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Rupture of a liposomal vesicle
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We discuss pore dynamics in osmotically stressed vesicles. A set of equations which govern the liposomal
size, internal solute concentration, and pore diameter is solved numerically. We find that dependent on the
internal solute concentration and vesicle size, liposomes can stay pore free, nucleate a short-lived pore, or
nucleate a long-lived pore. The phase diagram of pore stability is constructed, and the different scaling regimes
are deduced analytically.
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I. INTRODUCTION Il. MODEL

Liposomal vesicle consists of a lipid bilayer separating As was already stressed in the Introduction, the liposomal
the interior volume, containing an aqueous solution, from afneémbrane allows for a free exchange of water between the

exterior suspension. The vesicle membrane allows for a frefxterior and interior of a vesicle. The rate of this exchange is

exchange of water between the interior and exterior of th&€termined by the permeability of the membraReOn the

liposome, with the flux determined by the membrane comOther hand, the lipidic membrane strongly inhibits the ex-

position. On the other hand, the lipidic membrane stronglfhange of solute molecules between the inside and outside of

inhibits the passage of large molecules, in particular if they? lPOsome. When a vesicle of high internal solute concen-
contain ionized groups. tration is placed inside a solute-depleted medium, an osmotic

Liposomes are of great theoretical interest as the simple@r€Ssure difference causes an influx of water into the vesicle.
model of a biological cell. They are also of great practicaIThe vesicle then swells until the internal Laplace pressure is
importance as vehicles for drug delivery. In the latter caséP!e to compensate for the osmotic pressure. The influx of

liposomes are designed to contain a specific drug or a genféater results in a buildup of membrane stress which ener-
needed to fight the disease. The liposomal affinity for in-9€tically favors membrane rupture and the formation of

fected tissue can be increased by varying the membrarf2ores: Pores are nucleated in the membrane through thermal

composition or including ligands which bind to specific re- huctuations. Here we consider the opening of a single pore.
ceptors. The underlying assumption is that, once a pore is formed,
If a vesicle containing high internal solute concentrationSI'€SS is quickly released and the creation of a second pore

is placed inside a dilute solution, the osmotic influx of sol-2€comes highly unlikely. This situation is quite different
vent into the interior of a vesicle can lead to its rupture.ffom what is encountered in electroporation. In that case the

Whether the rupture occurs depends on the membrane ela@€ning of a pore does not fully release the membrane stress,
ticity and on the internal solute concentration of the lipo-Which is induced by the transmembrane potential, and one
some. Rupture of the liposomal membrane results in the forindS & coexistence of pores with different siz8sy.
mation of poreg1]. This releases the membrane stress, but 1h€ Single-pore assumption allows us to write simple
comes at a price of exposing the hydrophobic membran&duations governing the internal _veS|cIe dynamics. Designat-
interior (lipidic tails) to water. Once a pore is formed, the INd the difference between the internal and external molar
internal content of the vesicle begins to leak out, resulting iffoncentrations of solute as—and considering, for math-

a decrease of membrane tension and eventual pore closufédnatical simplicity, a spherical vesicle of radi&sand a

We find that depending on the vesicle size and internal corcireular pore of radius—the mass conservation leads to

centration of solute, pores can be either short or long-lived.

For long-lived pores a scaling relation between the lifetime LdR . 2

of a pore and the size of the vesicle is found. The full phase 4mp R Gt JwTm ey, @)
diagram of pore stability in the concentration-vesicle size

plane is constructed, and the different scaling regimes a
deduced analytically.

