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Semiconservative replication in the quasispecies model
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This paper extends Eigen’s quasispecies equations to account for the semiconservative nature of DNA
replication. We solve the equations in the limit of infinite sequence length for the simplest case of a static,
sharply peaked fithess landscape. We show that the error catastrophe occuys, weproduct of sequence
length and per base pair mismatch probability, exceed$2 (b+1/k)], wherek>1 is the first-order growth
rate constant of the viable “master” sequefwih all other sequences having a first-order growth rate constant
of 1). This is in contrast to the result of kfor conservative replication. In particular, &s-o, the error
catastrophe is never reached for conservative replication, while for semiconservative replication theucritical
approaches 2 In 2. Semiconservative replication is therefore considerably less robust than conservative repli-
cation to the effect of replication errors. We also show that the mean equilibrium fitness of a semiconserva-
tively replicating system is given bi(2e™#/2— 1) below the error catastrophe, in contrast to the standard result
of ke for conservative replicatioderived by Kimura and Maruyama in 1966&rom this result it is readily
shown that semiconservative replication is necessary to account for the observation that, at sufficiently high
mutagen concentrations, faster replicating cells will die more quickly than more slowly replicating cells. Thus,
in contrast to Eigen’s original model, the semiconservative quasispecies equations are able to provide a
mathematical basis for explaining the efficacy of mutagens as chemotherapeutic agents.
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I. INTRODUCTION assume first-order growth kinetics, and that the genome de-

) ) ] ) termines the first-order growth rate constant, or fitness, de-
In 1971, Manfred Eigen introduced the quasispecies forygieq byx, (in generalx, will be time dependent, reflecting

mulation of molecular evolution to explain the observed dis-ie generally dynamic nature of the environmetftwe let

tribution of genotypes in RNA evolution experimenis2].  y denote the fraction of organisms with genomethen it
The central result of his model was that due to mutations, th?nay be shown thaftl,2]

equilibrium distribution of genotypes did not consist of a
fittest sequence, but rather a set of closely related strains, dx, , _
which Eigen termed a “quasispecies.” Eigen showed that a at =2 k(00X = k()X 1)
stable quasispecies only exists if the mutation rate is kept v
below a threshold value. Above this value, the distribution ofyyhere(t) =3 «,x, is simply the mean fitness of the popu-
genotypes undergoes a phase transition termed the error Qgtion andx,,(o”, o) is the first-order mutation rate constant
tastrophe, in which the distribution completely delocalizes,, mutations fromo” to o. If p, (o’ ,o) denotes the prob-
over the gene sequence space. Subsequent studies on lity of mutation from o’ tomo ,then it is clear that
quasispecies model have focused almost exclusively on th,? (o, )=k, p(c” ). TO compuiep (¢ &), We assume
erroli catashtro?thS—l_q, lthough therfe Eas also .g;:nlsomeamper, base(r renE)Iica,ltioﬁ error probartr;ility, @f,,. If we let
work on the dynamical aspects of the equatighg,12. ] . :
More recently, other phase transitions besides the error c:i\%H(U. ’fr) denc_)gla the I—r|]ammr|]ng distance betwaenand o,
tastrophge.g., the so-called “repair catastrophbave been en itis possible to show that
shown to arise from the quasispecies equatidi3s14.

A common feature of previous work on the quasispecies Pm(o’, ) :(
equations has been the implicit assumption that the genome
of an organism could be written as a linear symbol sequence

and that r.eplicatio.n oceurs conservatiyeﬂyat is_, the origi- genome-independent replication error probabiktyand a

nal genetic material is preserved during replicalioihese e independent fitness landscape characterized by a single
two assumptions allow for a relatively _stralghtforwar_d deri- “master” sequencer, of fitness k>1, with all other se-
vation of a system of equations modelln_g the evolution _Of aquences set to a fithess of 1. This so-called single fitness
unicellular, asexual population. In the simplest formUIat'O”'peak(SFF) model has been the subject of considerable the-

}Ne aisLumehthat eachh “? rganism “r;)as a g.engumsz.f. S Of - pretical treatmenf3-5] (and references thergirThe central
engthL, where each “letter” or "base is drawn from an  oq it of this model is that, in the limit df —, the mean

alphabet of sizeS (=4 for all known terrestrial lifg We equilibrium fitness of the population is given kg * for u
<In k, and 1 foru>In k, whereu=Le. Whenu<In k, the

population is localized in a cluster about the master se-

*Electronic address: etannenb@fas.harvard.edu guence, resulting in what Eigen called a quasispecies. When

€

o'

S-1

DH((r',(r) ,
(L=, ) PHe . (2)

' The simplest formulation of these equations considers a
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pn>In k, the population is completely delocalized over the ) 3
gene sequence space, so that no discernible quasispecies ex- D. o « o « « b
ists. The transition between the two regimesgat=In k, is _1 L
known as the error catastrophe. It should be noted that the b v . 4.. 0D
result of ke # was first derived in 1966 by Kimura and 1 L
Maruyama[15], and is a standard result in theoretical popu- I< )

lation genetics. ,
While the assumption of a linear symbol sequence and FIG. 1. The antiparallel nature of double-stranded DNA and
conservative replication is correct for modeling single- RNA-
stranded RNA, a proper extension of the quasispecies model
to real organisms should take into account the doubleRNA (MRNA) is synthesized in the’5to 3’ direction. The
stranded nature of DNA, and also the semiconservative ndDNA template strand from which RNA synthesis occurs is
ture of DNA replication. In semiconservative replication, theknown as the antisense strand, and is read in theo %’
original DNA molecule is not preserved after replication. direction. The complementary strand, the sense strand, has
Rather, each strand serves as the template for the synthesisigé same sequence as the transcribed mRNA, and is “read” in
a complementary daughter strand, meaning that after replicahe 5 to 3 direction(the quotes are to indicate that the sense
tion, each DNA molecule consists of one parent and on&trand does not directly participate in the transcription pro-
daughter stran@l16]. _ _ _ _ces$. We therefore adopt the convention that DNA and RNA
The formulation of the quasispecies equations giveryeq ences are read in thetb 3' direction, as illustrated in
above are inadequate to describe evolution with doublegiq 1 'However, this convention is arbitrary, and it is equally
stranded, semmonseryanvgly replicated genomes. 'There al8id to read DNA and RNA sequences in thet8 5’ direc-
several reasons for this: First of all, because DNA is Oloubl(?ions. Once a convention is adopted, the antiparallel nature of

stranded, there is no well-defined Hamming distance be-
tween two DNA molecules. Secondly, becgause daughte ouble-stranded DNAor RNA) means that the complemen-

strand synthesis occurs off of two parent templates, a singl[earyI S"a’_‘ds are Lea;j in (‘;Ppo;'tg 6d|rect|ons. A more detailed
DNA genome gives rise to two DNA daughter genomes,€xPlanation can be found in RefL6].

while in conservative replication only one new genome is Ve consider a double-stranded DNA.molecuI? with gen-
produced per replication cycle. Finally, because in semicon€ralized alphabet of size & consisting of “letters”
servative replication the original molecule is destroyed, 1. ...,5-1. Each “letter"i is assumed to uniquely pair
mathematical formulation of this process must incorporate at/ith (i+Smod2S. For actual DNA, we of course hav@
effective death term, which is clearly lacking in the quasispe=2, and we may make the assignment-A, G—1, T—2,
cies equations for conservative replication. C—3.

