PHYSICAL REVIEW E 69, 061923(2004)

Phase shifts of synchronized oscillators and the systolic-diastolic blood pressure relation
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We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects.
We find that delays in the oscillatory components of the time series depend on the frequency bands that are
considered, in particular we find a change of sign in the phase shift going from the very low frequency band
to the high frequency band. This behavior should reflect a collective behavior of a system of nonlinear
interacting elementary oscillators. We prove that some models describing such systems, e.g., the Winfree and
the Kuramoto models, offer a clue to this phenomenon. For these theoretical models there is a linear relation-
ship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the
phase shift naturally emerges.
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I. INTRODUCTION there is not a causal relationship between DAP and SAP time
. ; ; ; L ; i ie. ither of the two is the driver for the other.
Time series of physiological origin very often display S€'€s, I.€., neithe .
synchronous behavior. Most likely, this is the result of col-Moreover, a significant phase delay is found, for healthy sub-
lective behavior of a huge number of nonlinearly interacting€Cts: in the VLF band and in the high frequer(éyF) band.
elementary oscillators. Different examples of this phenom- "€ phase shift between DAP and SAP is positive in the VLF
enon, as well as models of it, can be found, for example, irpand and_negatlv_e in the_ HF band. This change of sign in the
[1]. In the present paper we address a further applicatiofnase shift has its origin in the regulatory mechanisms of
dealing with the dynamics of arterial blood pressure waves ir/0°d_circulation. A physiological interpretation of these
humans. Systolic blood pressutSAP) is the (maxima) mechanisms is beyond the scope of our work; however, the

e . hypothesis that synchronization results from the collective
pressure within the _cardlo_vascglar system as the heart PUMhavior of elementary nonlinear oscillators may offer a clue
blood into the arteries. Diastolic pressui2AP) represents

o . . 0 its understanding. To exploit this idea we use below two
the minimum in pressure, as happens while the heart res

4 fills with blood. ori h L ; ell-known models of coupled oscillators, the Winfree
and fills with blood, prior to the next contraction; we inves- e 151 and the Kuramoto modéb].

tigaFe the relation between DAP gnd SAP signals in healthy \yinfree’s papef5] on coupled oscillators provided one of
subjects. Blood pressure fluctuations represent the compleKe first tractable examples of a self-organizing system. Win-
interplay between several modulating factors like heart ratefree introduced an approximation that has become the stan-
peripheral resistance, cardiac contractility, central venougard approach to the study of ensembles of biological oscil-
pressure, and respiration. Since all these factors are under thors: In the weak coupling limit, amplitude variations could
control of the neural mechanisms responsible for cardiovasse neglected and the oscillators could be described only by
cular and respiratory regulation, the analysis of these fluctuaheir phases along their limit cycles. Winfree also discovered
tions may provide significant information on the physiology that systems of oscillators with randomly distributed fre-
and pathophysiology of the autonomic control of the cardio-quencies exhibit a remarkable cooperative phenomenon,
vascular functiorj2,3]. Synchronization of SAP and DAP is reminiscent of a thermodynamic phase transition, as the vari-
expected, though a detailed study of its features is apparentgnce of the frequencies is reduced. The oscillators remain
still lacking. In a previous papd#] it was noticed that DAP incoherent, each running near its natural frequency, until a
and SAP are characterized by a phase lag in the very lowertain threshold is crossed. Then the oscillators begin to
frequency band(VLF). The analysis of(4] uses Fourier synchronize spontaneously. The Winfree model was subse-
analysis, which is not particularly useful when nonstationaryquently modified by Kuramoto who provided an analytically
effects play a relevant role. In the present work we addressolvable version of if6]. This field of study has been very
two questions about the DAP/SAP relationship: Is the phasactive all along and the analysis of synchronization phenom-
lag depending on the frequency band? Is the phase lag coena remains a thriving area of research, [§gdor a review.
nected to a causal relation between SAP and DAP? To addaving in mind our experimental findings on the SAP/DAP
dress these questions, we measured the DAP and SAP signaddation, we first examine in Sec. Il the phase shift between
in a number of healthy subjects. Studying the mutual intercoupled oscillators in these models, once synchronization
dependency between the two time series, we conclude tha@s been reached. We observe that there exists a simple lin-
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ear dependence between phase shifts of synchronized osci F
lators and the difference between their natural frequencies | 1
This phenomenon offers a simple mechanism to describe thi ** | -

change of sign in the phase lag as the frequency band it os:

changed. In Sec. Ill we describe the experimental data an¢ s - .