The paper is organized as follows: In Sec. Il we review
the previously deriveq equations_governing the nucleatio%f the liposomal membrane and the difference between the
and growth of a pore in an osmotically stressed vedi2le target ti

) . ; . . target osmotic pressure,
In Sec. lll a numerical solution of the dynamical equations is
presented. In Sec. IV the phase diagram for different dynami-
cal regimes is derived. In Sec. V the rate of solute leak-out is Ap, =kgTNaC, (2)
determined and analytical estimates of the pore lifetime are
provided. Finally, in Sec. VI the conclusions are presented.and the Laplace pressure,

rﬁ/herep is the density of watelj,, the osmotic current, angd
is the leak-out velocity.
The osmotic current,, is determined by the permeability
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20 TABLE I. Characteristic values for the physical parameters used
Ap.= R’ (3) in the calculations.
inside and outside the vesicle. In the above expresdigiss  Parameter Value Source
the Boltzmann constant, is temperature, is the Avogadro 1
number, ands is the membrane surface tension. A simple 7 107J/m Ret.[8]
phenomenological expression for the osmotic current of wa- ¥ 0.2 J/nt Ref. [11]
ter into the vesicle is Mm 100 Pa's Ref[8]
Tw 0.001 Pa's
jw=PA4mRZ - wrz)[c - i} , (4) P 1.8X107% kg/(m? s M) Ref. [13]
10°%pTN, | 3.5 nm Ref[8]

where the conversion factor 3@ccounts for the use of mo-

lar concentration of solute. ) i )
If ¢ is not too large, the membrane integrity will not be  For large osmotic pressures, which are of interest to us,

achieved. Under these conditions the osmotic pressure feémbrane elastic energy takes a Hooke-like form

completely compensated for by the Laplace pressure, result- 1

ing in a zero n_et flux of solvent. For_ sufficientlgrge _mter- E(RT) = —x(A-Ag)?, (8)

nal concentration of solute, a stationary state wiit be 27

achieved before membrane ruptures. The leak-out velocity

[5—8] of the internal content of a liposome is determined bywhere Ay=47Rj is the equilibrium surface area of an un-

the balance between the shear stress, proportiongbto,  stretched vesicleA=47R?- 712 is the total membrane area,

and the Laplace pressure inside the vesidlp,. For low and« is the membrane elastic modul{0—-12. The mem-

Reynolds numberfs], brane surface tension is
_Apyr JE A-
v= (5) o= Ak ©
n dA Ay
where 7 is the solvent viscosity. .
The growth of a pore is controlled by the rate at which the2nd the pore energy is

membrane elastic energy is dissipated. Since the viscosity of _
the membrane is five orders of magnitude larger than that of Ep(r) = 2myr, (10

water, most of the energy dissipation is confined to the memWhere is the ore line tension
brane interioff9]: Y p .

The typical values for the physical constants involved in

dr JE the model are given in Table I.
el d_ =TT (6)
t ar
where | is the membrane width ang), is the membrane B. Rupture condition
viscosity. A lipid bilayer has low permeability to solute par-  The total energy of a membrane containing a pore is
ticles, in particular if they are charged, so that the internaE(R,r)=E4R,r)+Ey(r). A cost of opening a pore of radius
solute concentration is modified only through the osmotids, then,
influx of solvent or the efflux of solute through an open pore,
after the membrane has ruptured. The continuity equation AE(Rr)=E(Rr) - E(R0). (11
expressing this is
In Fig. 1 we plotAE(R,r) as a function of for various ratios
AiTde_C __ 4Wchd_R - @ of R/R,. ForR=R;, the membrane is relaxed andO is the
’ only minimum of AE. For R bigger than the critical radius

