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Violation of the Widom scaling law for effective crossover exponents
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In this work we consider the universal crossover behavior of two nonequilibrium systems exhibiting a
continuous phase transition. Focusing on the field driven crossover from mean-field to non-mean-field scaling
behavior we show that the well-known Widom scaling law is violated for the effective exponents in the
so-called crossover regime.
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I. INTRODUCTION model and discussed the validity of the Rushbrook scaling

A foundation for the understanding of critical phenomenal@W [6]. The observed nonmonotonic crossover behavior sug-
was provided by Wilson’s renormalization grodRG) ap-  9ests again a violation of the Rushbrook scaling law. How-
proach[1,2] which maps the critical point onto a fixed point €Ver, it cannot be considered as a rigorous proof.
of a certain transformation of the system’'s Hamiltonian, In this work we consider a field driven crossover the
Langevin equation, etc. The RG theory presents a powerfugo-called critical crossover limf#,7]) in two different mod-
tool to estimate the values of the critical exponents, it allowsels exhibiting a nonequilibrium second order phase transi-
us to predict which parameters determine the universalit§ion. Varying the range of interactions we investigate the
class and it explains the existence of an upper critical dimencrossover from mean-field to non-mean-field scaling behav-
sion D, above which the mean-field theory applies. Further-or. The order parameter and the order parameter susceptibil-
more, crossover phenomena between two different universaity is measured as a function of the conjugated field and we
ity classes are well understood in terms of competing fixedire able to determine the corresponding effective exponents
points (see, for instance, Ref3]). Nevertheless, there are over the full crossover regime. Our results show that the
still some open aspects of crossover phenomena which amgell-known Widom scaling law is clearly violated for the
discussed in the literature. The question whether the crossffective crossover exponents. Furthermore, we present a
over scaling functions are universal was revisited severagimple analytical argument, suggesting that the scaling laws
times [4-10. For instance it was shown recently that two are valid for the asymptotic scaling regim@shere the sys-
different models, belonging to the same universality classiems are characterized by a pure algebraic behgvior
are characterized by the sarasniversa) crossover scaling Wwhereas the scaling laws do not hold for the crossover re-
functions[10]. This is remarkable, since the universal scalinggime (characterized by a nonalgebraic behayior
behavior is usually restricted to a small vicinity around the
critical point. In the case of a crossover the universal scaling
functions span several decades in temperature or conjugated
field. In the following we consider two different cellular au-

Another question of interest concerns the so-called effectomata exhibiting a so-called absorbing phase transition. The
tive exponentg11] which can be defined as logarithmic de- first model is the conserved transfer threshold process
rivatives of the corresponding scaling functions. It is still (CTTP) [16]. In this model lattice sites may be empty, occu-
open whether these effective exponents fulfill over the fullpied by one particle, or occupied by two particles. Empty
crossover the well-known scaling laws which connect criticaland single occupied sites are considered as inactive whereas
exponents. This question is closely related to the more gerdouble occupied lattice sites are considered as active. In the
eral and very important question of whether effective expodatter case one tries to transfer both particles of a given active
nents obey the scaling laws at all. For instance it is knowrsite to randomly chosen empty or single occupied nearest
experimentally[12] as well as theoreticallf13] that the neighbor sites.
asymptotic scaling behavior is often masked by corrections The second model is a modified version of the Manna
to scaling, so-called confluent singularities. In this case it issandpile modef17], the fixed-energy Manna modgl8]. In
useful to analyze the data in terms of effective exponents andontrast to the CTTP the Manna model allows unlimited par-
the above question naturally arigdsl]. Thus the validity of  ticle occupation of lattice sites. Lattice sites which are occu-
the scaling laws for effective exponents was addressed ipied by at least two particles are considered as active and all
experimental works, RG approaches as well as numericgarticles are moved to the neighboring sites selected at ran-
simulations. In particular the violation of the scaling laws for dom.
effective exponents was conjectured from a RG approxima- In our simulationgsee Refs[19,2Q for detaily we have
tion [15]. But neither experimental nor numerical work could used square latticgsvith periodic boundariesof linear size
clearly confirm this conjecture so far. For instance, Binder. < 2048. All simulations start from a random distribution of
and Luijten considered numerically a crossover in the Isingarticles. After a transient regime both models reach a steady

