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Simple jumping process with memory: Transport equation and diffusion
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We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate,
which is a generalization of the well-known kangaroo process. The definition takes into account two process
values: after and before the jump. Therefore, the process is able to preserve memory about its previous values.
It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable
collision rate. The process can be easily applied to model systems which relax to distributions other than
Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or

ballistic.
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The kangaroo proceg&P) [1] is a special kind of jump- From Eq.(2) we get the equation for stationary distribu-

ing process, defined by means of two quantities: the probtion P(x):
ability density Q(x)—where x is registered just after a
jump—and the jump rate(x). Therefore the kernel of the
corresponding master equation can be factorized with respect P(x)v(x) = J Qx=x")P(x")v(x")dx". 3
to process values before and after a jump; i.e., the subsequent
jumps are independent. That feature allows us to solve the
master equation relatively eag®]. Due to its simplicity, ExpandingP(x)»(x) in a power series, one can show that
the KP is very useful in applications. It was originally in- for any analytic, positiveP(x)v(x) and normalizedQ(¢),
vented to solve the problem of Stark broadening in theEq. (3) is satisfied only ifP(x)v»(x)=const. Therefore we
framework of nonlinear spectroscop§], then introduced as obtain either
a description of turbulent transport in fluif$). Since the KP
can be so constructed to possess a covariance which is given
a priori, it serves as a model of colored noigés-§]. It has
also been used as a collision kernel in the linear Boltzmann
equation[9]. or a singular solution. The letter emerges ivAX) possesses
The independence of subsequent jumps is a strong re& pole at somex. More precisely, if v(x) has n zeros
quirement and rarely satisfied. In this paper we consider &, ... X,, the singular solution reads
generalized version of the kangaroo procé&KP). The
modification consists in allowing the distribution of the pro- n n
cess value after jumfx) to depend on the value before the PX) =D a6 (x-x) S a (5)
jump (x’): Q(x) — Q(x’,x). The normalization condition is of i=1 i=1
the form fQ(x’,x)dx=1.
GKP is then a stepwise constant Markov process define
for infinitesimal time intervalg\t by the following stationary
transition probability:

P(x) = 1/v (X) (4)

Por any set{a}. In contrast to the ordinary KIB(x) does not
depend omQ. Finally, if v (x) does not rise sufficiently fast
with |x|, the stationary solution does not exist. It is the case,
(% Atx’,0) = {1 = »(x ) AL} S(X’ = X) + p(X')AtQ(X',X). e.g., forv (x)=const.
Pu | 1 To obtain the general solution of Eq2), we take the
1) Laplace transform ofp(x,t) in respect to time:G(x,s)

The master equation derived from the above transition prob=£(P(x,1)). The solution reads
ability is

%p(x,t)=—v(><)p(x,t)+ f QXX p(x)p(X',HdX . (2) G(X’S):f POxSX")polx ) ©

From now on, we restrict our analysis to distributions whichwhere py(x) denotes the initial condition. The propagator
are determined on the intervale (—,) and which de- P(x,s|x’) is the Laplace transform of the conditional prob-
pend only on the difference of their argumen@(x’,x)  ability of passing fromx’ to x during timet. It can be ob-
=Q(x—x). In the physically most interesting caQ¢¢) has a  tained analogously as for the KR] by taking into account
maximum até=0 and then the above assumption means thaall possible paths leading from’ to x and summing over
a small jump is easier than a large one. jumps:
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P(x,t|x") = exd— v(x)t]o(x = x') + Py(x,t|x")

+ 20 | PuxX, e X X)) 0% - dXey
k=2

f(v,t)

)

The probability densityP, in the above expression corre-
sponds to transition involving jumps and can be obtained
by a recurrence formula. Finally we have

Po(X) L1 f v (Xo) Po(X0) Q(X — Xo)

s+v(X) s+v(x s+ v(X)

1 . f v (Xo) Po(Xo)

S+ v (X) =2 S+ v (X)

v [ﬁ v (Xi-1)Q(Xi_1 — Xi_p)

G(x,8) = dxo

+

QX = X-1)

f(v,t)

i=2 s+ v (X-1) dxi_l] Po. ®

Note that, in contrast to the ordinary KP, integrals cannot
be factorized. It is clear from the construction that ttle
term in Eq.(8) corresponds to a path withjumps. If we are
interested only in a solution for a small time or we choose FIG. 1. Probability distributiorf(v,t) calculated for botfQ(é)
the initial condition close to the stationary limit, the seriesandpo(v) in the form of Gaussians with parameters op=1. The
can be cut at relatively smak. Otherwise, a Monte Carlo thermal equilibrium has temperatufe 1. Curves correspond to the
simulation is a better method to obtain the general solutiofiollowing times. Upper part:t=0.25 (short-dashed line t=0.3
[10]. (Iong-da_tshed ling andt=0.4(so|it_j line). Lower part:t=0.5(dash-

