greatly from one node to another[3–9]. In such
heterogeneous networks, each node has a statistically signifi-
cant probability of having a very large number of connec-
tions compared to the average connectivity of the network.
The mean-field version of this problem was studied in Refs.
[10,14–18] where it was shown that the epidemic threshold
decreases with increasing second moment of the connectivity
distribution. As a result epidemic processes in infinite SF
networks with diverging second moment,gø3, are believed
not to possess any epidemic threshold below which the in-
fection cannot produce an epidemic outbreak or an endemic
infected state[14–18].

The absence of an epidemic threshold in SF networks
makes them very vulnerable. This remains true even if one
takes into account the finite size of real systems which of
course always have finite second moments. In general the
epidemic threshold for a heterogeneous network is much
smaller than for a homogeneous network with the same av-
erage number of contacts[19]. The presence of “assortative”
or “dissortative” two-point degree correlation in SF networks
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with 2,gø3 does not appear to alter the absence of epi-
demic threshold[20,21].

In these analyses all edges are treated in the same way.
There are however many situations where there are differ-
ences between the “strength” of different edges. We investi-
gate here cases where the assigned weight of an edge be-
tween two nodes depends on the connectivity of these nodes.
We consider, in particular, saturation effects due, for ex-
ample, to the fact that disease transmission requires a certain
amount of contact time or “finite time commitment” from
both individuals in contact. This has the effect of lowering
the effective connectivity for highly connected nodes and
thereby decreasing the importance of the “heavy tails” in
Pskd. Such saturation effects then lead to a finite threshold
even when the second moment ofPskd diverges. An example
in which saturation effects, due to temporal limitation of in-
teractions, play an important role is Holling’s “the principle
of time budget” in behavioral ecology[22].

Using mean-field approximations appropriate for hetero-
geneous network models[15,16] of epidemics we calculate
the critical valuelc for different saturation patterns. We also
find in this mean-field approximation, which neglects
degree-degree correlations between different nodes, the be-
havior of the endemic prevalencer̄k, i.e., the fraction of in-
fected nodes of degreek, for l close tolc. They all have the
same behavior forl.lc, r̄k,Aksl−lcdb, with Ak increasing
with k; b=1 when the third moment is finite. This depen-
dence onk is missed by the homogeneous approximation of
the contact network.

We then investigate, via numerical simulations, the behav-
ior of the stochastic contact process on a regular lattice con-
sisting of nodes with two different degrees. The results are
compared with mean-field approximations with and without
neglect of degree-degree correlations.

II. MEAN-FIELD SIS MODEL WITH SATURATION

The mean-field theory for the contact process, obtained by
neglecting correlations between different nodes, is described
by an equation for the density of infected nodesrstd, present
at time t, which can be written as[13]

drstd
dt

= − rstd + lzrstdf1 − rstdg, s1d

wherez is the coordination number. Solving Eq.(1) yields
rstd=slz−1drs0deslz−1dt / flz−1+lzrs0dseslz−1dt−1dg. The
steady state solution of Eq.(1), obtained ast→`, has an
epidemic thresholdlc

MF=1/z. For l.lc
MF, any initial infec-

tion spreads and becomes persistent with stationary total
prevalence level r̄=sl−lc

MFd /l. Below the threshold
sl,lc

MFd, the initial infection dies out exponentially fast. A
similar transition occurs for the stochastic contact process on
a regular lattice with edges between nearest neighbors. The
critical valueslc for the latticeZd are lc.1.6489 in one
dimension sd=1,z=2d, lc.0.4122 in two dimensionsd
=2,z=4d, etc.zlc approacheszlc

MF=1 asd→` [13].
Consider now a general network with degree distribution

Pskd. Let rkstd be the fraction of the nodes with degreek

which are infected at timet. We definelCsk, ld as the effec-
tive transmission, or infectivity, rate across an edge going
from a node with degreek to a node with degreel :Csk, ld
=1 in the absence of saturation effects.

The mean-field equation of the contact process on this
network [15,16], which ignores correlations between the
states of the nodes, yields the following set of differential
equations forrkstd:

drkstd
dt

= − rkstd + lQkstdf1 − rkstdg. s2d

We can interpretlQkstd as the effective transmission rate of
infection to an uninfected node of degreek by all infected
nodes with which it is in contact via any of itsk edges,

Qkstd = ko
l

Psl ukdCsk,ldrlstd. s3d

Here Psl ukd is the probability that an edge emerging from a
node of degreek has its other end at a node with degreel and
Csk, ld is the effective strength of such a bond. We shall now
assume further that

Psl ukd =
lPsld

z
s4d

with z=ok kPskd, i.e., random attachment(no degree-degree
correlation).