The goal of this paper is to extend Eigen’s formulation of ~ Given a DNA molecule of sequence lendthlet one of
the quasispecies equations, to account for the doublehe strands be denoted by=b;---b,. If the complement of a
strgnded and semicpnservative nature Qf DNA repli.c:atior)basebi is denoted byE, then the complementary strand is
This is a necessary first step toward making the quasispecies — = - =
equations a quantitative tool for analyzing the evolutionaryd'Ven Py o=by---b;. Note thato=c, and therefore, each
dynamics of unicellular organisms. Then, after obtaining the°?NA molecule may be denoted by the get, s}={c, a}.
form of Eigen's equations for the case of double-stranded For single-stranded molecules of lendthand alphabet
DNA, we wish to proceed and solve these equations for th&ize 2, there arg29)" distinct sequences. We seek to derive
simplest landscape, that of the static single fitness peak. the analogous formula for double-stranded DNA. Given a

This paper is organized as follows. In the following sec-DNA molecule{c, a}, define the internal Hamming distance
tion, we present an overview of DNA sequence analysis antij=Dy(o,0). If we let Ni(I;;L) denote the number of DNA
replication mechanism, followed by a derivation of the ap-molecules of length. with internal Hamming distancé,
propriate quasispecies equations. We continue in Sec. lken the total number of distinct sequences is simply given
with a discussion of the single fitness peak model. Specifipy NtOIZEh:oNI(II;L)- We therefore proceed to compute
cally, we present the infinite sequence length equations, lea\N|(I,;L). Due to the possibility of palindromic molecules

ing the details of the derivation, which are fairly involved, , ' :
for Appendix A. We then go on to discuss the error catastro-(a_a' we need to consider the caselofeven and. odd

phe, presenting both analytical results and numerical cors€Parately. _

roboration using stochastic simulations of replicating popu- Given some DNA moleculéo, o}, with a=by---by, sup-
lations. In Sec. IV, we discuss our results, and also thepose we haveb,=b,_;,; for somei. Then b;=b,__,;, and
extension of our equations to multiple gene models. Finallyhence equality between corresponding basesriand o
we conclude in Sec. V with a summary of our results, and a&omes in pairs whenever:L—i+1. This must always be

discussion of future research plans. true, since, ifi=L—i+1, thenb;=b, ;0 b=b;, which is
Il. DERIVATION OF THE QUASISPECIES EQUATIONS 'mposs'b'?' .Therﬁforg" a”dg m‘éztfbe Z?i“al g‘t it

FOR SEMICONSERVATIVE REPLICATION gsg‘nl_ero sites, hendemust be odd for oddl and even for

A. An overview of DNA sequence analysis Supposd. is odd, soL=2I+1, and consider somle=2k

Double-stranded DNA consists of two antiparallel, t1. We have complete freedom to chodse ... b.;. We
complementary strands. During transcription, messengeiutomatically haveb,,.;# b, __1+1. Thus, we havd -k re-
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maining sites among;, ... b, where we choosb, _;,; such {c, G}
thata__iﬂ:bi. Equivalently, we havé sites amondp,, ... ,b \
where we choosé, _i,; such thatb, _,,#b;. There arel}) Strand separation
ways of choosing these sites, and for each such choice, there c c

are 5-1 possible values for eadf_;,, taken to be distinct
from b;. Putting together all the degeneracies, we ob(b)n
X (29)'*1(2S-1)% ways of choosingo such thatDy(o,o) {c, ¢} {5, o'}
=2k+1=l,. However, this still does not give us the set of all ’ ’

distinct DNA molecules(o, o} with internal Hamming dis- 1, Lesion repair \L

tancel,, for if o# o, then our counting method generates a {c", 5" {c", 8"}
given{o, o} twice, by generating bothr ando. Sinceo=0 ’ ’

if and only if I,=0, which is impossible for odd, we have, FIG. 2. The three stages of DNA replication.
finally, that

J/ Daughter strand synthesis J/

1/1 " ‘ starting poin). Different genomes may have different repli-
Ni(l=2k+1;L) =5\ (29'"(2s-1) (3)  cation fidelities, due to various replication error correction

for odd L. Thus, for oddL,
[

mechanisms which may or may not be functioning. For ex-
ample, inEscherichia coli the DNA replicase Pol Ill has a
built-in proofreading mechanism which excises mismatched
bases in the daughter strarnid6]. In addition, in many

[
Niot = %(ZS)HlkZO( )(25_ 1)k: %(ZS)L- (4

prokaryotes and eukaryotes, DNA daughter strand synthesis
is followed by mismatch repairl6], which can distinguish
If L is even, then we may write=2l. In this case|, is also  between the parent and daughter strands, thereby allowing

k

even, and sd,=2k for somek=0, ... |. We have complete the proper repair of mismatches. All such repair mechanisms
freedom to choosby, ... ,b.. Proceeding as with the analysis are gathered withir, ;3 in our model.
above, we may show that there &{&(2S)'(2S-1)* ways of In the final stage, DNA replication and cell division is

choosingo so thatDy (o, 0)=I,. If |, #0, we need to divide complete, and the parent and daughter strands have become

by 2 to get the set of all distinct DNA molecules with inter- indistinguishable. Remaining mismatches in the daughter
nal Hamming distancg. Therefore, cells’ DNA are eliminated by various maintenance enzymes,
which recognize and repair the lesions caused by mis-

}<| >(23)|(23_ DX for k#0, matched base pairs. However, because it is impossible to
NI, =2k;L) =y 2\k (50  determine which strand has the incorrect base, the mismatch
(29! for k=0 is correctly repaired with probability 1/2. The result is that

the o, o’ pair is converted to some”,¢”, giving the DNA
molecule{d”, ¢”}. A similar process happens for the parent
1 1 strand.
Niot = = (29" + =(29'2. (6) We wish to derive the probability that a given parent
2 2 strando producego”, "'} in the daughter cell. Let us denote
Note the additional 12(2S)“2 term arising from the contri- this probability byp(o,{0”,0"}). Also, let p(o,o’) denote
bution of the palindromic sequences. the probability thato is paired With_o" during daughter
strand synthesis, and Igf(o,d”),(¢”,d”)] be the probabil-
ity that o — ¢”, o’ — ¢” during post-replicative lesion repair.
B. Modeling DNA replication Then we have, assuming’ # ¢”, that
The replication of DNA during cell division may be di- R , R
vided into three stages, which are illustrated in Fig. 2. The p(or{o”,0™}) ‘2 plo,a")ipl(0,0"), (0", 0")]
first stage of DNA replication is strand separation, with each 7

for evenL. Therefore, for even,

parent strand serving as a template for synthesizing the +pl(o,0),(d",d")]}
complementary daughter stranflss]. We may model this o
stage by writing that a given DNA molecu{e-, ¢} separates =2 p(o,a")pl(0,0"),(¢",0")]
into the single-stranded sequeneeando. a

