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We propose a very simple one-dimensional swimmer consisting of three spheres that are linked by rigid rods
whose lengths can change between two values. With a periodic motion in a nonreciprocal fashion, which
breaks the time-reversal symmetry as well as the translational symmetry, we show that the model device can
swim at low Reynolds number. This model system could be used in constructing molecular-sized machines.
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The usual swimming mechanism for a human being in
water involves obtaining a forward momentum from the sur-
rounding fluid due to some periodic body motion. The fact
that the displacement gained in the first half period of the
cyclic motion is not canceled out by that of the second half
period is known to be predominantly because of the inertial
effects [1]. Such a mechanism, however, does not work in
the microscopic world of biological objects(such as bacte-
ria), where the effects of inertia are not important and the
viscous effects dominate. This case is characterized by very
low Reynolds number, the dimensionless quantity that mea-
sures the ratio between the inertial term and the viscous term
in the hydrodynamical equation of motion[2].

Most microscopic biological objects can swim very well
with velocities of the order of 1mm/s, which for such
micron-sized animals swimming in water, yields Reynolds
numbers of the order of 10−4. In his pioneering work, Purcell
showed that animals like scallops that are equipped with a
single hinge cannot swim using a simple opening and closing
procedure[3,4]. The reason is simple: since the motion is
reversible, after finishing a cycle the animal will end up be-
ing where it initially was. He proposed that a nonreciprocal
motion, which breaks the time-reversal symmetry, is needed
to produce a net displacement. This will help the animal to
propel itself, during each cycle, along some direction that is
preferred by the symmetry of the system and the motion
[5,6]. Despite the simplicity of the geometry that he
suggested—three rigid rods connected with two hinges—
quantitative analysis of the “Purcell swimmer” had not been
performed until very recently, due to the complexity of the
Stokes equation in the specific geometry[7]. We note that
there are other related locomotion mechanisms at the meso-
scopic scale in the context of molecular machines[8].

Here we use Purcell’s original idea and introduce a very
simple and experimentally accessible model system that can
swim using proposed periodic internal motions. The swim-
mer consists of three hard spheres that are linked through
two arms, and has the advantage that the details of the hy-
drodynamic interactions, as well as the swimming velocity
and direction, can be worked out with great ease, as com-
pared to the case of the Purcell swimmer.

The model swimmer that we are proposing is shown in
Fig. 1, and consists of three spheres with radiusR that are
connected by rigid slender arms aligned along thex direction
[9]. The spheres are assumed to be floating in a highly vis-

cous fluid with viscositym. There are two internal engines on
the middle sphere(sphere number 1), which act as internal
active elements responsible for making a nonreciprocal mo-
tion that is needed to propel the whole system. We consider
the initial state of the system such that the spheres numbered
2 and 3 are in equal distanceD from the middle sphere. We
divide a complete cycle of the nonreciprocal motion into four
parts as below(see Fig. 2).

(a) In the first step of the motion, the right arm has
fixed length, and the length of the left arm is decreased with
a constant relative velocityW, using one of the internal en-
gines in the middle sphere. We denote the relative displace-
ment of the spheres 1 and 2 in this stage bye.

(b) As the second step, the left arm is fixed and the
right arm decreases its length with the same constant relative
velocity W as before. The relative displacement of the
spheres 1 and 3 is againe, like the previous stage.

(c) During this step, while the right arm is kept fixed,
the left arm increases its length with the same relative veloc-
ity W to reach its original lengthD.

(d) Finally, in the last step, the left arm is kept fixed
and the right arm elongates to its original length with the
same constant velocityW. The system is now in its original
internal configuration.

As can be seen from Fig. 2, the above four-stage cycle is
not invariant under time reversal, and we can thus expect a
net translation upon completing a full cycle. To obtain a net
translational motion, the above cycle can be repeated con-
tinuously.

