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We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate,
which is a generalization of the well-known kangaroo process. The definition takes into account two process
values: after and before the jump. Therefore, the process is able to preserve memory about its previous values.
It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable
collision rate. The process can be easily applied to model systems which relax to distributions other than
Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or
ballistic.

DOI: 10.1103/PhysRevE.69.062103 PACS number(s): 05.60.2k, 02.50.Ey, 05.40.2a

The kangaroo process(KP) [1] is a special kind of jump-
ing process, defined by means of two quantities: the prob-
ability density Qsxd—where x is registered just after a
jump—and the jump ratensxd. Therefore the kernel of the
corresponding master equation can be factorized with respect
to process values before and after a jump; i.e., the subsequent
jumps are independent. That feature allows us to solve the
master equation relatively easy[2]. Due to its simplicity,
the KP is very useful in applications. It was originally in-
vented to solve the problem of Stark broadening in the
framework of nonlinear spectroscopy[3], then introduced as
a description of turbulent transport in fluids[4]. Since the KP
can be so constructed to possess a covariance which is given
a priori, it serves as a model of colored noises[5–8]. It has
also been used as a collision kernel in the linear Boltzmann
equation[9].

The independence of subsequent jumps is a strong re-
quirement and rarely satisfied. In this paper we consider a
generalized version of the kangaroo process(GKP). The
modification consists in allowing the distribution of the pro-
cess value after jumpsxd to depend on the value before the
jump sx8d: Qsxd→Qsx8 ,xd. The normalization condition is of
the formeQsx8 ,xddx=1.

GKP is then a stepwise constant Markov process defined
for infinitesimal time intervalsDt by the following stationary
transition probability:

ptrsx,Dtux8,0d = h1 − nsx8dDtjdsx8 − xd + nsx8dDtQsx8,xd.

s1d

The master equation derived from the above transition prob-
ability is

]

] t
psx,td = − nsxdpsx,td +E Qsx8,xdnsx8dpsx8,tddx8. s2d

From now on, we restrict our analysis to distributions which
are determined on the intervalxP s−` ,`d and which de-
pend only on the difference of their arguments:Qsx8 ,xd
=Qsx−x8d. In the physically most interesting caseQsjd has a
maximum atj=0 and then the above assumption means that
a small jump is easier than a large one.

From Eq.(2) we get the equation for stationary distribu-
tion Psxd:

Psxdnsxd =E Qsx − x8dPsx8dnsx8ddx8. s3d

ExpandingPsxdnsxd in a power series, one can show that
for any analytic, positivePsxdnsxd and normalizedQsjd,
Eq. (3) is satisfied only ifPsxdnsxd=const. Therefore we
obtain either

Psxd = 1/n sxd s4d

or a singular solution. The letter emerges if 1 /n sxd possesses
a pole at somex. More precisely, if n sxd has n zeros
x1, . . . ,xn, the singular solution reads

Psxd = o
i=1

n

aid sx − xidYo
i=1

n

ai s5d

for any sethaij. In contrast to the ordinary KP,Psxd does not
depend onQ. Finally, if n sxd does not rise sufficiently fast
with uxu, the stationary solution does not exist. It is the case,
e.g., forn sxd=const.

To obtain the general solution of Eq.(2), we take the
Laplace transform ofpsx,td in respect to time:Gsx,sd
=L(psx,td). The solution reads

Gsx,sd =E Psx,sux8dp0sx8ddx8, s6d

where p0sxd denotes the initial condition. The propagator
Psx,sux8d is the Laplace transform of the conditional prob-
ability of passing fromx8 to x during time t. It can be ob-
tained analogously as for the KP[2] by taking into account
all possible paths leading fromx8 to x and summing over
jumps:
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Psx,tux8d = expf− nsx8dtgdsx − x8d + P1sx,tux8d

+ o
k=2

` E Pksx,x1, . . . ,xk−1,tux8ddx1 ¯ dxk−1.

s7d

The probability densityPk in the above expression corre-
sponds to transition involvingk jumps and can be obtained
by a recurrence formula. Finally we have

Gsx,sd =
p0sxd

s+ n sxd
+

1

s+ n sxd
E n sx0dp0sx0dQsx − x0d

s+ n sxd
dx0

+
1

s+ n sxdok=2

` E n sx0dp0sx0d
s+ n sx0d

Qsx − xk−1d

3Fp
i=2

k
n sxi−1dQsxi−1 − xi−2d

s+ n sxi−1d
dxi−1Gdx0. s8d

Note that, in contrast to the ordinary KP, integrals cannot
be factorized. It is clear from the construction that thekth
term in Eq.(8) corresponds to a path withk jumps. If we are
interested only in a solution for a small time or we choose
the initial condition close to the stationary limit, the series
can be cut at relatively smallk. Otherwise, a Monte Carlo
simulation is a better method to obtain the general solution
[10].