A natural field of applications of the GKP is transport dotted 1ine, t=1 (short-dashed line t=2 (long-dashed ling and
phenomena. Let us interpret the GKP vali@s the one- t=3 (sol_ld ling). The letter curve coincides with the asymptotic
dimensional particle velocity, characterized by probability Maxwellian fe(v) [Eq. (10)].
distribution f(v,t). The particle changes its velocity accord- ) .
ing to the distributiorQ(v —v') and with the rate/(v). Using  temperatureT=1. The picture can then be interpreted as

Eq. (2), we can write down the evolution equation figo ,t): re_laxation of a cold gas app_roaching a hot environment. Dis-
tributions have been obtained by means of Monte Carlo

J simulations of individual trajectories; the statistical ensemble
Ef(v,t) =-v(v)f(v,) +f K, v)f' bdv’, (9  comprises 10 of them for each time. The figure indicates
that the bias connected with initial valuwe=1 is kept for a
where K(v,v')=Q(v-v')v (v'). The thermal equilibrium long time, before the equilibrium distribution is finally

with temperatureT the system is supposed to reach asymp-reached. For the ordinary KP a memory about the initial
totically, condition can be preserved due to rather trivial reasons:

- only because there is a finite probability—proportional to
P(v) = fo(v) = AN2aT exp(- v?2T), (10) exg—v (v)t]—that no jump occurs. In the GKP model, on
the other hand, collisions between particles do not destroy
imposes the form for jumping ratév), according to Eq(4).  memory completely. However, the speed of memory loss
Equation(9) has the same structure as the one-dimensionatrongly depends on velocity. Sinae(v) ~expv?), jumps
linear Boltzmann equation with the collision ker€lv,v’).  are extremely frequent for large As a result, velocity val-
In the framework of GKP, we do not consider individual, ues corresponding to infinitesimally small time intervals ap-
deterministic collisions between gas particles; the velocitypear as statistically independent: we get the white noise
change is treated stochastically and governed by a givelimit. Moreover, despite the fact that velocity can be, in prin-
probability distribution. The kernel satisfies the detailed bal-ciple, arbitrarily large, only values aroung=0 are effec-
ance condition in equilibrium. Moreover, the collision rate tively observed because only they persist for finite time in-
v (v)=[K(v',v)dv’ is variable. Due to the factorized form of tervals.
the kernelK, the kinetic equation becomes easier to solve The probability densityQ(v—v’) is important for the
than for a general cage.qg.,[11]). In particular, the collision  speed of the distribution tails relaxation towards equilibrium.
rate completely determines the asymptotic distribution.  We can expect that larger width & would result in faster
Figure 1 presents an example of the transport processquilibration because then large jumps are more probable.
modeled by GKP; Eq(9) has been solved for the initial For example, ifQ is the Gaussian characterized by the width
condition py(v)=1/0gv2m ex~(v-1)*/203], with o5 o, the size of the jump is proportional te:v—v’=ég
=0.1, and Q(&=1/0\2m exp(-&2/20?), with o=1. The ~ +oy=Inr wherer is a random number uniformly distrib-
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0.8 : : ' : : rium: it possesses a long tail and becomes infinite at small
energy.

The GKP allows us to model easily any form of
asymptotic distribution because it is fully determined by the
jumping ratev (v). Since the probability that no jump occurs
during timet is given by exp-v (v)t], the average interval of
constant velocityy equals 14 (v) and can be infinite. We
can get steady-state solutions possessing such infinite inter-
vals, as well as power-law tails, assuming, for example, the
algebraic form of frequency:

f(v,t)

v (v) =[v*0(1 = [v]) + vP6(lv] - DN, (11)

for 0<a<1l and B>1, where N=[2(1/(1-a))+1/(B
-1)]™! is the normalization constant. Figure 2 presents a
comparison of the distribution for that frequency calculated
at t=0.5 with the corresponding Maxwellian cases. Already
at such short times it appears almost symmetric because it is
attracted towards zero due to the abundance of long intervals

FIG. 2. Distributionf(v,t) att=0.5 calculated foQ(¢) in the
form of Gaussiarlong-dashed lineand Cauchy distributiotshort-
dashed ling both cases correspond to the Maxwellian equilibrium
with T=1. The solid line corresponds to the algebraic form of the
collision ratev (v), Eq. (11), with «=0.5 andB=1.5, as well as

