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In this work we consider the universal crossover behavior of two nonequilibrium systems exhibiting a
continuous phase transition. Focusing on the field driven crossover from mean-field to non-mean-field scaling
behavior we show that the well-known Widom scaling law is violated for the effective exponents in the
so-called crossover regime.
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I. INTRODUCTION

A foundation for the understanding of critical phenomena
was provided by Wilson’s renormalization group(RG) ap-
proach[1,2] which maps the critical point onto a fixed point
of a certain transformation of the system’s Hamiltonian,
Langevin equation, etc. The RG theory presents a powerful
tool to estimate the values of the critical exponents, it allows
us to predict which parameters determine the universality
class and it explains the existence of an upper critical dimen-
sion Dc above which the mean-field theory applies. Further-
more, crossover phenomena between two different universal-
ity classes are well understood in terms of competing fixed
points (see, for instance, Ref.[3]). Nevertheless, there are
still some open aspects of crossover phenomena which are
discussed in the literature. The question whether the cross-
over scaling functions are universal was revisited several
times [4–10]. For instance it was shown recently that two
different models, belonging to the same universality class,
are characterized by the same(universal) crossover scaling
functions[10]. This is remarkable, since the universal scaling
behavior is usually restricted to a small vicinity around the
critical point. In the case of a crossover the universal scaling
functions span several decades in temperature or conjugated
field.

Another question of interest concerns the so-called effec-
tive exponents[11] which can be defined as logarithmic de-
rivatives of the corresponding scaling functions. It is still
open whether these effective exponents fulfill over the full
crossover the well-known scaling laws which connect critical
exponents. This question is closely related to the more gen-
eral and very important question of whether effective expo-
nents obey the scaling laws at all. For instance it is known
experimentally[12] as well as theoretically[13] that the
asymptotic scaling behavior is often masked by corrections
to scaling, so-called confluent singularities. In this case it is
useful to analyze the data in terms of effective exponents and
the above question naturally arises[14]. Thus the validity of
the scaling laws for effective exponents was addressed in
experimental works, RG approaches as well as numerical
simulations. In particular the violation of the scaling laws for
effective exponents was conjectured from a RG approxima-
tion [15]. But neither experimental nor numerical work could
clearly confirm this conjecture so far. For instance, Binder
and Luijten considered numerically a crossover in the Ising

model and discussed the validity of the Rushbrook scaling
law [6]. The observed nonmonotonic crossover behavior sug-
gests again a violation of the Rushbrook scaling law. How-
ever, it cannot be considered as a rigorous proof.

In this work we consider a field driven crossover(in the
so-called critical crossover limit[4,7]) in two different mod-
els exhibiting a nonequilibrium second order phase transi-
tion. Varying the range of interactions we investigate the
crossover from mean-field to non-mean-field scaling behav-
ior. The order parameter and the order parameter susceptibil-
ity is measured as a function of the conjugated field and we
are able to determine the corresponding effective exponents
over the full crossover regime. Our results show that the
well-known Widom scaling law is clearly violated for the
effective crossover exponents. Furthermore, we present a
simple analytical argument, suggesting that the scaling laws
are valid for the asymptotic scaling regimes(where the sys-
tems are characterized by a pure algebraic behavior),
whereas the scaling laws do not hold for the crossover re-
gime (characterized by a nonalgebraic behavior).

II. MODELS AND SIMULATIONS

In the following we consider two different cellular au-
tomata exhibiting a so-called absorbing phase transition. The
first model is the conserved transfer threshold process
(CTTP) [16]. In this model lattice sites may be empty, occu-
pied by one particle, or occupied by two particles. Empty
and single occupied sites are considered as inactive whereas
double occupied lattice sites are considered as active. In the
latter case one tries to transfer both particles of a given active
site to randomly chosen empty or single occupied nearest
neighbor sites.