A natural field of applications of the GKP is transport
phenomena. Let us interpret the GKP valuex as the one-
dimensional particle velocityv, characterized by probability
distribution fsv ,td. The particle changes its velocity accord-
ing to the distributionQsv−v8d and with the ratensvd. Using
Eq. (2), we can write down the evolution equation forfsv ,td:

]

] t
fsv,td = − n svdfsv,td +E Ksv,v8dfsv8,tddv8, s9d

where Ksv ,v8d=Qsv−v8dn sv8d. The thermal equilibrium
with temperatureT the system is supposed to reach asymp-
totically,

Psvd = fesvd = 1/Î2pT exps− v2/2Td, s10d

imposes the form for jumping ratensvd, according to Eq.(4).
Equation(9) has the same structure as the one-dimensional
linear Boltzmann equation with the collision kernelKsv ,v8d.
In the framework of GKP, we do not consider individual,
deterministic collisions between gas particles; the velocity
change is treated stochastically and governed by a given
probability distribution. The kernel satisfies the detailed bal-
ance condition in equilibrium. Moreover, the collision rate
n svd=eKsv8 ,vddv8 is variable. Due to the factorized form of
the kernelK, the kinetic equation becomes easier to solve
than for a general case(e.g.,[11]). In particular, the collision
rate completely determines the asymptotic distribution.

Figure 1 presents an example of the transport process
modeled by GKP; Eq.(9) has been solved for the initial
condition p0svd=1/s0

Î2p expf−sv−1d2/2s 0
2g, with s0

=0.1, and Qsjd=1/sÎ2p exps−j2/2s 2d, with s=1. The

temperatureT=1. The picture can then be interpreted as
relaxation of a cold gas approaching a hot environment. Dis-
tributions have been obtained by means of Monte Carlo
simulations of individual trajectories; the statistical ensemble
comprises 107 of them for each time. The figure indicates
that the bias connected with initial valuev=1 is kept for a
long time, before the equilibrium distribution is finally
reached. For the ordinary KP a memory about the initial
condition can be preserved due to rather trivial reasons:
only because there is a finite probability—proportional to
expf−n svdtg—that no jump occurs. In the GKP model, on
the other hand, collisions between particles do not destroy
memory completely. However, the speed of memory loss
strongly depends on velocity. Sincen svd,expsv2d, jumps
are extremely frequent for largev. As a result, velocity val-
ues corresponding to infinitesimally small time intervals ap-
pear as statistically independent: we get the white noise
limit. Moreover, despite the fact that velocity can be, in prin-
ciple, arbitrarily large, only values aroundv=0 are effec-
tively observed because only they persist for finite time in-
tervals.

The probability densityQsv−v8d is important for the
speed of the distribution tails relaxation towards equilibrium.
We can expect that larger width ofQ would result in faster
equilibration because then large jumps are more probable.
For example, ifQ is the Gaussian characterized by the width
s, the size of the jump is proportional tos:v−v8=jG

, ±sÎ−ln r wherer is a random number uniformly distrib-

FIG. 1. Probability distributionfsv ,td calculated for bothQsjd
andp0svd in the form of Gaussians with parameterss=s0=1. The
thermal equilibrium has temperatureT=1. Curves correspond to the
following times. Upper part:t=0.25 (short-dashed line), t=0.3
(long-dashed line), andt=0.4 (solid line). Lower part:t=0.5 (dash-
dotted line), t=1 (short-dashed line), t=2 (long-dashed line), and
t=3 (solid line). The letter curve coincides with the asymptotic
Maxwellian fesvd [Eq. (10)].
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uted in the intervals0,1d; the behavior ofjG near r =0 is
responsible for large jumps. On the other hand, the random
variable distributed according to the Cauchy distribution,
QsjCd=1/ps1+jC

2d, can be expressed asjC=1/ tanspr /2d. It
rises to infinity faster thanjG does for anys and variance
becomes infinite:kjC

2l=e0
1jC

2 dr=`. Therefore, already a
small number of jumps is able to spread velocity values over
a region distant from the initial condition and to equilibrate
the tails. Numerical calculations confirm a faster relaxation
in the case of the Cauchy distribution; a comparison of the
distributions for both kernels att=0.5 is presented in Fig. 2.

A description of the transport processes in terms of kinetic
equations, which is restricted to relaxation to the thermal
equilibrium in the form of standard Maxwellian distribution,
may not suffice. Recently, other forms of steady-state solu-
tions of the Boltzmann equation have been discussed—e.g.,
the Lévy velocity distribution[12], characterized by an infi-
nite second moment, with power-law tails. Such an over-
population of the velocity distribution tails has physical rea-
sons and may be caused by chemical reactions with a high
activation energy[13]. An algebraic high-energy tail has
been predicted[14] as a solution of the nonlinear Boltzmann
equation for an inelastic freely cooling gas in the framework
of the inelastic Maxwell model[15]. A similar tail has been
found for the uniform shear flow[16]. Most of the above
models of both linear and nonlinear Boltzmann equations
assume a constant collision rate. For some physical systems,
however, the variability of that rate cannot be neglected—
e.g., if the transport mechanism is governed by long free
paths. This concept is a foundation of a kinetic neutral par-
ticle transport model for long mean free path environments
which has been recently applied to describe heat transfer in a
rare gas between two parallel plates[17], emphasizing the
importance of large Knudsen numbers. Similarly, it has been
found [18] that long intervals of constant velocity may be
responsible for the equilibration process in deep-inelastic,
grazing collisions of atomic nuclei. The resulting energy dis-
tribution differs substantially from that for thermal equilib-

rium: it possesses a long tail and becomes infinite at small
energy.