3 dt dt
. . . .. R, the energy cost function develops a barrier located at
where we have assumed that the solute is uniformly dIStI’IbBC 9y P

uted inside the vesicle. In the absence of a pore, efflux is

[52 _ p2 _
zero, and the second term on the right-hand side of &gs. Fp= 4VRF ROCO< @ 2”) (12)
and(7) disappears. V3 3
A. Membrane energy and a new minimum at
The membrane energy consists of two terms: the elastic R
term Eg, measuring the cost of increasing the membrane area F= \—_ROCM(E), (13)
beyond its equilibrium unstretched si&g, and the pore con- V3 3
tribution E,,, resulting from the partial exposure of the hydro-
phobic lipidic tales to the aqueous environment. where
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r/ Ro FIG. 2. Radius of a pore as a function of time for vesicles of
Ry,=200 nm(topmos}, 220 nm, and 240 nrtbottommosy, for ini-
FIG. 1. EnergyAE(R’r) necessary to open a pore of radiuis tial ConcentrationCOZO.EM. Note that for a vesicle WlthRO
a liposome withRy,=100 nm and ratioy/(kRy)=5x10"5. The =200 nm the pores are short lived, while for larger vesicles, a long-
curves are, from top downR/R,=1.0, R/R,=1.0008, R/IR, lived pore opens first.
=1.001, andR/Ry=1.0012.

R,=RoV1 + 0Pk, (20)
[2 IR2 —
o(R, RO):Cos-l(_ﬁE(R'Z\—RR%)> (14)  which is able to nucleate a growing pore. The membrane
8 E(R,0) tension of such a liposome is approximately,
The critical vesicle siz&; for the appearance of a new mini- @ Y
mum is determined by the conditiap= 7 or Oc =~ kB_T’ (21)
3\3E Re, 2VRE - RS) and the critical pore size ig,~ y/o. The minimum concen-
3 E(R.,0) =1 (15 tration of solute necessary to reach this tension is
(2
Substituting the solution of Eq15) into Eq. (9) the critical c@ = 20¢ _ (22)
surface tension for appearance of the second minimum is M 10°ks TNAR,
7\“‘“‘; 2/3 We note that for the membrane parameters given in Table
oM = 3<E) (16) 1, the membrane tension is.” =103 J/n¥, which is very

close to the one found to be necessary to rupture a mechani-
From Eq.(4) we see that a minimum solute concentration C2lly stretched membrar{@,14.

25 Ill. PORE DYNAMICS
¢

(L) - (17)

min

The rupture dynamics of an osmotically stressed vesicle
proceeds as follows. At=0 the vesicle starts swelling, its
is necessary to develop the second minimumAl at r,.  size and internal concentration controlled by Ed$and(7).
However, the concentratiarﬁn does not guarantee the open- As it swells, the membrane surface tension increase until
ing of a pore. Even ifAE(R,r) <0, the energy barrier to o and the energy function develops a new minimum. If
pore nucleation can be maiyT high. Therefore, pores with the barrier height is less thd@T, a pore of size, is nucle-

a radius less than, will quickly reseal, without having a ated. From this moment the dynamics of the vesicle evolu-

10%gTNARoV1 + oM/

chance to grow. tion is controlled by the set of equatio(, (6), and(7). On
The probability of occurrence of a sufficiently large ther- the other hand, iAE(R;,ry,) >kgT, the swelling continues
mal fluctuation necessary to open a pore withry is without a pore nucleation until Eq19) is satisfied and a
pore of radiug, opens. After a pore is nucleated, the internal
P(r) ~ g PAER™), (18 content of the vesicle begins to leak out, decreasing the

membrane tension and leading to an eventual resealment of
the pore. The cycle will be repeated until the internal con-
centration of solute drops belou\ﬁ and a steady state with
AE(Ry,rp) = kgT. (19)  Jw=0 is established. In Fig. 2 we show the pore radius as a
function of time for vesicles of three different sizes and ini-
This equation, then, determines the size of a swollen vesicldial concentration of solute,=0.5M.