The general equation that describe the hydrodynamics of
low Reynolds number flow is the Stokes equation for the
velocity field u, subject to the incompressibility condition:

m¹2u − ¹ p = 0, s1d

¹ ·u = 0, s2d

wherep represents the pressure field in the medium.

FIG. 1. Three linked spheres connected by two arms of negli-
gible thickness.
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Assuming that the spheres are moving inside the fluid
with velocity vectorsV i, with the indexi denoting the labels
of the spheres, the description of the system involves solving
the above-mentioned equations with a zero velocity bound-
ary condition at infinity and no-slip boundary conditions on
the spheres, which implies

ur on the ith sphere= V i . s3d

The variables that are necessary to determine the dynamics
of the spheres are their velocitiesV i and the forcesFi acting
on them. By solving the above governing equations, we will
be able to obtain the fluid velocity in the medium, and hence,
the corresponding stress tensor that will give us the required
forces on the spheres. It is a simple observation that because
of the linearity of the governing equations, and the linearity
of the stress tensor with respect to the velocity field, one can
generally expect a relation of the form:

V i = o
j=1

3

Hi j ·F j , s4d

where the symmetric Oseen tensorHi j depends on viscosity,
the geometry of the bodies immersed in it(in our case the
spheres), and their relative orientations. Including the condi-
tion that there are no external forces such as gravity, the
system of spheres should be force-free:

o
j=1

3

F j = 0. s5d

Since we are only interested in the dynamics of the
spheres, we can equivalently solve the set of Eqs.(4) and(5),
instead of Eqs.(1) and(2). To solve these equations we need
to know the form of the Oseen’s tensor. Let us consider a
coordinate system in which the position vector of theith
sphere isxi and the separation between theith and thej th
spheres will bexi j ;xi −x j, with a unit vectorn̂ in this direc-

tion. General symmetry considerations will allow us to write
the hydrodynamic interaction tensor in the following form
[10,11]:

Hij =
1

6pmR
fAijsldn̂n̂ + BijsldsI − n̂n̂dg, s6d

where we use the dimensionless quantityl=R/xij . Assuming
that the separations between the spheres are sufficiently
larger than their sizes, we can write a perturbation expansion
for the symmetric coefficientsAij and Bij in powers ofl,
which reads

Aij = 5 1 + Osl4d, i = j

3

2
li j + Osl3d, i Þ j

s7d

and

Bij = 5 1 + Osl4d, i = j

3

4
li j + Osl3d, i Þ j

s8d

to the leading order. Note that for simplicity we are consid-
ering only the translational motion for the spheres, although
the effects of rotational motion can be taken into account in
a similar way. Moreover, extra simplification comes from the
one-dimensional nature of the motion, such that the tensorial
structure of the hydrodynamic interactions plays no impor-
tant role in the dynamics.

To analyze the motion of the system during one complete
period of the nonreciprocal cycle, we introduce an auxiliary
move as shown in Fig. 3. During this motion, the right arm
has a constant lengthd while the left arm changes its length
from D to D−e with the constant velocityW. Using symme-
try arguments, we can relate all four steps in the nonrecipro-
cal cycle to the above move, as follows: Step(a) corresponds
to the auxiliary move by settingd=D. By applying a reflec-
tion transformation with respect to any point on thex axis,
step(b) can be mapped onto the auxiliary move withd=D
−e. Step(c) is obtained by applying a time-reversal transfor-
mation on the auxiliary move, withd=D−e. Finally, step(d)
is obtained by applying a reflection transformation[as in step
(b)] followed by a time-reversal transformation, withd=D.

FIG. 2. Complete cycle of the proposed nonreciprocal motion of
the swimmer, which is composed of four consecutive time-reversal
breaking stages:(a) the left arm decreases its length with the con-
stant relative velocityW, (b) the right arm decreases its length with
the same velocity,(c) the left arm opens up to its original length,
and finally,(d) the right arm elongates to its original size. By com-
pleting the cycle the whole system is displaced to the right side by
an amountD.