As strand separation occurs, daughter strand synthesis is
catalyzed via enzymes known as DNA replicases. However,
due to errors in the base pairing procasss not necessarily
paired with o. Rather, once cell division is finished, the If ¢”=0¢”, then only one of the sums is kept.
original o is paired with somer’, and similarly foro. We now proceed to compute

Each genomédo,o} has a characteristic replication mis- =_.p(o,0”)p[(o,0"),(¢”,0")]. Write o=b;---b, o’
match probabilitye;, 5 (a base-pair-independent mismatch=p;---b/, and ¢” =b}---b/. Let |=Dy(c,0”). Let us con-
probability is certainly a simplification, but it is an initial sider somea for which bj=b{". Thenb/_;,, can take on any

+2 plo,a)pl(e,0"),(0",0")].  (7)

o
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value, for if b _ |+1—E”, then no repair is necessary, and we p[(o,0"),(c",0")] is then(1/2)|/+|

obtain b;— (b, bf). If b/, # b[’, then repair is necessary,
and with probability 1/2 it isb_;,, that is repaired td?i”,
giving once again that; — (b{",b). So, let us now consider
somei for which b; #b{". Thenb|_;,; must be equal td;i”.
Otherwise, ifb_ ,+1:E¢E”, then no lesion repair occurs,
and we geb, — (b;,by) # (b, b). If b/ |+1¢E, thenb|_;,, is
repaired with probab|I|ty 1/2 td),, or b is repa|red with
probability 1/2 tob/ ;,,. Thus, eitheto; — (b;, by) #(b{’,bl”

orb, —>(bL v D) # (bl”,b”) and so the correspondirng

does not contr_lbute to the _sum
2, p(o,d)pl(o,0'),(c",d")], since p[(o,d'),(c",d")]
=0.

PHYSICAL REVIEW EG69, 061916(2004)

, So multiplying by the
degeneracy i’ and summing over all' gives

> plo,a)pl(a,0"), (0" ,0")]

|7+
| ool
_E( )QS b (25—1)

17+
><(1 - E{a,a})L_l_l/<}> '

Our analysis allows us to perform the sum, assuming 3hat = Do, a)pl(e,0") @, 0")]=[(¢ 7/2)/(28—1)]'(1

probability €, ;; of @ mismatch. For a givea’, letl” denote
the number of sites among the-| S|tes which are equal ior
ando” for whichby_;,, # b/ There ard".')(2S-1)"" ways of
choosing such a’. The probability p(a o') is equal to
[elo, o}/ (2S-1)]"*(1-€,z)"""".  The  probability

p(ofo” 0P =plofo" o} =

C. The quasispecies equations

=T AL 7
32l
2S-1 2

P
25-1 2

2
[ L
6{0.’3/2> ( 6{0,3)
= 1- .
( 2S5-1 2 ®
If  we define I_=DH(0,?’), then we obtain
—5{0,3}/2)'- ! Now, note that Dy(by---b.,bj---b))
:DH(H_"'Elyb' 1) and Dy(by- by, b - -by)
:DH(bL. . 'bl, bi L)’ so thatl :DH((T,(T”):DH(E,?’), and

I_:DH(U,?’):DH(F, o). Therefore, we obtain that

9)

We now definen=2, 7, 5, andXg, 5=N;,5/n. Reex-

We are now ready to derive the quasispecies equations f¢€ssed in terms of the population fractiong, the dy-
semiconservative replication. We consider a population ofamical equations become

unicellular, asexually replicating organisms. g} denote
the number of organisms with genorfie, o}. We let ki,

denote the first-order growth rate constant of organisms with
genome{o,o}. Then from the replication mechanism illus-
trated in Fig. 2, we obtain the system of differential equa-

tions given by

dn, )
dt

=~ KoM ¥ 2 Ko oMo 57}

{o' 0"}

X[p(o’ {o,0}) + p(o’ {o,a})]. (10

dXoq _
dt

E K{g', o”}X{o' o'}
{o' 0"}

X[p(o’ {o,a}) + p(a’ {o,0})]

= [k(oay + €O X0 7, 1y

wherek(t) =2, 71x(, %5} IS the mean fitness of the popu-
lation, which arises as a normalization term to ensure that the
total population fraction remains 1.

The first term is a death term which takes into account the We now proceed to put these equations into a form which
destruction of the original genome during replication. Theis more easily amenable to analysis than the above equations.
terms in the summation take into the account the productioifo this end, we make the following definition$l) «,

of {o,d} from botho’ ando’. = K(s5}» SO thatkz=k,, (2) €,= €5, SO thate, =€, Fi-
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nally, y,= 353X,z if o#0, andy,=x,z if o=0. Clearly,
we also have thay, =y,
Now,

2 K{U",;’}X{o”,;’}[p(orv{aaa) + p(?!{ava)]

{o' o’}
= X KeaXealpla {oah) +p(a {o,0})]
{o' 0"} o' #0’
+ 2 Koo alp(a {o o)

(o' 7)o’ =7

+p(o’ {o,0})],

= E Ko X(o' ,F’}p(a-, !{Ula)
{o' 0"} o' #a’
2 KXo P o0}
{o' 0"} o' #d’
+ E 2K0'/X{a",?}p(a-’1{a-aa)
{0’ 0"}, 0'=0"
= E Ko X{o’ o”}p {U 7)
oo #a'
+2 E KU’X{U’ ,F'}p(U'v{U,a’) . (12)
Therefore, foro # o,
&Yy _ 105
dt 2 dt
60.1/2 Dy(o,a")
2 r ’
o’ 0'2'9&(7' e |:(25_ 1>

(1 € )L Dy(o,0") ( 60.r/2 )DH(G-,O-’)
2 25-1
( . )L Dy (a0’ )]
1 —_—
2
€112 \PHn)
+ ’ r
,E,? Ko'Yo [(23— 1)
( )L DH(O'(T) ( ) )DH(E,O'/)
x(1-% -
2 25-1
. L- DH(O'(T)
«(1-%) [k, + KO,
60.1/2 DH(O',(T')< €y )L—DH((T,(T/)
= ’ ’ 1-—
%“”’[(25—1) 2