The waiting time for opening a pore of radiuzry, is, there-
fore, very long unless
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R (m) FIG. 4. Concentration decay as a function of time. The circles
0 are the result of numerical integration of E@¥), (6), and(7). The

) ) ) ~solid lines are from the analytical expressi@®). Open circles are
FIG. 3. Life span of the first open pore as a function of vesicletyr 5 vesicle 0fR,=100 nm and solid circles are for a vesicle of

size Ry for ¢o=0.9M (rightmos}, 1.0M and 5.0/ (leftmos). Note g —300 nm. The initial solute concentrationdg=0.5M.
the appearance of critical vesicle sR§(co) (sharp change in slope

of 7vs Ry) which sustains a long-lived pore. The peculiar spikes in

the lifetime of vesicles containing a low concentration of solute are FRr) = 1 (ju = 712p0) (26)
an artifact of the way the pores are nucleated. On the other hand, ’ 4mpR w
the existence oRg(cy) is independent of pore nucleation protocol.
and
We see that small vesicles are characterized by a rapid 1 JE
opening and closing of pores, resulting in a periodic flicker- GRr)=-——. (27)
ing with a characteristic time;~ 1072 s. On the other hand, Nt T

larger vesicles are capable of nucleating a long-lived pore. . L ' -
After the long-lived pore has closed, it is followed by a The vesicle dynamics is governed by the fixed péintR'),

sequence of short-lived pores, with the characteristic lifelétermined from dr/dt=0=G(R',r)=0 and dR/dt=0
spanz. The life span of a long-lived poreis show in Fig. =F(R ,r"). The stability of the fixed point is controlled by

3. For large vesicles, the life span scales with the vesicle siz&'€ eigenvaluea; and i, of the Jacobian matrix

as IF oF
v JR Jdr
T~ R, (23) J= (29
96 16
with v=2.3-2.4; see Fig. 3. JR Jr

IV. PHASE DIAGRAM

It is important to keep in mind that the coefficients of the
Jacobian matrix are real and, therefore, the eigenvalues are

To better understand the details of the vesicle evolution, i€ither real or complex conjugates,=A,. For all the param-

is convenient to separate the membrane dynamics from t

Helers that we have investigated the eigenvalues are complex

concentration dynamics. Since the internal solute concentr&0niugates, and the stability is governed by(Re=Re(\,)

tion changes very slowly compared to the(see Fig. 4, as
a first approximation we can take it to be constant.

In this case the vesicle evolution is controlled by Ed3.
and(6), which can be written as

dR
a - F(R!r)l (24)
dr
a _G(er)y (25)

where

=Re(M). If Re(\) <0, the fixed point is stable and a station-
ary state with a pore of sizé and vesicle of siz&" will be
established. On the other hand, if Rg=0, the fixed point
is unstable, and the pore will eventually close; see Figs. 5
and 6. A new pore will open when the membrane tension
again reaches the valuéz). This process will repeat indefi-
nitely with characteristic timer.

The phase boundary, in the concentration-size plane
(Ry,c), between the two dynamical regimes is determined by
the condition R&\)=0 or, equivalently,

TrJ

R = 0, (29)

which reduces to
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FIG. 5. Dynamics of the pore for fixed concentration dRgl
=500 nm. The top panel is fap=0.19M, and the bottom panel for

Co=0.18M.
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Combining Eqs(3) and(5), the leak-out velocity is

Differentiatingv with respect to the vesicle size,
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FIG. 6. Radius of a pore as a function of time for vesicles of
Ry,=500 nm for a constant internal concentration of solage
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FIG. 7. The phase diagram for the constant-concentration dy-
namics. In region |, an open pore is stable. In region Il, the size of
a pore oscillates, and in region Il pores do not open. The dashed
line indicates the minimum solute concentration needed to open a
pore. The discontinuity in its derivative is due to the fact that for
small Ry the barrier to pore nucleation is lower thigiT.

&l__g+lﬁk
IR R 37A

(32)

The change of surface tension with the pore size is given by

Jdo K
— ==27r—. (33)
ar Ag

For large concentrations ariR>r, the osmotic current can
be approximated by

jw= PAc, (34)
so that
djw_ 2.
Iw_=. 35
JR _RM™ @9
At fixed point (R',r"),
2py*

“3Re 0

where we have approximateR=R, and r'=r,=vy/o .
Equation(30) then reduces to a quartic equation fer.