Il. MODELS AND SIMULATIONS

1539-3755/2004/68)/0661015)/$22.50 69 066101-1 ©2004 The American Physical Society



S. LUBECK PHYSICAL REVIEW E 69, 066101(2004)

state characterized by the density of active siieShe den- lll. UNIVERSAL CROSSOVER SCALING
sity p, is the order parameter and the particle dengiiy the _ i i
control parameter of the absorbing phase transition, i.e., the The crossover scaling function has to incorporate three
Order parameter Vanishes at the Critica' denﬁé‘tﬁccording Scahng fleldS(the Control parameter, the external f|e|d, and
to, pa 8pP, with the reduced control parametép=p/p,  the range of interactionsi.e., we make the phenomenologi-
-1. Below the critical densityin the absorbing phagehe  cal ansatz
order parameter is zero in the steady state.

Similar to equilibrium phase transitions it is possible in \~BME _ ome ~~1p~1y @
the case of abgorbing phr;se transitions to appls an externa’fa(p’h’Reﬁ) N UERR(,(p = pop) Noaph NVF,ag Reig ),
field h which is conjugated to the order parameter. The con- 2
jugated field has to act as a spontaneous creation of active ~
particles, destroying the absorbing state and therefore thg@here the universal scaling functidi is the same for all
phase transition itself. Furthermore, the associated linear reénodels belonging to a given universality class whereas all
sponse functiony,=dp,/dh has to diverge at the critical nonuniversal system-dependent featufesg., the lattice
point (9p=0, h=0). A realization of the external field for structure, the update scheme, ptare contained in the so-
absorbing phase transitions with a conserved field was reealled nonuniversal metric factoss, a,, andag [24]. These
cently developed in Ref19] where the external field trig- factors are determined by three conditions which normalize
gers movements of inactive particles which may be activateghe scaling functiorii. First, the analytically known mean-
in this way. At the critical density. the order parameter fig|q scaling functior{21,25
scales ap,>h??. Using the conjugated field it is possible to
investigate the equation of stapg(p, h), i.e., the order pa- 5

. ~ X X

rameter as a function of both the control parameter and the Rue(X,y) ==+ /y+ (—) (3)
external field. A recently performed scaling analysis reveals 2 2
that the CTTP and the Manna model are characterized by the

same critical exponents as well as by the same universahould be recovered foR— o, i.e., %(x,y,O):ﬁMF(x,y).
scaling form of the equation of state, i.e., both models belongperefore 5‘%(1,0,0)=ﬁMF(1 0=1, 5%(0,1,0=~RMF(0,1)
to the same universality clag21]. =1, implyinga,=a, g ./ pcr- andap=ay r_.... Finally, the

According to the above definition particles of active sites,,gnuniversal metric factarg can be determined by the con-
are moved to nearest neighbors only, i.e., the range of inter...  ~ .
g Y 9 dition $(x,0, 1) ~xPo for x— 0 yielding [10]

actions isR=1. It is straightforward to implement various

ranges of interactions into these modgl§)]. In this modi-

fied models particles of active sites are moyadcording to o= (pc,R:l R0

the rules of each modeto randomly selected sites within a R

radiusR. Since the dynamics of both considered models is

characterized by simple particle hopping processes, varioushe metric factors were already determined in previous

interaction ranges can be easily implemented and high accyvorks[10,25, thus no parameter fitting is needed in order to

rate data are available. This is a significant advantage conperform the following scaling analysis.

