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We discuss pore dynamics in osmotically stressed vesicles. A set of equations which govern the liposomal
size, internal solute concentration, and pore diameter is solved numerically. We find that dependent on the
internal solute concentration and vesicle size, liposomes can stay pore free, nucleate a short-lived pore, or
nucleate a long-lived pore. The phase diagram of pore stability is constructed, and the different scaling regimes
are deduced analytically.
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I. INTRODUCTION

Liposomal vesicle consists of a lipid bilayer separating
the interior volume, containing an aqueous solution, from an
exterior suspension. The vesicle membrane allows for a free
exchange of water between the interior and exterior of the
liposome, with the flux determined by the membrane com-
position. On the other hand, the lipidic membrane strongly
inhibits the passage of large molecules, in particular if they
contain ionized groups.

Liposomes are of great theoretical interest as the simplest
model of a biological cell. They are also of great practical
importance as vehicles for drug delivery. In the latter case
liposomes are designed to contain a specific drug or a gene
needed to fight the disease. The liposomal affinity for in-
fected tissue can be increased by varying the membrane
composition or including ligands which bind to specific re-
ceptors.

If a vesicle containing high internal solute concentration
is placed inside a dilute solution, the osmotic influx of sol-
vent into the interior of a vesicle can lead to its rupture.
Whether the rupture occurs depends on the membrane elas-
ticity and on the internal solute concentration of the lipo-
some. Rupture of the liposomal membrane results in the for-
mation of pores[1]. This releases the membrane stress, but
comes at a price of exposing the hydrophobic membrane
interior (lipidic tails) to water. Once a pore is formed, the
internal content of the vesicle begins to leak out, resulting in
a decrease of membrane tension and eventual pore closure.
We find that depending on the vesicle size and internal con-
centration of solute, pores can be either short or long-lived.
For long-lived pores a scaling relation between the lifetime
of a pore and the size of the vesicle is found. The full phase
diagram of pore stability in the concentration-vesicle size
plane is constructed, and the different scaling regimes are
deduced analytically.

The paper is organized as follows: In Sec. II we review
the previously derived equations governing the nucleation
and growth of a pore in an osmotically stressed vesicle[2].
In Sec. III a numerical solution of the dynamical equations is
presented. In Sec. IV the phase diagram for different dynami-
cal regimes is derived. In Sec. V the rate of solute leak-out is
determined and analytical estimates of the pore lifetime are
provided. Finally, in Sec. VI the conclusions are presented.

II. MODEL

As was already stressed in the Introduction, the liposomal
membrane allows for a free exchange of water between the
exterior and interior of a vesicle. The rate of this exchange is
determined by the permeability of the membrane,P. On the
other hand, the lipidic membrane strongly inhibits the ex-
change of solute molecules between the inside and outside of
a liposome. When a vesicle of high internal solute concen-
tration is placed inside a solute-depleted medium, an osmotic
pressure difference causes an influx of water into the vesicle.
The vesicle then swells until the internal Laplace pressure is
able to compensate for the osmotic pressure. The influx of
water results in a buildup of membrane stress which ener-
getically favors membrane rupture and the formation of
pores. Pores are nucleated in the membrane through thermal
fluctuations. Here we consider the opening of a single pore.
The underlying assumption is that, once a pore is formed,
stress is quickly released and the creation of a second pore
becomes highly unlikely. This situation is quite different
from what is encountered in electroporation. In that case the
opening of a pore does not fully release the membrane stress,
which is induced by the transmembrane potential, and one
finds a coexistence of pores with different sizes[3,4].

The single-pore assumption allows us to write simple
equations governing the internal vesicle dynamics. Designat-
ing the difference between the internal and external molar
concentrations of solute asc—and considering, for math-
ematical simplicity, a spherical vesicle of radiusR and a
circular pore of radiusr—the mass conservation leads to

4pr R2dR

dt
= jw − pr2rv, s1d

wherer is the density of water,jw the osmotic current, andv
is the leak-out velocity.