To specify Csk, ld in Eq. (3), we make the simplifying
assumption that an individual withk contacts spends equal
time with each neighbor. The effective strength of an edge is
then given by a product of ratios of effective connectivity to
total connectivity of each node in contact,

Csk,ld =
CskdCsld

kl
s5d

with Csk, ld=1 corresponding to uniform bond strength.
Equation(2) can now be written in the form

drkstd
dt

= − rkstd + lf1 − rkstdgCskdQshrstdjd, s6d

where

Qshrstdjd =

o
k

PskdCskdrkstd

z
. s7d

Multiplying Eq. (6) by CskdPskd /z and summing overk
yields

dQstd
dt

= − Qstd +
lQstd

z
o
k

PskdC2skdf1 − rkstdg, s8d

whereQstd is shorthand forQshrstdjd. GivenPskd andCskd,
Eqs.(6)–(8) form a closed set of nonlinear differential equa-
tions for therkstd which can be solved, in principle, for any
given initial valueshr js0dj. They reduce to a single equation,
Eq. (1), when Pskd=dk,z and rz=r. For a generalPskd the
number of variables and equations are infinite.
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We are interested primarily in finding stationary solutions
r̄k, 0ør̄kø1, in which not all r̄k=0. (There is of course
always one solution corresponding to the uninfected state
rkstd=rks0d=0 for all k.) We write the stationary version of
Eq. (6) in the form

r̄k =
CskdlQ̄

1 + CskdlQ̄
. s9d

Multiplying Eq. (9) by PskdCskd /z and summing overk we
get

1

l
=

1

z
o
k

PskdF C2skd

1 + CskdlQ̄
G ; fslQ̄d, s10d

wherefsxd is a monotone decreasing function ofx. Equation

(10) will have a(unique) solutionQ̄sld different from zero if
and only if l.lc, the epidemic threshold,

lc =
1

fs0d
=

z

kC2skdl
. s11d

For diverging second moment,kC2skdl=`, lc=0. For a regu-
lar lattice with Pskd=dk,z andCskd=k, we recover the usual
mean-field result,lc=1/z.

Once we have foundQ̄sld.0 from Eq.(10) we then get
r̄ksld.0 directly from Eq.(9) for all k for which Cskd.0.
To get the behavior of ther̄ksld for l↓lc we expand the

right-hand side of Eq.(10) in small lQ̄. This yields

1

l
=

1

lc
−

lQ̄

z
o
k

PskdC3skd + O„slQ̄d2
…. s12d

Solving for Q̄ with finite kC3skdl, we get

Q̄sld =
z

kC3skdl
S 1

llc
−

1

l2D + ¯ . Asl − lcd s13d

and we obtain from Eq.(9),

r̄k . lcCskdAsl − lcd, s14d

r̄ = o
k

Pskdr̄k , lckCskdlAsl − lcd, s15d

whereA=z/lc
3kC3skdl.

WhenkC3skdl=` bothQ̄ andr̄ are not differentiable asl
approacheslc from above. For a SF network withCskd=k,
kC3skdl is finite only for g.4 wherer̄,sl−lcd. However
for SF network with connectivity saturation, the range ofg
wherekC3skdl is finite can include all cases withg.2 so that
z is finite. The case wherekC3skdl is infinite is discussed in
the Appendix.

III. EPIDEMIC THRESHOLD IN SF NETWORK WITH
CONNECTIVITY SATURATION

To see how connectivity saturation modifies the behavior
of epidemics, we consider two different types of saturating
functions ofCskd,

CIskd = Hk if k , kmax

kmax if k ù kmax
, s16d

CIIskd =
kpkmax

kmax+ kp with
1

2
, p ø 1, s17d

wherek is total connectivity of a node andkmax is a param-
eter.

We replace the sum in Eq.(10) by an integral overk and
carry out calculations oflc for SF networks withPskd=sg
−1dmg−1k−g for kùm, g.2. After elementary integration we
can obtain the epidemic thresholdslc by using Eq.(11) and
the second order momentkC2skdl. They are plotted againstg
in Fig. 1. This figure presents a phase diagram consisting of
two phases: a disease-free state below each epidemic thresh-
old curve and an endemic infection state above each curve.
Note thatlc diverges asg→2 as can be seen from diver-
gence ofz in Eq. (11) when kC2skdl is finite. This can be
understood by noting that as the number of edges increases
the effective infection rate for any node decreases. Note also
that lc=0 in the absence of saturation for 2,gø3 because
of the divergence ofkC2skdl.