4 Zyz(ﬂm%’ ) » 16w 77m€73K
o' +t—\|\— % —TK|O - 5 =
Ao \ 7R, 3 7Ag
Combining Eqs(34) and(36), the phase boundary separat-
ing the regime of short-lived poréggegion Il) from the long-
lived (infinite life-time) pores(region | is
py?
6777;PF%0*

Jw= a2 pv”

0. (37

C(Ro) = (38)

(see Fig. 7.
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For small concentrations, the surface tension does not RZ, Ro=Ry,
build sufficiently high to cause the membrane ruptuiegion T RS+2’3 Ro> R (45)
[II. The phase boundary between regions Il and lll is de- ' o
noted by a dashed curve in Fig. 7. The discontinuity in slope-or the parameters used in this papgrF41.8 nm, so that
results from the nucleation barrier passing the thresholdq. (44) is consistent with the numerical findingsee Fig.
AE=KkgT. Thus the right-hand side of the II-1ll phase bound- 3).
ary is given bycmm(Ro) while the left-hand &deﬁ?n(Ro) The flickering timer; is approximately the time it takes
The role of the concentration dynamics is to make thefor a vesicle to swell to sizR, needed to induce a liposomal
system traverse through the different regions of the phaseupture. During the swelling, the internal concentration of
diagram, controlling the time of permanence in each regimesolute changes very little, siné& =Ry, so thatc can be kept
constant. Furthermore, for large initial solute concentrations,
V. DYNAMICS OF SOLUTE LEAK-OUT Fhe osmotic _cur_rent ig,,~4mPRc, and Eq.(1) is easily
integrated, yielding
The critical size of a liposomeR§(cy), necessary for R
nucleating a long-lived pore, depends on the initial solute szw_ (46)
concentration. The larger is the solute concentratigrthe Pc
smaller will be the size of a vesicle which supports a long-o, the other hand.
lived pore. The long life span of these pores is the result of a R R
“wash-out” effect in which the osmotic flux is almost com- - 2k
pletely compensated by the leak-out rate of solute through ‘T(cz) = K_pR,T =~ Q(Rp_ Ro). (47
the pore. When the solute concentration inside the vesicle
drops below the critical value,(R,), the long-lived pore Substituting Eq(47) into Eq.(46) we obtain the expression
closes. This value is insensitive to the initial solute concenfor the flickering time:
tration c,, but depends strongly on the vesicle sikg

(2)
Combining Egs(1) and(7) we obtain T~ M, (48)
2Pc k
47 .dc Jw
—R—=-"¢, 39
3Ra- (39)  whereo'? is given by Eq.(22).
Approximatingj,,=PcAandR=R, leads to
VI. CONCLUSIONS
3Pc, 1 _
c(t) =cq Ro t+1] . (40) We have presented a theory for the nucleation and growth
p

of pores in osmotically stressed liposomal vesicles. The

Equation(40) provides an almost perfect fit of the time model predicts that depending on the internal solute concen-

dependence of the internal solute concentratime Fig. 4 tration and the liposome size, pores can be either short
The life span of a long-lived pore can be approximated bylived—opening and closing with a characteristic time
the time it takes for the solute to go from the initial concen-7—o0r long lived, with their lifetime scaling with the size of

tration ¢, to the critical concentration,(R;), below which  the vesicle. _
the pore is no longer stable: Long-lived pores have been observed in red blood cell

ghostg[15,16. No theory, up to date, was able to account for
PRy {1 cC(RO)} these long-lived pores. Holes were predicted to either grow
T= - .
3Pc(Ro) Co

indefinitely, which would result in ghost vesiculation, or to
close completely[17]. Our model provides a dynamical
Itis possible to derivate two limits for the critical concen- mechanism for pore stabilization, consistent with the experi-
tration c.(Ro) (see the Appendix Writing mental observations. However, for the specific case of red
blood cell ghosts the ratio of/ k must be adjusted to obtain
L (42)  the pore size observed in experiments. This is not surprising
6P 77P Rof(Ro) since the real biological cells, unlike liposomes, have a com-
plicated internal cytoskeleton, which strongly affects the
membrane elasticity.
2 In aqueous solutions the phospholipid membranes acquire
(R5- Rf)} , (43) a net negative charge. At physiological concentrations,