The osmotic currentjw is determined by the permeability
of the liposomal membrane and the difference between the
target osmotic pressure,

Dpo = kBTNAc, s2d

and the Laplace pressure,
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DpL =
2s

R
, s3d

inside and outside the vesicle. In the above expressionskB is
the Boltzmann constant,T is temperature,NA is the Avogadro
number, ands is the membrane surface tension. A simple
phenomenological expression for the osmotic current of wa-
ter into the vesicle is

jw = Ps4pR2 − pr2dFc −
DpL

103kBTNA
G , s4d

where the conversion factor 103 accounts for the use of mo-
lar concentration of solutec.

If c is not too large, the membrane integrity will not be
compromised, and a stationary state withjw=0 will be
achieved. Under these conditions the osmotic pressure is
completely compensated for by the Laplace pressure, result-
ing in a zero net flux of solvent. For sufficientlylarge inter-
nal concentration of solute, a stationary state willnot be
achieved before membrane ruptures. The leak-out velocity
[5–8] of the internal content of a liposome is determined by
the balance between the shear stress, proportional tohv / r,
and the Laplace pressure inside the vesicle,DpL. For low
Reynolds numbers[5],

v =
DpLr

3ph
, s5d

whereh is the solvent viscosity.
The growth of a pore is controlled by the rate at which the

membrane elastic energy is dissipated. Since the viscosity of
the membrane is five orders of magnitude larger than that of
water, most of the energy dissipation is confined to the mem-
brane interior[9]:

hml
dr

dt
= −

] E

] r
, s6d

where l is the membrane width andhm is the membrane
viscosity. A lipid bilayer has low permeability to solute par-
ticles, in particular if they are charged, so that the internal
solute concentration is modified only through the osmotic
influx of solvent or the efflux of solute through an open pore,
after the membrane has ruptured. The continuity equation
expressing this is

4p

3
R3dc

dt
= − 4pR2c

dR

dt
− pr2cv, s7d

where we have assumed that the solute is uniformly distrib-
uted inside the vesicle. In the absence of a pore, efflux is
zero, and the second term on the right-hand side of Eqs.(1)
and (7) disappears.

A. Membrane energy

The membrane energy consists of two terms: the elastic
termEs, measuring the cost of increasing the membrane area
beyond its equilibrium unstretched sizeA0, and the pore con-
tribution Ep, resulting from the partial exposure of the hydro-
phobic lipidic tales to the aqueous environment.

For large osmotic pressures, which are of interest to us,
the membrane thermal undulations can be ignored and the
membrane elastic energy takes a Hooke-like form

EssR,rd =
1

2A0
ksA − A0d2, s8d

where A0=4pR0
2 is the equilibrium surface area of an un-

stretched vesicle,A=4pR2−pr2 is the total membrane area,
andk is the membrane elastic modulus[10–12]. The mem-
brane surface tension is

s =
] Es

] A
= k

A − A0

A0
, s9d

and the pore energy is

Epsrd = 2pgr , s10d

whereg is the pore line tension.
The typical values for the physical constants involved in

the model are given in Table I.

B. Rupture condition

The total energy of a membrane containing a pore is
EsR,rd=EssR,rd+Epsrd. A cost of opening a pore of radiusr
is, then,

DEsR,rd = EsR,rd − EsR,0d. s11d

In Fig. 1 we plotDEsR,rd as a function ofr for various ratios
of R/R0. ForR.R0, the membrane is relaxed andr =0 is the
only minimum of DE. For R bigger than the critical radius
Rc, the energy cost function develops a barrier located at

rb =
4ÎR2 − R0

2

Î3
cosSw − 2p

3
D s12d

and a new minimum at

rm =
4ÎR2 − R0

2

Î3
cosSw

3
D , s13d

where

TABLE I. Characteristic values for the physical parameters used
in the calculations.