analyze them using the theoretical approach of Sec. Il. More- - -0.5 |

over, we discuss the problem of the causal relation betweer | -1

the DAP/SAP time series. Finally in Sec. IV we draw our %% _ - ‘
conclusions. 09 095 1 105 Ll -02  -01 60 01 02

FIG. 1. Left: the rotation numbep plotted versusw for y
=0.10 andk=0.35,0.45,0.6%from top to botton). Right: 56 vs dw
A. Winfree model for the same values of and « (larger slopes correspond to smaller
values ofk).

Il. PHASE SHIFTS OF SYNCHRONIZED OSCILLATORS

The Winfree model is defined by the set of equatidns

N — .
) chronization; moreover, we take a temporal averaging over

N the common period to get rid of local fluctuations. We get
B0 = + 2 KP(6)R(H). 6]
j =1

t+T
It describes a set dfi>1 coupled nonlinear oscillators, with V=w- Ef dt o(t)sind(t) (4)
coupling constant proportional te. 6(t) is the phase of the TJi

ith oscillator and{w;} describes a set of natural frequencies

taken randomly from a distributiog(w). P(6;) is the influ- 314 consider variations iw:

ence function of theth oscillator andR(8,) is the sensitivity
function giving the response of thi¢h oscillator. We shall
assume belowg(w)=1/2y for ye[wg—7y,wo+7v], 9g(w)=0
otherwise. In the previous equatid?(6)=1+co%, R(0)=
-sind. The phase diagram of the Winfree model has been
recently discussef8]. In particular the long-time behavior of
the system is characterized by a synchronous dynamics for Since the oscillators are synchronizedy(t) is time-
and y not very large. Fow,=1 synchronization occurs for independent for a large enoughTherefore,

k<0.77 andy<h(k), where the functiom(x) can be found

in Fig. 3 of Ref.[8]; in any casey<<0.2. This means that all T om

the oscillators are characterized by a common average fres,, = @f dtJ dwg(w)J do(1

quency(or rotation number p;=lim,_..6,(t)/t. The Winfree T J 0

1 t+T
0=dw- ?f dt o(t) 66(t)cosi(t) . (5)
t

model can describe different sets of pulse-coupled biological A A
oscillators, see, e.g[9-11]. +cog)p(6,t, w)cosv(t)

We now wish to study the relation between the phase shift w80 (BT w80 (T
66 of a pair of oscillators and the difference of their natural = —f dt cosA(t) + —f dt
frequencieséw. We have performed numerical simulations t
with N=500 oscillators with different values of and y 2m R P
=0.10 corresponding to the synchronization phase. We have X f dw g(w)f dop(6,t,w)cod 6+ O(t)] + —f
considered times as large &s1000. As expected there is no 0 2T Jy
dependence on the initial conditions. On the contréfyis x o R
linearly related todw as shown in Fig. 1, where we plpf dtf dwg(w)f dép(6,t,w)cod 8- A(1)]. (6)
versusw; for various values ok (on the lefy and 66 versus 0
éw (on the righj. This dependence can be understood as
follows. AsN— o, the sum over all oscillators in E¢l) can
be replaced by an integral, yielding

t+T

The first two terms on the right-hand side of Ef) vanish
since the integrand functions have zero temporal average. We

v(O.t.) = & — o(t)sin 6, 2) get, therefore,
where
20 1ty Sw=—2756, (7)
a(t) = f f (1 +cosO)p(6,t,w)g(w)dwds. (3) 2

Herep(0,t, ) denotes the density of oscillators with phase which is the desired linear relation betweéw and 56. The
at timet. We consider the largebehavior to allow for syn- factor \ is evaluated as follows:
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¢ wp=1
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FIG. 2. The slope’d/ sw in the Winfree model. Lefts6/ Sw as
a function of« for two values ofwg and y=0.1. Right: 66/ dw as a
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FIG. 3. The slope5d/ w in the Kuramoto model. Left56/ Sw
as a function ok for two values ofwy andy=0.1. Right:56/ 6w as

function of y for two values ofw, and k=0.45. The curves are g fynction of y for two values ofwy and k=0.45.

independent ofvy,.