(41)

C(Ro) =

for vesicles of radiuRy= R, = \yn,¢/ 7k 7,

f(RO) [ 31/4 l;Rl

8R0R1 154 mM of NacCl, the Debye length, however, is quite short,
and forRy>R;, less than 1 nm and the electrostatic interactions are strongly
screened18]. We therefore do not expect that electrostatics
) 5 213 will significantly modify the basic conclusions of our theory,
f(Ro) = __EO(RO Re)| (44) beyond the renormalization of membrane |ii&] and sur-

face tension. However, further investigations in this direction
and therefore the life span of long-lived pores scales as  are necessary and will be the subject of future work.
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Finally, up to now we have not taken into account a dif-

PHYSICAL REVIEW B9, 061922(2004)

Y2 -4,y -T2=0.

fusive efflux of solute through an open pore. The character-

istic time for effusion can be estimated [d9)]

RS

Te -~ rD ’ (49)

whereD is the diffusion constant. Using =~ 10° m?/s, ap-

Since the surface tension is non-negative, the physically rel-

evant solution forx depends on the sign df; and we can

write

1

2|
—l \/ '#' ~lyl- sgrtn)\@} .
VY

> (A5)

propriate for small organic molecules such as sucrose, and

r=r'=ylo,~1nm, we see that for liposomes witR,
=200 nm, the time for effusion is,~1072 s. This is com-
parable to the flicker timey. Therefore, for small vesicles

effusion is an important mechanism for loss of solute. On the

other hand, for large liposomes wiky=500 nm and above,
effusion is only marginally relevant.
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APPENDIX

Here we present a derivation of the limiting form of the
phase boundary, Eq¢42)—(44), separating regions | and I
of the phase diagram, Fig. 7. Writing

o =Ly, (A1)
Eq. (37) reduces to
x*+I'x+I,=0, (A2)
with
1 R
r1=——5<1+—1)<R0—R1>, (A3)
Y Ro
1k \?
FZ =-3 _Rl ’ (A4)
3\y
where
€
R, = Y Tm .
TK 1)

The solutions of a quartic equation like E@\2) can be

written as
X ll YERVELY Zrl}
= \‘J - - - 1
1,2 2 \//;/
1 ’r'_ 2F1
Xsa= 5| =Y A=Y+ = |,
Yy

wherey is the real root of the resolvent

For an equation of the forng®+ay+b=0 there is a single
real root if
b\?> [a\®
HEEE
and this real root is

2/ "\3
~ b /_)1/3 < b /_)1/3
y—( 2+NQ =3 Q| .

This is precisely our case sin¢g <0 and, thereforeQ> 0.
It is convenient to rewrite EQA6) as
2

F 1/3
y=< 1) W2,

Q

(A6)

2
where
(3
3\,
and

Y2)= (V1+z+ DM -(V1+z- 113,

The ¢ function has the asymptotic behaviors

g ~1/3 _ 22—4/3 7> 1
W(z) =13 81 ' ’ (A7)
213~ (72)13, z<1.
Putting everything together we have
I
— z>1,
y=14I (A8)
r?3,  z<1.
In the first case we obtain
r
x=(-Ty)¥- —= A9
(T (A9)
and in the second case
x = |I'y|¥3. (A10)

Using the expressions fof'; and I',, we obtain Egs.

(42)~(44).
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