Parameter Value Source

g 10−12 J/m Ref.[8]

k 0.2 J/m2 Ref. [11]

hm 100 Pa s Ref.[8]

hw 0.001 Pa s

P 1.8310−4 kg/sm2 s Md Ref. [13]

l 3.5 nm Ref.[8]
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wsR,R0d = cos−1S−
3Î3

8

EsR,2ÎR2 − R0
2d

EsR,0d
D . s14d

The critical vesicle sizeRc for the appearance of a new mini-
mum is determined by the conditionw=p or

3Î3

8

EsRc,2ÎRc
2 − R0

2d
EsRc,0d

= 1. s15d

Substituting the solution of Eq.(15) into Eq. (9) the critical
surface tension for appearance of the second minimum is

sc
s1d = 3SgÎk

R0
D2/3

. s16d

From Eq.(4) we see that a minimum solute concentration

cmin
s1d =

2sc
s1d

103kBTNAR0
Î1 + sc

s1d/k
s17d

is necessary to develop the second minimum inDE at rm.
However, the concentrationcmin

s1d does not guarantee the open-
ing of a pore. Even ifDEsR,rmd,0, the energy barrier to
pore nucleation can be manykBT high. Therefore, pores with
a radius less thanrb will quickly reseal, without having a
chance to grow.

The probability of occurrence of a sufficiently large ther-
mal fluctuation necessary to open a pore withr . rb is

Psrd , e−bDEsR,rbd. s18d

The waiting time for opening a pore of radiusr ù rb is, there-
fore, very long unless

DEsRp,rbd . kBT. s19d

This equation, then, determines the size of a swollen vesicle,

Rp = R0
Î1 + sc

s2d/k, s20d

which is able to nucleate a growing pore. The membrane
tension of such a liposome is approximately,

sc
s2d <

pg2

kBT
, s21d

and the critical pore size isrb<g /s. The minimum concen-
tration of solute necessary to reach this tension is

cmin
s2d =

2sc
s2d

103kBTNARp
. s22d

We note that for the membrane parameters given in Table
I, the membrane tension issc

s2d.10−3 J/m2, which is very
close to the one found to be necessary to rupture a mechani-
cally stretched membrane[3,14].

III. PORE DYNAMICS

The rupture dynamics of an osmotically stressed vesicle
proceeds as follows. Att=0 the vesicle starts swelling, its
size and internal concentration controlled by Eqs.(1) and(7).
As it swells, the membrane surface tension increase untils
=sc

s1d and the energy function develops a new minimum. If
the barrier height is less thankBT, a pore of sizerb is nucle-
ated. From this moment the dynamics of the vesicle evolu-
tion is controlled by the set of equations(1), (6), and(7). On
the other hand, ifDEsRc,rbd.kBT, the swelling continues
without a pore nucleation until Eq.(19) is satisfied and a
pore of radiusrb opens. After a pore is nucleated, the internal
content of the vesicle begins to leak out, decreasing the
membrane tension and leading to an eventual resealment of
the pore. The cycle will be repeated until the internal con-
centration of solute drops belowcmin

s1d and a steady state with
jw=0 is established. In Fig. 2 we show the pore radius as a
function of time for vesicles of three different sizes and ini-
tial concentration of solutec0=0.5M.

FIG. 1. EnergyDEsR,rd necessary to open a pore of radiusr in
a liposome withR0=100 nm and ratiog / skR0d=5310−5. The
curves are, from top down,R/R0=1.0, R/R0=1.0008, R/R0

=1.001, andR/R0=1.0012.

FIG. 2. Radius of a pore as a function of time for vesicles of
R0=200 nm(topmost), 220 nm, and 240 nm(bottommost), for ini-
tial concentrationc0=0.5M. Note that for a vesicle withR0

=200 nm the pores are short lived, while for larger vesicles, a long-
lived pore opens first.
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We see that small vesicles are characterized by a rapid
opening and closing of pores, resulting in a periodic flicker-
ing with a characteristic timet f <10−2 s. On the other hand,
larger vesicles are capable of nucleating a long-lived pore.

After the long-lived pore has closed, it is followed by a
sequence of short-lived pores, with the characteristic life
spant f. The life span of a long-lived poret is show in Fig.
3. For large vesicles, the life span scales with the vesicle size
as

t , R0
n, s23d

with n<2.3-2.4; see Fig. 3.