1

1 t+T 1+y 2w ~ R N
A= ?f dtf dwg(w)f dop(6,t,w)cod 6 - O(t)]
t 0
N t+

Y
11 (™7
NET

j=1 1 Jt

4y (1 4
[ g 42 o

T KA 1 K\

Hereq(56) is a probability distribution of96. It is related to
the probability distribution ofSw by Eq. (7). Both the dw
and the 56 distribution functions are derived from the

4yy

)

N
dt cog 6,(t) - ()] = %E cog 56]
j=1

()

frequencyp; = wy (we use the same distribution functigtw)

as beforg The latter results follow from the fact that the
phases, are dynamically pulled toward the mean phfgg
These results can be compared with an analytical treatment
by observing that, in this case, instead of E&).one gets

_ K90

t+T 2m
Sw= J dt f dowg(w) f dop(8,t, w)cod - at)].
T t 0

(12)

Due to the absence of terms analogous to the first and second
terms on the right-hand side of E(), we expect a better
agreement between numerical simulations and analytical

densityg(w). If this density is flat, as assumed here, tiien evaluation. From Eq(12) we get, instead of Eq7):

=g*g, i.e.,

q(66) = »

K\

(K—)‘>2|50|
4y '

In conclusionh is given by solving the equation

4—’; =\ sin2<2—7).
K K\

We notice that in Eq(7) there is no dependence aR; this
dependence is in the first two terms of K@) since they

vanish only in the largd\, larget limit.

In Fig. 2 we report the slopééd/ w as computed by Eq.
(10) as a function ofx (with y=0.1) on the left and as a
function of y (with «=0.45 on the right. This curve is inde-

9)

(10)

Ow = kNS0, (13
with \ given by
2 2
—2:)\<1—cos—7>. (14
K K\

These results are reported in Fig. 3 together with the results
of the numerical simulations.

Ill. SYSTOLIC/DIASTOLIC ARTERIAL PRESSURE
RELATION

A. Phase shifts from arterial pressure data

Let us consider two time series(t) andxp(t), represent-

pendent ofw,. We also report results of the numerical analy-ing systolic and diastolic arterial pressure. Data are from a

dence onwg [12].

B. Kuramoto model

deviation: 54+ /-8 yeajswho underwent a 10 min supine
resting recording of ECG and noninvasive arterial blood
pressurgby the Finapres devigein the laboratory for the
assessment of Autonomic Nervous System, S. Maugeri

The analysis of the Kuramoto model produces compafoundation, Scientific Institute of Montescano, Italy. For
rable results. The Kuramoto model is based on the set gfach cardiac cycle, corresponding values of SAP and DAP

equationgi=1,... N)

N
9|(t) =w;t EE Sin(ﬁi - 0])
Nj:l

(11)

were computed and resampled at a frequency of 2 Hz using a
cubic spline interpolation. In Fig. 4 we report the time series
of the systolic arterial pressupg(t) for one of the subjects
examined in this study.

These data are analyzed by filtering in appropriate fre-

The numerical results one gets are similar to those of Fig. Iquency bands. We consider here three bands: very low fre-

with a linear dependence aff on dw and the rotational

quency (VLF) band: (0.01,0.04 Hz; low frequency(LF)
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FIG. 5. The phase shift§0 for all 47 subjects filtered in the

120 VLF (left) and HF(right) bands.

50 100 150 200 computed and the so-callegeneralized phase differences
£ (sec) O, (D) =[Mepy () ~Nps(D]moerr With n,m integers, are
evaluated. In the present study only 1:1 synchronization has

7715 b been examined and the two phaggst), ¢,(t) coincide with
- the phases of the time serigs(t),Xg(t). Phase synchroniza-
75 | tion is characterized by the appearance of peaks in the dis-
- tribution of the phase difference. To evaluate the phase shift
a5 F we have considered time intervals characterized by a con-
E o E stant phase difference between the two series:
£ 5
= as | 860 = 6p(t) — 641). (16)
’ We find 66> 0 in the VLF band, i.e., in this band diastolic
65 pressure anticipates systolic pressure. Our analysis confirms
2.5 i the results of4] with a different method. On the other hand