FIG. 3. An auxiliary (fictitious) movement in which the right
arm has a constant lengthd while the left arm changes its length
from D to D−e. During this movement the middle sphere will be
displaced by an amountD fsdd.
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To obtain the net displacement of the middle sphere in the
real problem, it is thus enough to solve the dynamical equa-
tion for a single auxiliary movement. If we define the net
displacement of the middle sphere during the auxiliary step
by Dfsdd, then by considering the above arguments we can
calculate the total displacementD of the real system through
a complete cycle as

D = 2fDfsDd − DfsD − edg. s9d

Noting that the above displacement takes place during the
time of a complete cycle that is 4e /W, then we can calculate
the average swimming velocity for the swimmer as

Vs = W
D

4e
. s10d

As an example, we have numerically calculated the dis-
placements for the case ofD=10 R and e=4 R. During the
first stroke the middle sphere swims in the −x direction by an
amount 1.35R, while in the second stroke it swims a dis-
tance of 1.44R in the positive direction. The third stroke
then causes a continuation of the motion in the positive di-
rection for a distance of 1.44R, and finally, the fourth stroke
takes it back by a distance of 1.35R. At the end of this cycle
the sphere is displaced by a net amount of 0.16R in the
positive direction, as shown in Fig. 2. Figure 4 shows the
total displacement of the middle sphere during a complete
nonreciprocal cycle as a function of the internal relative dis-
placemente for D=10 R.

In the limit of small internal deformation of the swimmer,
we can expand all the quantities in terms ofe /D and calcu-
late the swimming velocity in a perturbative series. To the
leading order, we find

Vs = 0.7 W SR

D
D S e

D
D2

. s11d

The above result shows that the scale of the swimming ve-
locity is set by the typical velocity of the internal motion.

Moreover, the swimming appears to be a quadratic effect
with respect to the small deformations in the system. These
two characteristics are general, as can be seen in other swim-
mers at low Reynolds number.

In our simple prescription for the nonreciprocal motion
we have assumed that in each step one sphere moves with
respect to the middle one and the other one is kept in relative
constant distance. This assumption has been made for sim-
plicity, and we can imagine a more general continuous mo-
tion of the spheres with respect to the middle one. The only
necessary condition is to break the time-reversal symmetry
and obtain a nonreciprocal motion. The general requirement
in the continuous motion will be the existence of a nonzero
phase difference between the continuous periodic motions of
the left and right spheres with respect to the middle one. The
swimming velocity in this case will also have the two gen-
eral characteristics mentioned above.

The generalized case of many spheres that are coupled to
each other on a regular one- or two-dimensional lattice is a
suitable microscopic model for an extensible flat filament or
membrane. In these cases, the relative “in-plane” motion of
the neighboring spheres with respect to each other will cause
the whole system to swim. The direction of motion and the
swimming velocity can be predicted using the simple pro-
posed description. The internal relative motion of the system
that can cause swimming is of the general form of a traveling
wave on the position of the spheres in some direction. A
traveling wave is the simplest nonreciprocal motion which
breaks the time-reversal and translational symmetries. This
is, in fact, an old and well-established idea, which dates back
to the early studies on flagellar motion[5]. The swimming
velocity will be opposite to the direction of the wave vector
and proportional to the phase velocity of the traveling wave.
Such kind of motion has been considered for a spherical
membrane and shown to have the same characteristics as
suggested above[12].

In conclusion, we have introduced a very simple swimmer
and calculated its swimming velocity. The swimmer uses
some periodic internal motion to propel itself under low Rey-
nolds number conditions. The advantage of this model, as
compared to previously known model swimmers, is that the
analysis of the hydrodynamics problem can be performed
considerably more easily. The model swimmer could be used
in making molecular-sized machines with controllable
motion.

We have benefited throughout this work from fruitful dis-
cussions with A. Ajdari, F. Julicher, K. Kruse, and H. Stone.
We are particularly indebted to A. Ajdari for suggesting the
geometry of the model.
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