Gaussiar. of constant velocity. Nevertheless, full relaxation requires a
similar time to that for the Maxwellian case.
uted in the interval0,1); the behavior ofég nearr=0 is Finally, let us consider the GKP for the case of constant

responsible for large jumps. On the other hand, the randorfrequency:v (x)=vy=const, for which no equilibrium exists.
variable distributed according to the Cauchy distribution,The expression for the time-dependent probability distribu-
Q(§c):1/w(1+§(2:), can be expressed gs=1/tar(wr/2). It  tion, given by Eq.(8), can be easily inverted, producing the
rises to infinity faster thagg does for anyo and variance following result:

becomes infinite:(¢2)=[5¢2 dr=x. Therefore, already a

small number of jumps is able to spread velocity values over p(x,t) = expl(= vgt) po(X)
a region distant from the initial condition and to equilibrate % (r)®
. . . . . V 1)
the tails. Numerical calculations confirm a faster relaxation +exp- vpt) >, OI Po(X) * Q)& D* (12
in the case of the Cauchy distribution; a comparison of the 1 K

distributions for both kernels &t 0.5 is presented in Fig. 2.

A description of the transport processes in terms of kinetisvhere* denotes a convolution anid* is the k-fold convo-
equations, which is restricted to relaxation to the thermalution of the functionf. If, in addition, we takeQ(¢) in the
equilibrium in the form of standard Maxwellian distribution, Gaussian fornQ(&)=1/(ov2m)exp—£/2¢2) and the initial
may not suffice. Recently, other forms of steady-state solueondition agpy(x)=&(x), thek-fold integral can be evaluated:
tions of the Boltzmann equation have been discussed—e.g.,

the Lévy velocity distributior{12], characterized by an infi- p(x,t) = exp(— vot) A(x)

nite second moment, with power-law tails. Such an over- " ()

population of the velocity distribution tails has physical rea- _ Vot 2 2
sons and may be caused by chemical reactions with a high +exl Vot)gl mr’ﬂk! exp=x(2ko 9],

activation energy[13]. An algebraic high-energy tail has
been predicte@14] as a solution of the nonlinear Boltzmann (13

equation for an inelastic freely cooling gas in the framework  The width of the above distribution rises linearly with
of the inelastic Maxwell modefl15]. A similar tail has been time. To demonstrate that this result is generic, let us calcu-

found for the uniform shear floy16]. Most of the above |ate the characteristic function pfx,t): P(k,t). Equation(2)
models of both linear and nonlinear Boltzmann equationss then of the form

assume a constant collision rate. For some physical systems,

however, the variability of that rate cannot be neglected— IP(k,1) -

e.g., if the transport mechanism is governed by long free = vop(k,)[Q(k) — 1], (14
paths. This concept is a foundation of a kinetic neutral par- It

ticle transport model for long mean free path environments ~ L i

which has been recently applied to describe heat transfer in'§here Q(k) stands for the characteristic function QX¢).
rare gas between two parallel plats], emphasizing the The solution with initial conditiorpy(k) reads
importance of large Knudsen numbers. Similarly, it has been 5

found [18] that long intervals of constant velocity may be Pk, t) =Po(k)exp{vol Q(k) — 1]t}. (15)
responsible for the equilibration process in deep-inelastic,

grazing collisions of atomic nuclei. The resulting energy dis-Differentiating Eq.(15) twice and puttingk=0, we get the
tribution differs substantially from that for thermal equilib- expression for the distribution width:
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(x?) p=(X 2y ot vo(2(X) po<X>Q +(X 2>Q)t + v%(x}ét 2 even Q(g)—can be proved by Laplace transforming of the
(16 following formula[19]:

The interpretation of Eq(16) is straightforward. If the first _ JJ ) , ,
moment of Q vanishes and variance of bo and py is Clto,7) = X' (to)x(to + HP(x, 7| X')p(x’, to)dxaX.,
finite, we get normal diffusion with the diffusion coefficient (17)
D=vyx%q. The nonvanishing average @, on the other

hand, produces a bias V‘_’hiCh results in a strong enhanzceme\m.lere the conditional probabilitP(x, 7|x’) is given by Eq.
of the diffusion process: the variance pfx,t) rises ast®, (7). yhe integrals can be performed one after the other.

and the diffusion is ballistic. Finally, ifx®)q is divergent, as "1q conclude, the presented modification of the KP, which
is the case, e.g., for the Cauchy distribution, the width oftakes into account the size of subsequent jumps, is physically
p(x,t) becomes infinite for any time. more realistic than the original KP. It can describe the trans-

A peculiarity of the GKP for a constant jumping rate is port phenomena: both kinetic processes, relaxing to the ther-
that the covariance is the same as varianCély,7)  mal equilibrium, and diffusion. A simple form of the master
=(x®)pxiy» WhereT means the time increment aiglis the  equation steady-state solution offers an easy way to handle
initial time; i.e., the covariance does not depend7dout it ~ problems characterized by long-time velocity distributions
does depend, linearly, o. That statement—valid for any exhibiting deviations from the Maxwellian.
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