T in the HF bandin basal conditiongthe phase shift is nega-
tive 60<<0, which means that in this band the systolic pres-
sure signal anticipates the diastolic one. These data are re-
ported for all 47 subjects in Fig. 5 that shows on the left the
FIG. 4. The time seriesq(t) (left) andxp(t) (right) of the sys-  VLF band and on the right the HF bartde have not re-
tolic and diastolic arterial pressures for one of the subjectgorted data in the intermediate region LF band, as they are
examined. compatible with56=0). We estimated 1.78 10°° to be the
probability that the phase shifts in the VLF band are sampled

band: (0.04,0.15 Hz; and high frequency(HF) band: from a distribution whose mean is less than or equal to zero;

5 > :
(0.15,0.45 Hz. In a previous pape#], using Fourier trans- analogously 3.& 107< is the probability that the phase shifts

form methods, occurrence of delays between SAP and DAY the HF band are sampled from a distribution whose mean
greater than or equal to zero.

was investigated, and it was found that DAP anticipates SA On a physiological basis these results mean that the dif-

Lnar\aLgef:el\;av};:?gjgéoinzﬁazsa:grg le_/g (eor.]?a?;en%esggcli-stic ferent sets of oscillators producing the time series have dif-
y : 9 a#erent spectral properties. Leaving aside the task of a physi-

pppulatlon with respect 1¢4] and gvaluate .the phases of ologically based modelization we now show that the results
signals by the analytic signal technique, which allows a bet-

. . : obtained in Sec. Il can shed light on this phenomenon. For
ter est|m§1te. As is well known. SAP. and DAP. are highly the present application we usegthe Winfre(f model.
synchronized and our data confirm this expectation. We have
used the Hilbert transform method that allows one to detect
phase synchronization in noisy scalar sigrjal3. To extract B. Interpretation of phase shifts
a phase from the signal one considers the Hilbert transform between related oscillatory signals

of the original time series

50 100 150 200 250 300
t (sec)

We present here a schematic view of phase skiftbe-
oo tween the time seriegg(t) and xp(t). This picture is only
y(t) = lpf Md?’, (15) qualitative and aims to reproduce the dependence of the sign
m o t=7 of 56 on the filter in the frequency power spectrum. As such,
the picture is not realistic and does not offer a physiologi-
where P denotes Cauchy principal value. Then one forms theally based model of the time series; nevertheless it can shed

analytic _signal z(t)=x(t)+iy(t)=A()é*®, where A(t) light on oscillator dynamics underlying them. Let us assume
={x%(t)+y%(t) and ¢(t) is the desired phase. To control the that the two oscillatory signate(t) andxp(t) are the result
possible synchronization of two signatg(t), x,(t) the fol-  of the collective behavior of two sets of oscillators, sets SAP

lowing procedure is applied: the phasggt) and ¢,(t) are  and DAP, respectively. We assume that this collective behav-
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1-y 1 1+y 2—-y 2 2+y
wp> wg - 0p > Og ws > wp - 05 > 0p
FIG. 6. The two intervals of natural frequenci@andB. A is on the left and is centered around the vadwel ; B, on the right, is centered
aroundb=2. We assume that oscillators with frequencies in the band &) produce collectively the signak(t) (Xp(t)), see the text.

ior produces a systolic arterial pressU&AP) and diastolic HF bands. The VLF band is the result of the collective be-
arterial pressuréDAP) time series. We assume that the os-havior of oscillators in sef\. For themwp > wg and there-
cillators in the set SAP have natural frequencies in the dofore, on the basis of the results of Sec. Hf=6p(t)

main w € (a-y,a) U (b,b+17), while frequencies for the set —6gt)>0. On the other hand in the HF bands> wp and

DAP are in the domairw e (a,a+y)U (b—v,b). We also therefored6<0. This simple mechanism implies the effect
assumey<1. We will use as numerical values=1,b=2, of a change of sign between the two phases when one goes

and y=0.1, see Fig. 6. from the very low frequency to the high frequency.