FIG. 1. Epidemic thresholdslc as a function ofg. Thin and
thick solid lines are drawn for epidemic thresholds from SF net-
works with saturation typeCI and CII , respectively. Fat solid line
represents the epidemic threshold from SF network without satura-
tion. The dashed line is the epidemic threshold for a homogeneous
network with coordination numberz=kkl. Inset: Ratios of the epi-
demic thresholds for the SF network with saturation and without
saturation to that of the homogeneous network.kmax=100, m=5,
andp=1 are used.

BEHAVIOR OF SUSCEPTIBLE-INFECTED-… PHYSICAL REVIEW E 69, 066105(2004)

066105-3



In the inset of Fig. 1 we compare the epidemic thresholds
lc of SF networks with saturation withlc

homo, obtained from
a homogeneous network with coordination numberz=kkl.

The dependence of the epidemic threshold onkmax is plot-
ted in Fig. 2. Whenkmax is finite, the epidemic threshold
lcsgd is nonzero forg.2 and askmax increaseslcsgd de-
creases. Whenkmax=`, the epidemic threshold of SF net-
work without saturation is recovered.

The stationary total prevalencer̄ for the SF network with
and without saturation is plotted in Fig. 3. The stationary
total prevalencer̄sld with saturation is smaller than that
without saturation for alll.0. This is because saturation
reduces the effective transmission rate of infection to an un-
infected node across an edge going from an infected node
with high connectivity[see Eqs.(3) and (5)].

IV. THE CONTACT PROCESS AND MEAN-FIELD
APPROXIMATION IN A HETEROGENEOUS REGULAR

LATTICE

To investigate the effect of heterogeneity and degree-
degree correlations we investigated the SIS model on the
“face-centered” square(FCS) lattice with two types of nodes.
Type A nodes, which connect to both nearest and next near-
est neighbor sites, have connectivitykA=8 and typeB, which
connect only to nearest neighbor sites, havekB=4. For this
systemPs8u4d=1 and Ps4u8d=Ps8u8d=1/2, andPskg ukad
=0 otherwise, see Fig. 4.

We carried out computer simulations on this model with
no saturation. The critical pointlc and critical exponents,d,
ni, and n', were obtained by using the dynamical Monte
Carlo method[23]. As expected there is a critical pointlc
=0.23s6d. This value oflc is closer tolc=0.18s1d for the
homogeneous regular lattice withz=8 than tolc=0.412[13]
for the square lattice withz=4. The homogeneous regular
lattice withz=8 is the square lattice with both nearest neigh-
bor (NN) and next NN bonds(see Fig. 4). The critical expo-
nents appear to be the same as for the square lattice as ex-
pected from universality considerations. The phase diagram
is plotted in Fig. 5.

We also computedr̄A and r̄B for l.lc. The results are
plotted in Fig. 6. We can see that nodes with higher connec-
tivity are more infected than those with less connectivity atl
close tolc.

The mean-field equations of the SIS on this lattice with
the exactPskg ukad are

drA

dt
= − rA + 4ls1 − rAdsrA + rBd, s18d

drB

dt
= − rB + 4lrAs1 − rBd. s19d

The steady state solutions are given,

FIG. 2. Dependence of epidemic threshold from SF network
with saturation functionCII on the cutoff connectivitykmax. From
top to bottomkmax=10,102,103,104, and`. Herep=1 for CIIskd.

FIG. 3. The steady stater̄sld andQ̄sld of the SIS epidemics on
the SF network forg=3 as a function of infectivityl. Thick solid

(thick dashed) lines indicate the steady stater̄CI sQ̄CId with type I
saturation. Thin lines are for those without saturation. The critical
point in this particular case is given:lc

CI =0.0573 for type I satura-
tion andlc=0 for no saturation. Herekmax=100 andm=5 are used.

FIG. 4. The topology of lattices.(a) The face-centered square
(FCS) lattice. Nodes with type A have eight degrees while nodes
with type B have four degrees.(b) A homogeneous network with
z=8.
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r̄A =
r̄B

4ls1 − r̄Bd
, r̄B = 1 −

1

2Îl + 4l2
, s20d

with lc=s−1+Î5d /8. We call this “MF1.”
The mean-field equations with “no degree-degree correla-

tion” approximation, “MF2,” can be obtained in a similar
manner to that given in Eqs.(6) and(7). This corresponds to
putting Ps4u4d=Ps4u8d=1/3 andPs8u4d=Ps8u8d=2/3.