( €, r/2 )DH(mU’)< €, I)L_DH(O—'U’)
+| — 1-—
25-1 2

- [Ko' + F(t)]yo

PHYSICAL REVIEW E 69, 061916(2004)

12\ PHlo”)
E Kg'Yor (28 1)
e, \LDulo) {( 12 )DH(U,?)
1-— + Yo | | =2—
( 2 ) %Kgy" 25-1
€5 L- DH(o-(r)
(l -4 - [KU+?(t):|y0'
2
,/2 DH(J,(r')( 60—,>L—DH((T,H',)
=2 , 1-—
E Koo (zs 1) 2
- [KU+ k(0)]1y,- (13
For o=0 we get
dy, _ Mol
dt dt
= 2 2K0"yo" p(a-, ,{U.E})
oo’ #o'
+2 2 KpYeplo' fo,0h) = [k, + k(D]Y,
€112 DH(‘T“’,)< €, ,)L D(o.0")
= 2 ’ ’ -
EK y(r<2$_ 1) 5
- [k, + &(D)]y, (14

Since we obtain the same set of equations for palindromic
and non-palindromic molecules, the final form of our qua-
sispecies equations becomes

d EU//Z DH((J',O") €y L—DH(O',U'/)
ﬁ = 22 Kg'Yor ( ) 1-—

dt ~ 5 25-1 2
=[x+ k(O1Y,- (19

It is readily shown thatk(t)==,«,y,. It is also readily
shown thaty,=y; for all o implies thatdy,/dt=dy;/dt for
all o, and soy,=Y, is preserved by the evolution.

As a final note in this section, we can express the above
system of equations in vector form as follows: We defjne
=(y,), soy is simply the vector of population fractions. We
definex=(«,), sok is simply the vector of growth rate con-
stants. We define

60.//2 Dy(o,0") €y L—DH((T,O'/)
A= Au’o" = Ky 1-—
25-1 2

to be the matrix of first-order mutation rate constants. Fi-
nally, we defineK =[(K = «,95,,)] to be the diagonal ma-
trix of first-order growth rate constants. Putting everything
together, we obtain the vector form of the quasispecies equa-
tions
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TABLE I. Comparison of quasispecies equilibrium between conservative and semiconservative replica-
tion. It should be noted that(t=o) is simply the equilibrium mean fitness of the population.

Parameter Conservative Semiconservative
Merit Ink 2 In[2/(1+1/k)]
Xmaster (4 < Kcrit) (ke#— 1)/ (k=1) (k(2e2-1)~ 1)/ (k=1)
k(t=) (< prerit) ke™# k)ze—,u/2_1)
N (w< terit) ke [ (ke#=1) pk(2e7#2-1) / (k(2e72-1)-1)
dy o Thus, Cy(0g;1) ={o|Dy(c,00) =1}, and similarly fora,. We
P (2A -K)y = (k-y)y. (160 may then definan ==, cc, (Yo @andW may be defined

_ ~ similarly with respect tao,. However, by symmetry of the
Presumably, for a static landscape, the system of equationgndscape we have;=w;, and so need only consider the
converges to the equilibrium distribution given by the eigen-dynamics of thew,. In Appendix A, we show that when

vector corresponding to the largest eigenvalue of the matri¢ypressed in terms of the, the quasispecies equations be-

[
Ill. THE SINGLE FITNESS PEAK dw - 2e—M/22 i(,u,
dt =0 !

Iy .
E) K-, Wiy, = [ + w(O) ] (18)
A. Overview and analytical results

In the single fitness peak model, there exists a unique, . _ o
master genoméu,, oo} with fitnessk> 1, with all other ge- In t_h|s case,K(t):g(k— Dwy+1. The_reason for_ this is that
nomes having fitness 1. Our fitness landscape is therefoi iS only the fraction of the population on the fitness peak at
given by K(roz"?ozk' while k,=1 for o# oy, 09 We also 90 By_ the way we defined ouy,, the total fraction of viable
assume that, is independent ofr, so thate,=e. For this ~ Or9aniSms IS given b +wo=2wo.
landscape, we wish to obtain the equilibrium behavior of the We_ begin the ;olunon of the.|_nf|.n|te sequence length
system of differential equations given by H45). equations by solving for the equilibrium value wof. We

For the case of conservative replication, the single fitnes3ave
peak model may be solved by first grouping the genomes dw
into Hamming classef3]. Specifically, given the master se- e 2ke M2 - [k + (t) Jwg (19
quenceo,, we may defineCy(1)={c|Dy(c, ap) =1}. If X, de- dt
notes the population frac_tion vyith genorqethen we define which admits the solutionwO:O,[k(2e‘”“’2—1)—1]/2(k— 1).
Z':EUECH“)XU' The quasispecies eq_l.Jat.|ons are .then reex'I\/Iultiplying by 2, we get the equilibrium solution fog, 5,
pressediln terms Of. the, anq t'he eq_w!|pr|um equations may ¢ or[k(2e#?-1)-1]/(k-1). To determine the domain of
e o s e pAnce 00 ey o ese souions, we ot it e =112 or
s ' #=0. That is, when replication is perfect, then the population

resides entirely on the fitness peéky,oo}. We must also
. L have wy,=0, which holds as long ask(2e?-1)-1
9 _ .y 1 | = =00 u<puqi=2 In[2/(1+1/k)]. Therefore, by continuity,
at °© |12:OI1! K-y, ~ (02, 7 we have that foru< e, the equilibrium solution isw,
=[k(2e#2-1)-1]/2(k-1). For u> pei, the equilibrium so-
where k;=k for 1=0, and 1 forl >0, k(t)=(k-1)zy+1, and  lution becomesv,=0. The transition between these two so-
u=Le in the limit L — . lution regimes is known as the error catastrophe.

For the case of semiconservative replication, the single !N dealing with conservative replication, another param-
fitness peak model for double-stranded genomes becomes 8" Of interest which we consider is the localization length,
effectively two fitness peak model. Thus, it is not possible todefined asl)=2,1z, wherez denotes the population frac-
directly group the genomes into Hamming classes. Neverthdion at localization length from the master sequence. We
less, the single fitness peak for double-stranded genomes \§sh to extend the definition of localization length to our
solvable. The details of the solution, which are fairly in- model. The complication here is that in the limit of infinite
volved, may be found in Appendix A. The final result, how- sequence length, the Hamming distanicead| to o, and oy,
ever, is simple to understand. In the limit of infinite sequencgrespectively cannot be simultaneously finite. However, as
length, og and o, become infinitely separated. Therefore, mentioned previously, the fraction of the population at a
locally aroundoy, oq we have an effectively single fitness Hamming distancé from oy, given byw,, is equal to the
peak model. We may therefore exploit the local symmetry offraction of the population at a Hamming distariceom oy,
the landscape and define Hamming classes aroy@ahdo,.  given by w,. Therefore, an appropriate definition for the
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FIG. 3. Plot ofu; versusk for both conservative and semicon-

servative replication. Units are dimensionless.

localization length is to defind)=X2,2lw,. We may com-
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FIG. 5. Plot of (I) versus u for k=10. Units are
dimensionless.

semiconservative cases. Finally, Fig. 5 shows a plotl of

pute(l) by using a technique similar to the one developed inversusu for k=10 for both the conservative and semiconser-
Ref. [14]. Briefly, a differential equation for the time evolu- Vativé cases.

tion of (I) is derived from the evolution equations for the

The result is
ol{! — _
% =(D[1 = (V)] + pux(t)
giving at equilibrium that
T(t = 0 2 _
W= u k(t=o)  k(2e 1)

=) -1 Mke?-1)-1

Note that the localization length is finite for <<, but

B. Stochastic simulation of the semiconservative equations

In order to complement the analytical work derived in this
paper, we present stochastic simulations of semiconserva-
tively replicating organisms, which numerically confirm the
predicted location of the error catastrophe. The results of one
of these simulations is shown in Fig. 6.