IV. PHASE DIAGRAM

To better understand the details of the vesicle evolution, it
is convenient to separate the membrane dynamics from the
concentration dynamics. Since the internal solute concentra-
tion changes very slowly compared to thet f (see Fig. 4), as
a first approximation we can take it to be constant.

In this case the vesicle evolution is controlled by Eqs.(1)
and (6), which can be written as

dR

dt
= FsR,rd, s24d

dr

dt
= GsR,rd, s25d

where

FsR,rd =
1

4prR
s jw − pr2rvd s26d

and

GsR,rd = −
1

hm,

] E

] r
. s27d

The vesicle dynamics is governed by the fixed pointsr* ,R*d,
determined from dr /dt=0=GsR* ,r*d=0 and dR/dt=0
=FsR* ,r*d. The stability of the fixed point is controlled by
the eigenvaluesl1 andl2 of the Jacobian matrix

J =1
] F

] R

] F

] r

] G

] R

] G

] r
2 . s28d

It is important to keep in mind that the coefficients of the
Jacobian matrix are real and, therefore, the eigenvalues are

either real or complex conjugates,l1= l̄2. For all the param-
eters that we have investigated the eigenvalues are complex
conjugates, and the stability is governed by Resl1d=Resl2d
;Resld. If Resld,0, the fixed point is stable and a station-
ary state with a pore of sizer* and vesicle of sizeR* will be
established. On the other hand, if Resldù0, the fixed point
is unstable, and the pore will eventually close; see Figs. 5
and 6. A new pore will open when the membrane tension
again reaches the valuesc

s2d. This process will repeat indefi-
nitely with characteristic timet f.

The phase boundary, in the concentration-size plane
sR0,cd, between the two dynamical regimes is determined by
the condition Resld=0 or, equivalently,

Tr JuR* ,r* = 0, s29d

which reduces to

FIG. 3. Life span of the first open pore as a function of vesicle
sizeR0 for c0=0.5M (rightmost), 1.0M and 5.0M (leftmost). Note
the appearance of critical vesicle sizeR0

csc0d (sharp change in slope
of t vs R0) which sustains a long-lived pore. The peculiar spikes in
the lifetime of vesicles containing a low concentration of solute are
an artifact of the way the pores are nucleated. On the other hand,
the existence ofR0

csc0d is independent of pore nucleation protocol.

FIG. 4. Concentration decay as a function of time. The circles
are the result of numerical integration of Eqs.(1), (6), and(7). The
solid lines are from the analytical expression(40). Open circles are
for a vesicle ofR0=100 nm and solid circles are for a vesicle of
R0=300 nm. The initial solute concentration isc0=0.5M.
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1

4prR2

]

] R
s jw − pr2rvd −

1

hm,
U ]2E

] r2U
R* ,r*

= 0. s30d

Combining Eqs.(3) and (5), the leak-out velocity is

v =
2sr

3phR
. s31d

Differentiatingv with respect to the vesicle size,

] v
] R

= −
v
R

+
16rk

3hA0
. s32d

The change of surface tension with the pore size is given by

] s

] r
= − 2pr

k

A0
. s33d

For large concentrations andR@ r, the osmotic current can
be approximated by

jw . PAc, s34d

so that

] jw
] R

=
2

R
jw. s35d

At fixed point sR* ,r*d,

jw
* = pr*2rv* =

2rg3

3hR0s*2 , s36d

where we have approximatedR.R0 and r* =rb.g /s* .
Equation(30) then reduces to a quartic equation fors* :

s*4 +
2g2

A0
Shm,g

hR0
2 − pkDs* −

16p

3

hm,g3k

hA0
2 = 0. s37d

Combining Eqs.(34) and (36), the phase boundary separat-
ing the regime of short-lived pores(region II) from the long-
lived (infinite life-time) pores(region I) is

ccsR0d =
rg3

6phPR0
3s* s38d

(see Fig. 7).

FIG. 5. Dynamics of the pore for fixed concentration andR0

=500 nm. The top panel is forc0=0.19M, and the bottom panel for
c0=0.18M.