pared to, e.g., equilibrium system like the Ising model where |n this work we focus our attention to the field driven

the increasing interaction range causes a slowing down of thgrossover, i.e., we consider the CTTP and the Manna model

dynamics. at the critical densitiep.r which were determined in Ref.
For any finite interaction range the phase transition ig10]. In Fig. 1 we plot the corresponding data of the CTTP

characterized by non-mean-field scaling behavior which nowor various values of the interaction ranBeAs one can see

takes place at the critical densiptg. A mean-field phase the power law behavior of the order parameter changes with

transition occur for infinite interactionéR— %) only. But  increasing range of interactions.

mean-field behavior could occur away from the critical point  The scaling form at the critical point is given lggetting

if the long range interactions reduce the critical ﬂuctuationsa;el ‘%)&:1)

sufficiently. The crossover between the mean-field and non-

mean-field scaling regimes is described by the famous Gin- Bule & P

zburg criterion[22] which states that the mean-field picture PalPoRetr) ~ (arRer) 7 R(0,aph ag" *REY™, 1),

is self-consistent in the active phase as long as the fluctua- 5

tions within a correlation volume are small compared to the

order parameter itself. This leads for zero field to the crosswith Byr=1 andoyr=2, respectively. For sufficiently small

over conditionO(Ry (p—pcr)¥) =1, with the crossover ex- field the universal function scales as

ponente=(4-D)/2D [10]. In order to avoid lattice effects

@Bp!(BvF=Bp)
(4)

a, R=1 Pc,R—

we use the effective range of interactidizs] R(0,x,1) ~ M, , XPo/70 for x—0 (6)
2 _1s 2 - . . . |
Reft = 2= [ri-rls lri-rl =R, (1 with the universal amplituden, .. The scaling form Eq(5)
i#]

has to equal foR=1 the D-dimensional scaling ansafp,
wherez denotes the number of lattice sites within a radfus ~ (ah,Rzlh)BD"’D] leading to
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FIG. 1. The universal crossover scaling functiﬁmo,x,l) of FIG. 2. The effective exponeiB/ o)

the order parameter of the CTTP and Manna model at the critical o eff
density forD=2. The metric factors are given t@ﬁahaé andd
_ 2 ; : ;
=ag. The dashed lines correspond to the asymptotic behavior of the _ (9_ N oME-BuEsR !
two-dimensional systertBp=,/ op=»=0.287 and of the mean-field Xa(p.N Rerr) = ﬁhpa(tsp,h) ap\ R'(a,(p
behavior (Bye/ ome=1/2). The universal amplitude is given by " 1
m,,=0.681. The inset displays the order parameter of the CTTP for = pe RN, aphA7MF, g R\ ©) (10
various values of the interaction range={1,2,4, ...,12§ (from

top to bottom. The dashed lines are just to guide the eyes. L~ ~ . . .
with 9'(x,y,2)=d,R(X,y,2). By comparing this expression

with Eq. (9) we find €(x,y,2=4,R(x,y,2), a,=a;}, as well

anpe1 |0 4 / , -
Map=|—"— almF e=ourRDloDe (7)  as the Widom scaling law
,R—o0
According to the scaling form Eq5) we plot in Fig. 1 the y=0- (11

rescaled order parametey(agRes)? as a function of the res-

caled fieldagh(arRer)®. We observe_ an exc_:ellgnt data col- which is well known from equilibrium phase transitions.
lapse for the fl_JII crossover behavior conflrm|r_19 the abov_e Again, the mean-field behavior is recovered -,
phenomenological scaling ansatz. However, since the entire ~ = _ 12 .
crossover region covered several decades it could be difficult® €(x,y,0=Cyr(x,y)=1/2[y+(x/2)7]%,  implying

to observe small but systematic differences between the sca{1,0,0=Cyg(1,0=1, €(0,1,0=Cye(0,1)=1/2, aswell

ing functions of both models. Therefore it its customary toas yyr=1.

scrutinize the crossover via the so-called effective exponent Similar to the order parameter we plot the susceptibility
[6,9-17 according to the scaling form

B J ~ ) ~
(_ T In R(0.x1). ®) an Xa(Per N Ret) ~ (arRert) ™MF#€(0,aph (agReq) M, 1).