The results shown in Fig. 6 were obtained using a con-
stant population size of 10000 organisms with genome
lengths of 101 base pairs, using an alphabet sizeSefXto

diverges at the error catastrophe. For convenience, Tablecorrespond with the alphabet size of DNA'he master se-
illustrates the difference between conservative and semicorjuence replicates at each time step with probability

servative replication.

Figure 3 shows a plot ofi.;; versusk for both the con-
servative and semiconservative cases. Figure 4 shows a plot I
of k(t=x) versusu for k=10 for both the conservative and

10 T T T T
Conservalive —
Semiconservative
8pr
b\
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b\
sf \.‘
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fuﬂ \\
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4k \
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\
\
\
5
\
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FIG. 4. Plot of k(t=«) versus u for k=10. Units are

dimensionless.

PR {0y 75t = 1 all other sequences replicate with

0.8
§0.6 -
o

0.4

0.2

0-5“.““" I_4......

10 10

FIG. 6. Error catastrophe in a stochastic simulation of a finite
population of 10 000 semiconservatively replicating organisms.
Where the analytical results differ noticeably from the numerical
results, the analytical results are marked with filled squares. This
discrepancy is simply a consequence of the finite size of the popu-
lation and does not reflect a problem with the differential equations
themselves, which assume an infinite population. Units in this fig-
ure are dimensionless.
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PR {00} #{og g = 0-01, giving K{oy oot =100, and K{o. o} {05} While we leave the solution of this two-gene model for
=1. By iterating a sufficient number of times, it is possible tofuture work, we may nevertheless compute the location of
compute the equilibrium value of the master sequence fraghe repair catastrophe. As with the case for conservative rep-
tion XasterfOr Various values ok. The predictedk,;, for the  lication, the repair catastrophe occurs when the effective
above parameters is indicated in Fig. 6 as a dashed line. Noggowth rate constant of viable repairers drops below the
the good agreement between the theoretical prediction of thgrowth rate constant of viable nonrepairers. For viable re-
error catastrophe and the numerical results. pairers, the effective growth rate constantk{ge /2~ 1).
We have for the nonrepairers an effective growth rate con-
stant of viable organisms given Hy2e (Widb#2—1) The
factor of L,;,/L arises because in dealing with the overall
The key difference between conservative replication andjrowth rate of the mutators, we are only concerned with the
semiconservative replication is the destruction of the parenproduction of viable organisms. The repairer gene does not
genome in the semiconservative case, as opposed to its preteed to be correctly replicated. The repair catastrophe then
ervation in the conservative case. This is captured by theccurs whenk(2e s#2-1)=k(2e"vidV#2—-1)  or when ¢,
functionse™ versus 22~ 1 in the formulas given in Table =L,/L. Interestingly, this result is unchanged from the point
I. For conservative replicatiorg ™ is simply the probability —mutation, conservative result in RegfL3], or the full solu-
of correct replication. This probability is always positive, andtion, conservative result in Ref14].
so, by makingk sufficiently large, it is possible to guarantee
that the effective growth ratke* of the master sequence
stays above the growth rate of 1 for the unviable sequences.

For semiconservative replication, the probability that each This paper extended the quasispecies formalism to in-
strand is matched with its proper complementary strand iglude the case of semiconservative replication, in order to
e 2. Therefore, since there are two parent strands, and thgllow for the more realistic modeling of the evolutionary
parent genome is destroyed during replication, we have th@ynamics of DNA-based life. While we believe that this ex-
factor 27#2-1, yielding an effective growth rate of tension is an important first step in moving away from
k(2e™#2-1). However, 2#2-1 is only positive when Eigen's original RNA-based model, much more work re-
e*?2>1/2, or whenu<2 In 2. When the probability of cor- mains to be done. Our model is currently most directly ap-
rect daughter strand synthesis drops below 1/2, then the rafglicable to prokaryotic genomes, which generally consist of a
of production of viable genomes no longer exceeds the rateingle, circular DNA molecule. This asssumes that the pri-
of destruction. The result is that replicating faster simplymary source of mutations in prokaryotes are point mutations.
increases the rate of destruction of viable organisms, angt high mutation rateginduced, for example, by nucleoside
therefore does not avoid the error catastrophe. This of coursgnaloguey this may indeed be the case. However, a proper
implies that at sufficiently high error rates, faster replicatingmodeling of evolutionary dynamics will need to include
cells will die more quickly than more slowly replicating other effects such as recombination, sex, insertions, dele-
cells. Thus, in contrast to the conservative quasispecies equiiens, gene duplications, and transpositiarich is believed
tions, the semiconservative equations provide a mathematiceéd play an important role in the spread of antibiotic drug
basis for explaining the efficacy of mutagens as chemotheraesistancg Furthermore, in order to properly model eukary-
peutic agents. otic genomes, it will be necessary to extend the quasispecies
The semiconservative quasispecies formalism may bequations to genomes consisting of multiple chromosomes.
naturally extended to more sophisticated models with more After deriving the quasispecies equations for semiconser-
than one gene. In this paper, we focused on the single fitnesative systems, we proceeded to solve them for the simplest
peak model, in which the genome consists of a single, “vidandscape, that of the static single fitness peak. As with con-
ability,” or “reproductive rate,” “gene,” and the replication servative replication, the solution of the single fitness peak
error probability is genome independent. yielded two regimes: A viable regime, where the population
As an example, we may incorporate mismatch repair intds localized about the “master” genome and an unviable re-
the semiconservative, quasispecies formalism. As with thgime, where the population is delocalized over the genome
conservative casfl3,14, we consider a two-gene model, in space. The transition between the two regimes is known as
which one gene codes for viability, and the other codes fothe error catastrophe.
repair. Thus, a given genomgr,o} may be written as The main difference between conservative and semicon-
{Uviaffrepa;rep;via}- As was done in Refs[13,14, we may servative replication is that for conservative replication, it is
assume a single-fitness peak in both the viability and repaipossible to push the error catastrophe to arbitrarily high rep-
genes, so that there exist “master” sequenegso, oviao  lication error rates by increasing the growth rate constant of
and orep 0 rep,o fOr both viability and repair, respectively. In  the master genome. In semiconservative replication, on the
the single-stranded formulation of the semiconservativeother hand, the probability of correct replication must always
model, a givenc has a first-order growth rate>1 if o be greater than 1/2, in order to avoid the error catastrophe.
= 0yia,00rep OF Treglvia,0- The growth rate constant is 1 other- Semiconservative replication is therefore considerably less
wise. Furthermoreg has a functioning mismatch repair sys- robust to the effect of mutagens than conservative replica-
tem with failure probabilitye, if 0=0yia01ep 0 OF OrepWvia-  tioN. Furthermore, as pointed out in the Discussion, the ex-
Otherwise, mismatch repair is inactivated. istence of a lower bound to semiconservative replication fi-