FIG. 6. Radius of a pore as a function of time for vesicles of
R0=500 nm for a constant internal concentration of solutec0

=0.18M (top) andc0=0.19M (bottom).

FIG. 7. The phase diagram for the constant-concentration dy-
namics. In region I, an open pore is stable. In region II, the size of
a pore oscillates, and in region III pores do not open. The dashed
line indicates the minimum solute concentration needed to open a
pore. The discontinuity in its derivative is due to the fact that for
small R0 the barrier to pore nucleation is lower thankBT.
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For small concentrations, the surface tension does not
build sufficiently high to cause the membrane rupture(region
III ). The phase boundary between regions II and III is de-
noted by a dashed curve in Fig. 7. The discontinuity in slope
results from the nucleation barrier passing the threshold
DE=kBT. Thus the right-hand side of the II-III phase bound-
ary is given bycmin

s2d sR0d, while the left-hand sidecmin
s1d sR0d.

The role of the concentration dynamics is to make the
system traverse through the different regions of the phase
diagram, controlling the time of permanence in each regime.

V. DYNAMICS OF SOLUTE LEAK-OUT

The critical size of a liposomeR0
csc0d, necessary for

nucleating a long-lived pore, depends on the initial solute
concentration. The larger is the solute concentrationc0, the
smaller will be the size of a vesicle which supports a long-
lived pore. The long life span of these pores is the result of a
“wash-out” effect in which the osmotic flux is almost com-
pletely compensated by the leak-out rate of solute through
the pore. When the solute concentration inside the vesicle
drops below the critical valueccsR0d, the long-lived pore
closes. This value is insensitive to the initial solute concen-
tration c0, but depends strongly on the vesicle sizeR0.

Combining Eqs.(1) and (7) we obtain

4p

3
R3dc

dt
= −

jw
r

c. s39d

Approximating jw. PcA andR.R0 leads to

cstd = c0F3Pc0

rR0
t + 1G−1

. s40d

Equation(40) provides an almost perfect fit of the time
dependence of the internal solute concentration(see Fig. 4).
The life span of a long-lived pore can be approximated by
the time it takes for the solute to go from the initial concen-
tration c0 to the critical concentrationccsR0d, below which
the pore is no longer stable:

t .
rR0

3PccsR0dF1 −
ccsR0d

c0
G . s41d

It is possible to derivate two limits for the critical concen-
tration ccsR0d (see the Appendix). Writing

ccsR0d =
rg

6phP

1

R0fsR0d
s42d

for vesicles of radiusR0.R1;Îghm, /pkh,

fsR0d = F 1

31/4Îk

g
R1 +

Î3

8R0R1
sR0

2 − R1
2dG2

, s43d

and forR0@R1,

fsR0d = F1

2

k

g

1

R0
sR0

2 − R1
2dG2/3

, s44d

and therefore the life span of long-lived pores scales as

t ,HR0
2, R0 . R1,

R0
2+2/3, R0 @ R1.

s45d

For the parameters used in this paperR1=41.8 nm, so that
Eq. (44) is consistent with the numerical findings(see Fig.
3).

The flickering timet f is approximately the time it takes
for a vesicle to swell to sizeRp needed to induce a liposomal
rupture. During the swelling, the internal concentration of
solute changes very little, sinceRp.R0, so thatc can be kept
constant. Furthermore, for large initial solute concentrations,
the osmotic current isjw<4pPR2c, and Eq.(1) is easily
integrated, yielding

t f =
rsRp − R0d

Pc
. s46d

On the other hand,

sc
s2d = k

Rp
2 − R0

2

R0
2 <

2k

R0
sRp − R0d. s47d

Substituting Eq.(47) into Eq. (46) we obtain the expression
for the flickering time:

t f <
rR0sc

s2d

2Pc k
, s48d

wheresc
s2d is given by Eq.(21).