On the other hand the two bands1-y<w<1+y, and One might wonder if our data also show a causal depen-
B: 2-y<w<2+y would model the VLF and HF frequency dence between the two time series. To address this issue we
bands. have considered the ind&X|Y) that measures the nonlinear

Let us assume that the coupling among the oscillatornterdependency between two time serksand Y, as de-
having natural frequencies in the intervélsand B is mod-  scribed in[14]. More precisely, from the time serigsandy,
eled by the Winfree model, i.e., by E¢l). However, we one reconstructs delay vectaxg=(X,, ... Xp-m-1),) andyy,
assume for the coupling =(Yns -+ Yn-(m-1)s), Wheren=1, ... N is the time indexmis
the embedding dimension, andienotes the time lag. Lef
ands,j, j=1,... k, denote the time indices of tHenearest
neighbors ofx, andy,, respectively. For eack,, the mean
gquared Euclidean distance to itseighbors is defined as

k — kij = kH[2y = |w; — wj|], (17)

whereH is the Heaviside function. By this choice there is no
interaction between oscillators in the two bands, though
weak coupling would not alter the qualitative picture. We 1 k
consider one value of (k=0.65 in this casg The two sets ROX) ==, (xn =X, )2, (18)
of oscillators, one centered around the natural frequency Kj=1 "

wp=1 (setA) and the other aroundy=2 (set B) become
synchronized around two synchronization frequencie
wy g=0.62 Hz andwy=1.88 Hz, see Fig. {left side). Cor-
respondingly, on the right, we have two lines showing a lin-
ear dependence betweéa and 6. The two lines are almost 1 k

completely superimposed, which shows a weak dependence Rﬁk)(X|Y) = EE (Xn—Xsnj)Z- (19
on the average natural frequencies of the two sets. The inter- =1 ’

esting result, however, is related to our definition of VLF andThe interdependence measure is then defined as

while theY-conditioned mean squared Euclidean distance is
Stlefined by replacing the nearest neighbors by the equal time
partners of the closest neighborsygf

F A=
: — 1g RYX)
18 ol SX[Y)==2 =g (20)
16 [ z_j E Nn=1 (k)(x|Y)
141 0z p S(X|Y) is an asymmetric quantity and the degree of asymme-
Prap % 0 try is connected to the causal relationship between the two
1 'zj time series, in other words (X|Y) is much greater than
08 L :0'6 i S(Y|X) then we may conclude that is driving X. On the
06 F— ) ‘ ‘ , other hand each of these values measures by its size the
12 14 16 13 2 02 01 0 e 03 degre;e of. interdependenc$=0 (S=1) meaning.minimal
w; (maxima) interdependency. We evaluated these indexes both

on the SAP and DAP time serieg(t), xp(t) and on their
phasesfqt), 6p(t). In both cases the asymmetry was not
significant, which means that there is no causal relationship
nization frequencywy=1.88 Hz. Right: The phase shifi¢ be- between the SAP and DAP time series; however, the results
tween any pair of oscillators as a function of the differerie Obta!ned W'j[h the phase‘?’ are always muc_h greater than those
between the natural frequencies of the oscillators in the pairs. Th@Ptained with the full signals. Quantitatively, the3 average
partially overlapping lines refer to the two sets of oscillatarand ~ values for the HF band areS(xp|xg)=4.8x 10 and

B, which shows a weak dependence of the slope on the natursiXgXp) =4.6x 1073, which shows a very small asymmetry
frequencies. Numerical results refers=1000 oscillators, withe and, at the same time, a very small interdependency. As to
=0.65. the phases, we ge®(6p|69)=0.899 andS(#46p)=0.901,

FIG. 7. Left: The oscillators of se&i, with frequencies centered
arounda=1, become synchronized with a frequency arourgle
=0.62 Hz; those of seéB (frequencies arounkd=2) have a synchro-
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which on the contrary shows a larger interdependency. Similatory components of systolic and diastolic blood pressure
lar results are obtained in VLF and LF bands. Besides showtime series show a change of sign going from low to high
ing the absence of a causal relation, these results confirm thitequencies.We have addressed it within the paradigm of
in these systems of oscillators the main source of informatiorroupled nonlinear synchronous oscillators. We have shown,
on the underlying structures resides in the dynamics of theising Winfree and Kuramoto models, that once synchroniza-

phases. tion is achieved, the phase delay between oscillators is deter-
mined by the underlying structure and we have found a lin-

IV. CONCLUSIONS ear relationship between oscillator phase shifts and the

difference of their natural frequencies. We then used these

Our results represent an original analysis of the relatiorresults to describe our findings that confirm that changes in
between systolic/diastolic blood pressure, which completethe modulating factors of arterial pressure affect differently

previous studie§d]. The measured delays between the oscil-the systolic and diastolic pressure valigs
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