The results from simulation and the two mean-field ap-
proximations are compared in Figs. 5 and 6 and in Table I.
Close to the critical point, we can approximate the ratio,
r̄B/ r̄A, by neglecting nonlinear term in Eq.(19): r̄B/ r̄A
,4lcPs8u4d / f1−4lcPs4u4dg. In this heterogeneous lattice
with only two types of nodes, MF2 with no degree-degree
correlation gives the samelc but not as good values forr̄A
and r̄B as MF1 with the exact degree-degree correlation.

V. CONCLUDING REMARKS

In this paper we considered the SIS epidemic model on
heterogeneous networks with saturation. This made the epi-
demic thresholds finite for SF networks with 2,gø3. We
also investigated via computer simulation the stochastic con-
tact process on a heterogeneous regular lattice and compared
the results with those obtained from mean-field theory with
and without neglect of degree-degree correlations. Our con-
siderations extend naturally to other types of heterogeneous
networks in which the effective strength of an edge depends
on the degrees of the nodes which it connects. Thus in con-
sidering the spread of computer viruses on the internet, ef-
fects similar to saturation might arise from nodes with high
connectivity having higher “firewalls” around them.
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APPENDIX: CRITICAL BEHAVIOR OF r̄
WHEN ŠC3

„k…‹=`

The critical behavior of the steady stateQ̄ and r̄ in the
presence of saturation can be evaluated by using the third

order momentkC3skdl. Whenkmax,`, both Q̄ and r̄ can be
expanded in a power series close to the critical point because
of z, kCI

3skdl and kCII
3 skdl being all finite forg.2.

When kmax→`, kC3skdl may diverge and as a result the
expression of Eqs.(13)–(15) are not valid any more. Let us
introduce the limiting case ofCIIskd whenkmax=`,

FIG. 5. The steady state prevalencer̄ of SIS in the FCS lattice
without saturation as a function of infectivity ratel. r̄Asr̄Bd repre-
sents the fraction of infected nodes of type A and type B, respec-
tively, and r̄=sr̄A+ r̄Bd /2. Simulation (sim) data are shown with
circles while mean-field results, where MF1 with exactPskgukad and
MF2 with the approximate one using Eq.(4), are given with solid
and dashed lines, respectively. Inset: Simulation results of the con-
tact process in the FCS lattice(circles), in the square lattice(tri-
angles) with z=4 and in the square lattice with both nearest and
next nearest neighbor interactions(squares) with z=8. All simula-
tions were performed on lattices of sizeL2=1002 with random ini-
tial distribution of infected nodes.

FIG. 6. Ratio of r̄B to r̄A in the FCS lattice as a function of
infectivity ratel. The notation and symbols are the same as in Fig.
4. The arrows point to the criticallc corresponding to each scheme.

TABLE I. The critical point lc, the ratioscAsBd and f, cAsBd
=liml→lc

fr̄AsBdsld / sl−lcdg andf=liml→lc
sr̄B/ r̄Ad, of the SIS epi-

demics on the face-centered square lattice. “Sim” refers to simula-
tion data without saturation[i.e., Cskd=k] while MF1 and MF2
refer to mean-field analysis with exactPskgukad and the approxi-
mate one using Eq.(4), respectively.

lc cA cB f

Sim 0.23s6d ` ` 0.7

MF1 0.15 7.24 4.5 0.62

MF2 0.15 7.4 3.7 0.5
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CIII skd = kp for 1
2 , p ø 1. sA1d

Then, kCIII
n skdl=sg−1dmnp/g−np−1 for g.np+1 while

kCIII
n skdl=` for 2,gønp+1. When g.3p+1, i.e.,

kCIII
3 skdl,`, Q̄ andr̄ at l close tolc are equivalent to those

in Eqs.(13)–(15).
However when 2,gø3p+1, i.e., kCIII

3 skdl=`, r̄ and Q̄

are treated in different ways and their behaviors close to the
critical point are presented as follows: ForCIII skd the steady

stateQ̄CIII and r̄CIII can be given,

Q̄CIII =
sg − 1dmp

zsg − p − 1d 2F1F1,h − 1,h,−
1

lQ̄mpG , sA2d

r̄CIII = 2F1F1,h,h + 1,−
1

lQ̄mpG sA3d

for noninteger values ofh;sg−1d /p and for g.2. After

Taylor expansion in the limit of smallQ̄ we obtain(i) r̄CIII

.lsh−1d/s2−hd for 2,gø2p+1, (ii ) r̄CIII .l1/sh−2d for 2p
+1,gø3p+1.
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