VI. CONCLUSIONS

We have presented a theory for the nucleation and growth
of pores in osmotically stressed liposomal vesicles. The
model predicts that depending on the internal solute concen-
tration and the liposome size, pores can be either short
lived—opening and closing with a characteristic time
t f—or long lived, with their lifetime scaling with the size of
the vesicle.

Long-lived pores have been observed in red blood cell
ghosts[15,16]. No theory, up to date, was able to account for
these long-lived pores. Holes were predicted to either grow
indefinitely, which would result in ghost vesiculation, or to
close completely[17]. Our model provides a dynamical
mechanism for pore stabilization, consistent with the experi-
mental observations. However, for the specific case of red
blood cell ghosts the ratio ofg /k must be adjusted to obtain
the pore size observed in experiments. This is not surprising
since the real biological cells, unlike liposomes, have a com-
plicated internal cytoskeleton, which strongly affects the
membrane elasticity.

In aqueous solutions the phospholipid membranes acquire
a net negative charge. At physiological concentrations,
154 mM of NaCl, the Debye length, however, is quite short,
less than 1 nm and the electrostatic interactions are strongly
screened[18]. We therefore do not expect that electrostatics
will significantly modify the basic conclusions of our theory,
beyond the renormalization of membrane line[17] and sur-
face tension. However, further investigations in this direction
are necessary and will be the subject of future work.
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Finally, up to now we have not taken into account a dif-
fusive efflux of solute through an open pore. The character-
istic time for effusion can be estimated as[19]

te <
R0

3

rD
, s49d

whereD is the diffusion constant. UsingD<10−9 m2/s, ap-
propriate for small organic molecules such as sucrose, and
r =r* <g /sc<1 nm, we see that for liposomes withR0
=200 nm, the time for effusion iste<10−2 s. This is com-
parable to the flicker timet f. Therefore, for small vesicles
effusion is an important mechanism for loss of solute. On the
other hand, for large liposomes withR0=500 nm and above,
effusion is only marginally relevant.
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APPENDIX

Here we present a derivation of the limiting form of the
phase boundary, Eqs.(42)–(44), separating regions I and II
of the phase diagram, Fig. 7. Writing

s* =
g

R0
x, sA1d

Eq. (37) reduces to

x4 + G1x + G2 = 0, sA2d

with

G1 = −
1

2

k

g
S1 +

R1

R0
DsR0 − R1d, sA3d

G2 = −
1

3
Sk

g
R1D2

, sA4d

where

R1 =Îg hm,

pk h
.

The solutions of a quartic equation like Eq.(A2) can be
written as

x1,2=
1

2FÎy ±Î− uyu −
2G1

Îy
G ,

x3,4=
1

2F− Îy ±Î− uyu +
2G1

Îy
G ,

wherey is the real root of the resolvent

y3 − 4G2y − G1
2 = 0.

Since the surface tension is non-negative, the physically rel-
evant solution forx depends on the sign ofG1 and we can
write

x =
1

2
FÎ2uG1u

Îy
− uyu − sgnsG1dÎyG . sA5d

For an equation of the formy3+ay+b=0 there is a single
real root if

Q = Sb

2
D2

+ Sa

3
D3

. 0

and this real root is

y = S−
b

2
+ ÎQD1/3

+ S−
b

2
− ÎQD1/3

. sA6d

This is precisely our case sinceG2,0 and, therefore,Q.0.
It is convenient to rewrite Eq.(A6) as

y = SG1
2

2
D1/3

cszd,

where

z= − SG2

3
D3S 4

G1
D4

and

cszd = sÎ1 + z+ 1d1/3 − sÎ1 + z− 1d1/3.

The c function has the asymptotic behaviors

cszd = 52

3
z−1/3 −

8

81
z−4/3, z@ 1,

21/3 − sz/2d1/3, z! 1.

sA7d

Putting everything together we have

y = 5 G1
2

4G2
, z@ 1,

G1
2/3, z! 1.

sA8d

In the first case we obtain

x . s− G2d1/4 −
G1

4Î− G2

sA9d

and in the second case

x . uG1u1/3. sA10d

Using the expressions forG1 and G2, we obtain Eqs.
(42)–(44).
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