The second model is a modified version of the Manna
sandpile model[17], the fixed-energy Manna model[18]. In
contrast to the CTTP the Manna model allows unlimited par-
ticle occupation of lattice sites. Lattice sites which are occu-
pied by at least two particles are considered as active and all
particles are moved to the neighboring sites selected at ran-
dom.

In our simulations(see Refs.[19,20] for details) we have
used square lattices(with periodic boundaries) of linear size
Lø2048. All simulations start from a random distribution of
particles. After a transient regime both models reach a steady
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state characterized by the density of active sitesra. The den-
sity ra is the order parameter and the particle densityr is the
control parameter of the absorbing phase transition, i.e., the
order parameter vanishes at the critical densityrc according
to, ra~drb, with the reduced control parameterdr=r ”rc
−1. Below the critical density(in the absorbing phase) the
order parameter is zero in the steady state.

Similar to equilibrium phase transitions it is possible in
the case of absorbing phase transitions to apply an external
field h which is conjugated to the order parameter. The con-
jugated field has to act as a spontaneous creation of active
particles, destroying the absorbing state and therefore the
phase transition itself. Furthermore, the associated linear re-
sponse functionxa=]ra”]h has to diverge at the critical
point sdr=0, h=0d. A realization of the external field for
absorbing phase transitions with a conserved field was re-
cently developed in Ref.[19] where the external field trig-
gers movements of inactive particles which may be activated
in this way. At the critical densityrc the order parameter
scales asra~hb/s. Using the conjugated field it is possible to
investigate the equation of staterasr , hd, i.e., the order pa-
rameter as a function of both the control parameter and the
external field. A recently performed scaling analysis reveals
that the CTTP and the Manna model are characterized by the
same critical exponents as well as by the same universal
scaling form of the equation of state, i.e., both models belong
to the same universality class[21].

According to the above definition particles of active sites
are moved to nearest neighbors only, i.e., the range of inter-
actions isR=1. It is straightforward to implement various
ranges of interactions into these models[10]. In this modi-
fied models particles of active sites are moved(according to
the rules of each model) to randomly selected sites within a
radiusR. Since the dynamics of both considered models is
characterized by simple particle hopping processes, various
interaction ranges can be easily implemented and high accu-
rate data are available. This is a significant advantage com-
pared to, e.g., equilibrium system like the Ising model where
the increasing interaction range causes a slowing down of the
dynamics.

For any finite interaction range the phase transition is
characterized by non-mean-field scaling behavior which now
takes place at the critical densityrc,R. A mean-field phase
transition occur for infinite interactionssR→ ` d only. But
mean-field behavior could occur away from the critical point
if the long range interactions reduce the critical fluctuations
sufficiently. The crossover between the mean-field and non-
mean-field scaling regimes is described by the famous Gin-
zburg criterion[22] which states that the mean-field picture
is self-consistent in the active phase as long as the fluctua-
tions within a correlation volume are small compared to the
order parameter itself. This leads for zero field to the cross-
over conditionOsReff sr−rc,Rdwd=1, with the crossover ex-
ponentw=s4−Dd ”2D [10]. In order to avoid lattice effects
we use the effective range of interactions[23]
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w
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w

ju2, u r
w
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w

ju ø R, s1d

wherez denotes the number of lattice sites within a radiusR.

III. UNIVERSAL CROSSOVER SCALING

The crossover scaling function has to incorporate three
scaling fields(the control parameter, the external field, and
the range of interactions), i.e., we make the phenomenologi-
cal ansatz

rasr,h,Reffd , l−bMF R̃sarsr − rc,Rd l,ahh lsMF,aR
−1Reff

−1 lwd,

s2d

where the universal scaling functionR̃ is the same for all
models belonging to a given universality class whereas all
nonuniversal system-dependent features(e.g., the lattice
structure, the update scheme, etc.) are contained in the so-
called nonuniversal metric factorsar , ah, andaR [24]. These
factors are determined by three conditions which normalize

the scaling functionR̃. First, the analytically known mean-
field scaling function[21,25]