IV. DISCUSSION

V. CONCLUSIONS
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AG TGAC T CATGA = o the corresponding base i, 5, whereos and oq 5 are dis-
tinct. The degeneracy in this case(|§)

ATCTTAGAGAAG = ¢, (3) Let I35 denote the number of changesdgto bases

| | | | distinct from the corresponding b(aSG‘Sst, whereog and

_ = oos are distinct. The degeneracy |§ 25)(28 2)'ss,
CTT c Tc T AAG AT = G, (4) Letl;;ysdenote the number of changesdags where
- I, her than th
Gn s=TTAA grh],:s(rl?q,fare _||(_1Ihe;téza to basesél?thert an tllleN(S:orrespondmg
ONS generacy i (28 2)
Gy, NS = = ACTAGGAG (5 Letl;,ysdenote the number of changesdags where
G - Ons Ogns are |dent|cal to the corresponding basesrifs
ons = CTCCTAGT The degeneracy llNileNs)

Os = GACG (6) Letl;nsdenote the number of changesdgs where
Ops = ATGCTATA ons Ognsare identical, to bases other than the corresponding

NS |11NS
FIG. 7. lllustration of sequence decomposition iat9and oys ones inogs The degeneracy Ig ) 25-2)

components. (7) Let Ilst denote the number of changesdags where
ons Opns are identical, to the corresponding basesris

delity explains why above a threshold mutation rate,The degeneracy g ™ |,

12
mutagenic agents k|||_ more rapidly replicating cells faster (8) Letlons denotelthe number of changesdgs where
than more slowly replicating cells.

oys is distinct from ogns and ogns and the bases are
changed to the corresponding basesig,. The degeneracy
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APPENDIX: SOLUTION OF THE STATIC SINGLE and o Ongo- The degeneracy |€NS 2NS~ ZNS)(ZS 3)I3 NS,
FITNESS PEAK MODEL FOR SEMICONSERVATIVE Pt

The series of changes tr)deflned above yield &’ which
REPLICATION

is at a Hamming distance of; gt s*l3stl1anstlians
1. Finite genome size equations +|11Ns+|12Ns+|zNs+|2Ns+|3Ns from o. Furthermore, the

To begin, let us define the internal Hamming distahce Vvalues oflg, Iys Ins andiys for o' are given by
=Dy(0y9,00). Also, let oy s denote the subsequence of bases
whereo, ando, are ident_ical, andr s anda),,\,s denote the lg=lg+ 115 lzs, (A1)
subsequences of basesdipand oy, respectively, where they
differ. Then given some gene sequelcave can break it up
into two subsequencess and oys o denotes the subse-
quence of bases in- corresponding to the subsequence of
bases wherer,, o, are identical.oyg denotes the subse-
guence of remaining bases. This is illustrated in Fig. 7. T =Tt R O

Given some gene sequenggwe can then characterize it NSTINSTIIINS T T12NS - T12NS  2NS
by the following numbers:(1) ls= DH(O'S,O'OS) (2 Ins

=Dy(ons 00N (3) INS_DH(UN&UONS) (@ Tus=Ins+Ins
=1. ThereforeINS is simply the number of positions where

oys differs fro,m bothagns and oo ns _ __ Now, we will assume thag,, depends only ofis, lys and
Now,.anya may be generated from amyby making the Ins At time t=0, we start the evolution by setting.=0 for
appropriate base changes. We can make changes ds all 0% ag, 70, andy, =y—=1/2 if oo # op, and 1 if cp= o
1 1 (7'0 ()'0 1 o a

o _
Ins= Inst liinst lians— lians = o,

o — —
Ins= Inst lians lians— lons— Ions:

follows.

(1) Letl,sdenote the number of changesd¢gwheregs ~ Therefore,y,=0 unlessls=0 andlys=0 or Iys=0. So cer-
and ops are identical. There ar@‘ h= IS) 25— 1)'18 poss|b|||- talnly yo. depends Orlllyloms, INSﬂ anles at the start of the
ties for this set of changes. evolution. Also, by similar reasoning, we see that the fitness

(2) Letl,s denote the number of changesdg back to  landscapgk,} also depends only ohy, Iys I_Ns If we can
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show that this implies thady,/dt depends only ots, Ins g Ig Iys for all giveno characterized bys Iys Iys Then
INS, theny, depends only ot lys Insthroughout the evo- we may write Yighyelys= Yo We also write k,= Kiglyslns
lution. Summing over the contributions from tleé, obtained by the

So, consider some timefor which they, depend only on  base changes described above, we obtain

L-li-ls Is Is7las Ii-Ins h-InsTliins Bi-Ins li-InsTlians Ins InsTl2nsInsTlansTl2ns

P, 3°3 53 38 IS S S

l150 1250 13520 l11Ns0  l12Ns=0 linso  l12nso I2Ns=0 I2Ns-0 I3Ns=0

e e s e o C

l11ns

% (II —Ins™ Ill,NS) ( Ins ) (lNS_ I2,NS> (INS— lons— I2,NS>
l12ns I2,NS l2ns I3,NS

X (28— 1)'18(2S- 2)'35(2S - 2)'11Ng(2S - 2)'11N5(2S -~ 3)'sNs
( €l? )|1,s+|2,s+|3,s+|11,NS*|_11,Ns"'|12,NS“|_12,N5"'|2,N5+|_2,N5"'|3,N5
2S-1

( e\l lisTeslsslunsTunsTiansTions o ns o ns s Ns
1 —_—

2

XKty ol ol yyetl <+ ] sy net o ne! I,
stlisTlosinstlianstians1ans 2 nsINst i nst i2ns T 2 ns T2 ns

S o ) A2
y|S+IIS l2s!nst11ns T 12Ns '12Ns I2 NSINS+|11NS+I12NS EPINS '2 NS ~[x Kiglysins T wdt )]y's Ins!ns (A2)