O/ eff Jd In X (12)
The perfect collapse of the corresponding data is shown in
Fig. 2 and confirms again the universality of the Crossovei\nproaching the transition point the susceptibility is ex-

scaling functiont:. - pected to scale ag(0,x,1)~m, ,x 70/70, for x—0, where
Next we consider the order parameter susceptibility. Theno yniversal power-law amplitUde is given by
scaling form of the susceptibility is given by

a%?’MF/‘PﬂTMFVD/‘TD‘P@_ (13)

ay XalP: P, Ret) ~ N €(a,(p = peg) N, aph NV, aR R A). m, = (M
, o

)l—'yD/er

The rescaled susceptibility is shown in Fig. 3. Over the
On the other hand the susceptibility is defined as the derivaentire crossover region we got an excellent data collapse in-
tive of the order parameter with respect to the conjugatediuding both asymptotic scaling regimes. The inset displays
field the effective exponent
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FIG. 3. The universal crossover scaling functi®i®,x, 1) of the o ) ) )
susceptibility of the CTTP and the Manna model at the critical ~F!G. 4. The violation of Widom scaling layEq. (15)] in the
density forD=2. The metric factors are given BFa,ap andb ~ CrOSSOVer regime.

:aglaé. The dashed lines correspond to the asymptotic behavior of
the two-dimensional systeffyp-,/ 0p->=0.713 and of the mean-
field behavior(yye/ ome=1/2). The universal amplitude is given
by m, ,=0.208. The inset displays the corresponding effective ex-
ponent(y/ o). wherec is some constant. It is straightforward to show that
this differential equation is solved by simple power lajvs
¥ J ~ R(0,X,1)=cex® with ¢c;=1/a expc]. Thus the Widom scal-
(;) = In ¢(0,x,1) (14)  ing law is fulfilled in the asymptotic regimes only. In the case
eff that the scaling behavior is affected by crossovers, confluent
which exhibits again a monotonic crossover from the two-singularities, etc., no pure power laws occur and the scaling
dimensional scaling regime to the mean-field scaling behavaws do not hold for the corresponding effective exponents.
ior.

=In axg‘i(o,x, 1) =Inax-In %(O,X, 1) +c, a7

IV. WIDOM SCALING LAW V. CONCLUSION

In this way we have obtained the effective exponents In conclusion, the crossover from mean-field to non-
(Blo)e and (y/ o)y for the field driven crossover from mean-field scaling behavior is numerically investigated for
mean-field to non-mean-field behavior. Thus we are able tewo different models exhibiting a second order phase transi-

check the corresponding Widom scaling law tion. Increasing the range of interactions we are able to cover
the full crossover region which spans several decades of the

(l') 1 _<E> , (15)  conjugated field. The corresponding data show that the Wi-

O/ eff O/ eff dom scaling law is violated in the crossover regime. Notice

for the whole crossover region. The corresponding data arg‘a.t we focus in our i.nvestigations or_1_the particular univ_er-
shown in Fig. 4. As can be seen the Widom scaling law issallty class of absorbing phase transitions only for technical

fulfilled for the asymptotic regime&D=2 scaling behavior reasons. Th.e demons?rated violation of t.h.e Widom scaling
and mean-field scalingout it is clearly violated for the in- can be applied to continuous phase transitions in general.
termediate crossover region. This result is not surprising if

one notices that the above Widom I@kqg. (15)] corresponds
to the differential equatiofisee Eqs(8) and(14)]

dln o9 ~ Jln ~ We would like to thank A. Hucht, K. D. Usadel, and B.
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Using 1= In ax/d In x we get schafy.
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