R̃MFsx,yd =
x

2
+Îy + S x

2
D2

s3d

should be recovered forR→`, i.e., R̃sx,y,0d=R̃MFsx,yd.
Therefore R̃s1,0,0d=R̃MFs1,0d=1, R̃s0,1,0d=R̃MFs0,1d
=1, implyingar=ar,R→`”rc,R→` andah=ah,R→`. Finally, the
nonuniversal metric factoraR can be determined by the con-

dition R̃sx,0 ,1d,xbD for x→0 yielding [10]

aR = S rc,R=1

ar,R=1

ar,R→`

rc,R→`
DwbD/sbMF−bDd

s4d

The metric factors were already determined in previous
works [10,25], thus no parameter fitting is needed in order to
perform the following scaling analysis.

In this work we focus our attention to the field driven
crossover, i.e., we consider the CTTP and the Manna model
at the critical densitiesrc,R which were determined in Ref.
[10]. In Fig. 1 we plot the corresponding data of the CTTP
for various values of the interaction rangeR. As one can see
the power law behavior of the order parameter changes with
increasing range of interactions.

The scaling form at the critical point is given by(setting
aR

−1Reff
−1lw=1)

rasrc,R,h,Reffd , saRReffd−bMF/w R̃s0,ahh aR
sMF/wReff

sMF/w,1d,

s5d

with bMF=1 andsMF=2, respectively. For sufficiently small
field the universal function scales as

R̃s0,x,1d , ma,h xbD/sD, for x → 0, s6d

with the universal amplitudema,h. The scaling form Eq.(5)
has to equal forR=1 the D-dimensional scaling ansatzfra

,sah,R=1hdbD/sDg leading to
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ma,h = S ah,R=1

ah,R→`
DbD/sD

aR
bMF/w−sMFbD/sDw. s7d

According to the scaling form Eq.(5) we plot in Fig. 1 the
rescaled order parameterrasaRReffd2 as a function of the res-
caled fieldahhsaRReffd4. We observe an excellent data col-
lapse for the full crossover behavior confirming the above
phenomenological scaling ansatz. However, since the entire
crossover region covered several decades it could be difficult
to observe small but systematic differences between the scal-
ing functions of both models. Therefore it its customary to
scrutinize the crossover via the so-called effective exponent
[6,9–11]

Sb

s
D

eff
=

]

] ln x
ln R̃s0,x,1d. s8d

The perfect collapse of the corresponding data is shown in
Fig. 2 and confirms again the universality of the crossover

scaling functionR̃.
Next we consider the order parameter susceptibility. The

scaling form of the susceptibility is given by

ax xasr,h,Reffd , lgMF C̃sarsr − rc,Rd l,ahh lsMF,aR
−1Reff

−1 lwd.

s9d

On the other hand the susceptibility is defined as the deriva-
tive of the order parameter with respect to the conjugated
field

xasr,h,Reffd =
]

] h
rasdr,hd , ahlsMF−bMFR̃8sarsr

− rc,Rdl,ahhlsMF,aR
−1Reff

−1lwd s10d

with R̃8sx,y,zd=]yR̃sx,y,zd. By comparing this expression

with Eq. (9) we find C̃sx,y,zd=]yR̃sx,y,zd , ax=ah
−1, as well

as the Widom scaling law

g = s − b s11d

which is well known from equilibrium phase transitions.
Again, the mean-field behavior is recovered forR→`,

i.e., C̃sx,y,0d=C̃MFsx,yd=1/2 fy+sx/2d2g−1/2, implying

C̃s1,0,0d=C̃MFs1,0d=1, C̃s0,1,0d=C̃MFs0,1d=1/2, aswell
asgMF=1.