Note from the sum thaty,/dt=dy,./dt for any twoo, o’ characterized by the sarhgIys andI_NS, Therefore, the assumption

thaty, is determined bysg, Iys InsiS justified.
We may sum ovel; g andl; s to obtain

L-l-ls 1s I=Ins li7InsTlians h-Ins li-InsTlians  Ins InsTlans

Dhohs_, 3°3 3 3 3 3 03 S

dt 11570 12570133 ns™0  T12ns™0 PINS

l1ins0  l12ns™0 l2ns=0

X<L—h—|s>( ls )(h —INS>(I| —INS—IH,NS>

lis l2s/\ l11ns l1ons

X('I - |Ns)<|l —Ins— |11,Ns>< Ins )(INS_ |2,NS)
Ill,NS |12,Ns |2,NS |2,NS

— e\lus/ €2 '2,s+|11,Ns"‘|_11,NS*|12,Ns"‘|_12,NS“|2,N5"'|_2,Ns
X (25— 2)'1instlung =
2 25-1

€2 \lslas € Tnslans2ns
x| 1- 1-
2S-1 2S-1

e \LlsInsTlisThians i nsTians T2 ns
1-=
2

X K
Istly s7lo sInstianstlions '12Ns I, NSNSt lllNS '12Ns l1ons™ '2 NS

(A3)

K| + k(t Jo.
y|S+I1S 25Inst1instians™ '12Ns I2 NsIns" IllNS |12NS l1ons™ I2 NS -l IsInsIns ( )]yls'lNSINS
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Now, the total number of sequencescharactenzed by the Hamming distandgslys andINs is given byC,_;

—(L II)(|NS)(|NS)(ZS 1)'s(2S-2)'ns, Then definez

Is

=C
shusins~ ClsinsinglsinsIng

S'NS'NS

they to thez representauons After some tedious algrebra, the final result is

L-l-lg g

Bahshis_, 3" 5SS S

Ii-Ins h=Inslians limIns h-Inslians Ins InsTlons

2 X

d —
110 Iy =0l N0 l1opn0 Iy N0 T
1570 125701ns0 lians™0 20 130 12NST0 150
><<|1,S+|s—|2,s>( el2 )Il's(l €l2 )'s"zvs
Il,S 28_1 28_1
L=l =ls=listlos)[€\'2s
IZ,S 2
% (' —lons=lonst lianst Ill,NS) (INS_ lons— lonst Ill,NS)
l11ns l11ns

l12ns

>|12,NS+|2,NS

I2,NS

) PENSUEPINS

XKty ol et netlonet1o nelo nol et

I =Ins=lians = lianst lionst |2,NS) (

(2S- 2)'2nst2 NS(]_ -
2

>|11,NS+|_11,NS< € )TNS_IZ,Ns_lz,NS
1 —_
2s-1 2s-1

[ = Ins=lians = lianst lons |12,Ns> (II —Ins=liins= lianst lans

I2,NS )

II - INS_ Ill,NS_ |12,NS+ I12,NS

I12NS )

)'— IsIns1 .- |llNS_|11NS_|12NS_|12NS

S'1S 28 nst 11NS 12NS "12NS "2NS nst llNS 12NS '12NS "2 NS

X _ _ - - z K| + k(t
Z's”l,s I sInstlianstlions I12,Ns |2,NS|NS+I11,NS+|12,NS EPING I2,Ns [ IsinsIns ( )]Z's: Insins

(A4)

2. The infinite sequence length equations

We are now in a position to derive the infinite sequence
length form of the quasispecies equations. We allow o
while keepingu=Le fixed. Furthermore, let us defing
=|,/L, sof, is the fraction of bases ia, and o, which differ.

If we let p(f,) denote the probability density fdj, then in
the limit of infinite sequence length we obtain tha(f,)
— 8{f,-[1-(1/29]}, wheredis the Diracé function. There-
fore, we takef,=1-1/2Sin the L — < limit.

A slight complication arises in the infinite sequence limit,
namely, that,=f,L— o asL —c. This means that it is im-

possible forlysandlysto simultaneously be finite. For ifs

is finite, thenIstl,—INS+TNS=oo and vice versa. The appro- '(h

priate way to solve these equations is therefore to solve fo
finite values ofg, Ins @andlys Then we can redenotg > Inslns
by Zilyoing and solve in the infinite sequence I|m|t The

symmetry of the landscape allows us to obtain the flmge

061916-11

population fractions as well, since the population fraction for

finite I, Iys andINsls then simply given by |-
In the following subsection, we show that Bs-«, the
only terms which survive the limiting process are the

:|11,NS:|11,NS:|2,NS:|12,NS: 0 terms. We also have

S‘NS NS

( ‘h"s*"zs)( )lzs_)i<(1‘f|)ﬂ>|25, (A5)
IZ,S 2 |2vs! 2

—Inst |2,NS+|_12,NS> (|| —Inst IZ,NS)( €l2 )llZ'NSHZ'NS
I_lz,NS |2,NS 25-1
1 f 112nsH2Ns
— ( - ) , (A6)
lons! liong 2(2s-1)

We may convert our differential equations from
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€ L5 s 1 s ns 1ns T 2ns 12
-ul2
1--— — e M, (A7)
2

Using the fact thaf, — 1-1/2SasL — e, we obtain, after some manipulati¢and after redenoting,s|Ns,_NS by Kiglyalng" the

infinite sequence length equations

Ig | S—l s | s | | |
dqs Ins! NS _ 5gul2 E NEN % ;( o ) 1,5t1Nst 2NS(ZS 2)|2NS
dt l1,50 l1ns0 |2NS_0|1S lins! long \ 4S

(A8)

X K K| + k(t
Il sInsTans IZNSINS IanBs T sInsins |2NSINS 2NS al IsIns!ns « )]Z's' InsIng’

SS"NSINS|1,9|2,9|11,NS|11,NS|12,NS|12,NS|2,NS|2,NS

where we have redenotégs by |, g, andl_lzyNS by l1ns

It should be clear thazovol():y,,o. Therefore, 24 is the 2 s e\l
total fraction of the population with genomey, op}. This S k[(ls+ 1)( )} ((L+ 1)—) {(INS+ 1)
gives, x(t) = 2(k-1)zg o 5+ 1. 25-1 2/

Now, asL — <, the sequenceas, and o, become infinitely €2 \ |'uns| ~ e/2 \'iins
separated. Therefore, we expect that the vaIue&g@JsTNs X(ZS— 1)} NS 1)<25_ 1)

for finite Ig, Ing TNS to be dictated by the single fitness peak - |
at 0. Thus, for largel, we expect to obtain a locally single ~la+ 1)< €2 ) 12NS 0+ 1)(28 2 e) 2NS |
fithess peak model in which we can then assume yhat ! 2S-1 2S-12 NS

depends only on the Hamming distarlge |ys to op. In the | |
following subsection, we prove this rigorously. We may then  _7 1)(23 25) ZNS} {(I _ 1)( €l2 ) 12“5}
group the population into Hamming classes, as with the Ns* 25-12 NSNS 25-1

single fitness peak for conservative replication. Specifically, (A9)

we definew,= E' NS 7 and finally obtain the _ »
=07 Insns Ins ) Now, at fixed i, chooseL to be sufficiently large so that
infinite sequence Iength equations given by HEd). (L+1)(e/2)=1/2(u+e)<pm. Then certainly (I,+1)