The GKP allows us to model easily any form of
asymptotic distribution because it is fully determined by the
jumping raten svd. Since the probability that no jump occurs
during timet is given by expf−n svdtg, the average interval of
constant velocityv equals 1/n svd and can be infinite. We
can get steady-state solutions possessing such infinite inter-
vals, as well as power-law tails, assuming, for example, the
algebraic form of frequency:

n svd = fvaus1 − uvud + vbusuvu − 1dg/N, s11d

for 0,a,1 and b.1, where N=f2s1/s1−add+1/sb
−1dg−1 is the normalization constant. Figure 2 presents a
comparison of the distribution for that frequency calculated
at t=0.5 with the corresponding Maxwellian cases. Already
at such short times it appears almost symmetric because it is
attracted towards zero due to the abundance of long intervals
of constant velocity. Nevertheless, full relaxation requires a
similar time to that for the Maxwellian case.

Finally, let us consider the GKP for the case of constant
frequency:n sxd=n0=const, for which no equilibrium exists.
The expression for the time-dependent probability distribu-
tion, given by Eq.(8), can be easily inverted, producing the
following result:

psx,td = exps− n0tdp0sxd

+ exps− n0 tdo
k=1

`
sn0tdk

k!
p0sxd ! Qsxdsk−1d!, s12d

where! denotes a convolution andf k! is thek-fold convo-
lution of the functionf. If, in addition, we takeQsjd in the
Gaussian formQsjd=1/ssÎ2pdexps−j2/2s2d and the initial
condition asp0sxd=dsxd, thek-fold integral can be evaluated:

psx,td = exps− n0tddsxd

+ exps− n0tdo
k=1

`
sn0tdk

sÎ2kpk!
expf− x2/s2ks 2dg.

s13d

The width of the above distribution rises linearly with
time. To demonstrate that this result is generic, let us calcu-
late the characteristic function ofpsx,td: p̃sk,td. Equation(2)
is then of the form

] p̃sk,td
] t

= n0p̃sk,tdfQ̃skd − 1g, s14d

where Q̃skd stands for the characteristic function ofQsjd.
The solution with initial conditionp̃0skd reads

p̃sk,td = p̃0skdexphn0fQ̃skd − 1gtj. s15d

Differentiating Eq.(15) twice and puttingk=0, we get the
expression for the distribution width:

FIG. 2. Distribution fsv ,td at t=0.5 calculated forQsjd in the
form of Gaussian(long-dashed line) and Cauchy distribution(short-
dashed line); both cases correspond to the Maxwellian equilibrium
with T=1. The solid line corresponds to the algebraic form of the
collision raten svd, Eq. (11), with a=0.5 andb=1.5, as well as
GaussianQ.
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kx 2lp = kx 2lp0
+ n0s2kxlp0

kxlQ + kx 2lQdt + n 0
2kxlQ

2 t 2.

s16d

The interpretation of Eq.(16) is straightforward. If the first
moment ofQ vanishes and variance of bothQ and p0 is
finite, we get normal diffusion with the diffusion coefficient
D=n0kx 2lQ. The nonvanishing average ofQ, on the other
hand, produces a bias which results in a strong enhancement
of the diffusion process: the variance ofpsx,td rises ast 2,
and the diffusion is ballistic. Finally, ifkx 2lQ is divergent, as
is the case, e.g., for the Cauchy distribution, the width of
psx,td becomes infinite for any time.

A peculiarity of the GKP for a constant jumping rate is
that the covariance is the same as variance:Cst0,td
=kx 2lpsx,t0d, wheret means the time increment andt0 is the
initial time; i.e., the covariance does not depend ont but it
does depend, linearly, ont0. That statement—valid for any

evenQsjd—can be proved by Laplace transforming of the
following formula [19]:

Cst0,td =E E x8st0dxst0 + tdPsx,t u x8dpsx8,t0ddxdx8,

s17d

where the conditional probabilityPsx,t ux8d is given by Eq.
(7); the integrals can be performed one after the other.

To conclude, the presented modification of the KP, which
takes into account the size of subsequent jumps, is physically
more realistic than the original KP. It can describe the trans-
port phenomena: both kinetic processes, relaxing to the ther-
mal equilibrium, and diffusion. A simple form of the master
equation steady-state solution offers an easy way to handle
problems characterized by long-time velocity distributions
exhibiting deviations from the Maxwellian.
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