Similar to the order parameter we plot the susceptibility
according to the scaling form

ah
−1xasrc,R,h,Reffd , saRReffdgMF/wC̃s0,ahh saRReffdsMF/w,1d.

s12d

Approaching the transition point the susceptibility is ex-

pected to scale asC̃s0,x,1d,mx,hx
−gD/sD, for x→0, where

the universal power-law amplitude is given by

mx,h = S ah,R=1

ah,R→`
D1−gD/sD

aR
−gMF/w+sMFgD/sDwbD

sD
. s13d

The rescaled susceptibility is shown in Fig. 3. Over the
entire crossover region we got an excellent data collapse in-
cluding both asymptotic scaling regimes. The inset displays
the effective exponent

FIG. 1. The universal crossover scaling functionR̃s0,x,1d of
the order parameter of the CTTP and Manna model at the critical
density forD=2. The metric factors are given bye=ahaR

4 and d
=aR

2. The dashed lines correspond to the asymptotic behavior of the
two-dimensional systemsbD=2/sD=2=0.287d and of the mean-field
behavior sbMF/sMF=1”2d. The universal amplitude is given by
ma,h=0.681. The inset displays the order parameter of the CTTP for
various values of the interaction rangeRP h1,2,4, . . . ,128j (from
top to bottom). The dashed lines are just to guide the eyes.

FIG. 2. The effective exponentsb /sdeff.
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Sg

s
D

eff
= −

]

] ln x
ln C̃s0,x,1d s14d

which exhibits again a monotonic crossover from the two-
dimensional scaling regime to the mean-field scaling behav-
ior.

IV. WIDOM SCALING LAW

In this way we have obtained the effective exponents
sb /sdeff and sg /sdeff for the field driven crossover from
mean-field to non-mean-field behavior. Thus we are able to
check the corresponding Widom scaling law

Sg

s
D

eff
= 1 −Sb

s
D

eff
, s15d

for the whole crossover region. The corresponding data are
shown in Fig. 4. As can be seen the Widom scaling law is
fulfilled for the asymptotic regimes(D=2 scaling behavior
and mean-field scaling) but it is clearly violated for the in-
termediate crossover region. This result is not surprising if
one notices that the above Widom law[Eq. (15)] corresponds
to the differential equation[see Eqs.(8) and (14)]

−
] ln

] ln x

]

] x
R̃s0,x,1d = 1 −

] ln

] ln x
R̃s0,x,1d. s16d

Using 1=] ln ax”] ln x we get

− ln ]xR̃s0,x,1d = ln ax− ln R̃s0,x,1d + c, s17d

wherec is some constant. It is straightforward to show that
this differential equation is solved by simple power laws[
R̃s0,x,1d=c0x

c1 with c1=1”a exp c]. Thus the Widom scal-
ing law is fulfilled in the asymptotic regimes only. In the case
that the scaling behavior is affected by crossovers, confluent
singularities, etc., no pure power laws occur and the scaling
laws do not hold for the corresponding effective exponents.

V. CONCLUSION

In conclusion, the crossover from mean-field to non-
mean-field scaling behavior is numerically investigated for
two different models exhibiting a second order phase transi-
tion. Increasing the range of interactions we are able to cover
the full crossover region which spans several decades of the
conjugated field. The corresponding data show that the Wi-
dom scaling law is violated in the crossover regime. Notice
that we focus in our investigations on the particular univer-
sality class of absorbing phase transitions only for technical
reasons. The demonstrated violation of the Widom scaling
can be applied to continuous phase transitions in general.
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FIG. 3. The universal crossover scaling functionC̃s0,x,1d of the
susceptibility of the CTTP and the Manna model at the critical
density forD=2. The metric factors are given bye=ahaR

4 and b
=ah

−1aR
2. The dashed lines correspond to the asymptotic behavior of

the two-dimensional systemsgD=2/sD=2=0.713d and of the mean-
field behaviorsgMF/sMF=1/2d. The universal amplitude is given
by mx,h=0.208. The inset displays the corresponding effective ex-
ponentsg /sdeff.

FIG. 4. The violation of Widom scaling law[Eq. (15)] in the
crossover regime.
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