X[e/2/(25-1)]< ul(2S-1). We then have

L-li-ls Is I=Ins Ii=InsTlians Ins Ins InsIns™ IllNS Ins Ins I2ns
3. Additional calculational details sl og0luns0 lions™0 1 (0 1ppe0 2880 1,0

a. Derivation of the infinite sequence length equations from the
finite sequence length equatiions

L-1-lg | I-Ins
€2 S | ~
In this appendix, we derive the infinite sequence length <k X {(Is+ 1)<ZS— 1)] ) pes 2 [(INS+ b

X G ialvol ol alin oo ol nalo nsls vl
S'NS'NS'1,S'2S"11INS'12NS"11INS'12NS'2 NS'2 NS

form fordz i J/dtfrom the corresponding finite sequence st o 2650 N
length equations. Before proceeding, however, we derive €2 luns 1 NS ~
some basic inequalities which we will need to use. First of X(ZS— 1)} | E_O [“NS‘ Inst 1)
all, note that eactz,S|NSTNS must be<1. Furthermore, note 12NS
Ins)

that «; ), o7, <k We also have(m:] ))\m I [(n+i)/iTn x( €l2 )]'HNS NENS[(TN3+ 1)( €2 )]'nNs
<[(n+1)\]™, and(1-\)"<1 for A €[0, 1]. 2s-1 1110 25-1

We wish to show that in the limit df — , the only terms nsIns : Tus e
which contribute to the dynamical equations are the x S ( s )ms > plans D {(| “Tys+ D)
=111 ns=l1ins=lans=l12ns= 0 terms. We prove this by show- = \2s-1 |2N§0'u T NS NS
ing that for each of the above indices, the total contribution 12NS 2N
from all the nonzero terms becomes arbitrarily smallLas €\ |l2ns
—oo with u=Le held fixed. X(E)} (A10)

So, we start with thd; g index. From the inequalities
given above, we may note that the summand of @dt), Now, let A=3_.uX. Also, note thal_ A\"=\"/(1-\), for
denoted bYS i 7\ sl sloshinslins iznshanslzanslans 12S he I\ <1. Therefore, note thatsan upper bound for the product
upper bound given above is S|mply,kAS+|N5[(IS+INS+ D(e/2)]/[1-(g
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+Iys+1)(e/2)]°. Therefore, ak — =, so thate— 0 in such a We note also thak,_; i . only depends oms+lysin the
way that u is fixed, we see that the contribution of the limit of infinite sequence length. Therefore, we may define
|1 s> 0 terms to the evolution dynamics approaches 0. Therex, s Kiglyalye With ko=k, and k=1 otherwise. So, sup-
fore, we need only consider thes=0 terms in the limit of pose at some timé we have that Eq(A14) holds for all
infinite sequence length. Using a similar argument to the ong_| - 7 Then, after switching notation frorg, | To<to
given above, we can systematically eliminate the contribus; S NSNS g 13 Ins: s

p.q,r, we have
tions from thel ;3 ns,l12ns: 111 ns 12ns™ O @s well. This estab-

lishes the infinite sequence length form of our differential  dz,q, _ P qEr ‘ w | |

equations. We should note that convergence to the infinite dt S S DAL 4_5 (25-2)

sequence length form is not uniform, as can be seen by the = h

Is+Ins dependence of our upper bound. ptg-j-k-1\/qg-k-I
XKp*“'j"‘"( P )( r-| )

b. Simplification of the infinite sequence length equations
X (25- Z)r_lzp+q—j—k—l,0,0_ [Kp,q,r +k(t)]

p+qg\(q r
N ——

We wish to show that, ak —, we may assume that
Yiglyslns becomes dependent only dag+lys which will
thereby allow us to considerably simplify the infinite se-
guence length equation&q. (A4)]. To proceed with this

simplification, let us first determine the effect that, 7

depending only onlstlys has onz, . We have,

Z'S'NSTNs:C'S"NsTNsy's«'NsTNs' B_Ut’ yIS’lNSIstyIS'lNSO
:z.s,NsolquNso. Putting everything together, we obtain

Ins -
Ziglnelne™ (~| )(28— 2Nz o (A11)
NS
A similar procedure yields
_(Is+le) LT (L=1=lg=Iy9!
A0 g (= Ing L1 - 1)
X (281N o0 (A12)

As L,l,—o, we get

L (L= =lg=Iy9)! ( L, )'Ns_<L>'Ns
(-1 (L-l,=19! \L=-1,) ~\1-%,

=(2S-1)'ns, (A13)
Is*+Ins
giving, Zi )50~ s Zi 41, 40.0 Therefore,
__(ls*Ins Ins T
Z‘s'Ns'Ns_< Ins )(TNS (25-2) N2 0.0
(A14)

7o
p r

p+q
X > !

m
20

1

p
T e Sonmon
(IO +q ) jkeH=m,(j k1) e[0,p]X[0,g-r]x[0s] )

T

X(25=2)"Z4q,0,0

p+q 1425600
(73 oo

The last two lines are derived by noting that the product
of the factorials (1/j ! kI I')(p+q_‘_k_')(q;'_‘|_'), is equal to
(p+q)( )[1/(]+k+|)'][ J+k+| )], and then by noting
that 21+k+l—m,(],k,l)e[O,p]><[0,q r]X[OYr](p)(q—F)(;’) (pr';q). This
relation can be derived by expanditig+1)P*% in two differ-

ent ways: First by direct expansion using the binomial theo-
rem, and second by expandig+1)P, (x+1)97", (x+1)f
separately, and then taking the product. Matching powers of
x yields the relation given above.

Note that that we have shown thaf,, = (p+q)( )(28

(A15)

We wish to show that it is this relation which is preserved by-2)'z,,, 0 for all p,q,r throughout the evolutlon Then

the evolution equations. Note that at tinbe0, we have
N 1/24 g0 SO that this relation holds at0. If
we can show that if this relation holds for a||I,Ns| us at
some timet, then it holds fordaSJNSTNS/dt, it follows that it
holds throughout the evolution.

given somel, let us collect all the population at Hamming
distance from oy by definingw,=2'np02?102._m,m,r. We then
have,W =2 o 2 o2mo((1)(2S-2)"=(29)'7 o o Therefore,
using the expression falz ( o/ dt, we immediately obtain the
infinite sequence length equations given by Ed).
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